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Analysis of gait dynamics is a noninvasive and totally painless test, and it can be an ideal method for the diagnosis of
neurodegenerative diseases. In this study, based on the strength of synchronization between dynamics of strides, we have
suggested a rating scale method for Parkinson’s disease (PD). Methods. The sample included 15 persons with PD (age: 66:8 ±
10:9 years) and 16 healthy persons (age: 39:3 ± 18:5 years) which were recruited from the Neurology Outpatient Clinic at
Massachusetts General Hospital and were instructed to walk a 77m long, straight hallway. The time interval of strides and
subphases of strides were measured. Using the Hilbert transformation method, we obtained the data phase and used mean
absolute error (MAE) to calculate the synchronization strength of the data phase. Results. In order to check the accuracy of our
method, we measured the correlation between our numerical results (MAE) and values of the Hoehn-Yahr scale. Spearman’s
rank correlation coefficients (r) and the P values were calculated. MAE of left and right stride intervals (LRSI) significantly
correlates with the Hoehn-Yahr scale for the subjects with PD (with r = 0:60 and P = 0:025 < 0:05). Conclusion. We have
revealed that the synchronization weakness of LRSI shows the severity of PD. This method seems to be well suited as a rating
scale for people with PD.

1. Introduction

PD is a degenerative disease of the central nervous system,
mainly affecting themotor system. PDmotor symptoms result
from the death of dopamine-generating cells in the substantia
nigra, a region in the midbrain [1]. Early in the course of the
disease, the most obvious symptoms are movement related
which include shaking, rigidity, slowness of movement, and
difficulty in walking and gait [2]. Later on, thinking and
behavioral problems may arise, with dementia which com-
monly occurs in the advanced stages of the disease, and
depression is the most common psychiatric symptom [3].

Research studies of PD require a means of rating the
severity of the disease by measurement of motor manifesta-

tions, assessment of the ability to perform daily functional
activities, and symptomatic response to medication. The
most common rating scales are the Unified Parkinson
Disease Rating Scale (UPDRS), the Hoehn and Yahr (HY)
staging, and the Schwab and England rating of activities of
daily living. From which, the UPDRS has gained the greatest
acceptance as a tool for the evaluation of interventions and
as a clinical tool to follow up patients. This rating scale
includes four subscales. Subscale 1 covers mentation, behav-
ior, and mood. Subscale 2 rates activities of daily living.
Subscale 3 is a clinician rating of the motor manifestations
of PD. Subscale 4 covers complications of therapy [4]. The
HY staging is probably the most widely known evaluation
of people with PD. By this scale, a higher score indicates
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more advanced disease and includes stages 1 through 5. The
modified HY scale is proposed with the addition of stages 1.5
and 2.5 to help describe the intermediate course of the dis-
ease [5]. The Schwab and England Scale is an “activities of
daily living” (ADL) scale frequently used to provide a single
estimate of the patient’s ability to function. The rating is
done by an examiner interviewing the patient and frequently
a collateral source, such as a spouse. This rating varies from
0 to 100% using 5% increments [4]. Although these are the
most widely applied rating scales of PD, there are still
substantial limitations to these scales that must be consid-
ered when using them for research [4]. The clinician should
be aware of these different scales and their relative utility.
Knowledge of these scales, their validity, their sensitivity to
modification, and their specificity and interpretation
pitfalls is a prerequisite to good evaluation in daily prac-
tice and clinical research.

The authors have considered various analysis tools to
diagnose neurodegenerative diseases and to scale their symp-
toms. Ko and colleagues studied the feasibility of a novel
method which is based on breath gas analysis to identify neu-
rodegenerative diseases, especially for PD [6]. Agrawal and
Biswas in a short review showed recent advancements in
molecular diagnostics particularly biomarkers and imaging
spectroscopy for neurological diseases [7]. Sajjadi and his
coworkers used diffusion tensor MRI for single-subject diag-
nosis in neurodegenerative diseases [8]. Oluwafemi and
Ibrahim designed an intelligent system to diagnose neurode-
generative diseases [9]. Anderson andMacAskill showed that
eye movement laboratory data can provide valuable informa-
tion about disease severity, progression, or regression in
neurodegenerative diseases [10]. Massai and colleagues stud-
ied the reliability and validity of the Italian version of the
Geriatric Depression Scale in a sample of PD patients [11].
Fereshtehnejad et al. in their study evaluated psychometric
properties of the Persian version of the fatigue severity scale
to assess fatigue in PD patients [12].

Recently, in health sciences for prognoses and diagnosis,
particularly in patients with neurodegenerative conditions,
much attention has been placed on the dynamics of gait.
Ren and colleagues in their study applied phase synchroni-
zation and conditional entropy to the time series pairs of gait
rhythms. They revealed that compared with the patients
with ALS, HD, and PD, gait rhythms of normal subjects
have the strongest phase synchronization property and
minimum conditional entropy value [13].

In this article, we show that not only compared with the
normal subjects, gait rhythms of subjects with PD have
weaker phase synchronization, but also the synchronization
strength of gait rhythms of patients with PD is different in
illness severity. In fact, we show that for patients with more
severe illness, weaker synchronization exists between their
left and right strides.

2. Materials and Methods

As we will discuss, determining the patient’s ability to per-
form daily tasks, therefore, gait dynamics has an important
role in quantifying the severity of the illness. We claim that

using synchronization theory in gait dynamics is an effective
and efficient method to obtain the severity of PD. Conse-
quently, at first, we introduce the subjects that we have
used. Then, knowing that gait dynamics is chaotic, we will
use chaos synchronization analysis to measure the severity
of the PD.

2.1. Subjects. Subjects with PD (n = 15 patients, age: 66:8 ±
10:9 (SD) years, 10 men and 5 women) and healthy control
(n = 16 persons, age: 39:3 ± 18:5 (SD) years, 2 men and 14
women) are the subjects, which were recruited from the
Neurology Outpatient Clinic at Massachusetts General Hos-
pital, and the data were provided by Goldberger et al. [14]
and downloaded from http://PhysioNet.org. The time series
of the stride interval and its two subphases, stance (the time
when the foot is on the ground) and swing intervals (the
time when the foot is in the air), from the foot switches were
recorded. In order to minimize any start-up and end-up
effects, we removed the first and last 10 s of each subject’s left
and right stride interval (LRSI) time series, and a median
filter was applied to remove data points that were 3 SD
(standard deviation) greater than or less than the median
value. These outliers were largely due to the turns at the
end of the hallway.

The HY staging has been used to scale the severity of PD.
Therefore, to study the accuracy of our scaling method, we
have checked the correlation between the output of our
method and the results of HY staging.

2.2. Method. As it is well known, chaotic systems refer to
nonlinear dynamical systems which are very sensitive to ini-
tial conditions, in such a way that a small perturbation of
these could have unpredictable consequences on the evolu-
tion equations. Furthermore, synchronization phenomenon
which basically means that two (chaotic) systems oscillate
in a same way is an interesting and well-known property
of chaotic systems. Indeed, this phenomenon was first dis-
cussed by Pecora and Carroll in 1990 [15]. As a kind of this
phenomenon, phase synchronization that is observed in sys-
tems of various nature [16], including chemical, biological,
and physiological systems, has attracted the interest of
researchers [17]. In the case of phase synchronization, differ-
ence between various states of synchronized systems may
not necessarily converge to zero but will stay less than or
equal to a constant. Our claim is that there is a correlation
between the HY staging of subjects with PD and the strength
of synchronization between phases of their LRSI.

2.2.1. Phase of Data. Here, in order to use the synchroni-
zation phenomenon, we have used the Hilbert transforma-
tion [17] to obtain the phase of data which helps us to
distinguish between two different synchronization regimes
in the following sense.

An oscillation can be taken as the sine wave xðtÞ = A
sin ðω0t + ϕ0Þ, where ω0 denotes the angular frequency
which is related to the oscillation period by ω0 = 2π/T and
should be distinguished from the cyclic frequency of oscilla-
tion f0 = 1/T . The intensity of oscillation is determined by its
amplitude A, and the quantity ϕðtÞ = ω0t + ϕ0 is called
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phase. The phase of an oscillator is the key notion and the
variable that is of primary importance in the context of syn-
chronization theory. The phase is defined as a quantity that
increases by 2π within one oscillatory cycle, proportional to
the fraction of the period. The phase clearly determines the
state of a periodic oscillator; like time, it parameterizes the
waveform within the cycle. The phase seems to provide no
new information about the system, but its advantage
becomes evident if we consider the difference of the phases
of two oscillating systems. In this context, suppose that we
have an arbitrary narrowband signal, such as respiration
signal or measure of stride interval; then, to define its phase
ϕðtÞ, we may analyze this signal by signal processing which
is originally introduced by Gabor. To implement it, one has
to construct from the scalar signal sðtÞ a complex process:

ζ tð Þ = s tð Þ + isH tð Þ = A tð Þeiϕ tð Þ, ð1Þ

where the function sHðtÞ is the Hilbert transform of sðtÞ
and is defined by

sH tð Þ = π−1P:V:
ð+∞
−∞

s τð Þ
t − τ

dτ: ð2Þ

Here, “P.V” means that the integral is taken in the sense
of the Cauchy principal value [18]. The instantaneous
phase ϕðtÞ and amplitude AðtÞ of the signal sðtÞ are thus
uniquely given via the construction of the analytic signal
ζðtÞ. Although formally ϕðtÞ and AðtÞ can be computed
for an arbitrary signal sðtÞ, they have a physical meaning
only if sðtÞ is a narrowband signal. Here, we have used this
tool to determine the phase ϕðtÞ of the LRSI time series.

2.2.2. Synchronization Strength. After calculating the phase
ϕðtÞ of the LRSI time series using the Gabor method, the
strength of synchronization between phases of LRSI must
be analyzed.

We use a measurement, i.e., mean absolute error (MAE)
as a scale for the strength of synchronization of the LRSI
phase to emphasize the relation between the strength of syn-
chronization and disease severity. This mean is defined as

MAE = ∑n
i=1 LSi − RSij j

n
, ð3Þ

where LSi and RSi are the phase of the ith left stride and
right stride intervals, respectively, and n is the number of
strides during the experience. We have also considered the
synchronization between LRSI and subphases of the strides
(e.g., stance and swing) to show that the dynamics of the
subphases of the stride is identical to that of the stride itself.
To implement this, we have also used

MAESt =
∑n

i=1 LSi − LStij j
n

, ð4Þ

MAESw = ∑n
i=1 LSi − LSwij j

n
, ð5Þ

to obtain the synchronization strength between phases of
the ith left stride (LSi) and those of left stance (LSti) and
left swing (LSwi), respectively. It can be done similarly
for the right stride (RSi) and right stance (RSti) and right
swing (RSwi).

To see and analyze our result, we first determined the
phase of our data by using relation (1), and then, to deter-
mine the strength of synchronization between LRSI for each
subject, we calculated their related MAEs for the phase of
data using relations (3)–(5).

3. Results

Figure 1 shows the strong synchronization between the
phases of left and right stride time intervals of a healthy con-
trol. By calculating the MAE for the phase of healthy control
subject data, the result is aboutMAE = 0:0096. This insignif-
icant error is consistent with Figure 1 (existence of strong
synchronization), and this criterion shows the direct rela-
tionship between the strength of synchronization and good
status of a healthy person.

Among the subjects with PD, a person who had the best
situation with an HY score of 1.5 had the strongest synchro-
nization between his/her LRSI phases and also between
phases of his/her left stride interval and left stance, with
MAE = 0:0131 and MAESt = 0:0103, respectively (see
Figure 2). Conversely, a person with an HY score of 4 had
the weakest synchronization between phases of his/her LRSI
with MAE = 0:0583 (see Figure 3).

In order to double check the accuracy of the new
method, we measured the correlation (statistical relation-
ship) between our numerical results (MAE) and observed
data values of the prior scale, Hoehn-Yahr. In order to do
so, we calculated Spearman’s rank correlation coefficients
(r) and the P values using the SPSS 18.0 software package.
All calculated P values less than 0.05 were considered statis-
tically significant. More precisely, for the subjects with PD,
MAE of LRSI phases significantly correlates with the
Hoehn-Yahr scale (with r = 0:60 and P = 0:025).

0 20 40 60 80 100
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

n

Ph
as

e

Left stride
Right stride

Figure 1: Synchronization between LRSI for the first 100 strides of
a healthy control, with MAE = 0:0096.
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4. Discussion

There are many rhythms in the human body that play a vital
role in human life. Irregular and chaotic rhythms of the
heart rate, respiration, gait, and many more have useful
information that can determine a person’s health or disease
status. Some of these rhythms not only are important but
also have their harmony with other rhythms. For example,
investigating the synchronization of the heart rate and blood
pressure with respiration is very important to understand
when developing cardiovascular models [18–21]. Synchroni-
zation phenomenon which basically means that two (cha-
otic) systems oscillate in the same way is an interesting
and well-known property of chaotic systems. Phase synchro-
nization is a kind of this phenomenon which is observed in
chemical, biological, and physiological systems.

Studying dynamics of gait as a chaotic dynamical
system in health sciences, particularly in patients with neu-
rodegenerative conditions, can be helpful in the diagnosis
and treatment. In human locomotion, not only is the
rhythm of each leg important but also the coordination of
the two legs. The LRSI time series is affected by the whole
nervous system, and their fluctuations may reflect modula-
tion in the underlying mechanism of control. We therefore

hypothesized that the strength of synchronization between
phases of LRSI for patients with PD would be related to
the severity of the disease, and it can result in a new
method for PD severity scaling. Hence, in this study, we
utilized the strength of phase synchronization of LRSI,
obtained by the MAE formula, to determine the severity
of the PD. This hypothesis is supported by the findings
reported in Results.

Ren et al. applied phase synchronization and conditional
entropy to the time series of gait rhythms. Their results
showed that compared with the patients with ALS, HD,
and PD, gait rhythms of normal subjects have the strongest
phase synchronization property and minimum conditional
entropy value [13]. However, we have shown in our method
that for patients with better status, stronger synchronization
exists between their left and right strides; also, each stride
synchronizes with its subphases.

This method is simple, cheap, and fast, and especially in
the cases where patients’ status is severe, this method is
more convenient than the prior methods. This can help
us to track disease progression and effects of therapeutic
interventions. However, this method has its drawbacks.
PD symptoms are different for different patients. People
are usually more familiar with the movement symptoms
of PD. These signs are usually used by doctors to make a
diagnosis. But many symptoms of PD are nonmovement
and can affect almost any body system and occur any time
in the course of the disease (even before movement symp-
toms) and differ in severity from person to person. The
mentioned method is based solely on gait dynamics which
is a motor symptom. Of course, by recording more param-
eters such as handshake level, speech status, and other
nonmovement symptoms, a more accurate method can be
obtained which is faster, more accurate, and simpler than
UPDRS and HY methods and can be a replacement for
these methods, and this helps in the detection of PD in
subjects with nonmovement symptoms.

Since patients with some other neurodegenerative
diseases, like Huntington disease, often display the unsteady
walk, the method presented here for scaling severity of PD
possibly can be used to scale the severity of such neurode-
generative diseases, and it can be studied in future works.
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Figure 2: (a) Synchronization of phases of LRSI for the first 100 strides of a low-severity PD person, withHY score = 1:5 andMAE = 0:0131.
(b) Between the left stride and left stance, with MAESt = 0:0103.
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Figure 3: Weak synchronization between phases of LRSI for the
first 100 strides of a high-severity PD person, with HY score = 4
and MAE = 0:0583.
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5. Conclusions

Here, we have stated various methods for detecting the
severity of PD. We have also presented a method, based on
chaos synchronization theory, to show the severity of PD.
We have shown that for patients with better status, stronger
synchronization exists between their left and right strides
and also between strides and subphases of strides. Statistical
results confirm the accuracy of our method. Since analysis of
gait dynamics is a noninvasive and totally painless test and
also this method is cheaper, faster, and more convenient
than previous methods, it could be an ideal method for the
PD rating scale especially for patients with severe status.
Of course, by recording more variables such as handshake
level and speech status, a simple and accurate method can
be obtained as a replacement for the prior scaling methods.
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PD: Parkinson’s disease
UPDRS: Unified Parkinson’s Disease Rating Scale
HY: Hoehn and Yahr
LRSI: Left and right stride intervals
MAE: Mean absolute error.
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