
Accelerat ing the world's research.

Fault-tolerant sensor reconciliation
schemes based on unknown input
observers

Francesco Tedesco

International Journal of Control

Cite this paper

Get the citation in MLA, APA, or Chicago styles

Downloaded from Academia.edu 

Related papers

A Fault -Tolerant  Sensor Reconciliat ion Scheme based on Self-Tuning LPV Observers
Gianfranco Gagliardi

Actuator Fault  Est imat ion Based on LPV Unknown Input  Observer for Induct ion Machine
Abdel AITOUCHE

Act ive fault  tolerance control of a wind turbine system using an unknown input  observer with an actu…
Nicolai Christov

Download a PDF Pack of the best  related papers 

https://www.academia.edu/80859139/Fault_tolerant_sensor_reconciliation_schemes_based_on_unknown_input_observers?auto=citations&from=cover_page
https://www.academia.edu/80859139/Fault_tolerant_sensor_reconciliation_schemes_based_on_unknown_input_observers?from=cover_page
https://www.academia.edu/70407406/A_Fault_Tolerant_Sensor_Reconciliation_Scheme_based_on_Self_Tuning_LPV_Observers?from=cover_page
https://www.academia.edu/75393013/Actuator_Fault_Estimation_Based_on_LPV_Unknown_Input_Observer_for_Induction_Machine?from=cover_page
https://www.academia.edu/47483333/Active_fault_tolerance_control_of_a_wind_turbine_system_using_an_unknown_input_observer_with_an_actuator_fault?from=cover_page
https://www.academia.edu/80859139/Fault_tolerant_sensor_reconciliation_schemes_based_on_unknown_input_observers?bulkDownload=thisPaper-topRelated-sameAuthor-citingThis-citedByThis-secondOrderCitations&from=cover_page


Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tcon20

International Journal of Control

ISSN: 0020-7179 (Print) 1366-5820 (Online) Journal homepage: http://www.tandfonline.com/loi/tcon20

Fault-Tolerant Sensor Reconciliation Schemes
based on Unknown Input Observers

Hamid Behzad, Alessandro Casavola, Francesco Tedesco & Mohammad Ali
Sadrnia

To cite this article: Hamid Behzad, Alessandro Casavola, Francesco Tedesco & Mohammad
Ali Sadrnia (2018): Fault-Tolerant Sensor Reconciliation Schemes based on Unknown Input
Observers, International Journal of Control, DOI: 10.1080/00207179.2018.1484568

To link to this article:  https://doi.org/10.1080/00207179.2018.1484568

Accepted author version posted online: 13
Jun 2018.

Submit your article to this journal 

View related articles 

View Crossmark data



June 13, 2018 International Journal of Control fran_SR_UIO_IJC_rev_rev_v3

Publisher: Taylor & Francis
Journal: International Journal of Control
DOI: 10.1080/00207179.2018.1484568

Fault-Tolerant Sensor Reconciliation Schemes based on Unknown
Input Observers

Hamid Behzada, Alessandro Casavola b, Francesco Tedescob∗ and Mohammad Ali Sadrniaa

aFaculty of Electrical Engineering and Robotic, Shahrood University of Technology, Iran
bDipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica (DIMES), University of

Calabria, Italy

Received 24 May 2017, Revised 24 May 2018, Accepted 28 May 2018

(Received 00 Month 20XX; accepted 00 Month 20XX)

This paper proposes two fault-tolerant sensor reconciliation design methods for over-sensed plants (see
Fig. 1). The aim of the reconciliator is to detect, at each time instant, the presence of faults on the existing
physical sensors y and hide the corrupted measurements in the generation of the virtual output z (with
dim y ≥ dim z), which one would like to be generated in a reliable way in spite of fault occurrences and
hence trustfully usable for control purposes. If the reconciliation scheme were effective, it would provide a
reliable output z for feedback control and would exclude the need to reconfigure the nominal control law
in case of faults. The sensor faults here considered are limited to variations of both sensor gain and offset
values. The proposed approach envisages the use of an Unknown Input Observers (UIO) coupled with
an "ad-hoc" parameters estimator used to estimate on-line the sensor effectiveness matrix at each time
instant. In the paper, two design methodologies are described, based one on the Linear Parameter Varying
(LPV) polytopic formulation and the other on the Linear Fractional Transformation (LFT) paradigm.
All main properties of the sensor reconciliation schemes are investigated and rigorously proved. A final
simulation example is included where both the LPV and LFT schemes are compared.

Keywords: Sensor Reconciliation, Virtual Sensors, Fault Detection, Unknown Input Observer

1. Introduction

Control er Plant
Sensor 

Reconciliation
l

Figure 1.: Fault-tolerant sensor reconciliator basic scheme

In control systems applications the capability to detect faulty sensors and recover uncorrupted
data has gained importance in the last two decades. Specifically, in traditional control schemes,
faulty sensors give wrong information about the system status, which could cause instability when
used in feedback loops. Even in the fortuitous cases where stability is preserved, inaccurate sensor
values may lead to poor regulation or tracking performance, which may be highly undesirable for
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many high precision control applications (Djath et al. (2000); Mirabadi et al. (2003); Romero et al.
(2010)).

To cope with these situations a Sensor Reconciliation (SR) scheme (Vachhani et al. (2001)) is
often exploited in order to recover useful data from the pool of redundant sensors whenever un-
predicatable fault events may eventually occur. In Figure 1, a quite general SR scheme is depicted.
There, the SR block can be seen as a virtual sensor (Steffen (2005)), in charge of translating mea-
surements from the possibly faulty sensors y into the reliable virtual sensors vector z that can be
trustfully used for control purposes.

Many SR approaches based on Figure 1 are often proposed in the literature as part of a Fault
Tolerant Control (FTC) scheme and coupled with traditional controllers. Such a choice avoids
the usage of complex control reconfiguration strategies to accommodate sensor faults. In this re-
spect, relevant contributions include De Doná et al. (2009); Sun and Deng (2004); Yetendje et al.
(2011), where the sensor information are fused in a decentralized way by exploiting local estimators.
Another class of SR FTC based strategies is considered in (Berbra, Lesecq, and Martinez (2008);
Romero et al. (2010)), where a switching mechanism involving sensors and related observers is ex-
ploited to implicitly detect the healthy components of the system. The estimates provided by the
observers are compared at each sampling time by a switching logic that allows one to select the
sensors-observer pair with the smallest estimation error.

All the above mentioned approaches are mainly focused on the accomplishment of two fundamen-
tal tasks: (i) identification of faults in the sensors, (ii) correction of sensor measurements. In this
respect many effective methods have been developed for the estimation of either actuator or sen-
sor faults. See e.g. (Alwi et al. (2011); Cristofaro and Zaccarian (2016); Han et al. (2016); He et al.
(2013)). See also (Crowe (1996); Mah et al. (1976); Romagnoli and Stephanopoulos (1981)) for rel-
evant works in sensors rectification.

This paper aims at presenting a general SR method for linear discrete-time systems with re-
dundant physical sensors possibly subject to loss of effectiveness (gain) and offset (bias) faults.
Differently from the above mentioned SR methods, the scheme here discussed is based on the Un-
known Input Observer (UIO) approach (Guan and Saif (1991)). In the present context, the UIO
methodology has been widely investigated for the design of fault detection and isolation schemes
for LTI continuous-time systems but limited to the detection of sensor bias faults (J. Chen et al.
(1996); W. Chen and Saif (2006); Duan et al. (2002)).

Here we move to the discrete-time system domain and extend the ideas of Rodrigues et al. (2005);
Zhou et al. (2013), where Linear Matrix Inequality (LMI) based procedures have been proposed
to synthesize UIOs with constant observer gains, to address the more challenging case of jointly
detecting both bias and gain sensor faults. To this end, the key idea here is that of considering
admissible ranges of current sensor gain estimates as structural uncertainty in the plant matrices.
Such a choice leads to a non-convex uncertainty representation in the UIO equations. To deal with
this issue, two different approaches are proposed. The first one relies upon a polytopic embedding
of the uncertain matrices that allows the design, via a specific LMI procedure, of a polytopic Linear
Parameter Varying (LPV) UIO observer. Preliminary results about this approach have been given
in Behzad et al. (2016) and are presented here in a more formal and complete way. The second
method to deal with the non-convexity of UIO equations involves the well-known Linear Fractional
Transformation (LFT) formulation (Cockburn and Morton (1997)). In this way, it is possible to
build up a time-varying observer by solving LMI feasibility problems that are characterized by a
lower numerical complexity with respect to the general LPV case. The resulting computational
burden required to numerically synthesize the observer gain is comparable to that of the standard
linear time-invariant case.

The proposed schemes consist each of three interconnected modules: (i) a Parameter Estimator
unit implemented via a constrained weighted least-squares batch method used, within a windowing
data processing approach, to estimate the current gain sensor faults, (ii) a UIO unit in charge of
combining the corrupted information gathered by multiple sensors to reconstruct, on the basis of
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the output of the Parameter Estimator, the state of the system and estimating the current bias;
(iii) a Sensor Reconciliation unit used to reconcile the sensor measures.

Properties of the proposed LPV-UIO and LFT-UIO schemes are formally proved and discussed
and complete computational procedures are provided for their design. A final numerical example is
reported where comparisons involving both the approaches are provided.

Notation

Let R denote the set of real numbers whereas N that of natural numbers. Let v′ ∈ R
1×n denote

the transpose of a vector v ∈ R
n, ‖ · ‖2 the 2-norm of a vector (i.e. ‖x‖2 :=

√
x′x) and ‖ · ‖l2 the

l2-norm of a signal w(t) ∈ l2 (i.e. ‖w(·)‖l2 :=
√
∑∞

i=0w(i)
′w(i)). Given a matrix M ∈ R

n×m, the

i-th row of M is denoted as M (i). For a matrix M ∈ R
n×m having linearly independent rows, the

Moore-Penrose Pseudoinverse is defined as M † ∈ R
n×m and is computed as M † := A′(AA′)−1.

Linear Fractional Transformations (LFTs) are extensively used in the paper. For properly sized
matrices N and

M :=

[

M11 M12

M21 M22

]

the lower LFT is defined as

LFT (M,N) := M11 +M12N(I −M22N)−1M21

For P ⊂ R
p and Q ⊂ R

q being two polytopes, their Cartesian Product is defined as

P ×Q = {(x, y) : x ∈ P , y ∈ Q}

The Polytope Sl := {ξ ∈ R
l|0 ≤ ξi ≤ 1, i = 1, ..., l,

∑l
i=1 ξi = 1} is a l-dimensional Unit Simplex.

For l matrices Mi ∈ R
n×m, i = 1, ..., l, their Convex Hull, denoted by Co{Mi}, i = 1, ..., l, is the

polytope arising by all convex combinations of matrices Mi i.e {
∑l

i=1 ρiMi, [ρ1, ..., ρl]
′ ∈ Sl} with

Sl being a l-dimensional unit simplex.

2. Problem Formulation

Let us consider a plant whose dynamics is described by the following discrete-time state-space
representation

xp(t+ 1) = Axp(t) +Bu(t) + Ev(t) (1)

y(t) = ∆
(

γ(t)
)

Cyxp(t) + Fb(t) (2)

z(t) = HzCyxp(t) (3)

where xp(t) ∈ R
n is the state vector, u(t) ∈ R

nu is a known input while v(t) ∈ R
nv is an unknown

input. Moreover, y(t) ∈ R
m represents the plant output provided by physical redundant sensors

possibly effected by both bias b(t) ∈ R
q and loss of effectiveness faults, the latter being modeled

by the gain matrix ∆(γ) ∈ R
m×m that, for simplicity, we assume hereafter to have the following

3



June 13, 2018 International Journal of Control fran_SR_UIO_IJC_rev_rev_v3

elementary structure:

∆(γ) =

⎡

⎢

⎣

γ1 0 0

0
. . . 0

0 0 γm

⎤

⎥

⎦
(4)

Finally, z(t) ∈ R
r, with r ≤ m, is defined as the virtual output of the system and represents the

healthy information we need to get from the plant for control purposes, which we would like to be
free from the effects of faults possibly occurring on the physical sensors y.

It is clear that in the absence of faults one would have ∆(γ) = Im and b(t) = 0q. However, in the
more general case b(t) �= 0q and ∆(γ) �= Im, with γ confined in the generic polytope

Γ ⊆ S := {γ : 0m ≤ γ ≤ 1m} (5)

Notice that Γ, implicitly defined by fulfilling next Assumptions 1 and 2, is always a proper subset
of S. Because of faults, it is not convenient to evaluate the signal z(t) as z(t) = Hzy(t) because it
would be affected by possibly corrupted information brought by y(t). However, because the state
xp(t) is assumed not directly measurable, z(t) cannot be evaluated as simply as in (3), but a more
sophisticated machinery is required. This aspect motivates the design of the Sensor Reconciliator
(virtual sensor) unit depicted in Figure 1, which basically aims at addressing the following problem:

Sensor Reconciliaton Design Problem (SRDP-Problem) :
Given the system (1)-(3), compute, at each time t ≥ 0 on the basis of the real output y(t)
measurements, a suitable estimate ẑ(t) of the virtual output z(t) := HzCyxp(t), despite the presence
of both fault occurrences, corrupting the vector y(t), and disturbances v(t).

The problem just stated can be solved in principle by evaluating an estimate x̂p(t) of the state
xp(t) that is exploited to compute the corresponding estimate ẑ(t) of z(t) through the following
equation

ẑ(t) = HzCyx̂p(t) (6)

Anyway such an approach require to face two crucial issues: 1) How to estimate the fault occurrences
corrupting y(t)? 2) How to get a good estimation x̂p(t) in presence of an unknown input v(t) and
time-varying sensor gains and bias? Next section is devoted to answer to these questions.

3. Virtual Sensor Architecture

A solution for the problem presented in the previous section is here described by introducing the
virtual sensor architecture depicted in Fig. 2 that consists of three modules: an Unknown Input
Observer (UIO) unit, which is the core of this scheme and it is designed to compute estimates of
xp(t) and b(t); a Parameter Estimator whose output is an estimate of effectiveness matrix (4) and
a Reconciliator Unit that simply performs the computation indicated in (6).

4
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Figure 2.: Virtual Sensor Architecture

3.1 Sensor Fault Augmented Model

In order to design the UIO, the following augmented state is considered including the bias fault
b(t) among its components

x(t) =

[

xp(t)
b(t)

]

(7)

In this way, the related augmented model can be described as

x(t+ 1) = Āx(t) + B̄u(t) + Ēv(t) + F̄∆b(t)

y(t) = C̄γx(t) (8)

where

Ā :=

[

A 0
0 I

]

, B̄ :=

[

B
0

]

, Ē :=

[

E
0

]

, F̄ :=

[

0
I

]

C̄γ :=
[

△(γ)Cy F
]

, ∆b(t) := b(t+ 1)− b(t)

Moreover, the following technical assumptions are required

Assumption 1: The pair (C̄γ , Ā) is observable ∀γ ∈ Γ

Assumption 2:

rank{C̄γĒ} ≥ rank(Ē), ∀γ ∈ Γ (9)

The above assumptions are mandatory for the existence of the Unknown Input Observer presented
in the next section. In particular, concerning the latter assumption please notice that the structure
of the set Γ in (5) guarantees that for every full-rank matrix Ē, rank{C̄γĒ} ≥ 1, ∀γ ∈ Γ.

3.2 Unknown Input Observer

In this section we describe the basic ingredients of the proposed UIO. Let us assume to be provided
with an estimation γ̂(t) of γ(t) at each time t. Then, a possible structure for an unknown input

5
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observer for the model (8) is given by

x̂(t+ 1) = Tγ̂(t)Āx̂(t) + Tγ̂(t)B̄u(t)+ Lγ̂(t)

(

y(t)− ŷ(t)
)

+Qγ̂(t)y(t+ 1) (10)

where Tγ̂ ∈ R
(n+q)×(n+q), Lγ̂ ∈ R

(n+q)×m and Qγ̂ ∈ R
(n+q)×m represent design parameters all

depending on the effectiveness matrix (4). In particular, if Tγ̂ were chosen to satisfy

Tγ̂ +Qγ̂C̄γ̂ = In+q (11)

under the condition

Tγ̂Ē = 0, ∀γ̂ ∈ Γ (12)

the system (8) could be represented as

x(t+ 1) = Tγ̂(t)Āx(t) + Tγ̂(t)B̄u(t) + Tγ̂(t)F̄∆b(t) +Qγ̂(t)y(t+ 1) (13)

Please notice that (12) is satisfied if Qγ̂ is chosen as

Qγ̂ := Ē(C̄γ̂Ē)†, ∀γ̂ ∈ Γ (14)

where the existence of the matrix (C̄γ̂Ē)† is guaranteed ∀γ̂ ∈ Γ by Assumption 2.
In this respect, it is worth pointing out that unfortunately the matrix Tγ does not depend linearly

on the parameter γ. As a consequence, the related uncertainty representation results non-convex.
For this reason, in order to take advantages of existing LMI optimization techniques, we present
two different approaches, respectively based on LPV polytopic embeddings and LFT formulations,
for the design of the observer gain (10).

3.2.1 LPV formulation

In this section we assume to be provided by a polytopic embedding approximation for matrices Tγ

and C̄γ given by (see Figure 3 for a graphic idea)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

C̄ρ =

l
∑

i=1

ρi(γ)C̃i,

Tρ =

l
∑

i=1

ρi(γ)T̃i

(15)

for a certain continuous functions ρi : Γ → R of γ and pair of matrices (T̃i, C̃i), i = 1, ..., l. In
addition, we assume that the map ρ : Γ → Rl given by ρ := (ρ1, ..., ρl)

T always returns values into
the unit simplex Sl. Hence, for each γ ∈ Γ, the pair (Tρ, C̃ρ) lies in the convex hull Co{(T̃i, C̃i)}, i =
1, ..., l.

Moreover, the above representations have to guarantee that the following Assumptions 3 and 4
hold true:

Assumption 3:

(

TρĀ, C̄ρ

)

is detectable ∀ρ ∈ Sl

Assumption 4: TρĒ = 0, ∀ρ ∈ Sl

6
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Figure 3.: Non convex representation (green region) and related polytopic embedding (blue region)

Now, we have all the ingredients to design a LPV gain Lρ̂ defined as follows

Lρ̂ =

l
∑

i=1

ρ̂i(γ)Li (16)

where the gains Li, i = 1, ..., l are properly chosen to stabilize the state estimation error, provided
that an estimation ρ̂(t) := ρ̂(γ̂(t)) is available. In fact, notice that the state estimation error sequence
e(t) satisfies the following recurrent equation

e(t+ 1) = Nρ̂(t)e(t) + Tρ̂(t)Ēv(t) + Fρ̂(t)w(t) (17)

with

e(t) := x(t)− x̂(t), Nρ :=
(

TρĀ− LρC̄ρ

)

, Fρ :=
[

TρF̄ I
]

, w(t) :=

[

∆b(t)
Lρ(Cγ − Cγ̂)x(t)

]

More formally we are interested to find a parameter-dependent gain Lρ̂(t) such that the recurrent
equation (17) is stable for any arbitrary time variation of the parameters ρ̂(t) ∈ Sl and such that,
for any input w(t) ∈ ℓ2, the error e(t) is bounded

||e(·)||l2 < σ||w(·)||l2 (18)

A convex optimization methodology to solve the above stated design problem is provided in the
next Theorem 1.

Theorem 1: Assume symmetric positive definite matrices Pi = P ′
i > 0 and matrices Gi and Yi,

i = 1, ..., l exist such that the optimization problem

min
Pi,Gi,Yi,µ

µ

subject to

7
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Ξij :=

⎡

⎣

Gi +G′
i − Pj Q12 GiFi

⋆ Pi − I 0
⋆ ⋆ µI

⎤

⎦ > 0,

Q12 := GiT̃iÃ− YiC̃i, i = 1, ..., l, j = 1, ..., l

(19)

Ξijk :=

⎡

⎣

R11 R12 R13

∗ Pi + Pk − I 0
∗ ∗ µI

⎤

⎦ > 0

i = 1, ..., l − 1, j = 1, ..., l, k = i+ 1, ..., l
R11 := Gi +G′

i +Gk +G′
k + Pj

R12 :=GiT̃kĀ+GkT̃iĀ−YiC̃k−YkC̃i, R13 := GiFk +GkFi

(20)

has a solution. Then, the convergence of the observer estimation error dynamically characterized by
equation (17) is ensured and a guaranteed H∞ performance gain (18) is achieved with

σ =
√

µ⋆, µ⋆ = minµ (21)

Moreover, the observer gain vertices defined in (16) are given by

Li = G−1
i Yi (22)

and stabilize the observer for any arbitrary time variation of the parameter ρ̂(t) in the polytope Sl.

Proof : Consider the parameter-dependent Lyapunov function

V
(

e(t)
)

= e′(t)Pρ̂(t)e(t) (23)

with

Pρ̂(t) =

l
∑

i=1

ρ̂i(t)Pi, Pi = P ′
i , i = 1, ..., l (24)

The related one-step ahead evolution of the Lyapunov function on the observer error trajectory is
given by

V
(

e(t+ 1)
)

= e′(t+ 1)Pρ̂(t+1)e(t+ 1) (25)

where Pρ̂(t+1) can be written as

P̺(t) =

l
∑

j=1

̺j(t)Pj , Pj = P ′
j , j = 1, ..., l (26)

Using (26), one can recast (25) into

V (e(t+ 1))=

(

Nρ̂(t)e(t) + Fρ̂(t)w(t)

)

′

P̺(t)

(

Nρ̂(t)e(t) + Fρ̂(t)w(t)

)

(27)

8
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Then, the Lyapunov function increments derived by (23) and (27) result to be given by

∆V (e(t)) = V (e(t+ 1))− V (e(t)) (28)

= e′(t)

(

N ′
ρ̂(t)P̺(t)Nρ̂(t) − Pρ̂(t)

)

e(t) + 2e′(t)N ′
ρ̂(t)P̺(t)Fρ̂(t)w(t)+w′(t)F ′

ρ̂(t)P̺(t)Fρ̂(t)w(t)

It is well-known that the stability of system with H∞ guaranteed performance (18) is ensured if

∆V (e(t)) < −e′(t)e(t) + µw′(t)w(t), ∀t ∈ N (29)

By replacing ∆V (e(t)) with the expression (28), one is able to rewrite inequality (29) as Γ′(t)UΓ(t) <

0 with Γ(t) :=
[

e′(t) w′(t)
]′

and

U :=

[

U11 U12

⋆ U22

]

, U11 := N ′
ρ̂(t)P̺(t)Nρ̂(t) − P (ρ(t)) + I

U12 := N ′
ρ̂(t)P̺(t)Fρ̂(t), U22 := F ′

ρ̂(t)P̺(t)Fρ̂(t) − µI

Clearly, by imposing U < 0 it is possible to guarantee (29) for all e(t) �= 0 and w(t) �= 0. The latter
inequality, thanks to the use of a Schur’s complement argument, is equivalent to

⎡

⎣

P̺(t) P̺(t)Nρ̂(t) P̺(t)Fρ̂(t)

⋆ Pρ̂(t) − I 0
⋆ ⋆ µI

⎤

⎦ > 0 (30)

that can be recast into

MUM ′ > 0 with M =

⎡

⎣

Gρ̂(t)P
−1
̺(t) 0 0

0 I 0
0 0 I

⎤

⎦ (31)

and, in turn, into

⎡

⎣

Gρ̂(t)P
−1
̺(t)G

′
ρ̂(t) Gρ̂(t)Nρ̂(t) Gρ̂(t)Fρ̂(t)

⋆ Pρ̂(t) − I 0
⋆ ⋆ µI

⎤

⎦ > 0 (32)

Using previously defined matrices and considering that ̺ ∈ Sl and ρ̂ ∈ Sl, inequality (32) can be
written as

l
∑

i=1

ρ̂2i (t)

l
∑

j=1

̺j(t)Ξij+

l−1
∑

i=1

l
∑

k=i+1

ρ̂i(t)ρ̂k(t)

l
∑

j=1

̺j(t)Ξijk > 0 (33)

with Ξij defined in (19) and Ξijk defined in (20). ✷

Remark 1: It is worth remarking that it is not hard to get polytopic representations in the form
(15) and a number of procedures exist in the literature dealing with the above task (see for instance
Tanaka and Wang (2004); Tóth (2010))

9
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Remark 2: Please notice that if C̃i and T̃i are chosen as C̃i = C̄γi
, T̃i = In+q − (Ē(C̃iĒ)†)C̃i for

fixed γi ∈ Γ, i = 1, ..., N , being by assumption T̃γĒ = 0, ∀γ ∈ Γ, then Assumption 4 is directly
fulfilled by the polytopic representation (15) thanks to convexity arguments.

Remark 3: It is also worth pointing out that in the nominal case where ρ̂(t) = ρ(t), ∀t ∈ N,
the LPV gain (46) guarantees asymptotic convergence to zero of the estimation error. In the more
general case ρ̂(t) �= ρ(t), only a bounded steady-state estimation errors can be achieved.

3.2.2 LFT formulation

The approach presented in the previous section can lead to design procedures characterized by
a huge number of LMIs. In order to get a less computation demanding observer design, in this
section we propose an LFT based UIO formulation. To this end we assume to be provided with
a LFT representations of Tγ̂ = LFT (T, θT ) and C̄γ̂ = LFT (C, θC) for certain matrices T and C
respectively and

θT (γ):=diag{θT,1(γ), ..., θT,n(γ)}, |θT,i| ≤ 1, i = 1, ..., n

θC(γ):=diag{θC,1(γ), ..., θC,m(γ)}, |θC,i| ≤ 1, i = 1, ...,m

Such representations can be exploited to get (13) in LFT form

x(t+ 1) = T11Āx(t) + T11B̄u(t) + T11F̄∆b(t) + T12p(t) +Qγ̂y(t+ 1)

y(t) = C11x(t) + C12p(t) (34)

q(t) = Cqxx(t) +Dquu(t) +Dqb∆b(t) +Dqpp(t)

p(t) = Θ(γ̂)q(t)

where

Cqx :=

[

T21Ā
C21

]

, Dqu :=

[

T21B̄
0

]

, Dqb :=

[

T21F̄
0

]

, Dqp :=

[

C22 0
0 T22

]

with Θ(γ) being an uncertain parameter obeying to the following structure

Θ(γ) :=

[

θT (γ) 0
0 θC(γ)

]

(35)

Then, a possible structure for an unknown input observer for the model (34) is given by

x̂(t+ 1) = T11Āx̂(t) + T11B̄u(t)+ L
(

y(t)− ŷ(t)
)

+ T12p̂(t) +Qγ̂(t)y(t+ 1)

ŷ(t) = C11x̂(t) + C12p̂(t) (36)

q̂(t) = Cqxx̂(t) +Dquu(t) +Dqpp̂(t)

p̂(t) = Θ(γ̂)q̂(t)

As a consequence, the one-step ahead evolution of the state estimation error

e(t) := x(t)− x̂(t), p̃(t) := p(t)− p̂(t), q̃(t) := q(t)− q̂(t)

10
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would take the following form

e(t+ 1) = Ne(t) +Nep̃(t) + Few(t) (37)

q̃(t) = Cqxe(t) + Fww(t) +Dqpp̃(t) (38)

p̃(t) = Θ(γ̂)q̃(t) (39)

where

N := T11Ā− LC11, Ne :=
[

T12 −LC12

]

, Fe :=
[

T11F̄ I
]

,

Fw :=

[

T21F̄ 0
0 0

]

, w(t) :=

[

∆b(t)
L(Cγ − Cγ̂)x(t)

]

In this case we want to determine a gain L such that difference equation (37) is stable for any
arbitrary time variation of the variables p̃(t) and q̃(t) and for any input w(t) ∈ ℓ2. As a consequence,
the error e(t) is bounded as

∥

∥e(·)
∥

∥

l2
< σ

∥

∥w(·)
∥

∥

l2
(40)

A convex optimization methodology to solve the above stated design problem is provided in the
next Theorem 2.

Theorem 2: Assume that a symmetric positive matrix Q, a matrix S and positive scalars µ and
λ exist such that the following optimization problem has a solution

min
Q,S,µ,λ

µ (41)

subject to:

⎡

⎢

⎣

Q QT11Ā− SC11 [QT12 −SC12] QFe

⋆ Q− I − λC ′

qxCqx −λC ′

qxDqp −λC ′

qxFw

⋆ ⋆ λI − λD′

qpDqp −λD′

qpFw

⋆ ⋆ ⋆ µI − λF ′

wFw

⎤

⎥

⎦
> 0 (42)

Then, the boundedness of the observer estimation error as in (40) is ensured with guaranteed H∞

performance gain

σ =
√

µ⋆, µ⋆ = minµ (43)

by choosing L = Q−1S.

Proof : Consider the Lyapunov function

V
(

e(t)
)

= e′(t)Qe(t) (44)

The related one-step ahead evolution of the above function on the observer error trajectory is given

11
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by

V
(

e(t+ 1)
)

= e′(t+ 1)Qe(t+ 1) (45)

Using (37), one can recast (45) into

V
(

e(t+ 1)
)

=
(

Ne(t) +Nep̃(t) + Few(t)
)′Q

(

Ne(t) +Nep̃(t) + Few(t)
)

Then, the Lyapunov function increments derived by (44) and (46) result to be given by

∆V
(

t
)

= V
(

e(t+ 1)
)

− V
(

e(t)
)

= e′(t)
(

N ′QN −Q
)

e(t) + 2ẽ′(t)N ′Nep̃(t)

+2p̃′(t)N ′
eFew(t) + 2ẽ′(t)N ′Few(t) + p̃′(t)N ′

eQNep̃(t) + w̃′(t)F ′
eQFew̃(t) (46)

It is well-known that the stability of system (37)-(39) with the H∞ guaranteed performance (40) is
ensured if

∆V (t) ≤ −e′(t)e(t) + µw′(t)w(t) (47)

for each q̃(t), p̃(t) satisfying

∥

∥p̃(t)
∥

∥

2

2
≤

∥

∥q̃(t)
∥

∥

2

2
(48)

By replacing ∆V (e(t)) with the expression (46), one is able to rewrite inequality (47) as

[

e(t)
p̃(t)
w(t)

]′[N ′QN −Q+ I N ′QNe N ′QFe

N ′

eQN N ′

eQNe N ′

eQFe

F ′

eQN F ′

eQNe F ′

eQFe − µI

][

e(t)
p̃(t)
w(t)

]

< 0

while inequality (48) can be recast as

⎡

⎣

e(t)
p̃(t)
w(t)

⎤

⎦

′⎡

⎣

−C ′
qxCqx −C ′

qxDqp −C ′
qxFw

−D′
qpCqx I −D′

qpDqp −D′
qpFw

−F ′
wCqx −F ′

wDqp −F ′
wFw

⎤

⎦

⎡

⎣

e(t)
p̃(t)
w(t)

⎤

⎦<0

by substituting q(t) in (48) with its expression in (37). As a consequence, by means of the S-
procedure, we can state that the above inequalities are true if and only if there exists a scalar λ
such that

⎡

⎣

U11 U12 U13

⋆ U22 U23

⋆ ⋆ U33

⎤

⎦ < 0 (49)

U11 := N ′QN −Q+ I + λC ′
qxCqx, U12 := N ′QNe + λC ′

qxDqp

U13 := N ′QFe + λC ′
qxFw, U22 := N ′

eQNe − λI +D′
qpDqp

U23 := N ′
eQFe + λD′

qpFw, U33 := F ′
eQFe − µI + λF ′

wFw

12



June 13, 2018 International Journal of Control fran_SR_UIO_IJC_rev_rev_v3

Notice that, by using Schur’s complement lemma, (49) is equivalent to

⎡

⎢

⎣

Q QN QNe QFe

⋆ Q− I − λC ′

qxCqx −λC ′

qxDqp −λC ′

qxFw

⋆ ⋆ λI − λD′

qpDqp −λD′

qpFw

⋆ ⋆ ⋆ µI − λF ′

wFw

⎤

⎥

⎦
>0

Finally, by taking the change of variable QL = S into account, the inequality (42) results. ✷

3.3 Parameter Estimator

In this section the Parameter Estimator unit of Figure 2 is described. Its task consists in estimat-
ing the gain faults on the matrix ∆(γ̂) via a constrained batch least-mean-squares approach (Liew
(1976)) used within a windowing data processing strategy. Such an approach is based on an algo-
rithm that is able to detect constant or slowly-varying gain faults in systems of the form (2). The
basic idea relies on finding a matrix ∆(γ̂(t)) that matches as much as possible the plant measured
signals and the estimated state in the last N time instants, being N an arbitrarily chosen positive
integer. In this respect the last N samples of both the physical outputs y(t) and state estimation
x̂(t) of the augmented system (8) are assumed to be provided at the generic time instant t. In
this way, by considering x̂(t) = x(t) (certainty equivalence hypothesis), the following consistency
equations can be imposed to the matrix ∆(γ̂(t))

y(t− i) = ∆(γ̂(t))Cyx̂p(t− i) + F b̂(t− i), i = 0, ..., N − 1 (50)

that are equivalent to

y(t− i)− F b̂(t− i) = X(t− i)γ̂(t), i = 0, ..., N − 1 (51)

where

X(t− i) := diag
{

C(1)
y x̂p(t− i), ..., C(m)

y x̂p(t− i)
}

This allows one to recast the problem in the classical regressor form:

Y (t) = ϕ(t)γ(t) (52)

where

Y (t) :=

⎡

⎢

⎣

y(t)− F b̂(t)
...

y(t−N + 1)− F b̂(t−N + 1)

⎤

⎥

⎦

are the measures and

ϕ(t) :=
[

X(t), . . . , X(t−N + 1)
]′

13
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collects the linear regressors. Then, the variable γ̂(t) can be estimated through the resolution of the
following quadratic program with linear constraints

γ̂(t) := argmin
γ

1
2‖(Y (t)− ϕ(t)γ)‖22

subject to γ ∈ Γ
(53)

Under a constant γ(t) = γ⋆, it is possible to prove (Casavola and Garone (2010)) that a sufficient
condition to guarantee convergence of γ̂(t) to γ⋆ for some t⋆ ≫ N is

rank{ϕ(t⋆)} = n (54)

In particular, if C̄y has not zero columns, a sufficient condition to ensure (54) is

rank{X̂p(t)} = n (55)

where matrix X̂p(t) is defined as

X̂p(t) :=
[

x̂p(t), . . . , x̂p(t−N)
]′

(56)

Such a property can be guaranteed if the state estimation problem for x̂p(t) is solved under a
persistent excitation condition on the measurements provided by the physical sensors or by a suitable
artificial dither injected in the state estimation x̂p(t) sent to the Parameter Estimator, so as to force
that signal to be persistently excited and make condition (55) hold true.

3.4 Reconciliation Algorithms

Finally, the proposed sensor reconciliation methods can be summarized in the following algorithms.
The first one is related to the LPV-UIO formulation

Algorithm 1: LPV-UIO based Sensor Reconciliator (LPV-UIO-SR)

Initialization:

1: compute Li, i = 1, ..., l according to Theorem 1;
2: chose horizon N for the Parameter Estimator;

3: set ∆(γ̂(t)) = Im and b̂(t) = 0 for t = 0, ..., N − 1;

4: store Li, i = 1, ..., l, N , ∆(γ̂(t)) and b̂(t), t = 0, ..., N − 1.

On-line phase (generic time t ≥ N):

1: receive y(t) from the sensors;
2: compute ρ̂(γ̂(t− 1)) on the basis of the polytopic representation (15)
3: compute Qγ̂(t−1) as in (14);

4: set Tγ̂(t−1) := In+q −Qγ̂(t−1)C̄γ̂(t−1);
5: estimate plant state and bias by evaluating

x̂(t) = Tγ̂(t−1)Āx̂(t− 1) + Tγ̂(t−1)B̄u(t− 1) + Lρ̂(γ̂(t−1))

(

y(t− 1)− ŷ(t− 1)

)

+Qγ̂(t)y(t)

6: estimate γ̂(t) by solving (53)
7: compute the estimated real output as ŷ(t) = C̄γ̂(t)x̂(t)
8: return the virtual output ẑ(t) = Hz ŷ(t)
9: set t := t+ 1

10: go to step 1

14
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The second algorithm is related to the LFT-UIO based approach

Algorithm 2: LFT-UIO based Sensor Reconciliator (LFT-UIO-SR)

Initialization:

1: compute L, according to Theorem 2
2: chose horizon N for the Parameter Estimator;

3: set ∆(γ̂(t)) = Im and b̂(t) = 0 for t = 0, ..., N − 1;

4: store L, N , ∆(γ̂(t)) and b̂(t), t = 0, ..., N − 1.

On-line phase (generic time t ≥ N):

1: receive y(t) from the sensors;
2: compute Qγ̂(t−1) as in (14);

3: set Tγ̂(t−1) := In+q −Qγ̂(t−1)C̄γ̂(t−1);
4: estimate plant state and bias by evaluating

x̂(t) =Tγ̂(t−1)Āx̂(t− 1) + Tγ̂(t−1)B̄u(t− 1)+ L(y(t− 1)− ŷ(t− 1)) +Qγ̂(t)y(t)

5: estimate γ̂(t) by solving (53)
6: compute the estimated real output as ŷ(t) = C̄γ̂(t)x̂(t)
7: return the virtual output ẑ(t) = Hz ŷ(t)
8: set t := t+ 1
9: go to step 1

4. Illustrative Example

In this section, the effectiveness of the proposed LFT-UIO-SR scheme is investigated by con-
sidering the three-tank benchmark model of Ding (2008) depicted in Figure 4 whose dynamics is
modeled by the following differential equations

Aḣ1 = Q1 − a1S13Sgn(h1 − h3)
√

2g |h1 − h3|
Aḣ2 = Q2 + a3S23Sgn(h3 − h2)

√

2g |h3 − h2|+ a2s0
√

2gh2

Aḣ3 = a1S13Sgn(h1 − h3)
√

2g |h1 − h3| − a3S23Sgn(h3 − h2)
√

2g |h3 − h2| (57)

where parameters A = 0.0154m2 and Sij = 5× 10−5m2 are the cross-section areas of the tanks and
the cross-section areas of the pipes respectively.

Notice that in the above formulation Q1 and Q2 are the incoming mass flows, while hi(t), i =
1, 2, 3 are the measured water levels in each tank. After linearization at the operating point h1 =
45cm, h2 = 15cm and h3 = 30cm, Q1 = Q2 = 0, 35 · 10−4m3/s and discretization of the continuous
time model, the following discrete-time linear (nominal) model is achieved

x(t+ 1) = Ax(t) +Bu(t) + Ev(t)

y(t) = ∆γCx+ Fb(t) (58)
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Figure 4.: Benchmark: three-tank system of Ding (2008)

with matrices

A =

⎡

⎣

0.9916 0 0.008393
0 0.9807 0.008249

0.008393 0.008249 0.9833

⎤

⎦ , B =

⎡

⎣

0.006473 7.649e− 008
7.649e− 008 0.006437
2.739e− 005 2.697e− 005

⎤

⎦

C =

⎡

⎢

⎢

⎣

10 0 0
1 0 0
0 1 0
1 1 1

⎤

⎥

⎥

⎦

, E =

⎡

⎣

1
1
1

⎤

⎦ , F =

⎡

⎢

⎢

⎣

1
1
1
1

⎤

⎥

⎥

⎦

(59)

with γ supposed to be confined within the polytope Γ :=
{

γ : [γ
1
, γ

2
, γ

3
, γ

4
]′ ≤ γ ≤

[γ1, γ2, γ3, γ4]
′} , γ

i
= 0.01, γi = 1, i = 1, 2, 3, 4.

The goal of this simulation is to verify the capability of the proposed method of extracting the first
component of the state xp(t) into the virtual output z(t) = HzCyxp(t) with the sensor reconciliation
matrix given by Hz =

[

1/3 1/3 0 1/3
]

. Along the simulation, the known input u(t) and the
unknown input v(t) are supposed to be those depicted in Figure 5.

Moreover, we assume that the bias profiles of the three available physical sensors change along the
simulation according to the profile depicted in Figure 6 and that faults on the matrix effectiveness
gain will affect the first two sensors of Cy as depicted in Figure 7. In this scenario, without any
sensor reconciliator block, the virtual output would result to be falsified as depicted in Figure 9
(green dashed line).

In order to exploit the LPV-UIO-SR described in Section 3.2.1, the plant has to be recast in
the augmented form (8) by following the procedure described in Behzad et al. (2016).

In the case of the LFT-UIO-SR scheme presented in Section 3.2.2, the plant has to be recast
in the augmented LFT form (34)-(35). In this respect, please notice that

C̄γĒ = ∆(γ)G, G :=

⎡

⎢

⎢

⎣

10
1
1
3

⎤

⎥

⎥

⎦
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Figure 5.: Known Input(up) and Unknown Input(down)
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Figure 6.: Bias fault profile

and

Qγ = Ē(C̄γĒ)′
(

(C̄γĒ)(C̄γĒ)′
)−1

= ĒG′(GG′)−1∆−1(γ)

where

C̄γ :=

⎡

⎢

⎢

⎣

10γ1 0 0 1
γ2 0 0 1
0 γ3 0 1
γ4 γ4 γ4 1

⎤

⎥

⎥

⎦

(60)
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Figure 7.: Fault loss of effectiveness profiles

As a consequence, the matrix Tγ̂ can be rewritten as

Tγ̂ = In+q −Qγ̂C̄γ̂

= In+q − ĒG′(GG′)−1∆−1(γ̂)C̄γ̂

= In+q − ĒG′(GG′)−1∆−1(γ̂)
[

∆(γ)Cy F
]

= In+q − ĒG′(GG′)−1∆−1(γ̂)
(

∆(γ)
[

Cy 04
]

+
[

04×3 F
])

= In+q − ĒG′(GG′)−1
[

Cy 04
]

− ĒG′(GG′)−1∆−1(γ̂)
[

04×3 F
]

(61)

A standard normalization for ∆−1(γ̂) is required. It can be achieved e.g. by following the approach
described in Cockburn (1998). As a result, one gets

γ−1
i = ai + biδi, |δi| ≤ 1

with

a1 =
1

2
(γ + γ) = 101.1, b1 =

1

2
(γ − γ) = 98.99

Then, a LFT representation for Tγ̂ can be obtained as

Tγ̂ = In+q − ĒG′(GG′)−1
[

Cy 04
]

− ĒG′(GG′)−1

(

diag{a1, a2, a3, a4}+ diag{b1δ1, b2δ2, b3δ3, b4δ4}
[

04×3 F
]

)

= In+q − ĒG′(GG′)−1
[

Cy 04
]

− ĒG′(GG′)−1diag{a1, a2, a3, a4}
[

04×3 F
]

−ĒG′(GG′)−1diag{b1δ1, b2δ2, b3δ3, b4δ4}
[

04×3 F
]

= LFT (T, θT (δ))
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Figure 8.: Effectiveness Matrix Estimation

where

T11 := In+q − ĒG′(GG′)−1
[

Cy 04
]

,

T12 := −ĒG′(GG′)−1,

T21 :=
[

04×3 F
]

, T22 := [04×4]

θT (δ) := (diag{a1, a2, a3, a4}+ diag{b1δ1, b2δ2, b3δ3, b4δ4})

For the matrix C̄γ , the LFT representation is achieved in a simpler manner and it is given by

C̄γ =
[

04×3 F
]

+∆(γ)
[

Cy 04
]

= LFT (C, θC(γ))

where

C11 :=
[

04×3 F
]

, C12 := I4, C21 :=
[

Cy 04
]

Finally, a windowing horizon N = 50 has been chosen for the Parameter Estimator. All simulations
have been performed by using the Yalmip interpreter (Lofberg (2005)) and the Sedumi solver; all
running under MATLAB 8.6 environment on an Intel Core i5-3330 machine with 3.3 GHz and 8GB
RAM.

Simulative comparisons have been depicted in Figures (8)-(9). There the proposed schemes have
been compared with the method described in Ding (2008), where the multiplicative fault has been
considered as additive fault. A better state estimation (Figures 11 and 12 ) and a more accurate
virtual output generation(Figure 9) arise from those Figures when comparing to the Ding’s ap-
proach. Furthermore the LPV-UIO-SR scheme exhibits a slight better behavior with respect to
LFT-UIO-SR, both in estimating the state and the bias. This is mostly due to the fact that the
observer gain is time-varying scheduled in the LPV-UIO-SR scheme and it is able to "adapt"
itself more quickly with respect to changes in the effectiveness matrix. Such an aspect translates in
a better effectiveness parameter (gain matrix) estimation (Figure 8) and in a more accurate virtual
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Figure 10.: Effectiveness Matrix Error

output generation (Figure 9). However, it is worth commenting that, although, LPV-UIO-SR
achieve better performance, it involves a time-expensive (≈ 9 hours) design procedure with respect
to LFT-UIO-SR (≈ 6 minutes ) that can be impracticable in the case of systems with a large
number physical sensors to be monitored.

5. Conclusions

In this paper a fault-tolerant sensor reconciliation scheme based on unknown input observers has
been presented for linear discrete-time systems subject to possible faults on sensor gain and bias.
The role of the observer relies on the estimation of both the state of the system and the current
bias of the physical sensors whereas a least-squares batch algorithm provides estimates of the
current effectiveness matrix of the physical sensors. For the design procedure of the observer two
approaches have been proposed. The first one has been achieved by resorting to LPV paradigm
while the second one have exploited the LFT formalism. Both approaches have been compared in
the finally simulation example where good performance in recovering useful data from the pool of
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Figure 12.: State Estimation Error

redundant sensors have been observed.
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