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Abstract

Cross-backstepping control for a type of uncertain non-strict-feedback non-linear systems
with time-varying partial state constraints is the main subject of this work. Non-
strict-feedback non-linear systems are partitioned into two strict-feedback non-linear
subsystems: constrained subsystem and unconstrained subsystem. An integral barrier Lya-
punov function (IBLF) is used in each step of the backstepping design for the constrained
subsystem to guarantee the boundedness of the fictional or actual state tracking errors.
The effect of uncertainty is reduced using a hybrid cross-backstepping sliding mode con-
trol (SMC) technique. The algorithm employs a systematic approach to developing control
laws for non-linear systems with matched and unmatched uncertainties. The simulation
results of the proposed controller are juxtaposed with those of the cross backstepping
with the time-varying barrier Lyapunov function (TVBLF). The results demonstrate the
overall better performance of the proposed method.

1 INTRODUCTION

Control for non-linear systems has sparked a lot of interest;
hence, numerous control approaches for non-linear systems
have been explored. Non-linear systems have been given con-
trol methods based on the Lyapunov function, such as sliding
mode control (SMC), Lyapunov redesign, and the backstepping
method [1–4].

The backstepping method, a recursive procedure for non-
linear systems in the strict feedback form employing a Lyapunov
function and a systematic design approach, is one of the sig-
nificant achievements for managing non-linear systems. It has
the ability to improve global stability as well as tracking and
transient performance [1]. Due to its numerous advantages,
adaptive backstepping control is generally utilized in strict-
feedback non-linear systems [5–7]. On the other hand, the
typical backstepping technique can only be employed to regulate
stringent feedback systems, significantly limiting its application
in chaotic synchronization control [7].

Cross-strict feedback systems can be regarded as a type of
chaotic system. Because of their importance in practice and the-
ory [9–11], when combined with two or more strict feedback
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subsystems [8], these systems have gotten a lot of attention in
the control area.

Gong et al. [8] introduced a new cross backstepping control
approach for cross strict-feedback non-linear systems, verifying
the system’s global stability. Wang et al. [12] proposed a back-
stepping approach based on n control inputs for cross-strict
feedback systems with unknown parameters. Nonetheless, if the
number of control inputs is fewer than n, it will not apply to the
systems. Li et al. go on to offer robust backstepping synchro-
nization control methods based on this conclusion, making the
cross backstepping methodology appropriate for inputs smaller
than n [10, 11]. On the other hand, these solutions ignore the
issue of state constraints.

Physical restrictions are widely recognized to cause various
constraints in many industrial control systems. If we cannot
adequately address these restrictions in the controller design,
performance will suffer, and the system will become unstable
[13].

The barrier Lyapunov function (BLF) was initially included
in the backstepping design framework to solve the output
constraint of non-linear systems [14]. The complete state
restrictions were successfully addressed by coupling the BLF
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with an adaptive approach for pure feedback non-linear systems
[15]. For strict feedback or pure feedback non-linear systems,
many BLF-based backstepping control techniques have been
developed [16–19].

The state restrictions must fulfil the constant situation, which
is the fundamental limitation of the prior study. Nonetheless,
in practice, time-varying state restrictions are ubiquitous. The
time-varying full state constraints of non-linear systems were
efficiently addressed by applying the backstepping approach
with the assistance of the time-varying barrier Lyapunov func-
tion (TVBLF), with numerous exemplary results presented
[20–23]. For strict feedback non-linear systems with time-
varying state constraints, the TVBLF-based adaptive neural
network control strategy was described in [20].

The current advances in dealing with time-varying full state
constraints are mostly focused on non-linear systems with
strict feedback or pure feedback structures. Few findings are
available for cross-strict feedback non-linear systems with time-
varying state constraints. As a result, in order to overcome
this problem, an effective control plan must be developed
[24].

To manage a class of cross-strict feedback non-linear systems
with partial time-varying state restrictions, [7] uses time-varying
tan-type barrier Lyapunov function (TBLF)-based adaptive
control; however [7] ignores matched and mismatched uncer-
tainty and disturbances, despite the fact that matched and
mismatched uncertainties and disturbances are common in
actual engineering fields, including power systems, electronic
systems, and motor systems [25].

In [26] the tracking control problem for a class of partial
state constrained cross-strict feedback non-linear system is stud-
ied. In spite of the fact that it is compared with the current
studies, matched and mismatched uncertainties are regarded in
[26], but the key assumption on the uncertain terms (i.e. Di ,
i = 1, … , 2n) is that they are bounded by known and posi-
tive functions of states x1, … , xi (i.e. |Di (X2n, 𝜏, t )| ≤ 𝜌i𝛿i (Xi ),
i = 1, … , 2n, 𝜌i > 0).

Researchers have concentrated on control strategies for sys-
tems influenced by uncertainty and disturbances in the past few
years [1, 27–29]. SMC has received much interest in comparison
with other control methods because of its conceptual simplicity,
ease of implementation, and resilience to external disturbances
and model uncertainty [30–33]

SMC is a non-linear control approach that uses a discontin-
uous feedback control action to push closed-loop trajectories
to the switching manifold in a limited time. As a result, SMC is
widely employed in a variety of applications, including motion
control, process control, and so on [25]. Only the sliding mode
controller, on the other hand, may reject matched uncertainty
and disturbance [34].

To combine the features of the sliding mode with the back-
stepping controller, a backstepping sliding mode controller
[34–37] has been developed, which is resilient to both matched
and unmatched uncertainty. In reality, the adaptive backstep-
ping algorithm may be improved to create an adaptive sliding
output tracking controller, which provides more robustness. By
adding the sliding surface described in terms of the error coor-

dinates [35], the adjustment is carried out at the last stage of the
algorithm.

For cross-strict feedback systems with time-varying partial
state constraints in the presence of matched and unmatched
uncertainties, a cross backstepping SMC using an integral bar-
rier Lyapunov function (IBLF) is presented in this study. The
suggested technique ensures that the closed-loop system is
bounded, and that the outputs are forced to follow the refer-
ence signals, ensuring that all states remain inside predetermined
compact frames. The suggested method’s major objective is
to improve performance over cross backstepping with con-
ventional TBLF in the presence of matched and unmatched
uncertainties and disturbances to considerably reduce steady-
state error. Also, in this paper, the proposed controller is
able to reject the uncertainties, which fulfills the more gen-
eral conditions, that is, the upper bound of the uncertainty in
ith, i = 1, … , 2n, (nth) channel is made up of not only the states
x1, … , xi , but also xi+1(u), which is viewed as the virtual control
input. Therefore, our contribution is to extend the controllers
with cross backstepping approach, presented in [26], in order to
reject a more general class of uncertainties.

A fourth-order cross-strict feedback non-linear system has
been controlled using the suggested technique. In the exis-
tence of uncertainties and disturbances, simulation findings
show a significant enhancement in tracking performance while
maintaining stability.

The following is how the paper is structured: Section 2
explains the problem statement. The focus of Section 3 is on
the controller design. The closed-loop system is next subjected
to a complete stability study in Section 4. The simulation results
and conclusion are presented in Sections 5 and 6, respectively.

2 PROBLEM STATEMENT

The following cross-strict feedback non-linear system is
assumed in this paper:

ẋ1 = f1 (X1) + 𝜑T
1 (X1) 𝜃 + g1 (X1)

[
x3 + 𝜌1 (X2n, 𝜏, t )]

⋮

ẋi = fi (Xi ) + 𝜑T
i

(Xi ) 𝜃 + gi (Xi )
[
xi+2 + 𝜌i (X2n, 𝜏, t )

]
⋮

ẋ2n−1 (t ) = f2n−1 (X2n−1 (t )) + 𝜑T
2n−1 (X2n−1 (t )) 𝜃

+ g2n−1 (X2n−1 (t ))
[
u1 + 𝜌2n−1 (X2n, 𝜏, t )]

ẋ2n (t ) = f2n (X2n (t )) + 𝜑T
2n

(X2n (t )) 𝜃

+ g2n (X2n (t ))
[
u2 + 𝜌2n (X2n, 𝜏, t )]

y = x1

(1)

where Xi = (x1, … , xi ), i = 1, … , 2n, y ∈ R, are state vec-
tors and the output, respectively and u1 and u2 represent
control input of the two subsystems, fi (Xi ), gi (Xi ) ∶ Rn →

R are known and smooth functions such that fi (0) = 0
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and ∀Xi ∈ Ri → gi (Xi ) ≠ 0. 𝜃 ∈ Rp represent the vectors
of unknown parameters and 𝜑i (xi ) ∈ Rpi , i = 1, … , n are
known smooth functions. The unmatched uncertainties are
denoted by 𝜌i (X2n, 𝜏, t ), i = 1, … , 2(n − 1). The remaining
𝜌2n−1(X2n, u, 𝜏, t ) and 𝜌2n(X2n, u, 𝜏, t ) are matched uncertain-
ties. 𝜏 is considered an unknown time-varying term.

On the other side, the entire states X2n = (x1, … , xn, … , x2n )
are divided into two portions, one constrained and the other
is free. x2i , as the even integer sequence states, are free and
x2i−1, as the odd integer sequence states, are bounded through
kc2i−1

(t), that is, |x2i−1(t )| ≤ kc2i−1
(t )∀t > 0, in which kc2i−1

(t )
are predefined time-varying continuous positive smooth func-
tions that can be differentiated to 2nth order.

The investigated system (1) may be separated into two
stringent feedback subsystems (2) and (3), one of which is a
restricted state system, and the other is a free-state system, based
on the nature of the given description.

ẋ1 = f1 (X1) + 𝜑T
1

(X1) 𝜃

+ g1 (X1)
[
x3 + 𝜌1 (X2n, 𝜏, t )]

⋮

ẋ2i−1 (t ) = f2i−1 (X2i−1 (t )) + 𝜑T
2i−1

(X2i−1 (t )) 𝜃

+ g2i−1 (X2i−1 (t ))
[
u1 + 𝜌2i−1 (X2n, 𝜏, t )]

⋮

ẋ2n−1 (t ) = f2n−1 (X2n−1 (t )) + 𝜑T
2n−1

(X2n−1 (t )) 𝜃

+ g2n−1 (X2n−1 (t ))
[
u1 + 𝜌2n−1 (X2n, 𝜏, t )]

(2)

and

ẋ2 = f2 (X2) + 𝜑T
2 (X2) 𝜃 + g2 (X2) [x4]

+𝜌2 (X2n, 𝜏, t )

⋮

ẋ2i (t ) = f2i (X2i (t )) + 𝜑T
2i

(X2i (t )) 𝜃

+ g2i (X2i (t ))
[
u2 + 𝜌2i (X2n, 𝜏, t )]

⋮

ẋ2n (t ) = f2n (X2n (t )) + 𝜑T
2n

(X2n (t )) 𝜃

+ g2n (X2n (t ))
[
u2 + 𝜌2n (X2n, 𝜏, t )]

(3)

The control objective is to create adaptive controllers u1 and
u2 to ensure that the system output y(t) closely matches the
intended reference signal yr (t ). Simultaneously, we must con-
firm that partial state restrictions are not broken and that all
closed-loop signals are bounded. In order to do this, we assume
the following system assumption (1).

Assumption 1. All of the partial time-varying state con-
straints kc2i−1

(t ) and the desired system output trajectory yr (t )
are continuous, limited, and differentiable up to the nth order.
A differentiable continuous function A(t ) exists while positive
constants d2i−1, j ,Yj satisfy yr (t ) ≤ A(t ) < kc1

(t ), |y( j )
r (t )| ≤ Yj ,| k

( j )
c2i−1

(t )| ≤ d2i−1, j (i, j = 1, … , n) for t ≥ 0.

FIGURE 1 Block diagram of the proposed controller

Assumption 2. We assume that the unknown unmatched
uncertainty 𝜌i (X2n, 𝜏, t ), i = 1, … , 2(n − 1), and matched
uncertainties 𝜌2n−1(X2n, u, 𝜏, t ) and 𝜌2n(X2n, u, 𝜏, t ) satisfy the
following inequalities.

|𝜌i (X2n, 𝜏, t )| ≤ Mi (Xi ) + 𝜇i
|||(xi+1

)||||𝜌2n−1 (X2n, u, 𝜏, t )| ≤ M2n−1 (X2n−1) + 𝜇2n−1 |u1||𝜌2n (X2n, u, 𝜏, t )| ≤ M2n (X2n ) + 𝜇2n |u2|
(4)

where 𝜇i ∈ [0, 1), i = 1, … , 2n and Mi (Xi ), i = 1, … , 2n are
the continuous and positive functions.

Remark 1. In Assumption 2, the virtual control input xi+1is
added to the traditional upper bound Mi (Xi ) [1], resulting in a
more general upper bound for the uncertainty.

3 CONTROLLER DESIGN

A block diagram of the proposed controller is portrayed in
Figure 1. The specific design process is divided into the
following two parts.

3.1 Control design for constrained
subsystem

Because subsystem (2) is a state restricted non-linear system, we
utilize an IBLF to guarantee that the state constraints are not
broken, and we build the controller u1 using cross backstepping
SMC.

3.1.1 Cross backstepping control using integral
barrier Lyapunov function

The controller is designed in the following steps based on the
backstepping design procedure:
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Step 1.

The output tracking error formula is

e1 = x1 − yr (5)

The Lyapunov candidate function is generated using an
approximation of the unknown parameter 𝜃.

V1
(
e1, �̃�

)
= ∫

e1

0

𝛿k2
b1

(t )

k2
b1

(t ) − 𝛿2
d𝛿 +

1
2
�̃�T T −1�̃� +

𝜀

n𝛼
e−𝛼t

(6)

where kb1
(t ) = kc1

(t ) − A(t ) > 0 is the error constraint vector
and |e1| < kb1

(t ), T is a symmetric and positive definite matrix

and �̃� = 𝜃 − �̂�.
In the sets |e1| < kb1

(t ), it is known that the candidate
Lyapunov function V1(e1, �̃�) is positive definite, continuously
differentiable, and radially unbounded; hence, V1(e1, �̃�) is a
genuine candidate Lyapunov function.

The time derivative of (6) can be expressed as

V̇1

(
e1, �̃�

)
=

k2
b1

(t ) e1 ė1

k2
b1

(t ) − e2
1

+

(
kb1

(t ) log
k2

b1
(t )

k2
b1

(t ) − e2
1

−
kb1

(t ) e2
1

k2
b1

(t ) − e2
1

)
k̇b1

(t )

− �̃�T T −1 ̇̂𝜃 −
𝜀

n
e−𝛼t

=
k2

b1
(t ) e1

[
f1 (x1 ) + ΦT

1 (x1 ) 𝜃 + g1 (x1 ) [x3 + 𝜌1 (X2n, 𝜏, t )] − ẏr

]
k2

b1
− e2

1

+

k2
b1

(t ) e1

[(
k2

b1
−e2

1

kb1
(t )e1

log
k2

b1
(t )

k2
b1

(t )−e2
1

)
k̇b1

(t ) −
e1

kb1
(t )

k̇b1
(t )
]

k2
b1
− e2

1

− �̃�T T −1 ̇̂𝜃 −
𝜀

n
e−𝛼t (7)

To make the system asymptotically stable, V̇1(e1, �̃�) must be
semi-definitely negative.

To ensure V̇1 ≤ 0, we have

x3v

(
x1, �̂�

)
=

1
g1 (x1)

[− f1 (x1) − ΦT
1

(x1) �̂� + ẏr −

(
k2

b1
− e2

1

kb1
(t ) e1

log
k2

b1
(t )

k2
b1

(t ) − e2
1

)
k̇b1

(t ) +
e1

kb1
(t )

k̇b1
(t ) − c1e1 −

𝜀e1

nk2
b1

(t )
e−𝛼t ] −

h2
1e1g1 (x1)

h1
||e1g1 (x1)|| + 𝜀

n
e−𝛼t

(8)

where c1, 𝜀, and 𝛼 are positive numbers, becomes

V̇1
(
e1, �̃�

)
= −

k2
b1

(t )

(k2
b1
− e2

1 )
c1e2

1 −
e2
1𝜀

(k2
b1
− e2

1 )n
e−𝛼t

−
𝜀

n
e−𝛼t + �̃�T T −1

(
T 𝜑1 (x1)

k2
b1

(t ) e1

(k2
b1
− e2

1 )
− ̇̂𝜃

)

−
k2

b1
(t ) e1

(k2
b1
− e2

1 )
g1 (x1)

h2
1e1g1 (x1)

h1
||e1g1 (x1)|| + 𝜀

n
e−𝛼t

+
k2

b1
(t ) e1

(k2
b1
− e2

1 )
g1 (x1) 𝜌1 (X2n, 𝜏, t ) (9)

As we know AB ≤ |AB| ≤ |A||B| and according to assump-

tion (2) and considering | h2
1e1g1(x1 )

h1|e1g1(x1 )|+ 𝜀

n
e−𝛼t

| ≤ h1, it yields

−
k2

b1
(t ) e1

(k2
b1
− e2

1 )
g1 (x1)

h2
1e1g1 (x1)

h1
|||e1g1(x1 )

||| + 𝜀

n
e−𝛼t

+
k2

b1
(t ) e1

(k2
b1
− e2

1 )
g1 (x1) 𝜌1 (X2n, 𝜏, t )

≤
(

k2
b1

(t )

(k2
b1
− e2

1 )

)
(

−h2
1e2

1g2
1

(x1)

h1
||e1g1 (x1)|| + 𝜀

n
e−𝛼t

+

(
h1
||e1g1 (x1)|| + 𝜀

n
e−𝛼t

) ||e1g1 (x1)|| [M1 + 𝜇1 |x3v| + 𝜇1h1]

h1
||e1g1 (x1)|| + 𝜀

n
e−𝛼t

)

(10)

If h1 is chosen as

h1 >
M1 (x1) + 𝜇1 |x3v|

(1 − 𝜇1)
(11)

It is clear that [M1(x1) + 𝜇1|x3v| + 𝜇1h1] < h1 and because
𝜀

n
e−𝛼t h1|e1g1(x1 )|

h1|e1g1(x1 )|+ 𝜀

n
e−𝛼t

<
𝜀

n
e−𝛼t , thus

−
k2

b1
(t ) e1

(k2
b1
− e2

1 )
g1 (x1)

h2
1e1g1 (x1)

h1
||e1g1 (x1)|| + 𝜀

n
e−𝛼t

+
k2

b1
(t ) e1

(k2
b1
− e2

1 )
g1 (x1) 𝜌1 (X2n, 𝜏, t ) <

(
k2

b1
(t )

(k2
b1
− e2

1 )

)
𝜀

n
e−𝛼t

(12)
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We may simplify (9) by considering the virtual control input
(8) and a suitably smooth function h1 that satisfies (11) as
follows:

V̇1
(
e1, �̃�

) ≤ −
k2

b1
(t )

(k2
b1
− e2

1 )
c1e2

1 + �̃�T T −1

×

(
T 𝜑1 (x1)

k2
b1

(t ) e1

(k2
b1
− e2

1 )
− ̇̂𝜃

)
(13)

We select ̇̂𝜃 = T ’1(x1)
k2

b1
(t )e1

(k2
b1
−e2

1 )
to eliminate the last term of

(13).
Step k.

e2k−1 = x2k−1

(
X2k−1, �̂�, t

)
− x(2k−1)v

(
X2k−1, �̂�, t

)
(14)

The Lyapunov function is selected as follows ( E2k−1 =

(e1, e2, … , e2k−1)):

V2k−1
(
E2k−1, �̃�

)
= V2k−3

(
E2k−3, �̃�

)
+ ∫

e2k−1

0

𝛿k2
b2k−1

(t )

k2
b2k−1

(t ) − 𝛿2
d𝛿 +

𝜀

n𝛼
e−𝛼t (15)

where kb2k−1
(t ) = kc2k−1

(t ) − 𝛼2k−1(t ) > 0 is the error

constraint vector, 𝛼2k−1 (t ) = sup{x(2k−1)v (X2k−1, �̂�)} and|e2k−1| < kb2k−1
(t ).

According to (14) and referring to (2), results

V̇2k−1

(
E2k−1, �̃�

)
=

2k−3∑
i = 1

[
−

k2
bi

(t )

(k2
bi
− e2

i )
ci e

2
i −

e2
i 𝜀

(k2
bi
− e2

i )n
e−𝛼t

+
k2

bi
(t ) ei

k2
bi

(t ) − e2
i

gi (Xi ) 𝜌i (X2n, 𝜏, t )

−
k2

bi
(t ) ei

k2
bi

(t ) − e2
i

h2
i g2

i
(Xi ) ei

hi
||gi (Xi ) ei

|| + 𝜀

n
e−𝛼t

⎤⎥⎥⎦
+ �̃�T T −1

[
T

2k−3∑
i = 1

(
𝜑i (Xi )

k2
bi

(t ) ei

(k2
bi
− e2

i )

)
− ̇̂𝜃

]
− k

𝜀

n
e−𝛼t

+ (kb2k−1
(t ) log

k2
b2k−1

(t )

k2
b2k−1

(t ) − e2
2k−1

−
kb2k−1

(t ) e2
2k−1

k2
b2k−1

(t ) − e2
2k−1

)k̇b2k−1
(t )

+
k2

2k−1
(t ) e2k−1

k2
b2k−1

(t ) − e2
2k−1

( f2k−1 (X2k−1) + 𝜑T
2k−1

(X2k−1) 𝜃

+ g2k−1 (X2k−1)
[
x2k+1 + 𝜌2k−1 (X2n, 𝜏, t )

]
− ẋ(2k−1)v

(
X2k−1, �̂�, t

)
) (16)

The virtual control input x(2k+1)v (X(2k+1), �̂�) is designed as

x(2k+1)v

(
X(2k+1), �̂�

)
=

1
g2k−1 (X2k−1)

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− f2k−1 (X2k−1) − 𝜑T
2k−1

(X2k−1) �̂�

−

(
k2

b2k−1
− e2

2k−1

kb2k−1
(t ) e2k−1

log
k2

b2k−1
(t )

k2
b2k−1

(t ) − e2
2k−1

)
k̇b2k−1

+
e2k−1

kb2k−1

k̇b2k−1
(t ) − c2k−1e2k−1

− g2k−3 (X2k−3)
(k2

b2k−1
(t ) − e2

2k−1)

(k2
b2k−3

(t ) − e2
2k−3)

e2k−3

−
e2k−1𝜀

k2
b2k−1

(t ) n
e−𝛼t + ẋ(2k−1)v

(
X2k−1, �̂�, t

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

h2
2k−1e2k−1g2k−1 (X2k−1)

h2k−1
||e2k−1g2k−1 (X2k−1)|| + 𝜀

n
e−𝛼t

(17)

where c2k−1 > 0.

By selecting h2k−1 >
M2k−1(X2k−1 )+𝜇2k−1|x(2k+1)v|

(1−𝜇2k−1 )
and by select-

ing ̇̂𝜃 = T
2k−1∑
i = 1

(𝜑i (Xi )
k2

bi
(t )ei

(k2
bi
−e2

i
)
), we have

V̇2k−1
(
E2k−1, �̃�

) ≤ −

2k−1∑
i = 1

−
k2

bi
(t )

(k2
bi
− e2

i )
ci e

2
i (18)

Step n.

e2n−1 = x2n−1

(
X2n−1, �̂�, t

)
− x(2n−1)v

(
X(2n−1), �̂�, t

)
(19)

Considering the Lyapunov function as follows:

V2n−1
(
E2n−1, �̃�, t

)
= V2n−3

(
E2n−3, �̃�

)
+∫

e2n−1

0

𝛿k2
b2n−1

(t )

k2
b2n−1

(t ) − 𝛿2
d𝛿 +

𝜀

n𝛼
e−𝛼t

(20)

we have

V̇2n−1

(
E2n−1, �̃�, t

)
=

2n−3∑
i = 1

[
−

k2
bi

(t )

(k2
bi
− e2

i )
ci e

2
i −

e2
i 𝜀

(k2
bi
− e2

i )n
e−𝛼t
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+
k2

bi
(t ) ei

k2
bi

(t ) − e2
i

gi (Xi ) 𝜌i (X2n, 𝜏, t )

−
k2

bi
(t ) ei

k2
bi

(t ) − e2
i

gi (Xi )
h2

i ei

hi |ei | + 𝜀

n
e−𝛼t

⎤⎥⎥⎦
+ �̃�T T −1

[
T

2n−3∑
i = 1

(
𝜑i (Xi )

k2
bi

(t ) ei

(k2
bi
− e2

i )

)
− ̇̂𝜃

]
−
𝜀

n
e−𝛼t

+ (kb2n−1
(t ) log

k2
b2n−1

(t )

k2
b2n−1

(t ) − e2
2n−1

−
kb2n−1

(t ) e2
2n−1

k2
b2n−1

(t ) − e2
2n−1

)k̇b2n−1
(t )

+
k2

2n−1 (t ) e2n−1

k2
b2n−1

(t ) − e2
2n−1

[ f2n−1 (X2n−1 (t )) + 𝜑T
2n−1 (X2n−1 (t )) 𝜃

+ g2n−1 (X2n−1 (t )) [u1 + 𝜌2n−1 (X2n, 𝜏, t )]

− ẋ(2n−1)v

(
X2n−1, �̂�, t

)
] (21)

The real control input u1 = x(2n+1)v (X2n±1, �̂�) is obtained as
follows:

u1 =
1

g2n−1 (X2n−1)

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− f2n−1 (X2n−1 (t )) − 𝜑T
2n−1

(X2n−1 (t )) �̂�

−

(
k2

b2n−1
− e2

2n−1

kb2n−1
(t ) e2n−1

log
k2

b2n−1
(t )

k2
b2n−1

(t ) − e2
2n−1

)
k̇b2n−1

+
e2n−1

kb2n−1

k̇b2n−1
(t ) −

e2n−1𝜀

k2
b2n−1

(t ) n
e−𝛼t

−g2n−3 (X2n−3 (t ))
(k2

b2n−1
− e2

2n−1)

(k2
b2n−3

− e2
2n−3)

e2n−3

+ẋ(2n−1)v

(
X2n−1, �̂�, t

)
− c2n−1e2n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

h2
2n−1g2n−1 (X2n−1) e2n−1

h2n−1
||g2n−1 (X2n−1) e2n−1

|| + 𝜀

n
e−𝛼t

(22)

where c2n−1 > 0.

By selecting h2n−1 >
M2n−1(X2n−1 )+𝜇2n−1|u1|

(1−𝜇2n−1 )
and ̇̂𝜃 =

T
2n−1∑
i = 1

(𝜑i (Xi )
k2

bi
(t )ei

(k2
bi
−e2

i
)
), we have

V̇2n−1
(
E2n−1, �̃�, t

) ≤ 2n−1∑
i = 1

i ∈ odd N

[
−

k2
bi

(t )

(k2
bi
− e2

i )
ci e

2
i

]
(23)

Remark 2. L’Hopital’s rule leads us to

lim
ei→0

k2
bi
− e2

i

kbi
(t ) ei

log
k2

bi
(t )

k2
bi

(t ) − e2
i

= 0 (24)

Hence, the control laws stabilizing the virtual position have
been clearly established.

3.1.2 Cross backstepping sliding mode control
using integral barrier Lyapunov function

As we mentioned, cross backstepping control is somewhat
sensitive to parametric uncertainties. So, the mixture of back-
stepping design and SMC could be a possible optional plot for
non-linear systems with uncertainties. The adaptive backstep-
ping method may be improved to provide an adaptive sliding
output tracking controller for enhanced robustness. At the end
of the procedure, the adjustment is made by adding the follow-
ing sliding surface described in terms of the error coordinates.

s1 = k1 e1 +⋯+ k2n−3e2n−3 + e2n−1 (25)

where k2i−1 > 0, i = 1, … , n, are real numbers. Additionally,
the Lyapunov function is modified as follows:

V2n−1
(
E2n−1, �̃�, t

)
=

2n−3∑
i=1

[
∫

e2n−3

0

𝛿k2
b2n−3

(t )

k2
b2n−3

(t ) − 𝛿2
d𝛿

]

+ ∫
s1

0

𝛿k2
b2n−1

(t )

k2
b2n−1

(t ) − 𝛿2
d𝛿 +

1
2
�̃�T T −1�̃� +

𝜀

n𝛼
e−𝛼t (26)

The time derivative of (26) can be expressed as

V̇2n−1

(
E2n−1, �̃�, t

)
=

2n−3∑
i = 1

[
−

k2
bi

(t )

(k2
bi
− e2

i )
ci e

2
i −

k2
bi

(t )

(k2
bi
− e2

i )

𝜀

n
e−at

+
k2

bi
(t ) ei

k2
bi

(t ) − e2
i

gi (Xi ) 𝜌i (Xi , 𝜏, t )

−
k2

bi
(t ) ei

k2
bi

(t ) − e2
i

h2
i g2

i
(Xi ) ei

hi
||gi (Xi ) ei

|| + 𝜀

n
e−𝛼t

⎤⎥⎥⎦
+ �̃�T T −1

[
T

2n−3∑
i = 1

(
𝜑i (Xi )

k2
bi

(t ) ei

(k2
bi
− e2

i )

)
− ̇̂𝜃

]
−
𝜀

n
e−𝛼t

+

(
kb2n−1

(t ) log
k2

b2n−1
(t )

k2
b2n−1

(t ) − s2
1

−
kb2n−1

(t ) s2
1

k2
b2n−1

(t ) − s2
1

)
k̇b2n−1

(t )
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+
k2

2n−1 (t ) s1

k2
b2n−1

(t ) − s2
1

[
f2n−1 (X2n−1 (t )) + 𝜑T

2n−1 (X2n−1 (t )) 𝜃

+ g2n−1 (X2n−1 (t )) [u1 + 𝜌2n−1 (X2n, 𝜏, t )]

− ẋ(2n−1)v

(
X2n−1, �̂�, t

)
+

2n−3∑
i = 1

[ki ėi ]

]
(27)

The real control input u1 = x(2n+1)v (X2n−1, �̂�) is designed as
follows:

u1 =
1

g2n−1 (X2n−1)

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− f2n−1 (X2n−1 (t )) − 𝜑T
2n−1 (X2n−1 (t )) �̂�

−

(
k2

b2n−1
− s2

1

kb2n−1
(t ) s

log
k2

b2n−1
(t )

k2
b2n−1

(t ) − s2
1

)
k̇b2n−1

+
s

kb2n−1

k̇b2n−1
(t ) − c2n−1s1 −

s1𝜀

k2
b2n−1

(t ) n
e−𝛼t

−g2n−3 (X2n−3 (t ))
(k2

b2n−1
− s2

1 )

(k2
b2n−3

− e2
2n−3)

e2n−3

+ẋ(2n−1)v

(
X2n−1, �̂�, t

)

ki [gi (Xi ) ei+2 − gi−2 (Xi−2)
(k2

bi
(t ) − e2

i
)

(k2
bi−2

(t ) − e2
i−2)

ei−2

−ci ei − 𝜑T
i

(Xi ) �̂� −
ei𝜀

k2
bi

(t ) n
e−𝛼t

−

2n−3∑
i=1

[
−

(
k2

bi
− e2

i

kbi
(t ) ei

log
k2

bi
(t )

k2
bi

(t ) − e2
i

)
k̇bi

]

+
ei

kbi

k̇bi
(t ) −

g2
i

(Xi ) h2
i ei

hi
||gi (Xi ) ei

|| + 𝜀

n
e−𝛼t

)]

−Ksgn (s1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

h2
2n−1s1g2n−1 (X2n−1)

h2n−1
||s1g2n−1 (X2n−1)|| + 𝜀

n
e−𝛼t

(28)

The sgn(x ) is a symbolic function and expressed explicitly as

sgn (x ) =

⎧⎪⎨⎪⎩
1 x > 0

0 x = 0

−1 x < 0

(29)

where c2n−1 > 0.

By selecting h2n−1 >
M2n−1(X2n−1 )+𝜇2n−1|u1|

(1−𝜇2n−1 )
and ̇̂𝜃 =

T
2n−3∑
i=1

(𝜑i (Xi )
k2

bi
(t )ei

(k2
bi
−e2

i
)
) + (𝜑2n−1(X2n−1)

s1k2
b2n−1

(t )

(k2
b2n−1

−s2
1 )

), we have

V̇2n−1
(
E2n−1, �̃�, t

) ≤ −

2n−3∑
i = 1

k2
bi

(t )

(k2
bi
− e2

i )
ci e

2
i

−
k2

b2n−1
(t )

(k2
b2n−1

− e2
2n−1)

c2n−1s2
1 −

k2
b2n−1

(t ) s1

k2
b2n−1

(t ) − s2
1

Ksgn (s)

(30)

Remark 3. From (28), there appears to be a possibility of u1 =

x(2n+1)v (X2n+1, �̂�) becoming unbounded if ei = kbi
(t ) at some

t. This problem is addressed in [38], where it is formally demon-
strated that, in the closed loop, the error signals |ei | never reach
kbi

(t )∀t ≥ 0 given certain initial and feasible conditions. As a
result, the control u1(t ) will not become unbounded because of
the terms (k2

bi
(t ) − e2

i ) in the denominator.

3.2 Control design for unconstrained
subsystem

It is justifiable to employ the conventional quadratic Lyapunov
function to examine the stability of subsystem (3) and construct
the controller u2 based on cross backstepping SMC because it is
a free state non-linear system.

3.2.1 Cross backstepping control using
quadratic Lyapunov function

The detailed design procedure is listed as follows:
Step 1.

We define the error signal of e2 as

e2 = x2 (31)

And the Lyapunov candidate function is

V2
(
e2, �̃�

)
=

1
2

e2
2 +

𝜀

na
e−at +

1
2
�̃�T T −1�̃� (32)

The time derivative of (32) can be obtained as follows:

V̇2
(
e2, �̃�

)
= e2 ė2 − �̃�T T −1 ̇̂𝜃 −

𝜀

n
e−at

= e2 ( f2 (X2) + 𝜑T
2 (X2) 𝜃 + g2 (X2) [x4]

+𝜌2 (X2n, 𝜏, t ))

− �̃�T T −1 ̇̂𝜃 −
𝜀

n
e−at (33)
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Selecting virtual control input as

x4v

(
X4, �̂�

)
=

−1
g2 (X2)

[
f2 (X2) + ΦT

2
(X2) �̂� + c2e2

]
−

h2
2g2 (X2) e2

h2
||g2 (X2) e2

|| + 𝜀

n
e−𝛼t

(34)

where c2 > 0, becomes

V̇2
(
e2, �̃�

)
= −c2e2

2 + �̃�T T −1
(

T 𝜑2 (X2) e2 −
̇̂𝜃
)
−
𝜀

n
e−at

−
h2

2e2
2g2

2 (x2)

h2
||e2g2 (x2)|| + 𝜀

n
e−𝛼t

+ e2g2 (x2) 𝜌2 (X2n, 𝜏, t )

(35)

By selecting h2 >
M2(X2 )+𝜇2|x4v|

(1−𝜇2 )
and ̇̂𝜃 = T 𝜑2(X2)e2, Equa-

tion (35) is simplified to

V̇2
(
E2, �̃�, t

) ≤ −c2e2
2 (36)

Step k.

We define the error signal of e2k as

e2k = x2k

(
X2k, �̂�, t

)
− x2kv

(
X2k, �̂�, t

)
(37)

And the Lyapunov function is chosen as

V2k

(
E2k, �̃�

)
= V2k−2

(
E2k−2, �̃�

)
+

1
2

e2
2k
+

𝜀

na
e−at (38)

The time derivative of (38) can be expressed as

V̇2k

(
E2k, �̃�

)
=

2k−2∑
i = 1

[
− ci e

2
i + ei𝜌i (X2n, 𝜏, t )

− ei gi (Xi )
h2

i ei

hi |ei | + 𝜀

n
e−𝛼t

⎤⎥⎥⎦
− k

𝜀

n
e−at + �̃�T T −1

[
T

2k−2∑
i = 1

(𝜑i (Xi ) ei ) −
̇̂𝜃

]
+ e2k

(
f2k (X2k ) + 𝜑T

2k
(X2k ) 𝜃 + g2k (Xk )

×
[
x2k+2 + 𝜌2k (X2n, 𝜏, t )

]
− ẋ(2k)v

(
X2k, �̂�, t

))
(39)

The virtual control input x(2k+2)v (X(2k+2), �̂�) is obtained as
follows:

x(2k+2)v

(
X2k+2, �̂�

)

=
1

g2k (Xk )

⎡⎢⎢⎣
− f2k (X2k ) − 𝜑T

2k
(X2k ) �̂� − c2ke2k

−g2k−2 (X2k−2) e2k−2 + ẋ2kv

(
X2k, �̂�, t

)⎤⎥⎥⎦
−

h2
2k

e2kg2k (X2k )

h2k
||e2kg2k (X2k )|| + 𝜀

n
e−𝛼t

(40)

where c2k > 0.

Selecting h2k >
M2k (X2k )+𝜇2k|x(2k+2)v|

(1−𝜇2k )
and ̇̂𝜃 =

T
2k∑

i = 1
(𝜑i (Xi )ei ), results

V̇2k

(
E2k, �̃�

) ≤ −

2k∑
i = 1

−ci e
2
i (41)

Step n.

Considering the error signal as

e2n = x2n

(
X2n, �̂�, t

)
− x(2n)v

(
X(2n), �̂�, t

)
(42)

And choosing the Lyapunov function as follows:

V2n

(
E2n, �̃�

)
= V2n−2

(
E2n−2, �̃�

)
+

1
2

e2
2n
+

𝜀

na
e−at (43)

we have

V̇2n

(
E2n, �̃�

)
=

2n−2∑
i=1

[
− ci e

2
i
+ ei gi (Xi ) 𝜌i (X2n, 𝜏, t )

− ei gi (Xi )
h2

i ei gi (Xi )

hi
||ei gi (Xi )|| + 𝜀

n
e−𝛼t

⎤⎥⎥⎦ − 𝜀e−at

+ �̃�T T −1

[
T

2n−2∑
i = 1

(𝜑i (Xi ) ei ) −
̇̂𝜃

]
+ e2n( f2n (X2n ) + 𝜑T

2n
(X2n ) 𝜃 + g2n (X2n )

×
[
u2

(
X2n, �̂�

)
+ 𝜌2n (X2n, 𝜏, t )

]
− ẋ(2n)v

(
X2n, �̂�, t

)
) (44)

So, the virtual control input u2 = x(2n+2)v (X(2n), �̂�) would be

u2

(
X2n, �̂�

)
=

1
g2n (X2n )

×

⎡⎢⎢⎣
− f2n (X2n ) − 𝜑T

2n
(X2n ) �̂� − c2ne2n

−g2n−2 (X2n−2) e2n−2 + ẋ2nv

(
X2n, �̂�, t

)⎤⎥⎥⎦
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−
h2

2n
g2n (X2n ) e2n

h2n
||g2n (X2n ) e2n

|| + 𝜀

n
e−𝛼t

(45)

where c2n > 0.

By selecting h2n >
M2n (X2n )+𝜇2n|u2(X2n,�̂�)|

(1−𝜇2n )
and ̇̂𝜃 =

T
2n∑

i = 1
(𝜑i (Xi )ei ), we have

V̇2n

(
E2n, �̃�

) ≤ −

2n∑
i = 1

−ci e
2
i (46)

3.2.2 Cross backstepping sliding mode control
using quadratic Lyapunov function

s2 = k2 e2 +⋯+ k2n−2e2n−2 + e2n (47)

where k2i > 0, i = 1, … , n, are real numbers.
Similar to the previous section, the Lyapunov function is

modified as follows:

V2n

(
E2n, �̃�

)
=

1
2

2n−2∑
i = 1

e2
i +

1
2
�̃�T T −1�̃� +

1
2

s2
2 +

𝜀

na
e−at (48)

we have

V̇2n

(
E2n, �̃�

)
=

2n−2∑
i=1

⎡⎢⎢⎣ − ci e
2
i + ei gi (Xi ) 𝜌i (X2n, 𝜏, t )

−
h2

i e2
i g2

i
(Xi )

hi
||ei gi (Xi )|| + 𝜀

n
e−𝛼t

⎤⎥⎥⎦
−𝜀e−at + �̃�T T −1

[
T

2n−2∑
i = 1

(𝜑i (Xi ) ei ) −
̇̂𝜃

]
+s2

[
f2n (X2n (t )) + 𝜑T

2n
(X2n (t )) 𝜃

+ g2n (X2n (t ))
[
u2 + 𝜌2n (X2n, 𝜏, t )]

− ẋ(2n)v

(
X2n, �̂�, t

)
+

2n−2∑
i = 1

[ki ėi ]

]
(49)

We design the real control input u2 = x(2n+2)v (X2n, �̂�) as
follows:

u2 =
1

g2n (X2n )

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− f2n (X2n (t )) − 𝜑T
2n

(X2n (t )) �̂� − c2ns2

−g2n−2 (X2n−2 (t )) e2n−2 + ẋ(2n)v

(
X2n, �̂�, t

)

−

2n−2∑
i = 1

ki

⎡⎢⎢⎢⎢⎣
gi (Xi ) ei+2 − ci ei − gi−2 (Xi ) ei−2

−𝜑T
i

(Xi ) �̂� −
g2

i
(Xi ) h2

i ei

hi
||gi (Xi ) ei

|| + 𝜀

n
e−𝛼t

⎤⎥⎥⎥⎥⎦
−Ksgn (s2 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

h2
2ng2n (X2n ) s2

h2n
||g2n (X2n ) s2

|| + 𝜀

n
e−𝛼t

(50)

where c2n > 0, becomes

By selecting h2n >
M2n (X2n )+𝜇2n|x(2n+2)v|

(1−𝜇2n )
and ̇̂𝜃 =

T
2n−2∑
i = 1

(𝜑i (Xi )ei ) + 𝜑2n(X2n )s, it results

V̇2n

(
E2n, �̃�

) ≤ 2n−2∑
i = 1

−ci e
2
i − ci s

2 − s2Ksgn (s2) (51)

4 STABILITY ANALYSIS

Theorem 1 summarizes the findings of the preceding section,
and the proof backs it up.

Theorem 1.

The non-linear system (1) is subject to unknown parame-
ter vector 𝜃, with unmatched uncertainties 𝜌i (X2n, 𝜏, t ), i =

1, … , 2(n − 1) and matched uncertainties 𝜌2n−1(X2n, u, 𝜏, t ) and
𝜌2n(X2n, u, 𝜏, t ), without the loss of generality. Assume that
these uncertainties satisfy Assumption (2) and that inequality (4)
holds. The suggested controllers, (28) and (50), guarantee that

1. The output y (y = x1 ) globally and asymptotically tracks a
reference signal yr.

2. The other states (x2, …, xn, …,x2n) and therefore, the control
input is bounded.

3. The partial state constraints are not violated.

Proof. From step n, it is concluded that for the Lyapunov
function V (E , �̃�, t ) = V2n−1 (E2n−1, �̃�) +V2n(E2n, �̃�)

Hence, differentiation under the control inputs u1 and u2
along the closed-loop system (1) results in

V̇
(
E , �̃�, t

) ≤ −

2n−3∑
i = 1

k2
bi

(t )

(k2
bi
− e2

i )
ci e

2
i

−
k2

b2n−1
(t )

(k2
b2n−1

− e2
2n−1)

c2n−1s2
1 −

k2
b2n−1

(t ) s1

k2
b2n−1

(t ) − s2
1

Ksgn (s1)

−

2n−2∑
i = 1

ci e
2
i − ci s

2
2 − s2Ksgn (s2) < 0 (52)
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Next, it is illustrated that how E {ei (i = 1, 2, … , 2n − 2)} is
regulated as well as its boundedness. As a result, both sides of
(52) are integrated in terms of t, yielding

V
(
E , �̃�, t

) ≤ V
(
E (0) , �̃� (0) , 0

)
− ∫

t

0

(
2n−3∑
i = 1

k2
bi

(t )

(k2
bi
− e2

i )
ci e

2
i

)
dt

− ∫
t

0

(
k2

b2n−1
(t )

(k2
b2n−1

− e2
2n−1)

c2n−1s2
1

)
dt

− ∫
t

0

(
k2

b2n−1
(t ) s1

k2
b2n−1

(t ) − s2
1

Ksgn (s1)

)
dt

− ∫
t

0

(
2n−2∑
i = 1

ci e
2
i

)
dt − ∫

t

0

(
ci s

2
2

)
dt

− ∫
t

0

(s2Ksgn (s2)) dt (53)

Considering V (E , �̃�, t ) > 0, so we can write:

∫
t

0

(
2n−3∑
i = 1

k2
bi

(t )

(k2
bi
− e2

i )
ci e

2
i

)
dt + ∫

t

0

(
k2

b2n−1
(t )

(k2
b2n−1

− e2
2n−1 )

c2n−1s2
1

)
dt

+ ∫
t

0

(
k2

b2n−1
(t ) s1

k2
b2n−1

(t ) − s2
1

Ksgn (s1)

)
dt

+ ∫
t

0

(
2n−2∑
i = 1

ci e
2
i

)
dt + ∫

t

0

(
ci s

2
2

)
dt

+ ∫
t

0

(s2Ksgn (s2)) dt ≤ V
(
E (0) , �̃� (0) , 0

)
(54)

when t →∞, we have

lim
t→∞

(∫
t

0

(
2n−3∑
i = 1

k2
bi

(t )

(k2
bi
− e2

i )
ci e

2
i

)
dt

+ ∫
t

0

(
k2

b2n−1
(t )

(k2
b2n−1

− e2
2n−1 )

c2n−1s2
1

)
dt

+ ∫
t

0

(
k2

b2n−1
(t ) s1

k2
b2n−1

(t ) − s2
1

Ksgn (s1)

)
dt

+ ∫
t

0

(
2n−2∑
i = 1

ci e
2
i

)
dt + ∫

t

0

(
ci s

2
2

)
dt

+ ∫
t

0

(s2Ksgn (s2)) dt ) ≤ V
(
E (0) , �̃� (0) , 0

)
(55)

Having the fact that V (E (0), �̃�(0), 0) < ∞, thus

lim
t→∞

(∫
t

0

(
2n−3∑
i = 1

k2
bi

(t )

(k2
bi
− e2

i )
ci e

2
i

)
dt

+ ∫
t

0

(
k2

b2n−1
(t )

(k2
b2n−1

− e2
2n−1)

c2n−1s2
1

)
dt

+ ∫
t

0

(
k2

b2n−1
(t ) s1

k2
b2n−1

(t ) − s2
1

Ksgn (s1)

)
dt

+ ∫
t

0

(
2n∑

i = 1

ci e
2
i

)
dt + ∫

t

0

(
ci s

2
2

)
dt

+ ∫
t

0

(s2Ksgn (s2)) dt ) < ∞ (56)

So

lim
t→∞∫

t

0

(
2n−3∑
i = 1

k2
bi

(t )

(k2
bi
− e2

i )
ci e

2
i

)
dt < ∞

lim
t→∞∫

t

0

(
2n∑

i = 1

ci e
2
i

)
dt < ∞

(57)

Equation (57) shows that lim
t→∞

∫ t

0

(∑2n

i=1 ci e
2
i

)
dt and lim

t→∞
∫ t

0(∑2n−3
i = 1

k2
bi

(t )

(k2
bi
−e2

i
)
ci e

2
i

)
dt are upper-bounded functions. Besides,

d (
∑2n−2

i = 1 ci e
2
i

)

dt
= 2

∑2n−2
i = 1 ci ei ėi and

d

(∑2n−3
i = 1

k2
bi

(t )

(k2
bi
−e2

i
)
ci e

2
i

)
dt

=

2
∑2n−3

i = 1

[
−kbi

k̇bi
e2
i
+k2

bi
(t )ei ėi

(k2
bi
−e2

i
)
2 ci e

2
i +

k2
bi

(t )

(k2
bi
−e2

i
)
ci ei ėi

]
As a result, the boundedness of all signals and derivatives

confirms the boundedness of ėi ; hence, the boundedness of

d

(∑2n−3
i=1

k2
bi

(t )

(k2
bi
−e2

i
)
ci e

2
i

)
dt

and
d
(∑2n−2

i=1 ci e
2
i

)
dt

.

The boundedness of
d

(∑2n−3
i=1

k2
bi

(t )

(k2
bi
−e2

i
)
ci e

2
i

)
dt

and
d
(∑2n−2

i=1 ci e
2
i

)
dt

effects the uniform continuity of
∑2n−3

i=1

k2
bi

(t )

(k2
bi
−e2

i
)
ci e

2
i and∑2n−2

i=1 ci e
2
i . Since lim

t→∞
∫ t

0

(∑2n−3
i=1

k2
bi

(t )

(k2
bi
−e2

i
)
ci e

2
i

)
dt and

lim
t→∞

∫ t

0

(∑2n−2
i=1 ci e

2
i

)
dt are limited and

∑2n−3
i=1

k2
bi

(t )

(k2
bi
−e2

i
)
ci e

2
i

and
∑2n−2

i=1 ci e
2
i are uniformly continuous, based on Barbalat’s
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Lemma, it is concluded that

lim
t→∞

2n−2∑
i = 1

ci e
2
i = 0

lim
t→∞

2n−3∑
i = 1

k2
bi

(t )

(k2
bi
− e2

i )
ci e

2
i = 0

(58)

Since ci , kbi
(t )(i = 1, … , n, … , 2n) > 0 (are non-zero), (58)

is equivalent to

⎧⎪⎪⎨⎪⎪⎩

lim
t→∞

e1 = lim
t→∞

(x1 − yr ) = 0

lim
t→∞

e2 = lim
t→∞

x2 = 0

lim
t→∞

ek = lim
t→∞

(
xk − xkv

(
Xk−1, �̂�, t

))
= 0, k = 3, , 2n

(59)

From Equation (59), it is implied that y = x1 asymptoti-
cally tracks yr ( lim

t→∞
x1 = yr ), proving the results of section

one of theorem 1. In addition, from lim
t→∞

x1 = yr , we can con-

clude the boundedness of x1. Furthermore, based on (59), x2

is bounded and lim
t→∞

xk = lim
t→∞

xkv (Xk−1, �̂�, t ), k = 3, … , 2n.

So, by proving the boundedness of xkv , it is confirmed that xk

is bounded.
Starting from k = 3, we have

lim
t→∞

x3 = lim
t→∞

x3v

(
X2, �̂�, t

)
(60)

It is needed to prove that �̂� is bounded based on the
definition of xk and considering that x1 and x2 are bounded.

Referring to (53), we have

V
(
E , �̃�, t

)
≺ V

(
E (0) , �̃� (0) , 0

)
(61)

According to Equation (61), the globally boundedness of
V (E , �̃�, t ) is bounded and, therefore, E{ei (i = 1, 2, … , 2n)}
and �̃� are verified. Also, the boundedness of �̃� proves bound-
edness of �̂�. Consequently, all signals are bounded. Therefore,
x3v and, thus, x3 are bounded. We can extend the same
reasoning for i = 4, 5, … , 2n.

As it has been verified in step k that xk−1and �̂� are bounded,
so the boundedness of xk could be confirmed by the bound-
edness of xkv . Finally, the boundedness of the control inputs is
confirmed by the fact that all signals are bounded proving the
part two of the theorem.

Since x1 = e1 + yr , then |x1| < kc1
holds as long as kb1

=

kc1
− A. As proved above, x3v (x1, �̂�) is bounded. That

is, |x3v (X3, �̂�)| ≤ 𝛼3. Then |x3(X3, �̂�)| ≤ |x3v (X3, �̂�)| + |e3| ≤
𝛼3 + kb3

. This implies that |x3(X3, �̂�)| < kc3
as long as kb3

=

kc3
− 𝛼3. As proved above, x(2k−1)v (X(2k−1), �̂�) are all. So, it can

be progressively proven that |x(2k−1)(X(2k−1), �̂�)| < kc(2k−1)
for

k = 3, … , n, as long as kb2k−1
= kc2k−1

− 𝛼2k−1. As a result,
it is concluded that the partial state constraints are always met
during operation.

5 NUMERICAL EXAMPLE

Simulation studies on hyperchaotic systems (1) are carried out
in this part to validate the efficiency of the suggested control
mechanism.

Consider the following strict-feedback form system:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2
1 + x2

1 sin(x1)𝜃1 + 2 [x3 + 𝜌1 (X4, 𝜏, t )]

ẋ2 = x1 + 2x2
2 +

[
x1x2, x2 cos(x1)

]
𝜃2

+ [x4 + 𝜌2 (X4, 𝜏, t )]

ẋ3 = x2
3 + 2x2

2 + x2
3 cos(x3)𝜃3 + (1 + ex3 )[u1 + 𝜌3 (X4, 𝜏, t )]

ẋ4 = x1 + x3 + 2x2
4 +

[
x4, x1 cos(x3)

]
𝜃4

+
(
5 + x2e2x4

)
u2 +

(
5 + x2e2x4

)
𝜌4 (X4, 𝜏, t )

y = x1

(62)

With the unmatched uncertainties 𝜌1(X2, 𝜏, t ) =

x2
1 sin(0.01t ) (satisfying |𝜌1(X4, 𝜏, t )| ≤ x2

1 ), 𝜌2(X2, 𝜏, t ) =

3x2 sin(10𝜋t ) (satisfying 𝜌2(X4, 𝜏, t ) ≤ 3|x2|) and matched
uncertainties 𝜌3(X4, 𝜏, t ) = 2x2

3 sin(0.03t ) (satisfying|𝜌3(X4, 𝜏, t )| ≤ 2x2
3 ), 𝜌4(X4, 𝜏, t ) = 2x4 sin(10𝜋t ) (satisfying

𝜌4(X4, 𝜏, t ) ≤ 2|x4|).
Assuming that x1 and x3 are restricted by |x1| < kc1

, |x3| <
kc3

with kc1
= 6 + sin(2𝜋t ) and kc3

= 7 + sin(2𝜋t ). The other
states x2 and x4 are free. The initial states of the system are
selected as x1 (0) = 0.35, x2 (0) = 0.75, x3 (0) = 0.55,
x4 (0) = 1.25.

Also, the value of 𝜃 is assumed to be 𝜃 = [ 1 1.5 1 3 ]
T

. The
control objective enforces the output y(t ) to closely track the
desired reference yr = sin( 𝜋t )(|yr | ≤ 1). Simultaneously, the
constraints in the predefined region on the partial states x1 and
x3 are enforced.

According to the design procedure described in Section 3, we
have

f1 (x1) = x2
1 f2 (X2) = x1 + 2x2

2

f3 (X3) = x2
3 + 2x2

2 f4 (X4) = x1 + x3 + 2x2
4

g1 (x1) = 2 g2 (X2) = 1

g3 (X3) = 1 + ex3 g4 (X4) = 5 + x2e2x4

𝜑1 (x1) = x2
1 sin(x1), 𝜑2 (X2) =

[
x1x2, x2 cos(x1)

]
𝜑3 (X3) = x2

3 cos(x3), 𝜑4 (X4) =
[
x4, x1 cos(x3)

]
A = 1, kb1

= 5 + sin (2𝜋t )

h1 >
M1 (x1) + 𝜇1 |x2|

(1 − 𝜇1)
= x2

1 ⇒ h1 = 1.25x2
1

h2 >
M2 (X2) + 𝜇2 |x3|

(1 − 𝜇2)
= 3 |x2 | ⇒ h2 = 4 |x2 |
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h3 >
M3 (X3) + 𝜇1 |u1|

(1 − 𝜇1)
= 2x2

3 ⇒ h3 = 2.25x2
3

h4 >
M1 (X4) + 𝜇1 |u2|

(1 − 𝜇1)
= 2 |x4 | ⇒ h4 = 3 |x4 |

Using MATLAB, we can get the maximum value of
x(3)v (X2, �̂�), that is 𝛼3 (t ) = 6.012. So kb3

(t ) = kc3
(t ) −

𝛼3 (t ) = 0.988 + sin(2𝜋t ).
Then, the stabilizing controller becomes:

u1 =
1

1 + ex3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− f3 (X3 (t )) − 𝜑T
3 (X3 (t )) �̂�

−

(
k2

b3
− s2

1

kb3
(t ) s1

log
k2

b3
(t )

k2
b3

(t ) − s2
1

)
k̇b3

(t )

+
s1

kb3

k̇b3
(t ) − c3s1 −

s1𝜀

k2
b3

(t ) n
e−𝛼t

−g1 (X1 (t ))
(k2

b3
− s2

1 )

(k2
b1
− e2

1 )
e1

+ẋ3v

(
X2n−1, �̂�, t

)
−k1[2e3 − c1e1 − 𝜑T

1 (X1) �̂� −
e1𝜀

k2
b1

(t ) n
e−𝛼t

−

(
k2

b1
− e2

1

kb1
(t ) e1

log
k2

b1
(t )

k2
b1

(t ) − e2
1

)
k̇b1

(t )

+
e1

kb1

k̇b1
(t ) −

g2
1 (X1) h2

1e1

h1
||g1 (X1) e1

|| + 𝜀

n
e−𝛼t

)]

−Ksgn (s1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

h2
3s1g3 (X3)

h3
||s1g3 (X3)|| + 𝜀

n
e−𝛼t

(63)

u2 =
1

5 + x2e2x4

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

− f4 (X4 (t )) − 𝜑T
4

(X4 (t )) �̂� − c4s2

−e2 + ẋ(4)v

(
X2n, �̂�, t

)
−k2

⎡⎢⎢⎣e4 − c2e2 − 𝜑T
2

(Xi ) �̂� −
h2

2g2
2e2

h2
||g2e2

|| + 𝜀

n
e−𝛼t

⎤⎥⎥⎦
−Ksgn (s2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

h2
4g4 (X4) s2

h4
||g4 (X4) s2

|| + 𝜀

n
e−𝛼t

(64)

In the simulation, the parameters are selected as {c1 = 10, c2
= 10, c3 = 20, c4 = 20, k1 = 10, k2 = 10, α = 0.001, ε = 10,

FIGURE 2 The trajectories of the output tracking using the proposed
method

FIGURE 3 The trajectories of the errors using the proposed method

K = 0.1} and T is a 4 × 4 identity matrix, to achieve a relatively
acceptable tracking behaviour for the designed control system.

Figures 2–6 show the simulation results. Figure 2 shows that
the system output y effectively tracks the desired trajectory yr (t )
and Figure 3 shows the state errors validating a good track-
ing performance. Figures 4 and 5 show the trajectories of the
states x1 and x3 and their constraints and the trajectories of
the free states, respectively. These figures show that the partial
time-varying state constraints are kept in their limits. Following
Figure 6, the boundedness of control input signals u1 and u2 can
be seen.

Eventually, in order to demonstrate the effectiveness of the
recommended method, a comparative simulation study between
the schemes in [7] and this paper is carried out under the same
control objective. As previously mentioned in [7], cross back-
stepping using conventional TBLF is employed to manage a
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FIGURE 4 The trajectories of the constrained states using the proposed
method

FIGURE 5 The trajectories of the free states using the proposed method

FIGURE 6 The trajectories of the control inputs using the proposed
method

FIGURE 7 The trajectories of the control inputs using cross
backstepping with TBLF. TBLF, tan-type barrier Lyapunov function.

class of cross-strict feedback non-linear systems with partial
time-varying state constraints.

In order to judge fairly, the control parameters are adopted
precisely the same as the proposed method. Figures 7 and 8
show the trajectories of the errors and control inputs using
cross backstepping with conventional TBLF, respectively. The
simulation results indicate that tracking performance improves
significantly in the presence of uncertainties and disturbances
while maintaining stability.

Comparing Figures 3 and 7, the superiority of the proposed
approach is confirmed since it considerably reduces maximum
error (more than 75% reduction) and DC and AC steady-state
error. As can be observed, the suggested approach produces



14 PAYLAKHI ET AL.

FIGURE 8 The trajectories of the control inputs using cross
backstepping with TBLF

superior tracking performance than cross backstepping with
traditional TBLF.

6 CONCLUSION

For a class of cross-strict feedback non-linear systems with
unknown parameters, matched and unmatched uncertainty, an
adaptive partial time-varying state constrained control archi-
tecture is suggested in this study. One constrained and one
unconstrained subsystem are created from cross-strict non-
linear systems. To ensure the boundedness of the fictitious or
actual state tracking defects, the IBLF is used in each stage of the
backstepping design for the constrained subsystems. In order
to address uncertainty, SMC is combined with backstepping.
The suggested control system’s stability is also examined using
the Lyapunov technique. Implementing the recommended con-
troller on a four-order cross-strict non-linear system validates
its efficacy. The proposed control strategy is shown to guar-
antee that the time-varying partial state requirements are not
violated and that the closed loop signals stay bounded, with
promising output tracking performance. Finally, the results
are compared to traditional TBLF cross backstepping. The
results show that the proposed controller has a superior over-
all performance. More advancement of our control scheme for
fractional-order cross-strict feedback non-linear systems with
time-varying partial state constraints is suggested for future
studies.
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