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CLE SWARM OPTIMIZATION
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Abstract: The effects of the most important process-adjusting variables (welding current and weld-
ing speed) and the percentage of the combination of TiO2 and SiO2 activating fluxes on the most
important quality characteristics (weld bead width, depth of penetration, and aspect ratio of these
parameters) in welding of AISI316L austenite stainless steel parts are considered. Artificial neu-
ral networks (ANN) are used to determine the relations between the input variables and output
responses of the activated tungsten inert gas (A-TIG) welding process. To determine the proper
ANN architecture (the proper number of hidden layers and their corresponding neurons/nodes), the
particle swarm optimization (PSO) method is used. Experimental tests are conducted to evaluate
the proposed procedure performance. Based on the results, the proposed method is found to be
efficient in modeling and optimization of the A-TIG welding process.
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INTRODUCTION

Tungsten inert gas (TIG) welding, also known as gas tungsten arc welding (GTAW), is extensively employed
to fabricate aluminum, magnesium, stainless steel, and titanium alloys due to its surface finish (spatter-free process)
and high quality. Shallow penetration was investigated as a drawback of TIG welding of thick parts [1]. To tackle
the problem of poor penetration in the TIG welding process, various procedures were introduced, including the use
of activating fluxes (oxides, fluorides, and chlorides) prepared as a paste and coated onto the weld surface before
the welding process starts. This procedure is called activated tungsten inert gas (A-TIG) welding [2, 3]. A-TIG
welding is effectively employed for various materials, namely, titanium, aluminum, manganese, and stainless steel
(including austenite and austenite duplex) alloys. Moreover, welding of dissimilar metals due to stabilizing the
depth of penetration based on reversal of the Marangoni convection could be considered as another merit of A-TIG
welding [4, 5].

When the thickness of the welded specimens exceeds 3 mm, a filler metal is needed to fill the welding gap
between the specimens in C-TIG welding, whereas application of A-TIG welding allows steel parts (around 8 mm
thick) to be fabricated using a single welding pass and even without using filler metals and edge preparation [6].
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Vidyarthy et al. [1] investigated the effects of the activating fluxes on the microstructural and mechanical
properties and on the corrosion behavior in welding of dissimilar AISI316L and P91 steel parts. The effect of
the activating flux on the mechanical and microstructural properties of the TIG-welded Ti-6Al-4V titanium alloy
specimens was studied by Ramkumar et al. [2]. Based on the results, the microstructural and mechanical properties
of the weld were improved by using the activating flux. Furthermore, the mechanical properties were investigated by
Zou et al. [3] in A-TIG welding of duplex stainless and ferrite steels and by Kulkarni et al. [4] in A-TIG welding of
dissimilar materials (Inconel 800 and Inconel 600). The microstructural and mechanical properties of A-TIG welded
P91 parts were studied in [5, 6]. The GTAW process was optimized by using the response surface methodology
(RSM) in order to reach the largest possible depth of penetration [7].

In the above-cited papers, optimization of the process output responses was not performed. To the best
of our knowledge, there are no studies in which modeling and optimization of the depth of penetration (DOP),
weld bead width (WBW), and aspect ratio (AR) are considered simultaneously using the RSM-based design of
experiments, modeling based on using artificial neural networks (ANN), and optimization techniques based on
heuristic algorithms: simulated annealing (SA) and particle swarm optimization (PSO) algorithms.

As different activating fluxes produce different effects on the weld bead geometry and on the mechanical
and metallurgical properties of the welded parts, the percentage of the activating fluxes is considered in the present
study as a process input variable (in addition to the welding speed and current) and is optimized in such a way
that the depth of penetration D increases, weld bead width W decreases, and a proper aspect ratio is achieved
simultaneously.

In this study, based on the preliminary experimental tests carried out using the design of experiments
(DOE) approach and the literature survey studied, three inputs parameters (welding current I, welding speed S,
and percentage of activating fluxes F ) were taken into account as adjusting parameters. According to the number
of input variables and their predetermined levels, the most appropriate design matrix (central composite design
(CCD) based on RSM) was considered. Next, the back propagation neural network (BPNN) was used to determine
the relationships between the process input variables and output characteristics. Next, the PSO algorithm was
applied to find the best BPNN architecture (number of hidden layers and nodes/neurons in each layer). Finally,
the optimal values of the process input variables for multi-response optimization were determined using the PSO
algorithm. The SA algorithm was used to check the adequacy of the PSO algorithm and avoid getting trapped in
local minima.

1. EXPERIMENTAL SETUP AND MATERIALS USED

There are various variables affecting the A-TIG welding process; the most influential ones are the welding
speed S, welding current I, and percentage of the activating fluxes F [1–3]. To determine possible ranges of each
input variable of the welding process (Table 1), welding references were studied, and preliminary experiments were
performed. The variable F varied in the interval 0–100%, the variable I varied in the interval 90–130 A, and the
variable S varied in the interval 110–190 mm/s.

To carry out the experimental tests based on the CCD matrix proposed by the RSM, a DIGITIG 250 AC/DC
welding machine was employed. Furthermore, in this study, argon (with 99.7% purity) was used as a shielding inert
gas.

AISI316L stainless steel plates with dimensions of 100 × 50 × 5 mm were considered as specimens. In this
study, nano-oxide fluxes (TiO2 and SiO2) (99%, 20–30 nm, amorphous) were used as activating fluxes. The powder
particle size was determined by using a FESEM microscope.

Table 1. Process input variables and their corresponding intervals and levels

Level F F , % I, A S, mm/s

1 0–100 90 110
2 25–75 100 130
3 50–50 110 150
4 75–25 120 170
5 100–0 130 190
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20 µm

Fig. 1. Activating flux with SiO2 and TiO2 nanoparticles.

Figure 1 represents the FESEM results of the oxide-based activating fluxes, which confirmed the nanoscale
claimed by the provider. Prior to welding process beginning, 20 g of the flux were mixed with 20 ml of the
carrier solvent (methanol) using mechanical, magnetic, and ultrasonic mixers until a paste-like flux was obtained
(approximately 20 min in each mixer) [1, 2]. Then, the paste-like flux was coated onto the specimen with a brush
and dried.

The DOE method proposes a wide variety of different approaches, among which the RSM acts as a powerful
tool. The RSM comprises various designs, including the central composite design (CCD) (spherical CCD, rotatable
CCD, etc.), Box-Behnken design (BBD), and hybrid designs [8]. In this study, the L20 CCD matrix was used
(Table 2). A random order in conducting experiments was used to increase the accuracy of the experiments. After
welding, three types of responses (weld bead width W , depth of penetration D, and aspect ratio W/D were measured
for each specimen (see Table 2).

Table 2. Experimental conditions based on CCD and corresponding measured output responses

Test No.
S,

mm/s
I,
A

F ,
%

D,
mm

W ,
mm

W/D

1 130 120 25 5.755 7.693 1.337
2 150 110 50 5.041 7.905 1.568
3 170 100 75 5.367 7.224 1.346
4 170 100 25 3.142 9.466 3.013
5 150 110 50 4.711 7.617 1.617
6 150 130 50 6.827 7.703 1.128
7 170 120 25 3.920 8.425 2.149
8 170 120 75 5.524 5.923 1.072
9 130 100 25 4.873 8.125 1.667
10 150 110 50 4.321 7.920 1.833
11 150 110 50 4.850 7.510 1.548
12 130 100 75 6.356 6.676 1.051
13 150 110 50 4.950 7.847 1.585
14 150 110 100 6.124 5.604 0.915
15 110 110 50 6.254 6.393 1.022
16 150 90 50 4.610 7.778 1.687
17 150 110 50 4.906 7.803 1.591
18 130 120 75 7.894 6.910 0.875
19 150 110 0 3.133 9.985 3.187
20 190 110 50 3.850 7.460 1.938
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Two cuts were made on the surface of each specimen to measure D, W , and W/D. To determine D

and W accurately, the cut faces were polished smoothly and etched. The surface images were taken by an optical
microscope. The values of D and W were determined by using the MIP software (Fig. 2).

To relate the process input variables and output responses, the following regression equations are solved
for D, W , and W/D:

D = 24.19 + 0.033 58F − 0.381 C + 0.000 230S2 − 0.000 960SC + 0.002 608C2,

W = −28.83 + 0.0549 F + 0.3483 S + 0.1842 C − 0.000 628FS − 0.000 526S2 − 0.001 340SC,

W/D = −15.39 + 0.1125 S + 0.1634 C + 0.000 155F 2 − 0.000 448FS +

+ 0.000 280FC − 0.000 109S2 − 0.000 395SC − 0.000 615C2.

2. BACK PROPAGATION NEURAL NETWORK

ANNs are extensively employed as a nonlinear and parallel processing system in order to relate a set of
input-output parameters. They consist of a set of connected processing units called neurons/nodes organized in
each layer (input, hidden, and output layers) by connections that connect the nodes. Each input variable (defined
as xi) is assigned a weight wi indicating the portion of the input variable transferred to the neuron for processing.
Furthermore, b is the bias (systematic error), and y is the output signal. The received signal

v =
N∑

i=1

xiwi + b

is transferred by the using the function f into the output signal (y = f(v)) [9].
Various ANN structures were proposed among which the multi-layer perceptron (MLP) was extensively used

due to its ability to solve nonlinear separable/continuous problems. The MLP contains an input layer, one or more
hidden layer/s, and an output layer. In the training stage, a supervised way is used to determine the biases and
weights, based a set of input-output data pairs, which allows the MLP to learn the relationships between the input-
output parameters. In the BPNN, an algorithm (back propagation) in which the error of each input-output pair in
the MLP is calculated and is then transferred from the last (output) to the first (input) layer, where the biases and
weights of the MLP network are adjusted. The details in this regard are well documented in [9, 10].

Commonly, the architecture of ANN models is determined using the trial and error procedure. In this study,
however, the PSO algorithm was used to determine the proper BPNN architecture. The number of hidden layers
was varied from 1 to 3; hence, a 3−n1−n2−n3−3 structure was constructed, where n1, n2, and n3 are the numbers
of neurons/ nodes in the 1st to 3rd hidden layer. The training stage acts as a way to find the proper weights and
architecture that ensure the minimum error between the desired (or predetermined) and predicted results.

3. PROBLEM DEFINITION

In this study, a low value of W , a high value of D, and a desired value of W/D had to be reached simulta-
neously.

Therefore, the study of the process multi-responses reduces to finding the minimum of the function

f(F, I, S) = w1D − w2W,

where 1.0 < W/D < 1.4, 0 < F < 100%, 90 A < I < 130 A, and 110 mm/s < S < 190 mm/s; w1 and w2 are the
weights determining the contributions of D and W , respectively. According to the literature survey, the optimal
range of the aspect ratio W/D is [1.0; 1.4] [11]. For W/D values within this range, the probability of cracking in
the case of weld solidification is fairly low.
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Fig. 2. Cross-sectional profiles obtained by A-TIG welding in experiments 1–20.
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4. HEURISTIC ALGORITHMS

Various heuristic algorithms were proposed to search for an optimal range of the input parameters that
ensure a required result at the output. The most popular methods are the particle swarm optimization and
simulated annealing methods. Easy programming (few input parameters to adjust) and fast convergence are the
major merits of the PSO algorithm. However, in a high-dimensional space, falling into local minimum traps may be
considered as a weakness of the PSO algorithm. The SA mechanism can avoid getting trapped into local minima;
moreover, the SA algorithm has several advantages over other algorithms [12].

In this study, the PSO and SA algorithms were employed as heuristic algorithms to optimize the A-TIG
welding process variables in order to achieve the maximum DOP, the minimum WBW, and the proper value of the
aspect ratio. In this study, the PSO method was used twice to determine the most appropriate BPNN architec-
ture and to optimize the process measures. Next, the SA algorithm was used to evaluate the PSO performance.
Furthermore, a set of validation experiments was conducted in order to confirm the proposed approach.

4.1. Simulated Annealing Algorithm

Various methods are used to select the most appropriate values of the process input parameters that ensure
reaching the desired output characteristics [12]. The mechanism of the SA algorithm is defined as follows. First,
an acceptable solution (response) space is defined, and an initial random solution in this space is generated. Next,
the objective function of the new solution C1 is computed and compared with the objective function of the current
solution C0. The transition to the new solution occurs either when the new solution has a better value of the
objective function or when the probability function

Pr = e−∆C/Tk

is greater than a randomly generated number between 0 and 1.
Let Tk be the temperature in the physical annealing process [12]. The equation

Tk+1 = αTk, k = 0, 1, . . . , 0,9 6 α < 1,0

is used as to reduce the temperature at each iteration.
The cooling rate depends on the parameter α. At the first iterations of the SA method, the cooling rate

may fail to decrease (and even may increase) due to high temperature. Nonetheless, the temperature does decrease
as the algorithm proceeds, which helps the algorithm avoid being trapped in local minima.

The algorithm procedure steps are described below.
Step 1. The temperature T0, cooling rate 0 < r < 1, and termination criterion (number of iterations

k = 1, . . . ,K) are determined. The random initial solution (current solution c) is generated and evaluated.
Step 2. A new neighboring solution m close to the current solution is generated and evaluated by means of

varying the current solution.
Step 3. The new solution is accepted as the current solution if the following conditions are satisfied:
(a) the objective function of the new solution E(m) is better than that of the current solution E(c);
(b) the value of the acceptance probability function e(f(m)−f(c))/Tk is greater than a uniformly generated

random number in the interval [0, 1].
Step 4. The termination criterion is checked, the temperature parameter is updated (Tk = rTk−1), and the

calculation returns to Step 2.

4.2. Particle Swarm Optimization Algorithm

The PSO method is a heuristic algorithm proposed in [13]. It begins with a population of random solutions,
which is updated and searched for optimal ones. The current optimal solutions are followed by random solutions
(known as particles) in the problem space. The solution (particle) updating is performed with the equations [13]

Vi+1 = wVi + c1ri(pBi −Xi) + c2ri(gBi −Xi); (1)

Xi+1 = Xi + Vi+1, (2)
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where the velocity Vi+1 of each particle is determined based on its previous velocity Vi, global best solution (pB),
and particle location (gB). Equation (2) was used for updating the particle position [13]. The terms r1 and r2 are
two random numbers generated independently in the range [0, 1]. There are acceleration constants c1 and c2, which
pull each particle (solution) toward the pB and gB positions. The inertia weight w acts as an important parameter
in the PSO algorithm convergence behavior. In order to explore the solution space globally, a large value of w is
required, while a small value of w is sufficient to explore nearby regions of the space [13].

Based on the literature survey, the BPNN architecture (number of hidden layers and number of nodes in
hidden layers) in most studies was determined by the trial and error method. In this study, the PSO algorithm was
employed to determine the PBNN architecture. Furthermore, the optimization of the proposed BPNN model was
carried out using the PSO algorithm. The adjusting parameters used for the SA and PSO algorithms [13] are the
population of 50, the learning factor c1 = c2 = 2, and the number of iteration performed equal to 30 in the PSO
algorithm, and the temperature reduction rate of 0.91, the processing time of 30 s, and the initial temperature of
700 in the SA algorithm.

The proposed hybrid ANN-PSO model is presented in Fig. 3.

RESULTS AND DISCUSSION

The value of the weights w1 and w2 for D and W was chosen in the present study to be 0.5. The optimization
procedure was used for two conditions. In the first variant, the weld bead geometry was not restricted. In the second
variant, a dimensional restriction was imposed to the maximum DOP value (5 mm), and the value of the W/D ratio
had to be in the interval [1.0; 1.4]. Figure 4 illustrates the weld cross section obtained in the case of optimization
under the second condition. Based on the nature of the PSO algorithm, its convergence is faster than that ensured
by the SA algorithm. Furthermore, as the PSO drawback is falling into local minimum traps, its performance could
be better checked against the results obtained by other algorithms. In this paper, the performance of the PSO
algorithm was checked with the SA algorithm performance. The convergence of the PSO and SA algorithms is
shown in Fig. 5.

Table 3 represents the results of PSO and SA optimization of the weld parameters. The difference in the
results is smaller than ∆ = 2.1%.

The ultimate tensile stress (UTS) test was performed under the optimized conditions (for both TIG and
A-TIG welding processes). The corresponding values are 616 and 638 MPa, respectively.

CONCLUSIONS

Modeling and optimization of the A-TIG welding process for AISI316L austenite stainless steel parts were
performed. The weld bead geometry and the percentage of the activating fluxes were optimized. First, the CCD
was used in the RSM to determine the experimental design matrix required for data acquisition, modeling, and
optimization purposes. Next, the DOP and WBW values were measured using the MIP software, and the aspect ratio
of these parameters was computed. Then, the BPNN was employed to establish the relations between the process
input variables (welding speed, welding current, and percentage of activating fluxes) and output responses (depth
of penetration, weld bead width, and aspect ratio). Moreover, in order to determine the proper BPNN architecture,
the PSO algorithm was applied. Then, the PSO algorithm was used again to optimize the proposed BPNN model.
Using the proposed hybrid BPNN-PSO approach, the process input variables were optimized: 190 mm/s for the
welding speed and 128 A for the welding current. The optimal percentage of the activating fluxes was found to be
71% for SiO2 and 29% for TiO2. Optimal parameters of welding ensure the maximum depth of penetration and the
minimum weld bead width for a given ratio of these parameters. The result of the proposed optimization procedure
shows that the proposed method can precisely simulate and optimize the A-TIG welding process.
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Fig. 3. Illustration of the proposed hybrid ANN-PSO method.
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Table 3. Optimal parameters of A-TIG welding and their experimental values

Optimization variant Method F , % S, mm/s I, A Output response Prediction Experiment ∆, %

with weld bead
geometry restriction

SA 60 190 129 D 4.99 mm 5.02 mm 0.7
PSO 71 190 128 D 4.98 mm 5.02 mm 0.8
SA 60 190 129 W 5.49 mm 5.56 mm 1.3

PSO 71 190 128 W 5.48 mm 5.56 mm 1.4
PSO 60 190 129 W/D 1.10 1.11 0.9
SA 71 190 128 W/D 1.10 1.11 0.9

without weld bead
geometry restriction

SA 99 110 129 D 9.54 mm 9.66 mm 1.2
PSO 100 110 130 D 9.55 mm 9.66 mm 1.1
SA 99 110 129 W 9.64 mm 9.85 mm 2.1

PSO 100 110 130 W 9.65 mm 9.85 mm 2.1
PSO 99 110 129 W/D 1.01 1.02 1.0
SA 100 110 130 W/D 1.01 1.02 1.0
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