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ARTICLE INFO ABSTRACT

Keywords: Aggregation of flexible loads and power generation of solar photo-voltaic (PV) systems is considered as a

Aggregator valuable power resource in residential demand response (DR). Despite the rapid growth of smart appliances,

Multi-prosumer there are few practical solutions for exploiting their potentials in DR load aggregation. In this paper, we present a

Fairness " practical multi-prosumer framework to enable the aggregator reach a minimum bidding power and participate in

i:;jtsjﬁsdﬁ?zzs the wholesale market. This is attainable through directly rescheduling a large number of smart appliances and

Knapsack problem utilizing the surplus power generation of residential PVs. An optimization model is designed which maximizes
the aggregator’s profit while respecting customers convenience. Fairness is a significant component of this model
ensuring fair selection of appliances for shifting by the aggregator and not biased toward customers availability.
We investigate the model as a hard instance of the 0-1 Knapsack problem and devise a heuristic algorithm to
cope with its time complexity and to improve its scalability. The simulation results of two large-scale case studies
are presented and discussed. It is demonstrated that the proposed framework is beneficial to both the aggregator
and its customers, leading to a greener environment.

programs barely affected residential consumers’ usage pattern [5,6].
Later, incentive-based DR programs were developed as an alternative
load shaping solution, in which, participants receive incentives for load
reduction when requested [7,8].

Current power markets prevent small residential consumers from
participating in markets due to lack of enough controllable loads of
those customers and the complexities in markets [9]. DR Aggregators
are also known as for-profit intermediaries between wholesale market
and consumers which aggregate consumers’ demand reduction poten-
tials to exploit wholesale market opportunities and in return, provide
incentives or lower energy prices to the consumers. Prosumers are en-
ergy consumers who also installed rooftop solar panels to produce and to
consume electricity at the same time [10]. Authors in [11] investigated
the strategies to overcome “too small to bid” problem for flexibility
aggregators.

Household appliances scheduling based on aggregator-offered prices
and contracts have been extensively studied in previous works [12-14].
Authors in [15] proposed a model for optimally scheduling end-users
appliances at their premises after receiving the aggregator’s price offer

Introduction

Dramatic advancement of human civilization in recent years is un-
doubtedly owed to electricity which also caused the continuous increase
of power usage and the consequential environmental side-effects. It was
projected that U.S. energy-related Carbon Dioxide (CO2) emissions in-
crease by 2.7% in 2018 [1]. Since extra power generation to match peak
demand causes more CO2 emission and imposes additional costs to the
main grid, it is more desirable to utilize the capacity of loads flexibility
or to send excess solar energies back to the grid.

Demand response (DR) programs are means to involve consumers to
make change in their electricity demands by shifting or reducing them in
response to either changes in the price over time or to the grid operator’s
requests for receiving financial incentives; these conditions happen
when market prices are high, or reliability of the grid is jeopardized [2].
Conventionally, price-based DR programs with the aim of flattening the
overall load curve, provided dynamic market price rates to customers to
encourage them to modify their usage [3,4]. But, it is shown that these
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Nomenclature

Indices

i Index of smart appliance

h Index of residence

j Index of PV panel

t Index of timeslot

Sets

T Set of timeslots in the studied time-horizon

H Set of residences

I Set of smart shiftable appliances in all residences

J Set of PV panels in residence h

Variables

;h Power demand of smart shiftable appliance i in residence h

during timeslot t [kW]

ch Power demand of all non-shiftable appliances in residence
h during timeslot ¢t [kW]

G}, Generated power by all PV panels in residence h during
timeslot t [kW]

P;Vj X Generated power by PV panel j in residence h during
timeslot t [KW]

Pryy,, Rated power of PV panel j in residence h [kW]

Rt Solar irradiance in timeslot t [W/m?]

Nin Financial reward for shifting appliance i in residence h [¢]

N Total financial reward for residence h [¢]

Ny, Total number of shifted appliances in residence h

Xih Binary variable equals 1 if smart appliance i in residence h
is shifted by aggregator and 0 otherwise

Yh Binary variable equals 1 if power of PV panels in residence
h is utilized by aggregator and O otherwise

a, Binary variable equals 1 if operating of appliance i in
residence h is authorized in timeslot t and 0 otherwise

;d,,v Total reduced load in timeslot t from all PVs’ excess

generated power [kW]

Ly, Total reduced load from all PVs’ excess generated power
during peak-time interval [kW]

LR;p Reduced load from shifting smart appliance i in residence h
[kw]

LS;n Restored load after shifting smart appliance i in residence h
[kw]

CR;p Cost of load reduction for shifting smart appliance i in
residence h [¢]

CSin Cost of load restoration for shifting smart appliance i in
residence h [¢]

RNy, Aggregator’s revenue from utilizing PVs’ excess generated
power in residence h [¢]

Lrq,, Total reduced load from shifting selected appliances [kW]

Ly Total restored load after shifting selected appliances [kW]

Xt predicted market price for timeslot t [¢/kWh]

Constants

EST;p Earliest Start Time for the operating of smart appliance i in
residence h (defined by consumer) [h]

LFT;p Latest Finish Time for the operating of smart appliance i in
residence h (defined by consumer) [h]

PST;y, Pre-scheduled (preferred) start time of smart appliance i in
residence h (defined by consumer) [h]

At Market price for power consumption in timeslot t [¢/kWh]

Ky Number of timeslots for appliance i in residence h

[C] Required amount of load reduction [kW]

top/tep Timeslot associated with the beginning/end of peak-time
interval [h]

SHgew Base reward for shifting smart appliances [¢]

PVRew Reward for utilizing household PVs generated power [¢]

w Weight of reward increment rate

S Number of price scenarios

for energy usage modification in a specific time interval. In [16] con-
sumers who participate in the aggregator’s DR programs sign contracts
and upon receiving load reduction request signals via their smart meters,
modify their usage for receiving rewards. Consequently, the aggregator
can enter the wholesale market and trade the aggregated power from
overall load reductions in peak hours. In [17], household customers
willingly submit their bids to shed their appliances’ loads for the price
they want to pay, then the service provider aggregates customer’s bids
and provides an overall load profile. Authors in [18] studied the
rescheduling of electricity consumption for large customers. However,
in aforementioned studies, the scheduling problem is investigated in
each single premises, then the aggregator collects the aggregated power
saved by all customers in certain time intervals for further actions. On
the other hand, in these studies, the aggregator needs to establish its
strategies for participating in market based on consumers’ responses
while the estimation of consumers’ responses to the signals is complex in
nature and put the aggregator at risk [19]. In addition, when price-based
demand response programs implemented in large-scale, stability of the
grid may be violated [20].

Regarding integrated demand response, a recent study [21] devel-
oped a Stackelberg game between energy operator and users for inte-
grated demand response scheduling and coordination of renewable

energy resources. Authors in [22] designed an integrated demand
response model for smart energy hubs followed by a game to maximize
operators’ profit and to minimize costs for customers simultaneously.
However, the aforementioned studies are either designed to be
embedded as a part of a home energy management system or customers
are followers responding to operator’s prices/signals and the problem of
integrated smart appliances scheduling and aggregating PVs generations
by aggregator in large-scale is not investigated.

There is also a class of studies that have focused on the integrated
scheduling of thermostatically controlled household loads such as air
conditioners and water heaters [23,24]. However, these studies are
limited to centralized house/water temperature control.

Few studies have addressed integrated household appliances sched-
uling and PV aggregation by the aggregator. Authors in [25] have
developed a resource allocation method for customer assets in which the
goal of aggregator is finding an incentive pricing vector that can
persuade customers to allow aggregator control their loads. However,
customers are still decision-makers to have each of their loads scheduled
with the offered price by aggregator or to pay the utility company prices.
In [26], a distributed multi-residential scheduling algorithm is proposed
in which every residence tries to find a schedule that maximizes its own
satisfaction level defined as utility minus cost while respecting its
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consumption limit calculated by the aggregator for each residence.
Authors in [27] developed an automated scheduling for renewable en-
ergy system in order to address the power imbalance and meet cus-
tomers demands. studied a problem of roof-top PVs and wind
integration. However, an integrated load scheduling approach looking
at several prosumers’ flexibility and renewable energy aggregation po-
tential as a considerable amount of bidding power is still uninvestigated.

On the other hand, to maximize customers satisfaction level in a
multi-prosumer framework, fairness should be addressed which is rarely
discussed in the previous related studies. In [28] an auction-based
incentive mechanism for emergency demand response is proposed that
guarantees users receive similar reward for similar load reduction. In
[29] a centralized scheduler first solves the optimization problem then,
using the Shapely Value concept in game theory, fairness is implemented
in a smart billing mechanism that ensures users would be charged based
on the impact of their loads on the total system cost. It is of note that in
the above studies, fairness is not addressed in the scheduling process.
Authors in [30] have proposed a method employing water-filling
scheduling algorithm which allocates loads to low-priced time slots
until a flat power usage profile is achieved; fairness is defined as equal
inconvenience meaning that load time changes among all customers is
relatively the same after scheduling. A rationality scheduling strategy in
integrated distribution network is proposed by [31] in which the re-
covery of loads is implemented with different scheduling priorities.

Technical communication aspects, privacy preserving and cloud-
based information exchange between aggregators and WiFi-enabled
smart appliances through Internet of Things (IoT) are addressed in the
previous studies [32-35].

To the best of our knowledge, the literature lacks an integrated smart
appliances scheduling and renewable energy aggregation for a large
number of prosumers in a fair manner. In this paper, a multi-prosumer
framework is designed in which smart appliances are directly sched-
uled by the aggregator and surplus generations of large-scale residential
PVs are aggregated. Under this framework, a fair rewarding system is
developed leading to a fair selection among all customers to shift smart
appliances while not compromising their comfort.

The problem of consumers and demand response aggregators
collaboration is modeled as a multi-objective optimization problem in
several studies [36-39]. These studies have defined conflicting objec-
tives for consumers and the aggregator in order to reach a trade-off
between their objectives. For instance, while the aggregator’s objec-
tive is to maximize its payoff, the consumers’ objective is to minimize
the waiting time for the operation of appliances or to maximize their
social welfare defined as the difference between the modified and the
reference consumption. However, in this paper, we do not measure the
user’s convenience by social welfare or operation delay for the appli-
ances. Here, the aggregator’s goal is to maximize its profit while
remaining committed to the user-defined flexibility interval in shifting
smart appliances and fairly compensating consumers based on the
number of their incorporated appliances.

The major contributions of this paper are summarized as follows.

1. A new large-scale multi-prosumer framework is introduced for
directly re-scheduling residential smart appliances and aggregating
surplus generation of PVs by a single aggregator for bidding in the
wholesale market. The capacity of load flexibility and prompt
availability of smart appliances are utilized as well as the excess solar
power generation when batteries are not available.

2. A fair selection approach is employed as a rewarding system in the
scheduling algorithm. The rewarding system enforces aggregator to
have fair selections of appliances for shifting among residences while
it also respects their predefined time frames in the shifts.
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3. Because of np-hard nature of the problem and to overcome the time-
complexity, a heuristic algorithm is devised which produces near-
optimal results with a very small gap with the optimal result. The
short execution time of the devised heuristic algorithm improves the
scalability of the problem.

The remainder of this paper is organized as follows. In Section
“Multi-prosumer framework and system model”, a detailed description
of the proposed framework is provided. Also customers load flexibility
and problem components are described and modeled in this section. The
proposed model for integrated scheduling of appliances in multi-
prosumer framework is formulated in Section “Multi-prosumer load
scheduling”. It will be followed in Section “Numerical studies”, with
approaches in solving the problem, numerical studies and simulation
results. Finally, conclusion and future research key points are presented
in Section “Conclusion”.

Multi-prosumer framework and system model
Multi-prosumer framework

In the proposed framework, we consider an Independent System
Operator (ISO), a single aggregator and a set of residences, Fig.1. The
aggregator has an Integrated Scheduling Unit through which it directly
communicates with smart appliances inside the participant residences
and their rooftop PV panels. In order to reach the minimum bidding
power, the Integrated Scheduling Unit finds an efficient overall re-
schedule for all smart appliances and calculates surplus generation of
PVs after supplying the electricity needed by non-shiftable appliances.
Then, directly executes the rescheduling program with all smart appli-
ances in the residences. The aggregator via its Market Communication
Unit submits its DR offer in the wholesale market for trading. On the
other hand, every residence may have its own Household Scheduling
Device (HSD) for initial energy consumption scheduling based on
preferred start times and time-of-use prices.

ISO = Wholesale Market
Aggregator :
Integrated Market
Scheduling Communication
_ Unit Unit
—

"“l‘"r l'‘:‘'“““““"“"";"'I’ """"""" 4
T P i .
shiftable shiftable shiftable shiftable
applhance i appliance k appliance i appliance &

| non-shiftable |

;H SD ‘ | appliances |

| appliances |

Residence 1 Residence n

Fig. 1. Architecture and communication of the aggregator in multi-
prosumer framework.
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System model

Appliances

In this model, each participating residence has a number of shiftable
smart appliances with flexible operating time. Aggregator sends opera-
tion commands directly to the appliances if they are selected to be
rescheduled. Each participating residence h has a number of smart
shiftable appliances and a number of non-shiftable appliances. Examples
of smart shiftable appliances are washer, drier and dish washer that their
operating time can be postponed to a later point in time or shifted to an
earlier time. The studied time horizon T for scheduling consists of a
number of equal timeslots. For each smart appliance, we define a de-
mand vector specifying the number of operating timeslots and its asso-
ciated power demand per operating timeslot. It is assumed that
participating residences specify a pre-scheduled (preferred) start time
for each of their smart shiftable appliances. Appliances are operated in
customer preferred timeslots if not selected to reschedule by aggregator.
Based on preferred timeslots, the demand vector for each smart appli-
ance i in residence h is modeled as:

dip = [dby iy ndl,], VieLVREH ey

where dlﬁh is the power demand of smart shiftable appliance i in resi-
dence h during timeslot t.

For being rescheduled by aggregator, an authorized window for the
operating time of each smart appliance has to be specified by partici-
pating residences which is in the form of an EST;j; and a LFT;, which are
earliest authorized start time for smart appliance i in residence h and
latest authorized finish time for smart appliance i in residence h,
respectively. We also, define an authorization vector based on the
above-mentioned parameters for each smart shiftable appliance i in
residence h during timeslot t:

iy = {a}‘h,a,‘zﬁ7 ...,a?_}]], Viel,Vhe H 2)
(3)

o _ |1 if EST<i<LFTy,
1 0 otherwise

where constraint (3) ensures that authorization value of appliance i in
residence h at timeslot t equals 1 if this timeslot falls within user-
specified time limits and equals O otherwise.

Similarly, for non-shiftable appliances, the power demand vector for
all non-shiftables appliances in residence h is defined as:

cp = [c,ll,ci,...,cﬂ, Vhe H @
where ¢}, is the total power demand of all non-shiftable appliances in
residence h during timeslot t.

PVs

In this model, each participating residence may install and use its
own solar PV system. A PV array, on a house’s ground or on the rooftop
of a household, is installed to independently supply a certain amount of
power for household electricity demand. It is assumed that the aggre-
gator prioritizes the using of excess energy of solar panels in residences
over rescheduling smart appliances for reaching the bidding size. The
output power of a household’s PV array is highly affected by different
weather conditions. Solar intermittency and changing irradiance causes
fluctuations in power generation and lowers the level of power pene-
tration. Authors in [40], using beta distribution, have modeled the solar
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radiation probability function. The output power of a PV as a radiation
function is defined as radiation-power curve [41]. Based on this, we
define the generated power by PV panel j in residence h during timeslot t
as below:

R\
Prmh (RCRS) if OSR’ < RC
P = R . 5
PVin Prpvj,, (R_g) if RCSR[ < RS ( )
Pry,, if Ry<R'

where Pry,, is the rated power of PV panel j in residence h,R* is solar
irradiance in timeslot t, and R¢ and Rg are certain radiation point and
solar radiation in the standard conditions, respectively.

Aggregator

Aggregators can be retailers, producers or independent agents in the
smart grid. They collect an specified amount of energy over certain time
intervals from their affiliated customers and trade it in the wholesale
energy market in order to earn profits. Energy market can be an open
market over various timescales or a private agreement between energy
sellers and energy buyers, such as day-ahead market and real-time
balancing market. Aggregators should be able to provide compelling
offers to costumers in order to persuade them to participate in DR pro-
grams [19]. To this end, aggregators should consider many factors
regarding both their own and their customers’ concerns. In this frame-
work, we consider one aggregator as an independent intermediary be-
tween the appliances in affiliated residential customers and the
wholesale energy market. The aggregator motivates customers to
participate in its DR program by providing financial rewards as
compensation for rescheduling their appliances and utilizes a fair
appliance selection approach for the integrated scheduling. We assume
that the aggregator in order to be able to trade in the wholesale market,
needs to reach bidding size, a certain amount of energy reduction O,
from its customers’ load reduction capacity and utilizing surplus PVs
generations. This amount can be an accepted bid or an entrance bidding
power requirement of the wholesale market. Load reduction can be
achieved from rescheduling smart shiftable appliances to off-peak in-
tervals and/or from sending excess power generated by residential PVs
during peak-time interval. For rescheduling process, the aggregator
performs load reduction and load restoration to shift any appliance from
its pre-scheduled timeslots to off-peak timeslots. We have formulated
the load reduction and the load restoration for each smart appliance i in
residence h in (6) and (7). Moreover, the total reduced load and the total
restored load from shifting all smart appliances are presented as L,q, and
L, in (8) and (9), respectively.

PST,j+Kin—1
Z , o d; nXih
LR, = 1=PST;, i
0 otherwise 6)
Viel,YVhe H

if t€TP

where TP = {t € T| ty,<t<tep}

£ 4K —1
E d,x;
LS[,h = { 1=t ih ik

0 otherwise 7)
Viel,Yhe H

if Vt, a;, >0& t € TO

where TO = {t € T|t < ty, or t > ty}
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Ly, =Y LRy @®

iel

Ly=>) LS ©

il

where df_h is the power demand of smart shiftable appliance i in resi-
dence h during timeslot t, a}, is a binary variable that specifies if
timeslot t is an authorized timeslot for restoring smart appliance i in
residence h and x;, is a binary variable specifying whether smart

appliance i in residence h is shifted by the aggregator or not.

LR, —LS;,=0 Viel,YVheH (10)

Constraint (10) guarantees that every reduced load from peak-time
interval will be restored during off-peak hours.

Furthermore, the total generated power of all PV panels in residence
h during timeslot t is defined as:

GL:ZJ(P;M) VieT,VheH an

where P;th is the generated power by PV panel j in residence h during

timeslot t. In addition, the total load reduction attained from all PVs’
excess generated power in timeslot t and the overall reduced load during
peak-time interval coming from all PVs are formulated in (12) and (13),
respectively.

L, =Y (G —c)y Vie{teTy,i<t,} 12)
heH
tep

Ly, =Y L, 13)

t=tpp

where ¢}, is the total power demand of all non-shiftable electrical ap-
pliances in residence h during timeslot t and yj, is a binary variable
specifying whether the excess generated power of PVs in residence h is
utilized by aggregator or not.

In (14) the aggregator’s revenue from household h based on the
market price after paying PV extra generation rewards to the customers,
is presented.

lep

RNy = (G} =)' = PVgoy (14)

1=tpp

where PVg,, is the constant reward that aggregator pays to the customer
in case of utilizing its PVs extra generation.

Lyq,, + L4, <O (15)

py sh

Constraint (15) ensures that aggregator will perform load reduction
by rescheduling smart appliances and utilizing excess power generated
by PVs until it meets the total required amount of energy reduction.

Multi-prosumer load scheduling
Mathematical model

The problem of multi-prosumer integrated scheduling is studied in
this section. Aggregator’s goal is to maximize its profit in providing a

certain amount of load reduction during peak-time while compensating
its customers in a fair way. The profit of aggregator comes from utilizing
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excess generated power of PVs and shifting smart appliances from peak-
time interval with higher market prices to off-peak intervals with lower
market prices. To this end, first we define cost function for shifting a
smart appliance. We assume that aggregator uses a time-of-use forecast
of the wholesale market prices for its decisions. The cost of load
reduction and the cost of load restoration in the best possible timeslots
for smart appliance i in residence h are formulated in (16) and (17),
respectively.

PST;p+Kip—1

CRy= Y, d,2

1=PST;,

Viel,Vhe H (16)

[ +K;p—1
R 1 I i
CS;p min Z’: d A | vt d, >0 an
Viel, YheH

where TO={t € T|t <ty or t >t,} and A is the wholesale market
price for power consumption in timeslot t.

CRi, —CS;, >0 Viel,YVheH (18)

Constraint (18) guarantees that shifting each smart appliance is a
cost effective action.

In (19), we have formulated the optimization problem for overall
profit of aggregator in the proposed multi-prosumer framework.

max > (RNy)yn + Y (CRip — CSin — ;) Xin

TNy heH iel
S.t. LR;;, — LS;;, =0, Viel,Yhe H
CRi; — CS;; > 0, Viel,YVhe H
Ly, + L4, <O, 19)
Ny = SHrow + W-N,
xin € {0,1},
yn € {0, 1},
N, €{0,1,2,...,2}

In the following, fairness constraint (20) in selection approach of the
aggregator will be discussed.

N, = SHgew + W-N,, (20)

The aggregator pays a base reward SHg,, as compensation for
shifting the first smart appliance in a residence. To ensure that the se-
lection is fair and not biased toward specific residences, the aggregator
either selects the next candidate from other residences or pays a greater
reward for selecting other appliances to shift from the same residence.
To this end, we have considered an associated weight for the reward
calculation for each residence which increases by an arithmetic growth
rate after each appliance selection from a particular residence. Assuming
W as a constant weight for reward growth and N; as the number of
appliances in residence h already shifted by the aggregator, W x Ny
produces a range of growing rewards for shifting smart appliances in
each residence h. Therefore, #,; which is the financial reward that the
aggregator pays for shifting appliance i in residence h depends on the
number of previously shifted appliances in the same residence. This
constraint produces a greater overall reward when appliances for
shifting are selected from one residence compared with selecting ap-
pliances from two different residences. Finally, since the aggregator tries
not to pay extra financial rewards to customers in order to maximize its
profit, fairness in selection is enforced to the rescheduling approach of
the aggregator.

Moreover, since forecasting whole sale market prices are inherently
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Fig. 2. The scenarios for solar panels generation in a PV-equipped residence.

uncertain, we considered uncertainty for the time-of-use forecast of the
prices. To deal with uncertain data, an appropriate probabilistic
approach has to be employed. Using a forecast price vector without
considering uncertainty is unreliable and would increase the risk for the
aggregator’s benefit. There are a variety of possible wholesale market
prices in each time horizon. The daily and hourly variations of the
wholesale prices are due to the role of market players, consumers’ power
consumption behaviors and the impact of renewable energy which in
turn depends on the weather condition. To have a reliable price forecast
vector, the probabilistic approach can be used for generating a number
of scenarios of wholesale market prices derived from historical data and
using normal distribution function to deal with its associated uncer-
tainty [42,43]. The probability density function for market prices based
on [44] is given in (21).

(Xt — H;) )

1
exp(— VteT 21
T p( 20 21

fX) =

where Xt is the predicted market price for timeslot ¢, and y, and o2 are
mean and variance for price scenarios in timeslot t, respectively.

The uncertainty in solar power generation by the prosumers is also
included in the system model using a scenario-based approach. To this
end, we consider historical data of radiation samples and after gener-
ating each scenario, we calculate the expected value for the output
power of PV panels in each residence based on mean value and standard
deviation in probability distribution function. In this way, different
states are considered through various scenarios and the system under
these scenarios analyzed as a deterministic input [45]. Fig. 2 represents
the produced scenarios for the solar panels output power in a PV-
equipped residence.

In the following section, we will describe our approaches to solve the
optimization problem in detail.

The solving approaches

The model presented in (19) is an ILP (Integer Linear Programming)
optimization problem. Regarding the larger size of loads from PVs’ extra
generations compared to the shiftable loads and since utilizing these
loads by aggregator would not jeopardize customer’s comfort, we pri-
oritize utilizing PVs for the aggregator’s load reduction goal. Therefore,
we divide the optimization problem into two steps. First, the aggregator
utilizes all households PVs extra generation and subtracts it from the
total required amount of load reduction @©. In the next step, the aggre-
gator goes through shifting loads from peak hours to off-peak hours in
order to fulfill its required load reduction. Thus, the total required
amount of load reduction from shifting smart appliances is defined as:

®r =0- L,—d (22)

-
where ©; is the total required amount of energy reduction after utilizing
all PVs’ extra generations. Considering this notion, below we rewrite a
simplified optimization problem assuming that the first step is
calculated:
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max Z(CRM —CSip — r]iJz)xivh

i icl
s.t. LR;;, — LS;, =0, Viel,VheH
CR;;, — CS;; > 0, Viel,Yhe H
Ly, <0, (23)
Ny = SHge + W-Ny,,
Xin S {O, 1},

N €{0,1,2,....2}

Here, we consider each appliance with the operating time in peak-
time interval as an item and its associated load as weight of the item.
We further consider the aggregator’s earning from shifting an appliance
as value of the item (i.e. the difference between the cost of load reduc-
tion and the cost of load restoration minus payable reward to the
customer). Then, regardless of the fairness constraint, the problem is
analogous to the classical 0-1 Knapsack Problem where the total
required load reduction could be viewed as capacity of the knapsack.
The 0-1 knapsack problem is defined as filling a fixed-size capacity
knapsack by choosing from a set of items, each associated with a weight
and value such that the overall knapsack value is maximized. The
Knapsack Problem is one of the well-known NP-hard problems [46-48].
Although for some instances of knapsack problem polynomial-time
approximation algorithms are proposed based on Dynamic Program-
ming and Branch and Bound, there are knapsack instances that are hard
to solve; Such as when size of the problem is very large [49], weights and
values of the items are strongly correlated [50,51] and weights and
values are rational numbers [52]; that are all the features of the problem
we study here. In addition, fairness in knapsack problem has recently
been addressed. Authors in [53] have defined a group fairness notation
for the knapsack problem such that the goal is to maximize the overall
value of the knapsack while items from each group/category are pre-
sented in the knapsack in a fair way. To ensure fairness among all
groups, they have defined a bound/limit on weight, value and number of
items from each group one at a time and have proposed algorithms for
each problem individually. However, the fairness notation used in the
above work is different in concept with what we have in this study. Here,
defining an upper bound on the number of shifted appliances from each
residence may make customers with more interest in contribution feel
unmotivated. We implement fairness among residences as a part of a
rewarding system. In this way, customers are motivated to participate
with more appliances and with more flexible time frames to receive
increasing rewards.

In the following, a heuristic algorithm for the optimization problem
in (23) is presented. Our devised heuristic algorithm is similar to greedy
approach for knapsack problem while it is technically different in
additional features. It has a good performance guarantee and provides
the approximate solution in an ideal running time. To this end, we sort
the items (smart appliances with the operating time in peak-time in-
terval) in a decreasing order of value-per-load ratio. The value-per-load
ratio is defined as (CRyj — CSin — #;5) /LR which is what the aggre-
gator earns from shifting an item i per amount of the load. Since, at the
beginning Nj, is equal to O for all households, #;;, for all of the items is
equal to base reward SHg,,, initially. Then, the aggregator removes items
one-by-one from the ordered list. After each removal algorithm must re-
calculate the value-per-load for the remaining dependent appliances in
the list which belong to the same household. Therefore, the list needs to
be re-sorted after each removal by the aggragator. Sorting the list after
each removal leads to n times sorting the list which impose an additional
time-complexity O(n?logn) to the algorithm. Assuming that the weight
for increasing rewards is relatively small compared to the value of the
items, we locally re-locate dependent items with the updated value
instead of globally sorting the whole list. To this end, we move down
each dependent item until it reaches an item smaller than itself (its
proper position). Thus, the time-complexity would depend on the
number of comparisons needed for relocating each dependent item.
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However, even in the worst case scenario, it helps reducing running time
significantly since we are using Straight Insertion Sort concept on a very
nearly sorted list [54]. The devised Heuristic Fair Scheduling (HFS) al-
gorithm is presented in more detail in Algorithm 1.

Algorithm 1
Heuristic Fair Scheduling, HF S

input : Households set H, Smart
appliances set I, Shiftables vector
d; », authorization vector a; j,
Non-shiftables vector ¢, Bidding
power O, Total generated
power GY,.

output: Set of S;, Sp

//Initialization Sp 0, S; 0

for each residence, h € H do

for each timeslot in peak-time interval,
te TP do

EGp « (G} —¢t) //Calc PVs extra

gen

end

if EGj > 0 then

Lyq,, < Lya,, + EGy,

Ny, < (T]]L + PVRcw): S}I, — S}L U {}LL}
end

end

Or < (0 — Lya,,)

for each appliance, i € I do

if LR,‘,,]—L 75 0 & LSi_’h, 7é 0 then
Gain,; — (C’R,‘,’h, — CSi,h, — T]“,,)
//Calculate Value-per-Load

end

else

| VL« 0
end

end
List;=Sort-Descending (V' L;)
//for all i € List; while VL; >0
if LR;, <40, then
97> < (97 — LRLh)
Lya,, < Lra,, + LR p
Ti,h — Ti,h + SHI‘(:UM ti <~ t;:
// re-locating dependants
for all depend appliances in h, dp € I do
if Gaing, > 0 then
Gaing, + Gaing, — W
VLdp < (G’aind,,/LRd,,,’h)
else
| VLgp+0
end
while V Ly, < VLgp1 & dp<1T
do
‘ swap(V Lap, V Lapy1)
end

end
end

end
return (S;, Sp)
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In the following, we analyze the performance of our devised HFS
algorithm. For this purpose, first we study the proof of how a greedy
knapsack algorithm with items sorted based on value-per-weight is a
1/2-approximation algorithm and guarantees to give at least 1/2 of the
optimal value [55,56]. The greedy algorithm for knapsack picks items
which are sorted by non-increasing order of value;/weight; until it rea-
ches an item that does not fit in knapsack. If we consider a refinement to
the greedy algorithm such that the algorithm picks either all of the first k
items or the single item k +1 that does not fit in, which ever has a greater
value. Using the concept of fractional knapsack problem [57], if we are
allowed to use a fraction of only the last item k+1 to fill the knapsack
fully, that would give us the maximum possible value which is greater or
equal to the optimal value for non-fractional knapsack. Considering this
refinement, the value for greedy algorithm is greater than or equal to
sum of the values of first k items while also it is greater than or equal to
the value of item k + 1. By adding two inequalities and simplifying it,
the value of refined greedy algorithm is greater than or equal to 1/2 of
the total value of the first k +1 items which is better than the fractional
result. Furthermore, the value of the refined greedy algorithm is at least
1/2 of the optimal value [56]. Now, regarding HFS algorithm we sup-
pose that the load of each smart shiftable appliance is very small
compared to the total required amount of load reduction such that:

LR;,<0.050, Viel,YVheH (249

In this way, if the algorithms does not pick all the items and the item
k +1 overloads the required amount of load reduction, surely only 5% of
@, is remained while the items already picked are the most valuable
ones. So, the value of the algorithm is greater than or equal to 95% of the
value of fractional algorithm and is also greater than or equal to 95% of
the optimal value. Therefore, the devised HFS algorithm’s result is at
least 0.95 of the optimal solution. Note that it is assumed that the weight
W for increasing rewards is relatively small compared to the value of the
items. So, re-locating dependents does not have any significant effect on
the accuracy of the approximation.

Numerical studies

In this section, the simulation results in real world scenarios are
presented to evaluate the proposed model. To investigate the effec-
tiveness of the proposed multi-prosumer framework, two large-scale
multi-prosumer case studies are designed. Both case studies consist of
one aggregator and 5000 residences with multiple non-shiftable and
smart shiftable appliances in each residence. Three types of smart
shiftable appliances are considered for scheduling including washing
machine, clothes dryer and dish washer. The real consumption data of
cycles and operating time of appliances are obtained from the UK
Department of Energy and Climate Change data tables [58] which are
then normalized and randomly distributed in a 24-h period. It is also
assumed that 66.7 percent of consumers’ households are equipped with
PV panels. The power generated by PVs is primarily used by household’s
non-shiftable electrical appliances and excess generated power of PVs in
high-price interval will be managed by the aggregator.

The rescheduling interval is 24-h divided by 1-h timeslots. The real-
time hourly market prices from the ComEd in October 2017 are utilized
in the simulations. High-price interval is assumed to be [15:00-20:00] in
the studied prices and the remaining of the 24-h interval is considered
low-price. The wholesale market prices are depicted in Fig. 3 and the
high-price interval is highlighted in red.

The aggregator must meet the required amount of load reduction
specified by the bidding power to be able to trade in the wholesale
market. We assigned a slightly greater value than the defined bidding
power to the variable © to ensure that aggregator meets the minimum
requirement of the wholesale market. All the simulations are performed
using MATLAB R2015a on a 1.6 GHz Dual-Core Intel Core i5 processor
with 8 GB of DDR3 RAM.

In the following, we investigate the advantages of our proposed
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Fig. 3. Wholesale market prices for a Fall day.

multi-prosumer framework and how it affects households savings, load
curve correction and aggregator’s profit. Also, while obtaining the
optimal result in large-scale is impractical in polynomial time, we
showed in the previous section that our devised HFS algorithm’s near-
optimal result is very close to the optimal with only %5 gap. To show
the performance of our algorithm, we have also compared the result of
the HFS algorithm with the result from Particle Swarm Optimization
(PSO) and Genetic Algorithm (GA) methods. PSO, in brief, is an evolu-
tionary algorithm proposed by Kennedy and Eberhart [59] which sim-
ulates the social behavior of fish schooling or bird flocking. In this
method, each solution is called a particle and a swarm of particles
searches the problem space. Then, regarding the direction of the flying
track, each particle updates itself and finds the best solution. The global
best solution will be generated by the whole swarm. Genetic Algorithm,
on the other hand, is a computation method that emulates biological
evolution. It maps an optimization problem to a set of strings of potential
solutions. Then, the most promising string will be chosen to be manip-
ulated by the genetic operator and for producing a new population to
improve the solution [60]. In this study, we have considered 10 particles
and 20 iterations for solving the problem using PSO and GA methods.

Case I

In the first case study, customers have pre-scheduled their smart
appliances to be operated during [8:00-24:00]. It is considered that
aggregator’s re-scheduling interval begins at 5: 00 am. The minimum
bidding power for the aggregator is assumed to be 11 MW.

Results of running the case with PSO and GA shows that the profit of
$242.6 and $242.2 is achieved for the aggregator by shifting 6837 and
6834 loads respectively and by using the excess generation of PVs during
the high-price interval. The aggregator’s revenue of shifting appliances
is calculated by revenue of load reduction performed between 15:00 and
20:00 subtracted by the total amount paid to the customers as shift re-
wards. Note that, all the shifts are performed within the customers’
predefined convenience times which was assigned to each load.

By solving the case study using our developed HFS algorithm, 6724
total loads are shifted from high-price interval and the aggregator
earned $262.01 as profit. In comparison with the PSO and the GA re-
sults, aggregator earned more profit while less customer appliances are
shifted for reaching to the same amount of bidding power. The HFS al-
gorithm also outperformed other methods significantly in terms of the
running time as it took 28.8 s to reach a near-optimal result. Figs. 4-6
demonstrate the impact of rescheduling of smart appliances on the load
distribution by the PSO, the GA and the HFS algorithm, respectively. It is
shown how the overall consumption pattern of smart appliances has
changed after rescheduling performed by each algorithm.

Total power generation by PV-equipped residences and total demand
of non-shiftable appliances for the same residences are depicted in
Fig. 7. Aggregator, during high-price interval, aggregates and utilizes
what remains from generation of PVs in each residence after the
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demands of its non-shiftable appliances are met.
Case IT

For the second case, the minimum bidding power for the aggregator
is assumed to be 12 MW to enter the wholesale market. Customers smart
appliances load are pre-distributed in [12:00-24:00] and aggregator’s
re-scheduling interval is assumed to begin at 6 : 00 am.

By solving the case study using PSO and GA methods, the profits of
$241.74 and $241.72 are earned by the aggregator from shifting 7607
and 7587 loads, respectively and by using the extra generation of PVs.
On the other hand, after running the case study using the developed HFS
algorithm, 7424 total loads are shifted from high-price interval and the
aggregator earns $294.5 as profit. In addition, running time decreased
significantly to as low as 48.7 s for the HFS algorithm compared to the
other methods. The impact of rescheduling on the smart appliances’ load
curve by the PSO, the GA and the devised HFS algorithm, are depicted in
Figs. 8-10, respectively.

The simulation results of PSO and GA methods and developed HFS
algorithm for both case studies are summarised in Table 1. The results
clearly shows that for both cases the developed HFS algorithm provides
better results while it was significantly faster compared to the other
methods. Also, the short execution time of the HFS algorithm would
improve the scalability of the problem.

In order to investigate fairness of the proposed framework, we use the
HFS algorithm’s result for case II. Same algorithm is solved without
involving the fairness constraint as well and further comparison is dis-
cussed. Impact of the fairness constraint is seen on the different amount
of rewards customers receive each time for load shifting and the number
of time each single residence is selected by the aggregator. These two are
considered as measures used in comparison analysis. Further elabora-
tion is as follow.

Fig. 11 represents a density diagram for the rewards that the
aggregator pays to the customers for shifting each of their loads, with
and without fairness constraint. This analysis shows that, without fair-
ness, all customers received a constant reward 0.50 for each shifted
appliance in their households. With fairness, on the contrary, customers
with more selected appliances earned 25 to 50 percents more reward for
their participation.

Fig. 12, shows how many times a single residence is selected for shift,
with and without fairness constraint. In the fair approach, the number of
three-time-selected residences has fallen indicating that the aggregator
tries to avoid choosing appliances of a residence for the third time.
Likewise, the number of not selected residences has fallen in the fair
approach which means that in the aggregator’s overall schedule, more
appliances from the previously not selected residences are included
compared to the unfair approach. In addition, the number of one-time-
selected residences has increased in the fair approach. Note that, the
aggregator tries to have more non-repetitive residence selections to
ensure fairness, while its primary goals are reaching a required amount
of load reduction, meeting costumers’ convenience periods and
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Fig. 8. Case II; The impact of rescheduling on the smart appliances’ total load
curve [Result of the PSO].
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Table 1
Comparison between the PSO, the GA and the devised HFS algorithm for both
case studies.

Case I Case II
PSO GA HFS PSO GA HFS
Aggregator 242.60 242.22 262.01 241.74 241.72 294.5
profit ($)
Total 6837 6834 6724 7607 7587 7424
rescheduled
loads
Total 13.2 13.2 13.2 13.3 13.3 13.3
Customers
reward ($)
[PVs]
Total 42.5 42.42 41.2 49.21 49.27 45.2
Customers
reward ($)
[shift]
CPU time (sec)  4523.71 5608.34 28.79 4776.48  5819.11  48.68

maximizing its profit.
Conclusion

This paper studies the potentials of multi-prosumer load aggregation
as a DR program. A new integrated appliance-level scheduling frame-
work is introduced. The proposed model has been designed to be
beneficial to both aggregator and its affiliated customers. It also con-
siders fairness among residences for the load reduction which may help
motivating consumers to have more smart appliance available for shift
in each day and to be more flexible in defining their convenience time
period. Since the problem is NP-hard, we devised a heuristic algorithm
that yields an appropriate approximate result in a reasonable amount of
time. Its significant short execution time would address the scalability
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issue of the problem and make the problem more practical to be
implemented in large-scale.

In this multi-prosumer framework, the aggregator provides a re-
scheduling to override the predefined schedules of the selected resi-
dences while remaining committed to the customers’ comfort zone. This
may provide an addition to the other existing DR programs. Further-
more, since in this model, the aggregator fulfills a significant pre-
specified amount of load reduction in a timely manner, it can have
application in demand response events or the situations where imme-
diate, guaranteed responses to the significant load reduction is required.
We designed this framework to be useful in all wholesale markets
including day-ahead and real-time market with minor modifications.
Future studies can be designed to include different types of loads such as
thermostatically controlled household loads like air conditioners and
water heaters, in our proposed framework. In addition, investigating
different fairness notions for multi-prosumer demand response seems to
be an interesting area of research.
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