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Abstract— This paper presents a fault-tolerant sensor reconcili-
ation scheme for systems equipped with a redundant number of
possibly faulty "physical" sensors. The reconciliator is in charge
to discover on-line, at each time instant, the possibly faulty
physical sensors and exclude their measures from the generation
of the "virtual" sensors, which, on the contrary, are supposed
to be always healthy and suitably usable for control purposes
without requiring the reconfiguration of the nominal control
law. Amongst many, the solution proposed here is based on the
use of a Linear Parameter Varying Unknown Input Observers
(LPV-UIO) coupled with an "ad-hoc" parameter estimator used
to identify on-line the current sensor reconciliation matrix. The
latter is therefore used to hide the faulty measures from the
pool of physical outputs in the generation of the virtual outputs.
For simplicity, the sensor faults here considered are limited
to variation of sensors’ gain and offset values. The scheme is
fully described and all of its properties investigated and proved.
Finally, a simulation example is reported in details to show the
effectiveness of the scheme.

I. INTRODUCTION

Modern technological systems rely on sophisticated com-

ponents designed to meet performance and safety require-

ments. However, increased complexity, usage of unmanned

vehicles and systems provided by autonomous decision intel-

ligence and a number of additional smart components make

these systems more vulnerable to failures that can lead to

loss of performance and sometimes may dangerously affect

both system and human operator safety.

For this reason, the ability to detect faulty sensors and

recover uncorrupted data has gained importance in many

different applications. Specifically, in traditional control sys-

tems, faulty sensors give wrong information about the system

status, which could cause instability. Even if stability is kept,

inaccurate sensor values may introduce poor regulation or

tracking performance, which may be highly undesirable for

many high precision control applications ([1], [2]).

A systematic way to address these issues is to exploit

Sensor Reconciliation (SR) schemes ([3]) which may be

implemented to recover useful data from the pool of re-

dundant sensors whenever unpredicatable fault events may

eventually occur. The SR unit usually behaves as a virtual

sensor ([4]) translating measurements from the possibly

faulty sensors into the reliable signals that the controller can

handle confidently.
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In this way, if effective, the need of using complex con-

trol reconfiguration strategies to accommodate sensor faults

would be avoided and traditional simple controllers could be

considered for control purposes. For this reason, many SR

approaches proposed in the literature appear as part of Fault-

Tolerant Control (FTC) schemes. Among many, it is worth

mentioning [5], [6], where the sensor information are fused

in a decentralized way by local estimators. Another class of

SR FTC-based strategies considered in ([2], [7]) relies on a

switching mechanism involving sensors and related observers

to implicitly detect the healthy components of the system.

The estimates provided by the observers are compared at

each sampling time by a switching logic that allows one to

select the sensors-observer pair with the smallest estimation

error.

All the above mentioned approaches present a common

denominator consisting in the accomplishment of two main

tasks: (i) identification of faults in the sensors, (ii) rectifica-

tion of sensor measurements. In this respect many effective

methods have been developed for the estimation of either

actuator or sensor faults [8], [9], while see [10], [11] for

relevant works in sensor rectification.

The aim of this paper is to propose and discuss a general

SR method for linear discrete-time systems with redundant

physical sensors possibly subject to loss of effectiveness

(gain) and offset (bias) faults. To this end, the proposed

scheme consists of three interconnected modules: (i) a

Parameter Estimator unit implemented via a constrained

weighted least-squares batch method used within a window-

ing data processing approach to estimate the current gain

sensor faults, (ii) a polytopic Unknown Input Observer (UIO)

([12]) in charge of combining the corrupted information

gathered by multiple sensors to reconstruct, on the basis

of the output of the Parameter Estimator, the state of the

system and estimating possible bias fault occurrences; (iii) a

sensor reconciliation unit used to reconcile sensor measures.

The key idea used in the proposed scheme is to consider

estimates of current sensor’ gains as structural uncertainty in

the the plant and consequently to design a polytopic LPV-

UIO observer capable to deal with such an uncertainty via

a specific Linear Matrix Inequality (LMI) procedure. Recent

contributions to polytopic LPV-UIO design methodologies

can be found e.g. in [13], [14]. In particular, here we extend

the ideas presented in [14] to the design of continuous-

time LPV-UIO scheme to the discrete-time case and to the

more complex scenario here considered, where the time-

varying parameters are not perfectly known. Properties of

the presented UIO are formally proved and discussed. A final
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numerical example is reported to show the effectiveness of

the proposed strategy.

NOTATION

Let R denote the set of real numbers and N those of natural

numbers. Let ‖ · ‖2 denote the weighted 2-norm of a vector

(i.e. |x|2 =
√
xTx). Given a matrix M ∈ R

n×m, the i-th

row of M is denoted as M (i). For a matrix M ∈ R
n×m, the

Moore-Penrose Pseudoinverse is defined as M † ∈ R
n×m and

is computed as M † := (ATA)−1AT . For P ∈ R
p and Q ∈

R
q being two polytopes of dimension p and q respectively,

their Cartesian Product is defined as

P ×Q = {(x, y) : x ∈ P , y ∈ Q}

The Polytope Sk := {ξ ∈ R
l|ξi ≥ 0, i = 1, ..., l,

∑l

i=1 ξi =
1} is a k-dimensional Unit Simplex. For l matrices

Mi ∈ R
n×m, i = 1, ..., l, their Convex Hull, denoted by

Co{Mi}, i = 1, ..., l, is the polytope arising by all convex

combinations of matrices Mi i.e {∑l
i=1 ρiMi, [ρ1, ..., ρl]

T ∈
Sl} with Sl being a l-dimensional unit simplex.

II. PROBLEM FORMULATION

Let us consider a plant whose dynamics is described by

the following discrete-time state-space representation

xp(t+ 1) = Axp(t) +Bu(t) + Ev(t) (1)

y(t) = ∆
(

γ(t)
)

Cyxp(t) + Fb(t) (2)

z(t) = HzCyxp(t) (3)

where xp(t) ∈ R
n is the state vector, u(t) ∈ R

nu is a known

input while v(t) ∈ R
nv is an unknown input. Moreover

y(t) ∈ R
m represents the plant output provided by the

physical redundant sensors possibly effected by both bias

b(t) ∈ R
q and loss of effectiveness faults, the latter modeled

by the gain matrix ∆(γ) ∈ R
m×m that, for simplicity, here-

after we assume to have the following elementary structure:

∆(γ) =







γ1 0 0

0
. . . 0

0 0 γm






(4)

Finally, z(t) ∈ R
r, with r ≤ m, is defined as the virtual

output of the system and represents the healthy information

we need to get from the plant for control purposes regardless

of any fault possibly occurring on the physical sensors.

It is clear that in the absence of faults one would have

∆(γ) = Im and b(t) = 0. However, in the more general

case b(t) 6= 0 and ∆(γ), changes accounting for all possible

occurring values of γ are confined in the generic polytope

Γ ⊆ {γ : 0m ≤ γ ≤ 1m} (5)

For this reason, it is not convenient to evaluate the signal

z(t) as z(t) = Hzy(t) because it would be affected by

possibly corrupted information brought by y(t). However,

because the state xp(t) is assumed not directly measurable,

z(t) cannot be evaluated as simply as in (3), but a more

sophisticated machinery is required. This aspect motivates

the design of the Sensor Reconciliator (virtual sensor) unit

that is basically aimed at addressing the following problem:

Sensor Reconciliaton Design Problem (SRDP-Problem) :

Given the system (1)-(3), on the basis of the real output

y(t), compute at each time t ≥ 0 a virtual output z(t)
whose value is as close as possible to HzCyxp(t) despite

both faults occurrences corrupting signal y(t) and presence

of disturbance v(t).

III. VIRTUAL SENSOR ARCHITECTURE

The basic approach here considered for solving the SRDP-

Problem is to compute an estimate x̂p(t) of the state xp(t)
and then to evaluate the corresponding approximation ẑ(t)
of z(t) by exploiting the following equation

ẑ(t) = HzCyx̂p(t) (6)

Such an approach is not trivial because it involves two
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Fig. 1. Virtual Sensor Architecture

critical points: 1) How to estimate the fault occurrences

corrupting y(t)? 2) How to get a good estimation x̂p(t) in

presence of an unknown input v(t) and time-varying sensor

gains and bias?

To deal with these questions, we propose the virtual sensor

architecture depicted in Fig. 1 consisting of three modules:

an Unknown Input Observer (UIO) unit which is the core of

this scheme and is designed not only to give an estimation of

xp(t) but also to evaluate an approximation to the bias fault

b(t); a Parameter Estimator whose output is an estimate of

effectiveness matrix (4) and a Reconciliator Unit that simply

performs the computation indicated in (6).

A. Sensor Fault Augmented Model

In order to design the UIO, the following augmented

state is considered including the bias fault b(t) among its

components

x(t) =

[

xp(t)
b(t)

]

(7)

In this way, the related augmented model can be described

as

x(t+ 1) = Āx(t) + B̄u(t) + Ēv(t) + F̄∆b(t)

y(t) = C̄γx(t) (8)
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where

Ā =

[

A 0
0 I

]

, B̄ =

[

B

0

]

, Ē =

[

E

0

]

, F̄ =

[

0
I

]

C̄γ =
[

△(γ)Cy F
]

, ∆b(t) = b(t+ 1)− b(t) (9)

Moreover, the following technical assumption is required

Assumption 1:

rank{C̄γĒ} = rank(Ē), ∀γ ∈ Γ (10)

B. Unknown Input Observer

In this section we describe the basic ingredients of the

proposed UIO. Let us assume to be provided with an

estimation γ̂(t) of γ(t) at each time t. Then, a possible

structure for an unknown input observer for the model (8) is

given by

x̂(t+ 1) = Tγ̂(t)Āx̂(t) + Tγ̂(t)B̄u(t)+Lγ̂(t)

(

y(t)− ŷ(t)

)

+Qγ̂(t)y(t+ 1) (11)

where Tγ ∈ R
(n+q)×(n+q), Lγ ∈ R

(n+q)×m and Qγ ∈
R

(n+q)×m represent design parameters all depending on the

effectiveness matrix (4). In particular, if Tγ were chosen to

satisfy

Tγ +QγC̄γ = In+q (12)

the system (8) could be represented by

x(t+ 1) = Tγ̂(t)Āx(t) + Tγ̂(t)B̄u(t) + Tγ(t)Ēv(t)

+ Tγ̂(t)F̄∆b(t) +Qγ̂(t)ỹ(t+ 1) (13)

where ỹ(t) := C̄γ̂(t)x(t). As a consequence, the one-step

ahead evolution of the state estimation error

e(t) := x(t)− x̂(t) (14)

would take the following form

e(t+ 1) =
(

Tγ̂(t)Ā− Lγ̂(t)C̄γ̂(t)

)

e(t) + Tγ̂(t)Ēv(t)

+ Tγ̂(t)F̄∆b(t) + d(t) (15)

with

d(t) := Qγ̂(t)(ỹ(t+1)−y(t+1))+Lγ̂(t)

(

Cγ(t) − Cγ̂(t)

)

x(t)

Under the condition

TγĒ = 0, ∀γ ∈ Γ (16)

equation (15) becomes

e(t+ 1) =
(

Tγ̂(t)Ā− Lγ̂(t)C̄γ̂(t)

)

e(t) + Tγ̂(t)F̄∆b(t) + d(t)
(17)

and, if
(

Tγ(t)Ā− Lγ(t)C̄γ(t)

)

were chosen as a stable matrix

∀γ ∈ Γ, the state estimation error would go to zero when

t → ∞, ∆b(t) → 0 and γ̂(t) → γ(t). Hence, the state

of the system would be estimated asymptotically and the

unknown input would be completely decoupled. It is worth

commenting that condition (16), which can be recast in the

form Ē = QγC̄γĒ, is satisfied if Qγ is chosen as

Qγ := Ē(C̄γĒ)†, ∀γ ∈ Γ (18)

where the existence of the matrix (C̄γĒ)† is guaranteed ∀γ ∈
Γ by Assumption 1.

Moving from these considerations, in order to design the

UIO (11), it is is sufficient to determine a parameter varying

gain Lγ(t) that robustly stabilizes the system (17) against all

possible occurrences of ∆b(t) and d(t). Such a problem has

been addressed in a significant amount of works for different

contexts by exploiting well-known results on robust control

theory and LMI formalism. In particular, the approach con-

siders systems (17) characterized by a structured uncertainty

related to γ and attempts to determine a LPV gain that can be

tuned on-line by exploiting an estimate γ̂(t) of the true γ(t).
In this respect, it is worth pointing out that unfortunately

the matrix Tγ does not depend linearly on the parameter

γ. As a consequence, the related uncertainty representation

results non-convex and the system (17) cannot be considered

a polytopic LPV form. For this reason, in order to take

advantages of existing LMI based design techniques, we

assume hereafter to be provided by a polytopic embedding

approximation for matrices Tγ and C̄γ given by























C̄ρ =

l
∑

i=1

ρi(γ)C̃i,

Tρ =
l

∑

i=1

ρi(γ)T̃i

(19)

for a certain continuous functions ρi : Γ → R of γ and pair of

matrices (T̃i, C̃i), i = 1, ..., l. In addition, we assume that the

map ρ : Γ → Rl given by ρ := (ρ1, ..., ρl)
T always returns

values into the unit simplex Sl. Hence, for each γ ∈ Γ,

the pair (Tρ, C̃ρ) lies in the convex hull Co{(T̃i, C̃i)}, i =
1, ..., l.

Moreover, the above representations have to guarantee that

the following assumptions hold true:

A1

(

TρĀ, C̄ρ

)

is detectable ∀ρ ∈ Sl

A2 TρĒ = 0, ∀ρ ∈ Sl

Now, we have all the ingredients to design a LPV gain Lρ̂

defined as follow

Lρ̂ =

l
∑

i=1

ρ̂i(γ)Li (20)

where the gains Li, i = 1, ..., l are properly chosen to

stabilize the observer, provided that an estimation ρ̂(t) is

available, with the estimation error subject to

e(t+ 1) = Nρ̂(t)e(t) + Tρ̂(t)Ēv(t) + Fρ̂(t)w(t) (21)

with

Nρ :=
(

TρĀ− LρC̄ρ

)

, Fρ :=
[

TρF̄ I
]

,

w(t) :=
[

∆bT (t)dT (t)
]T

More formally we are interested to find a parameter-

dependent gain Lρ̂(t) such that difference equation (21) is

stable for any arbitrary time variation of the parameters
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ρ̂(t) ∈ Sl and such that, for any input w(t) ∈ ℓ2, the error

e(t) is bounded

||e(·)||2 < σ||w(·)||2 (22)

A convex optimization methodology to solve the above

stated design problem is provided in the next Theorem 1.

Theorem 1: Assume a symmetric positive definite matri-

ces Pi and matrices Gi and Yi, i = 1, ..., l exist such that

the optimization problem

min
Pi,Gi,Yi,µ

µ

subject to

Ξij :=





Gi +GT
i − Pj Q12 GiFi

⋆ Pi − I 0
⋆ ⋆ µI



 > 0,

Q12 := GiT̃iÃ− YiC̃i, i = 1, ..., l, j = 1, ..., l

(23)

Ξijk :=





R11 R12 R13

∗ Pi + Pk − I 0
∗ ∗ µI



 > 0

i = 1, ..., l − 1, j = 1, ..., l, k = i+ 1, ..., l
R11 := Gi +GT

i +Gk +GT
k + Pj

R12 :=GiT̃kĀ+GkT̃iĀ−YiC̃k−YkC̃i, R13 := GiFk +GkFi

(24)

has a solution. Then, the convergence of the observer esti-

mation error dynamically characterized by equation (21) is

ensured and a guaranteed H∞ performance gain (22) given

by

σ =
√
µ⋆, µ⋆ = minµ (25)

it achieved. Moreover, the observer gain vertices defined in

(20) are given by

Li = G−1
i Yi (26)

and stabilize the observer for any arbitrary time variation of

the parameter ρ̂(t) in the polytope Sl.

Proof : Omitted for space reasons.

Remark 1: It is worth remarking that it is not hard to get

polytopic representation in the form (19) and a number of

procedures exist in literature dealing with the above task (see

for instance [15], [16])

C. Parameter Estimator

Here we describe the Parameter Estimator unit of Figure

1. It is based on an algorithm that is able to detect constant

or slowly-varying gain faults in systems (2). Among many

methods that can be used to solve this problem, we consider

in this work constrained batch least-mean-squares approach

([17]) used within a windowing data processing strategy. The

underlying idea is to estimate a matrix ∆(γ̂(t)) that matches

as much as possible the plant measured signals and the

estimated state in the last N time instants, with N arbitrarily

chosen. To this end, we assume to be provided with the

last N samples of both the physical outputs y(t) and state

estimation x̂(t) of the augmented system (8). In this way, by

assuming x̂(t) = x(t) (certainty equivalence hypothesis), the

following consistency equation can be imposed to the matrix

∆(γ̂(t))

y(t− i) = ∆(γ̂(t))Cy x̂p(t− i)+F b̂(t− i), i = 0, ..., N − 1
(27)

that are equivalent to

y(t− i)−F b̂(t− i) = X(t− i)γ̂(t), i = 0, ..., N − 1 (28)

where

X(t− i) := diag
(

C(1)
y x̂p(t− i), ..., C(m)

y x̂p(t− i)
)

This allows one to recast the problem in a classical regressor

form:

Y (t) = ϕ(t)γ(t) (29)

where

Y (t) :=







y(t)− F b̂(t)
...

y(t−N + 1)− F b̂(t−N + 1)







are the measures and

ϕ(t) :=
[

X(t), . . . , X(t−N + 1)
]T

collects the linear regressors. Then, the variable γ̂(t) can be

estimated through the resolution of the following quadratic

program with linear constraints

γ̂(t) := argmin
γ

1
2‖(Y (t)− ϕ(t)γ)‖22

subject to γ ∈ Γ
(30)

In [18] it has been proved that, under a constant γ(t) = γ⋆,

a sufficient condition to guarantee convergence of γ̂(t) to γ⋆

for some t⋆ ≫ N is that

rank{ϕ(t⋆)} = n (31)

In particular, if C̄y has not zero columns, a sufficient condi-

tion to ensure (31) is

rank{X̂p(t)} = n (32)

where matrix X̂p(t) is defined as

X̂p(t) :=
[

x̂p(t), . . . , x̂p(t−N)
]T

(33)

Such a property can be guaranteed if the state estimation

x̂p(t) problem is solved under a persistent excitation condi-

tion on the measures provided by the physical sensors or by a

suitable artificial dither injected in the state estimation x̂p(t)
sent to the Parameter Estimator so as to force that signal to

be persistently exciting so as to make (32) to hold true.
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D. Reconciliation Algorithm

Finally, the proposed sensor reconciliation method can be

summarized in the following algorithm

UIO based Sensor Reconciliation Algorithm (UIO-SR)

INITIALIZATION:

1: compute Li, i = 1, ..., l according to Theorem 1
2: chose horizon N for the Parameter Estimator;
3: set ∆(γ̂(t)) = Im and b̂(t) = 0 for t = 0, ..., N − 1;

4: store Li, i = 1, ..., l, N , ∆(γ̂(t)) and b̂(t), t = 0, ..., N − 1.

ON-LINE PHASE (generic time t ≥ N ):

1: receive y(t) from the sensors;
2: compute ρ̂(γ̂(t− 1)) on the basis of the polytopic representa-

tion (19) ⊲ This instruction can be skipped in the case of
constant gain L to be used;

3: compute Qγ̂(t−1) as in (18);

4: set Tγ̂(t−1) := In+q −Qγ̂(t−1)C̄γ̂(t−1);
5: estimate plant state and bias by evaluating

x̂(t) = Tγ̂(t−1)Āx̂(t− 1) + Tγ̂(t−1)B̄u(t− 1)

+ Lρ̂(γ̂(t−1))

(

y(t− 1)− ŷ(t− 1)

)

+Qγ̂(t)y(t)

⊲ Lρ̂(γ̂(t−1)) = L in the case of constant gain to be used
6: estimate γ̂(t) by solving (30)
7: compute the estimated real output as ŷ(t) = C̄γ̂(t)x̂(t)
8: return the virtual output ẑ(t) = Hz ŷ(t)
9: set t := t+ 1

10: go to step 1

IV. ILLUSTRATIVE EXAMPLE

In this section, the effectiveness of the proposed UIO-SR

scheme is investigated by considering a linear stable model

in form of (1)-(2) characterized by the following matrices

A =

[

0.98806 0.0096049
−0.32754 0.93033

]

, B =

[

−0.0001
−0.0921

]

,

Cy =

[

1 0
1 0
1 1

]

, E = 0.01×
[

1
1

]

, F =

[

1
1
1

]

and γ is supposed to be confined within the polytope

Γ :=
{

γ : [γ
1
, γ

2
, γ

3
]T ≤ γ ≤ [γ1, γ2, γ3]

T
}

, γ
1
= γ

2
=

0, γ
3
= 0.1, γi = 1, i = 1, 2, 3.

The goal of this simulation is to verify the capability of

the proposed method in extracting the first component of th

state xp(t) into the virtual output z(t) = HzCyxp(t) with

sensor reconciliation matrix given by Hz =
[

0.5 0.5 0
]

.

Along the simulation the known input u(t) and the unknown

input v(t) are supposed to be a square wave with period 625
and amplitude equal to 15 and a white noise with standard

deviations equal to 10 respectively. Moreover, the bias profile

on the three available physical sensors changes along the

simulations according to the profile depicted in Figure 3

(solid black line) and faults on the matrix effectiveness gain

will affect the first two sensors as depicted in Figure 2. In this

scenario, without any sensor reconciliator block the virtual

output would result falsified, as depicted in Figure 4 (blue

dashed line), because of faults occurrences on the physical

0 500 1000 1500 2000 2500 3000
0

0.5

1

0 500 1000 1500 2000 2500 3000
0

0.5

1

0 500 1000 1500 2000 2500 3000

Time [steps]

0

0.5

1

Fig. 2. Effectiveness Matrix Estimation
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1

0.5

Fig. 3. Bias Estimation

sensors. In this scenario, without any sensor reconciliator

block the virtual output would result falsified, as depicted in

Figure 4 (blue dashed line), because of faults occurrences on

the physical sensors. In order to exploit the UIO-SR with

the LPV unknown input observer described in Section IV.B,

the above presented plant has to be recast in the augmented

form (8) with matrix C̄γ given by

C̄γ :=





γ1 0 1
γ2 0 1
γ3 γ3 1



 (34)

while the LPV UI observer has been designed as in (11) with

0 500 1000 1500 2000 2500 3000

Time [steps]

-5

0

5

Fig. 4. Virtual Output
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Qγ selected as in (18). The resulting solution is given by

Tγ :=





1 + β1(γ) β2(γ) β3(γ)
β1(γ) 1 + β2(γ)) β3(γ)
0 0 1



 (35)

with

β1(γ) := − γ1(t)
2

100Q(γ)
− 3γ3(t)

2

125Q(γ)

β2(γ) := − γ2(t)
2

1000Q(γ)
− γ3(t)

2

625Q(γ)
(36)

β3(γ) := − γ1(t)

1000Q(γ)
− γ2(t)

10000Q(γ)
− γ3(t)

625Q(γ)

Q(γ) :=
γ1

2

100
+

γ2
2

10000
+

16γ3
2

625
In order to exploit the LPV observer, an embedding polytopic

representation of the form of (19) has been derived. To

this end, it is worth observing that matrices Tγ and C̄γ

can be embedded in two different polytopes, i.e. PT :=
Co{T1, ..., T8} and PC := Co{C1, ..., C8} respectively, with

related vertices computed by evaluating matrices Tγ and C̄γ

on the extremum points of Γ. Then, a suitable polytopic

representation (19) can be achieved by first deriving the LPV

scheduling parameter ρ(γ), that in this example is composed

by 64 components, each one having the following structure

ρ(i−1)8+j(γ) := ρ1i (γ)ρ
2
j(γ)

where both ρ1 and ρ2 are vectors each consisting of the

following 8 elements

ρ
(·)
1 :=α

(·)
1 α

(·)
2 α

(·)
3 , ρ

(·)
2 :=α

(·)
1 α

(·)
2

(

1− α
(·)
3

)

,

ρ
(·)
3 :=α

(·)
1

(

1− α
(·)
2

)

α
(·)
3 , ρ

(·)
4 :=α

(·)
1

(

1− α
(·)
2

)(

1− α
(·)
3

)

ρ
(·)
5 :=

(

1− α
(·)
1

)

α
(·)
2 α

(·)
3 , ρ

(·)
6 :=

(

1− α
(·)
1

)

α
(·)
2

(

1− α
(·)
3

)

,

ρ
(·)
7 :=

(

1− α
(·)
1

)(

1− α
(·)
2

)

α
(·)
3 ,

ρ
(·)
8 :=

(

1− α
(·)
1

)(

1− α
(·)
2

)(

1− α
(·)
3

)

Specifically

α1
i (γ) :=

β1(γ)− β1(γ)

βi(γ)− β
i
(γ)

, α2
i (γ) :=

γ − γi

γ − γ
, i = 1, 2, 3

(37)

Secondly, it is required to compute the Cartesian product

P := PT × PC . Finally, it is possible to get a polytopic

embedding approximation for Tγ and C̄γ as follows

Tρ =
64
∑

i=1

ρi(γ)T̃i, C̄ρ =
64
∑

i=1

ρi(γ)C̃i
(38)

where
(

T̃i, C̃i

)

i = 1, ..., 64 are the vertices of P .

By exploiting representation (38) simulative analysis can

be attempted and related results have been depicted in

Figures 2-3 where the proposed approach shows a good

behavior in faults estimation (Figg. 2,3). Consequence of this

fact, as depicted in Fig. 4, is that the generated virtual output

signal (green dashed line) actually corrects the corrupted

measured output (blue dashed-dotted line).

V. CONCLUSIONS

An unknown input observer based scheme has been pre-

sented to solve fault-tolerant sensor reconciliation design

problems for linear discrete-time systems subject to possible

faults on sensor gain and bias. The observer has been used

to both estimate the state of the system and the current

bias of the sensors while a least-squares based algorithm

has been used to estimate the current gains’ matrix of the

physical sensors. The approach has been fully investigated,

its properties rigorously proved and the method shown to

be able to provide good reconciliation performance in quite

general situations.
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