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Abstract
In this work, a green and cost-effective method based on halloysite as natural catalyst for the synthesis of α-amino nitriles via 
Strecker three-component reaction is introduced. The chemical and physical structure of natural halloysite has characterized 
thoroughly, and then the effect of different parameters such as the amount of catalyst, solvent, and temperature was optimized 
in the synthesis of 2-phenyl-2-(phenylamino)acetonitrile as the model reaction. Then, various substituted benzaldehydes and 
anilines were converted to the desired α‐amino nitriles under the optimized conditions. Electronic properties of substituents 
on aldehydes and aromatic amines have been affected the reaction efficiency. For all substrates, good to excellent yields of 
the corresponding α-amino nitriles were obtained under solvent-free conditions at room temperature. The catalyst has been 
recovered and reused five times in successive Strecker reaction.

Graphical abstract
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Introduction

Carbon–carbon bond formation reactions are one of the most 
important methods in the synthesis of drugs, natural prod-
ucts, and fine chemicals [1, 2]. Among them, the Strecker 
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reaction is one of the well-known classical multicomponent 
reactions to afford α‐aminonitriles via a carbon–carbon 
bond formation reaction between imines and cyanides [3, 
4]. α-Amino nitriles as the key valuable precursors have 
been used for the synthesis of various organic compounds, 
drugs, and bioactive scaffolds such as saframycin A and its 
derivative [5], anagliptin (Fig. 1), saxagliptin, vildagliptin 
(Fig. 1) [6], odanacatib [7], ecteinascidin [8], ( ±)-phthalas-
cidin 622 [9], HCV NS3 serine protease inhibitors [10], 
and clopidogrel [11]. Moreover, α-amino nitriles can be 
converted to the corresponding α-amino acids, amines, 
enamines, ketones, α-amino amides, amino alcohols, and 
nitrogen-containing heterocyclic compounds, which have 
been reviewed by Enders and his coworkers [5].

Because of the importance and variety of applications of 
nitriles, several methods have been reported for this purpose. 
As it has been mentioned in the previous reports, synthetic 
routes have been extended by using different sources of cya-
nide ions, amine substrates, catalysts, and solvents [12]. In 
recent decades, a wide range of methods and catalysts has 
been conducted in which the followings are some notewor-
thy special reports. Hazardous and toxic cyanide sources 
such as KCN, NaCN, and HCN [13] have been replaced 
by  Bu3SnCN [14], (EtO)2P(O)CN [15],  Et2AlCN [16], 
 Me2C(OH)CN [17], ferro/ferric-cyanides [18], thiocyanates 
[19],  K4[Fe(CN)6] [20], and TMSCN [21] in recent years. 
In addition, the efficiency of zinc oxide [22], chloride salts 
of indium [23], bismuth [24], nickel [25], ruthenium [26], 
gallium [27], cerium [28], iron [28], sulfonium salts [29], 
lanthanum isopropoxide [30], copper triflate [31], indium/
MOF [32], MCM-41 [33], chitosan [34], montmorillonite 
KSF6 [35],  I2 [36], g-C3N4-anchored sulfonic acid [37], and 

 CdFe2O4@SiO2@ZrO2/SO4
2−/Cu/Ni [38] has been investi-

gated in metal-catalyzed or metal-free approaches for the 
production of α-amino nitriles. Electrochemical [39] and 
photochemical pathways [40] in the presence of different 
ionic liquids [41], as well as organic solvents, were also 
developed in this area. The use of cost-effective and recy-
clable catalysts [42, 43] along with avoiding toxic or vola-
tile organic solvents [44] can be a major effort to improve 
the clean and green synthesis of α-amino nitriles. Most of 
the mentioned methods are suffering from a few drawbacks. 
These drawbacks include the use of expensive and inaccessi-
ble catalysts—the use of materials that are not environmen-
tally friendly, as well as the need for high energy to perform 
the reaction, which sometimes does not yield good results. 
Therefore, finding cost-effective and reusable catalysts along 
with the use of nontoxic or nonvolatile solvents can improve 
these methods to synthesize α-amino nitriles via the clean 
and green procedure. For a greener methodology, finding 
an active natural catalyst for organic transformation can 
minimize the catalyst preparation steps, production of toxic 
wastes, and the use of toxic solvents or precious materials.

Halloysite nanotubes as a natural aluminosilicate have 
been used in various methods due to their unique features 
such as low cost, accessibility, easy modification, stability, 
biocompatibility, and porosity [45]. Halloysite was used as 
a nanocontainer for biological molecules [46], adsorbent 
of wastewater pollutions [47, 48], nanofiller [49], and sup-
ported catalysts [50–53]. Several nanocomposites of mag-
netic metal oxides [54, 55], zinc oxide [56], poly(ethylene 
imine) [57], and chitosan [58] have been synthesized with 
halloysite for organic transformations, photocatalysis, and 
environmental and biomedical applications [59–62].

Herein, in continuation of our previous studies [63–70], 
a novel and green method is reported for the synthesis of 
α-amino nitriles starting from the appropriate substituted 
aldehydes, aromatic amines, and trimethylsilyl cyanide 
(TMSCN) in the presence of halloysite as a highly active 
natural catalyst (Scheme 1).N
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Fig. 1  Examples of existing α-amino nitrile moiety in drugs

Scheme 1  Schematic pathway 
of the Strecker reaction
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Experimental

Materials and apparatuses

Halloysite nanotube, solvents, and all substrates needed for 
the synthesis of α-amino nitriles are obtained from Merck 
and Aldrich companies. All materials and solvents were 
used without any further purification. For the morphological 
studies of the halloysite, transmittance electron microscopy 
(TEM) (Leo 912AB microscope operated at 120 kV) and 
scanning electron microscopy (SEM) (Leo 1450VP micro-
scope) analyses were used. Thermal stability of halloysite 
was evaluated by thermogravimetric analysis (TGA, Mettler 
Toledo LF-Switzerland). Fourier transform infrared spec-
troscopy (FT-IR) spectra (Nicolet Fourier spectrophotom-
eter, using KBr pellets) were used for the chemical structure 
study of the catalyst. The crystalline structure of halloysite 
was also measured by the energy-dispersive X-ray analysis 
(XRD). 1H NMR and 13C NMR in  CDCl3 (Bruker DRX-300 
AVANCE spectrometer at 300 and 75 MHz, respectively) 
were used to confirm the chemical structure of the synthe-
sized α-amino nitriles.

General procedure for the synthesis of α‑amino 
nitriles

In a round bottom flask, a mixture of the appropriate alde-
hyde (1 mmol), amine (1 mmol), trimethylsilyl cyanide 
(TMSCN) (1.2 mmol), and halloysite (10 mg) was stirred 
in solvent-free condition at room temperature. The progress 
of the reaction was monitored by thin layer chromatogra-
phy (TLC) using (n-hexane/ethyl acetate) as eluent (10/1). 
After the completion of the reaction, the mixture was diluted 
with dichloromethane. The catalyst was separated from 
the reaction mixture by simple filtration and washed with 

dichloromethane (3 × 5 ml) and ethanol (3 × 5 ml) to recover 
the catalyst. The desired product was either recrystallized in 
ethanol or, if necessary, subjected to preparative thin layer 
chromatography on silica gel to achieve the pure α-amino 
nitrile compounds. The structures of the products were elu-
cidated by 1H NMR and 13C NMR spectroscopy.

Results and discussion

Commercially, obtained halloysite was used as a heteroge-
neous green natural catalyst for the one-pot three-compo-
nent synthesis of α-amino nitriles from various aldehydes, 
amines, and TMSCN in solvent-free condition at room tem-
perature (Scheme 1).

FTIR analysis is used for the chemical composition study 
of the natural halloysite (Fig. 2). In the FTIR spectrum of 
halloysite, the stretching vibrations of perpendicular surface 
-OH groups are observed at 3696  cm−1 as well as the stretch-
ing vibration of the inner-surface -OH groups coordinated 
with the tetrahedral sheet and octahedral sheet of halloysite 
is observed at 3620  cm−1. These peaks confirm the con-
nection of inner surface hydroxyl groups to the aluminum 
sheets, which caused the occurrence of the hydrogen bonds 
with oxygen groups of the next layer. Also, the stretching 
vibration of Si–O bonds has appeared around 1089  cm−1. 
The peak observed at 1031  cm−1 can be attributed to the 
Si–O–Si bonds. The bending vibration of Al–O–Si bonds 
has appeared at 538  cm−1, whereas the peaks at 911 and 
470  cm−1 are corresponded to bending vibrations of Al–OH 
and Si–O–Si bonds, respectively. Typically, the character-
istic peak at 1637 is due to the deformation of water. The 
FTIR analysis confirms the existence of the characteristic 
vibrational peaks of the halloysite in accordance with the 
corresponding references [71, 72].

Fig. 2  FTIR spectra of natural 
halloysite
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To testify thermal stability of natural halloysite, thermo-
gravimetric analysis was carried out. As shown in Fig. 3, a 
weight loss below 100 °C can be attributed to the removal of 
surface adsorbed water molecules, which is about 2.5 wt% of 
halloysite. Also, an intense weight loss of 13% is observed 
from 400 to 550 °C related to the decomposition of the OH 
groups of aluminum-hydroxide moieties. Based on the TGA 
curve, halloysite is stable up to 400 °C [73].

The morphology of the natural halloysite was evaluated 
by transmittance electron microscopy (TEM). Most hal-
loysite particles have cylindrical hollow tubular structures 
(Fig. 4). Generally, halloysite tubes length is in the range 
of 200–1000 nm. Also, the outer diameter of tubes varies 
from 10 to 100 nm, and the lumen diameter ranges from 5 to 
50 nm (Fig. 4b). The nonuniform size distribution of nano-
particles is due to the unequal hydroxyl group density and 
uncommon charge distributions, which caused the formation 
of unequaled crystals [74].

For further study of the natural halloysite structure, scan-
ning electron microscopy (SEM) was used. SEM image and 
EDX analysis are represented in Fig. 5. The SEM image 
indicates the polydispersity of halloysite particles in length. 
Also, the open-ended lumen of the cylindrically shaped 

Fig. 3  TGA (a) and differential TGA (DrTGA) (b) curve of halloysite

Fig. 4  TEM images of natural 
halloysite

Fig. 5  a SEM image and b EDX analysis of halloysite
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tubes can be clearly observed (Fig. 5a). To recognize the 
elemental composition of halloysite, EDX analysis was also 
applied. In Fig. 5b, the characteristic peaks of Si, Al, and 
O have been presented as the main elements of halloysite, 
which are attributed to the  SiO2 and  Al2O3 composition of 
halloysite [75].

The WAXRD pattern was used to study the crystalline 
structure of the natural halloysite (Fig. 6). In the WAXRD of 
halloysite, characteristic peaks of halloysite  [Al2Si2O5(OH)4] 
were observed in accordance with JCPDS card number 
00-029-1487. Diffraction peaks at 2θ values of 11.8°, 20.1°, 
24.5°, 35.8°, and 54.9° correspond to the (001), (110), (002), 
(100), and (210) planes are presented. The observed sharp 
peak at 2θ of 20.1° confirms the tubular structure of the 
halloysite sample. Other minerals such as cristobalite (C, 

JCPDS card number 04-008-7642) kaolinite (K, JCPDS card 
number 00-005-0143), and quartz (Q, JCPDS card number 
00-046-1045) as impurities are also observed [76].

After structural characterization of the natural halloysite, 
the feasibility of the three-component reaction among alde-
hyde, amine, and trimethylsilyl cyanide known as Strecker 
reaction in the presence of halloysite catalyst was explored. 
The model reaction using benzaldehyde, aniline, and 
TMSCN was carried out under different reaction conditions 
to achieve the optimized procedure. The effectiveness of 
various factors, including the amount of catalyst, solvent, 
and reaction temperature was investigated (Table 1). The 
effect of the solvent on the reaction process was illustrated 
using polar and nonpolar solvents such as DMSO, EtOH, 
n-hexane, and  H2O at room temperature/reflux conditions. In 

Fig. 6  WAXRD pattern of 
natural halloysite
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Table 1  The optimization of the reaction conditions

Conditions: benzaldehyde (1 mmol), aniline (1 mmol), TMSCN (1.2 mmol), solvent (2 ml), and catalyst
a Isolated yield

 

Entry Solvent Catalyst (mg) Temperature (ºC) Time (h) Yield (%)a

1 DMSO 10 Room temp./Reflux 2 80/83
2 EtOH 10 Room temp./Reflux 2 92/96
3 Hexane 10 Room temp./Reflux 4 75/65
4 H2O 10 Room temp./Reflux 3 90/93
5 solvent-free – Room temp 24 0
6 solvent-free 15 Room temp 1 95
7 solvent-free 10 Room temp 1 97
8 solvent-free 5 Room temp 4 85
9 solvent-free 2.5 Room temp 7 60
10 solvent-free 1 Room temp 12 30
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Table 2  The substrate scope of halloysite catalyzed α-amino nitrile in 
Strecker reaction

Entry Aldehyde Amine Time (min) Yield (%)

1 60 97

2 60 96

3 70 93

4 60 95

5 60 92

6 80 95

7 60 95

8 60 95

9 60 93

10 75 91

11 70 92

12 75 90

13 85 96

14 65 92

15 60 93

Table 2  (continued)

16   60 91 

17   80 89 

18   65 92 

19   65 91 

20   70 90 

21   
75 91 

22   80 88 

23   90 93 

24   70 90 

25  
 

70 91 

26  
 

70 89 

27  
 

85 85 

28   
85 89 

29 
 

 85 86 

30 100 95

31 80 88
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the progress of the reaction, the tested solvents were not sig-
nificantly different from the solvent-free condition (Table 1, 
entries 1–4). Without any catalyst, the imine product was 
only detected, and the reaction did not further proceed to 
produce the desired α-amino nitrile even after 24 h in sol-
vent-free conditions (Table 1, entry 5). This is concluded 
that the presence of a catalyst is necessary for this reaction. 
The model reaction with 10 mg of halloysite was completed 
in 1 h with 97% of product yield under solvent-free condi-
tions (Table 1, entry 7). It is notable that no cyanohydrin 
was produced as by-product in the model reaction. After 
the confirmation of the efficiency of halloysite in the model 
reaction, the effect of catalyst amount was evaluated. For 
this purpose, 15, 5, 2.5, and 1 mg of the catalyst were used 
(Table 1, entries 6–10). The yield of the final product was 
decreased to 95, 85, 60, and 30%, respectively. Therefore, 
10 mg of the catalyst at room temperature under solvent-free 
conditions was selected as the optimized reaction conditions 
(entry 7).

Based on Table 1 results, the natural halloysite is catalyti-
cally active for the synthesis of α-amino nitrile. In the fol-
lowing, the scope of this method was explored with various 
substituted benzaldehydes and anilines in order to synthesize 
various rang of α‐amino nitriles under the optimized reaction 
conditions which is summarized in Table 2. Both electron-
donating and electron-withdrawing substituents on aromatic 
aldehydes have affected the reaction efficiencies. Substituted 
benzaldehydes with electron-withdrawing/donating groups 
were efficiently active in this reaction, and desired products 
were achieved with excellent yields (Table 2, entries 1–7). 
The electronic nature of the substituents on aromatic amines 
influences the efficiency of this method (Table 2, entries 
8–33).

The reusability of the natural halloysite catalyst was also 
tested in the optimized model reaction. After the first cata-
lytic run, the halloysite was filtered off and successively 
washed with water and ethyl acetate. The recovered hal-
loysite was dried at 100 °C in an electric oven and used for 
the next run with fresh substrates. The recovered catalyst 
was active for five consecutive runs. The yield of the final 
product was 97% in the first run, which was decreased to 
90% in the fifth run (Fig. 7). After the fifth run, the catalyst 
was deactivated due to the catalyst poisoning with substrates 
and products.

Figure 8 shows the plausible reaction mechanism in 
which aldehyde interacts with the catalyst to increase the 
electrophilicity of the carbonyl group to form the interme-
diate which reacts with the amine to make in situ genera-
tions of aldimine (I). It consecutively interacts with hydroxyl 
group and increases the electrophilicity of the carbon of the 
imine to form a reactive intermediate (II). This hydroxy-
aldimine intermediate reacts with trimethyl-silylcaynide 
(TMSCN) as the nucleophile to form N-silylated product 
along with the generation of the active pre-catalysts. The 
N-silylated product is converted to the α-aminonitrile as 
final product after aqueous workup of N-silylated product 
by elimination of  Me3SiOH.

Eventually, the comparison of the natural halloysite 
nanotubes (HNTs) as a suitable catalyst in the synthesis 

Table 2  (continued)

32 60 94

33 60 90

34 60 85

35 100 92

36 80 80

Conditions: aldehyde (1 mmol), amine (1 mmol), TMSCN (1.2 
mmol) and halloysite (10 mg) at room temperature in solvent-free 
condition

Table 3  Comparison of 
halloysite nanotubes with 
previously reported catalysts

Entry Catalyst Amount Solvent Temp Time Yield (%) Ref.

1 Zinc Complex 35 mg neat r.t 6 h 90 [77]
2 Fe3O4@SiO2‐NH2‐GA 40 mg EtOH r.t 10 min 98 [78]
3 Fe3O4@SiO2–APTES–TFA 50 mg EtOH r.t 50 min 96 [79]
4 ionic liquid [PMIm]Br 10 wt% IL r.t 30 min 97 [41]
5 CN-Bu-SO3H 20 mg EtOH r.t 20 min 94 [37]
6 ZnO 5 mol% CH3CN 80 °C 45 min 94 [22]
7 CMK‐5‐SO3H 46 mg Solvent free r.t 45 min 96 [80]
8 Halloysite nanotubes 10 mg Solvent free r.t 60 min 97 This 

work
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of α‐amino nitriles (Strecker reaction) with the previously 
reported ones demonstrates that this procedure has the 
advantages of low catalyst loadings, solvent-free conditions 
at room temperature, high yields of final products, short 
reaction times, and easy catalyst recovery with the eco‐
friendly nature (Table 3).

Conclusions

The natural halloysite is active for the one‐pot synthesis 
of α‐amino nitriles by a three‐component condensation of 
various benzaldehydes, anilines, and TMSCN. This green 
natural catalyst can produce a variety of α-amino nitriles in 
a facile and cost‐effective method in solvent-free condition 
at room temperature. Both electron-donating and electron-
withdrawing substitutions on benzaldehyde and aniline sub-
strates have been affected the reaction efficiency. Electron-
withdrawing groups on benzaldehyde and electron-donating 
groups on aniline were converted to the desired α-amino 
nitriles in excellent yields. The catalyst was active for five 
consequent runs.

The catalyst used for this reaction can cover the disadvan-
tages of previous reports of catalytic work of this reaction 
and synthesize the desired products with the least amount 
of energy and cost.

Fig. 7  Recycling study of halloysite catalyzed model reaction

Fig. 8  The possible mechanism of halloysite catalyzed α-amino nitrile in Strecker reaction
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