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Abstract 

This paper reports a regression modeling and 

optimization procedure for activated tungsten inert gas 

(A-TIG) welding process of AISI316L austenitic 

stainless steel parts using Taguchi design of 

experiments (DOE), regression modeling, analysis of 

variance (ANOVA) and simulated annealing (SA) 

algorithm. Welding current (I), torch speed (S) and 

welding gap (G) are the most significant process input 

parameters has been considered in this study. Depth of 

penetration (DOP) and weld bead width (WBW) have 

been taken in to account as the most essential quality 

measures of the process under study. SiO2 surface 

activating flux powder (in scale of nano-particles) have 

been used to enhance TIG welding process 

characteristics. To gather required data for modeling 

and statistical analysis purposes, DOE based on 

orthogonal array (OR) Taguchi method has been used. 

Then, modeling has been performed using different 

regression equations (including linear, curvilinear and 

logarithmic models). Statistical analysis based on 

analysis of variance (ANOVA) has been performed and 

the most fitted models were selected as an authentic 

representative of the process characteristics. Next, these 

models were used for optimization of process 

parameters in such a way that DOP is maximized and 

WBW minimized using simulated annealing (SA) 

algorithm. Finally, a set of experimental tests has been 

carried out through which the proposed method has 

been validated. Furthermore, results of SA optimization 

method have been compared with ones gained using 

signal to noise (S/N) analysis based on Taguchi 

procedure. Results shown the proposed procedure is 

quite efficient in modeling and optimization of the A-

TIG process. 
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Introduction 

Gas tungsten arc welding (GTAW) known as Tungsten 

inert gas (TIG) welding, is one of the most widely used 

welding processes for aluminum, manganese and 

stainless steels parts fabricating due to its good quality 

(surface finish and spatter free). Nonetheless, welding of 

thick plates in a single pass, results in an incomplete 

welding (lack of penetration or shallow penetration) 

[1−3]. Therefore, application of TIG welding process for 

welding of thick plates in a single pass is restricted by 

poor penetration produced which can be tackled using 

time consuming multi pass welding process and edge 

preparation. One of the most important procedures to 

tackle this problem and improve penetration of TIG 

welding process is using activated fluxes coated on the 

weld surface before welding  process begins, known as 

activated TIG (A-TIG) or flux assisted TIG welding 

process which has first been proposed by the Paton 

institute of electric in 1960 [4]. Using activating fluxes 

(especially oxide based fluxes) ends in enhanced depth 

of penetration (DOP) and minimum weld bead width 

(WBW) in comparison with conventional TIG (C-TIG) 

welding process used especially for stainless steels parts 

[5]. This process can be considered as the TIG welding 

process in which an activating flux layer coated on the 

weld surface before welding process started. This layer 

of flux, is melted and vaporized during welding and 

DOP and WBW are increased and decreased due to arc 

constriction and reversal of Marangoni convection 

phenomena respectively. The details of these phenomena 

are well documented in Refs. [1, 2] in which DOP has 

been reported to be increased up to about 3 times in 

comparison with the C-TIG welding process [2–4].  

Using A-TIG welding process, allowed steel specimens 

(of around 6 mm) to be fabricated with single pass 

welding without using filler metal and even edge 

preparation [6]. A-TIG welding process has also been 

effectively employed on different materials namely: 

alloy steels, stainless steels (including austenite and 

austenite duplex), and also dissimilar metals welding [7]. 
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Experimental set up and equipment used 
In this study to conduct the experiments based on 

OA-Taguchi DOE approach, a DIGITIG 250 

AC/DC welding machine (GAAM-Co, Iran) has 

been employed. The tungsten electrodes and argon 

(with 99.7% purity) as shielding gas were used. 

Experiments were carried out on AISI316L stainless 

steel sheets with dimension of 100 ×50 ×12 (mm). 

Silicon dioxide (SiO2) nano-powder (+99%, 20-30 

nm, amorphous) has been used as the activating 

flux. First, activating fluxes prepared by mixing 20 

grams of SiO2 with 20 mL of a solvent (ethanol, 

methanol or acetone) for 20 min. Then, the mixed 

paint like flux deposited on the specimens surfaces 

of which has been cleaned using acetone and dried 

before the welding process begins (Fig. 1). Fig. 4 

shows a schematic illustration of A-TIG welding 

process. 

 

 

Fig. 1. Activated flux preparation and schematic diagram of 

A-TIG welding process [8] 

 

Design of experiments (DOE) approach 

After the main process input parameters have been 

selected and their corresponding intervals determined, 

an appropriate design matrix for conducting the 

experiments and data gathering must be determined. To 

facilitate the identification of the influence of individual 

parameters, establish the relationships between process 

input parameters and output characteristics, and finally 

determine the optimal levels of input parameters in 

order to get the desired characteristics, DOE approach is 

used. One of the effective methods that can intensely 

reduce the number of experiments required to gather 

necessary data is OA-Taguchi technique [9]. Based on 

the number of input parameters and their levels, a 

Taguchi’s L32 design matrix has been chosen using 

MINITAB software. 

 

Signal to noise (S/N) ratio 

Taguchi technique has been used to study the whole 

process input parameters space with small numbers of 

experiments. Taguchi method also uses signal–to–noise 

(S/N) ratios as performance measures optimizing the 

process input characteristics for desired output 

measures. To calculate the deviation between the 

experimental and desired value, a loss function is 

introduced. The loss function is transformed into S/N 

ratio. The S/N ratio calculation may be decided as 

“Smallest is the Best, (SB)” (used for measures in which 

the smallest amount is desired, e.g. WBW) or “Largest 

is the Best, (LB)” (used for measures in which the 

largest amount is desired, e.g. DOP) based on the 

process under consideration, as given in Equations 1, 2 

[10]. 

 

(1) n
2

K

K 1

1
S / N( ) 10 log x

n =

 
 = −  

 
SB :  

 

(2) n

2
K 1 K

1 1
S / N( ) 10 log

n x=

 
 = −  

 
LB :  

 

Where number of iteration in a trial shown as n, in this 

study, n =1 and xK is the jth measured value in a run. 

Therefore, as the smallest WBW and the larger DOP are 

desired, Eq. 1 and Eq. 2 are considered to calculate 

WBW and DOP respectively. The experimental results 

of 32 experiments (fifth and sixth columns) and their 

corresponding S/N ratio values (seventh and eighth 

columns) based on the OA-Taguchi DOE method are 

reported in Table 1. 

 
Table 1. Experimental measured outputs and S/N ratios 

No. 
DOP 

(mm) 

WBW 

(mm) 

S/N for 

DOP 

S/N for 

WBW 

1 3.25 4.42 23.5731 -29.7228 

2 2.99 3.84 21.9055 -26.9094 

3 2.28 3.95 16.4835 -27.4743 

4 1.95 3.86 13.3566 -27.0133 

5 5.48 6.26 34.0221 -36.6836 

6 4.94 5.40 31.9473 -33.7280 

. . . . . 

. . . . . 

. . . . . 

     

27 4.60 8.14 30.5211 -41.9358 

28 4.23 7.68 28.8440 -40.7724 

29 10.00 11.97 46.0517 -49.6481 

30 6.67 11.12 37.9524 -48.1749 

31 5.27 10.25 33.2406 -46.5456 

32 5.04 9.69 32.3481 -45.4219 

 

Regression modeling  

Regression modeling is a statistical procedure for 

approximating the relationships between process input 

parameters and output characteristics. To carry out 



 

10 to 12 May, 2021 

regression modeling and corresponding analysis (e.g. 

ANOVA) the following stages must be taken in to 

account [11]. 

 

Models representing the relationship between process 

input parameters and output characteristics can be stated 

in Equations 3 to 8. Results of ANOVA has been 

reported in Table 2 and 3.  

 

Linear Model 

 

(3) S/N (DOP) = 20.6 + 0.103×I - 5.07×S       
 

(4) S/N (WBW) = - 20.9 - 2.64×G - 0.0970×I + 1.85×S       
 

 

Logarithmic model 

  

(5) S/N (DOP) = e- 3.05 × I0.697 × S - 0.347        
 

(6) S/N (WBW) = e- 1.69 × G0.0807 × I0.461 × S- 

0.0965     
 

                            

Modified second order Model 

 

(7) S/N (DOP) = 9.28 + 0.276×I - 9.07×S - 0.000402× 

(I×I) + 1.32×(S×S) - 0.00906× (I×S)                 
 

(8) S/N (WBW) = - 19.9 - 2.64×G - 0.166×I + 7.08×S 

+ 0.000181× (I×I) - 1.21×(S×S)        
 

 
Table 2. Result of ANOVA for S/N of Depth of Penetration  

Percent 

contribu

tion (%) 

F-

Value 

Mean 

Square 

Sum 

of 

square 

(SSj) 

Degree 

of 

freedom 

(Dof) 

Welding 

variables 

1 0.17 0.40 0.40 1 G 

68 226.40

* 

535.09 
1605.2 3 I 

29 95.57* 225.87 677.60 3 S 

2 - 2.36 56.72 24 Error 

100 - - 2340.0 31 Total 

Significant Parameter *  

 
Table 3. Result of ANOVA for S/N of Weld Bead Width  

Percen

t 

contrib

ution 

(%) 

F-Value 
Mean 

Square 

Sum 

of 

square 

(SSj) 

Degree 

of 

freedom 

(Dof) 

Welding 

variables 

2 12.70 31.48 31.48  1 G 

88 184.26* 456.63 1369.9 3 I 

7 13.88* 34.39 103.18 3 S 

3 - 2.48 59.48 24 Error 

100 - - 1564.0 31 Total 

Significant Parameter *  

 

Fig. 2. Percent contributions of welding parameters to the DOP 

 

 

Fig. 3. Percent contributions of welding parameters to the 

WBW 

 

 

According to table 2, welding current is the major 

factor affecting DOP at 68% followed by torch speed 

and welding gap at 29% and 1% contribution 

respectively. The rest (2%) is due to error and 

uncontrollable parameters based on the nature of the 

process and the equipment used is acceptable. By the 

same token, welding current at 88%, torch speed at 7% 

and welding gap at 2% are the most important 

parameters affecting WBW respectively (Table 3).  

Percent contribution has been reported in Fig 2 and 3.  

 

Optimization procedures 

To define the effect of each process input parameters on 

the output characteristics, the mean of S/N ratios for 

each test containing this parameter in desired level are 

calculated. Moreover, the calculated means for each 

level of input parameter under consideration are 

compared and the level to which the highest value is 

belongs considered as the desired level in order to 

optimize the process characteristic [12]. For example 

mean effect of torch speed in level 1 is gained from 

averaging test runs number 1, 2 up to 16.  Along these 

lines, the mean effects of parameters are computed and 

listed in Tables 7 and 8. Since the higher value of mean 

S/N is favorable, with respect to the data in Table 7, 

optimal set of parameters for optimization of DOP are: G 

at level 2, I at level 4 and S at level 1, i.e., (G2 I4 S1). 

Similarly, optimal set of parameters for optimization of 

WBW are: G at level 1, I at level 1 and S at level 4, i.e., 

(G1I1 S4) based on results of Table 5. Moreover, Figs 5 

and 5 also illustrate the optimum parameters settings in 

order to achieve the maximum DOP and minimum 

WBW. 

As the signal to noise method in optimization procedure 

could determine the best set of process input parameters 

levels from the pre-determined ones on the design 

matrix used (Table 2). Using heuristic algorithms would 

help interpolating the answer space in order to find the 
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best solution which may not be one of the determined 

levels considered in Table 2. In this study the most 

fitted models selected, consider as the objective 

functions for the heuristic algorithm used. Therefore, in 

order to optimize the objective functions simulated 

annealing (SA) algorithm has been used.  

 
Table 4. Response (mean) of S/Ns for depth of penetration 

Symbol Level 1 Level 2 Level 3 Level 4 

G 29.119 29.344 - - 

I 18.512 27.493 33.866 37.057 

S 35.859 31.064 25.911 24.094 

 
Table 5. Response (mean) of S/Ns for weld bead width 

Symbol Level 1 Level 2 Level 3 Level 4 

G -37.353 -39.3364 - - 

I -28.929 -36.1777 -41.812 -46.460 

S -41.243 -38.439 -36.905 -36.791 
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Fig.  4 The effect of A-TIG input process parameters on signal 

to noise (S/N) values of DOP 
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Fig. 5 The effect of A-TIG input process parameters on signal 

to noise (S/N) values of WBW 

 

Simulated annealing algorithm 

Simulated annealing (SA) algorithm is a reminiscent of 

the physical annealing process in metal work and 

effectively used in optimization problems [12]. In 

Annealing process, metals are slowly cooled to make 

them reach a state of low energy. First, metals are 

heated up to a temperature which is about the melting 

point. Therefore, at this temperature, all particles of the 

metal are in intense random motion. Then, the metal is 

slowly cooled down. All particles rearrange themselves 

and tend toward a low energy state. As the cooling 

process is carried out appropriately slowly, lower and 

lower energy states are gained until the lowest energy 

state is reached. Similarly, in A-TIG welding process an 

energy function is created which is minimized. The 

lowest energy level gives the optimized value of A-TIG 

welding process parameters, while minimizing efforts 

are made to avoid local minima and to achieve global 

minima. Recently, the SA algorithm has developed as a 

leading tool for complex optimization problems [13]. 

The mechanism of SA algorithm is defined as the 

following sentences. Firstly, an initial random solution 

within the acceptable answer space is generated. Then, 

the objective function of new solution (C1) is calculated 

and compared with that of current solution (C0). Either, 

it has better value or the probability function 

implemented in SA has a higher value than a randomly 

generated number between 0 and 1, a move is made to 

the new solution [13]: 

Consequently, at the first iterations of SA, most 

worsening moves may be accepted due to higher 

temperature, but at the end of the procedure only 

improving ones are likely to be allowed. This can help 

the process avoid getting trapped in local minimum and 

jump out of it. After a certain number of iterations or 

after a pre-determined run time or after a number of 

iterations in which no development is detected the 

algorithm may be terminated. Flowchart of SA 

algorithm for A-TIG welding process optimization is 

shown in Fig.6. 

Table 6 indicates that for resulting in maximum possible 

DOP, the welding current and welding gap should be 

considered at their highest levels. Likewise, for 

achieving lower WBW, welding current and welding 

gap should be approximately set at their lower ranges.  

The convergence of SA algorithm for DOP is shown in 

Fig. 15. 

 
Table 6. Results of optimization based on the Taguchi and SA 

algorithm methods 

Error 
(%) 

Experime

ntal S/N 

value 

Predicted 
S/N value 

Set of Parameters 

S I G 

Input 

paramet

ers 

2.9 48.2256 49.6648 1.036 280 1.50 DOP 

3.3 -20.9952 -21.7038 2.85 153 1.00 WBW 

 

 
Fig. 6 Simulated annealing algorithm convergence for DOP 

optimization 
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Conclusion 
Proper selection of process parameters levels positively 

affect the quality of weldments in A-TIG welding 

process. In this study the problem of modeling and 

optimization of A-TIG welding process for AISI316L 

austenite stainless steel has been addressed. First, A-

TIG experimental tests have been performed based on 

experimental data gathered as per L32 Taguchi DOE. 

Then, DOPs and WBWs have been measured using MIP 

software. Then, regression modeling has been used to 

formulate the process characteristics (DOP and WBW) 

as a function of input parameters (welding current, torch 

speed and welding gap). Next, ANOVA has been used 

in order to determine the most fitted models. Moreover, 

significant parameters and their corresponding percent 

contribution on each process characteristics have been 

determined using statistical analysis. Results showed 

that welding current is the most important parameter 

affects DOP and WBW at 68% and 88% percent 

contribution respectively. Furthermore, the minor effect 

belong to welding gap. Next, SA algorithm and Taguchi 

optimization procedure (signal to noise analysis) have 

been used to optimize the selected models and results 

confirmed using experimental tests. The result of 

optimization procedure shows the proposed procedure 

can accurately simulate and optimize the TIG welding 

process. 

 

References 
[1] Huang H Y, Shyu S W, Tseng K H, Chou C P. 

Evaluation of TIG flux welding on the characteristics of 

stainless steel, J. Sci Technol Weld Join, 2005, 10(5): 

566−573. 
[2] Shyu S W, Huang H Y, Tseng K H, Chou C P. Study 

of the performance of stainless steel A-TIG welds [J]. 

Mater Eng Perform, 2008, 17(2): 197−201. 

[3] Fujii H, Sato T, LU S P, Nogi K. Development of an 

advanced A-TIG (AA-TIG) welding method by control 

of Marangoni convection [J]. Mater Sci Eng A, 2008, 

495: 296−303. 

[4] Gurevich S M, Zamkov V N, Kushnirenko N A. 

Improving the penetration of titanium alloys when they 

are welded by argon tungsten arc process [J]. Avtom 

Svarka, 1965(9): 1−4.  

[5] Lu S P, Li D Z, Fujii H, NOGI K. Time dependant 

weld shape in Ar–O2 shielded stationary GTA welding 

[J]. Mater Sci Technol, 2007, 23(5): 650−654. 

[6] Dhandha KH, Badheka VJ. Effect of activating 

fluxes on weld bead morphologyof P91 steel bead-on-

plate welds by flux assisted tungsten inert gas welding 

process. Mater Manuf Processes 2015; 17:48–57. 

[7] Vasudevan M, Bhaduri A, Raj B, Rao KP. Genetic-

algorithm-based computational models for optimizing 

the process parameters of A-TIG welding to achieve 

target bead geometry in type 304 L (N) and 316 L (N) 

stainless steels.Mater Manuf Processes 2007;22:641–9. 

 [8] Kumar V et al (2009) Investigation of the A-TIG 

Mechanism and the Productivity Benefits in TIG 

Welding. In JOM-15 Fifteenth International Conference 

on the Joining of Materials. pp 1-11 

[9] Venkatesan G et al (2014) Effect of Ternary Fluxes 

on Depth of Penetration in A-TIG Welding of AISI 409 

Ferritic Stainless Steel. Procedia Mat Sci 5:2402-2410. 

doi:10.1016/j.mspro.2014.07.485 

[10] Chern TS et al (2011) Study of the characteristics 

of duplex stainless steel activated tungsten inert gas 

welds. Mater Des 32:255–263. 

doi:10.1016/j.matdes.2010.05.056. 

[11] Kolahan, F., Azadi Moghaddam M., The use of 

Taguchi method with grey relational analysis to 

optimize the EDM process parameters with multiple 

quality characteristics, Scientia Iranica B (2015) 22(2), 

530-538. 

 [12] Azadi Moghaddam, M., Kolahan, F., Application 

of orthogonal array technique and particle swarm 

optimization approach in surface roughness 

modification when face milling AISI1045 steel parts, J 

Ind Eng Int (2016) 12:199–209. 

[13] Kirkpatrick S, Gelatt CD, Vecchi MP (1983) 

Optimization by simulated annealing. American 

Association for the Advancement of Science 220:671–

680. 

 

 


