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Abstract: This papers presents a fault-tolerant sensor reconciliation design approach for over-
sensed plants (see Fig. 1). The reconciliator is in charge of detecting, at each time instant, the
possibly faulty physical sensors and generating a virtual output z (with dim y ≥ dim z) where
the corrupted measures coming from the pool of redundant physical output y are removed. In
this way the virtual output is always healthy and usable for control purposes without requiring
the reconfiguration of the nominal control law. The approach is based on the use of Unknown
Input Observers (UIO) with Linear Fractional Transformation (LFT) parameter dependency
and works together with an "ad-hoc" parameters estimator that is designed to estimate on-line
at each time instant the sensor effectiveness matrix. The sensor faults here considered are limited
to variation of sensors’ gain and offset values. All main properties of the scheme are investigated
and rigorously proved. A final simulation example is included to show the effectiveness of the
proposed scheme.

Keywords: Fault detection, Sensor Reconciliation, Unknown Input Observer, Linear Fractional
Transformation.

1. INTRODUCTION

The capability of control systems to detect faulty sensors
and recover in turn uncorrupted data has progressively
gained more relevance in the last two decades. Traditional
control schemes are usually designed by assuming perfect
working conditions of the sensors to be used. However,
in practice, sensors are subject to fault occurrences and
can provide wrong information about the system status,
which could cause instability. Even in the fortuitous cases
where stability is preserved, inaccurate sensor values may
lead to poor regulation or tracking performance, which
may be highly undesirable for many high precision control
applications (Mirabadi et al. (2003); Romero et al. (2010);
Djath et al. (2000)).

Such an issue is usually faced by designing a proper Sensor
Reconciliation (SR) scheme (Vachhani et al. (2001)) in
order to recover useful data from the pool of redundant
sensors whenever unpredicatable fault events may eventu-
ally occur. Figure 1 depicts a quite general SR scheme.
There, the SR block behaves as a virtual sensor (Steffen
(2005)) in charge of translating measurements from the
possibly faulty sensors y into the reliable virtual sensor
vector z that can be trustfully used for control purposes.

A number of SR approaches based on Figure 1 are often
proposed in the literature as part of a Fault Tolerant
Control (FTC) scheme where traditional controllers are
present. Such a choice avoids the usage of complex control
reconfiguration strategies to accommodate sensor faults.
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Fig. 1. Fault-tolerant sensor reconciliator basic scheme

In this respect, relevant contributions are Sun and Deng
(2004); De Doná et al. (2009); Yetendje et al. (2011),
where the sensor information are fused in a decentralized
way by exploiting local estimators. A different class of
SR FTC-based strategies is investigated in (Romero et al.
(2010); Berbra et al. (2008)) where a switching mechanism
is exploited involving sensors and related observers to
implicitly detect the healthy components of the system.
The estimates provided by the observers are compared
at each sampling time by a switching logic that allows
one to select the sensors-observer pair with the smallest
estimation error.

All the above mentioned approaches are based on the
execution of two basic steps: (i) identification of faults in
the sensors, (ii) correction of sensor measurements. In this
respect many effective methods have been developed for
the estimation of either actuator or sensor faults He et al.
(2013); Han et al. (2016); Alwi et al. (2011). See also Crowe
(1996); Mah et al. (1976); Romagnoli and Stephanopoulos
(1981) for relevant works in sensors rectification.
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This paper is focused on a general SR method for linear
discrete-time systems with redundant physical sensors
possibly subject to loss of effectiveness (gain) and offset
(bias) faults. The scheme differs from the above mentioned
SR methods because it is based on the Unknown Input
Observer (UIO) approach (Guan and Saif (1991)). In the
present context, the UIO methodology has been widely
investigated for the design of fault detection and isolation
schemes for LTI continuous-time systems but limited to
the detection of sensor bias (Chen et al. (1996); Chen and
Saif (2006); Duan et al. (2002)).

Here the discrete-time system domain is considered by
following the ideas of Zhou et al. (2013); Rodrigues et al.
(2005), where Linear Matrix Inequality (LMI) procedures
have been proposed to synthesize UIOs with constant
observer gains. Such procedures have been here extended
to address the more challenging case of jointly detecting
both bias and gain sensor faults. To this end admissible
ranges of current sensor gain estimates are treated as
structural uncertainty in the the plant matrices. Such a
choice leads to a non-convex uncertainty representation
in the UIO equation. This paper complements the results
of Behzad et al. (2016) for polytopic systems and solve
some inherent difficulties. In particular, in Behzad et al.
(2016) the non convexity of the uncertainty is overcome
by embedding the uncertain matrices into a polytopic
region and consequently by designing, via a specific LMI
procedure, a polytopic Linear Parameter Varying (LPV)
UIO observer. The resulting design procedure requires a
very long computational time to compute the observer
gains and can be impracticable in real applications. To
cope with such a drawback, the uncertainty is modeled via
the well-known Linear Fractional Transformation (LFT)
approach (Cockburn and Morton (1997)). In this way, it
is possible to build up a time-varying observer by solving
LMI feasibility problems that are characterized by a lower
complexity with respect to the general LPV case. As a
result, the resulting computational burden to achieve the
observer gain is comparable to that of the standard linear
time-invariant case.

The proposed scheme consists of three interconnected
modules: (i) a Parameter Estimator unit implemented
via a constrained weighted least-squares batch method
used within a windowing data processing approach to
estimate the current gain sensor faults, (ii) a LFT UIO in
charge of combining the corrupted information gathered by
multiple sensors to reconstruct, on the basis of the output
of the Parameter Estimator, the state of the system and
estimating possible bias fault occurrences; (iii) a sensor
reconciliation unit used to reconcile the sensor measures.

Properties of the proposed LFT-UIO scheme are formally
proved and discussed and computational procedures are
provided for the design of the UIO. A final numerical
example is reported where comparisons with the approach
presented in Behzad et al. (2016) are provided.

NOTATION

Let R denote the set of real numbers and N those of natural
numbers. Let v′ ∈ R1×n denote the transpose of a vector
v ∈ Rn and ‖ · ‖2 the weighted 2-norm of a vector (i.e.
|x|2 =

√
x′x). Given a matrix M ∈ Rn×m, the i-th row

of M is denoted as M (i). For a matrix M ∈ Rn×m, the
Moore-Penrose Pseudoinverse is denoted by M† ∈ Rn×m
and is computed as M† := A′(A′A)−1. Linear Fractional
Transformations (LFFs) are extensively used in the paper.
For appropriately dimensioned matrices N and

M :=

[
M11 M12

M21 M22

]
the lower LFT is defined as

LFT (M,N) := M11 +M12N(I −M22N)−1M21

2. PROBLEM FORMULATION

Let us consider a plant whose dynamics is described by
the following discrete-time state-space representation

xp(t+ 1) = Axp(t) +Bu(t) + Ev(t) (1)
y(t) = ∆

(
γ(t)

)
Cyxp(t) + Fb(t) (2)

z(t) = HzCyxp(t) (3)
where xp(t) ∈ Rn is the state vector, u(t) ∈ Rnu is
a known input while v(t) ∈ Rnv is an unknown input.
Moreover, y(t) ∈ Rm represents the plant output provided
by physical redundant sensors possibly effected by both
bias b(t) ∈ Rq and loss of effectiveness faults, the latter
being modeled by the gain matrix ∆(γ) ∈ Rm×m that,
for simplicity, we assume hereafter to have the following
elementary structure:

∆(γ) =

γ1 0 0

0
. . . 0

0 0 γm

 (4)

Finally, z(t) ∈ Rr, with r ≤ m, is defined as the
virtual output of the system and represents the healthy
information we need to get from the plant for control
purposes regardless of any fault possibly occurring on the
physical sensors.

It is clear that in the absence of faults one would have
∆(γ) = Im and b(t) = 0q. However, in the more general
case b(t) 6= 0q and ∆(γ) 6= Im, with γ confined in the
generic polytope

Γ ⊆ {γ : 0m ≤ γ ≤ 1m} (5)
For this reason, it is not convenient to evaluate the signal
z(t) as z(t) = Hzy(t) because it would be affected by
possibly corrupted information brought by y(t). However,
because the state xp(t) is assumed not directly measurable,
z(t) cannot be evaluated as simply as in (3), but a more
sophisticated machinery is required. This aspect motivates
the design of the Sensor Reconciliator (virtual sensor) unit
depicted in Figure 1, which basically aims at addressing
the following problem:

Sensor Reconciliaton Design Problem (SRDP-
Problem) :
Given the system (1)-(3), compute, at each time t ≥ 0
on the basis of the real output y(t) measures, the best
estimate ẑ(t) of the virtual output z(t) := HzCyxp(t),
despite the presence of both fault occurrences, corrupting
the vectory(t), and disturbances v(t).
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Fig. 2. Virtual Sensor Architecture

3. VIRTUAL SENSOR ARCHITECTURE

For the sake of generally, the SRDP-Problem solution
here proposed is based on the estimation of x̂p(t) of the
state xp(t), that is therefore exploited to compute ẑ(t)
through the following equation

ẑ(t) = HzCyx̂p(t) (6)
where Hz and Cy don’t depend on the possible faults
acting on the physical sensors. Such an approach require
to face two crucial issues: 1) How to estimate the fault
occurrences corrupting y(t)? 2) How to get a good esti-
mation x̂p(t) in presence of an unknown input v(t) and
time-varying sensor gains and biases?

The above mentioned questions are dealt with by introduc-
ing the virtual sensor architecture depicted in Fig. 2 that
consists of three modules: an Unknown Input Observer
(UIO) unit which is the core of this scheme and is designed
not only to give an estimation of xp(t) but also to evaluate
an approximation to the bias fault b(t); a Parameter Esti-
mator whose output is an estimate of effectiveness matrix
(4) and a Reconciliator Unit that simply performs the
computation indicated in (6).

3.1 Sensor Fault Augmented Model

In order to design the UIO, the following augmented
state is considered including the bias fault b(t) among its
components

x(t) =

[
xp(t)
b(t)

]
(7)

In this way, the related augmented model can be described
as

x(t+ 1) = Āx(t) + B̄u(t) + Ēv(t) + F̄∆b(t)

y(t) = C̄γx(t) (8)
where

Ā =

[
A 0
0 I

]
, B̄ =

[
B
0

]
, Ē =

[
E
0

]
, F̄ =

[
0
I

]
C̄γ = [4(γ)Cy F ], ∆b(t) = b(t+ 1)− b(t) (9)

Moreover, the following technical assumption is required
Assumption 1.

rank{C̄γĒ} = rank(Ē),∀γ ∈ Γ (10)

3.2 LFT Unknown Input Observer

In this section we describe the basic ingredients of the
proposed UIO. Let us assume to be provided with an
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Fig. 3. Non convex representation (green region) and
related polytopic embedding (blue region)

estimation γ̂(t) of γ(t) at each time t. Then, a possible
structure for an unknown input observer for the model (8)
is given by

x̂(t+ 1)=Tγ̂(t)Āx̂(t) + Tγ̂(t)B̄u(t)+ Lγ̂(t)
(
y(t)− ŷ(t)

)
+Qγ̂(t)y(t+ 1) (11)

where Tγ̂ ∈ R(n+q)×(n+q), Lγ̂ ∈ R(n+q)×m and Qγ̂ ∈
R(n+q)×m represent design parameters all depending on
the effectiveness matrix (4). In particular, if Tγ̂ were chosen
to satisfy

Tγ̂ +Qγ̂C̄γ̂ = In+q (12)
under the condition

Tγ̂Ē = 0,∀γ̂ ∈ Γ (13)
the system (8) could be represented as
x(t+ 1) = Tγ̂(t)Āx(t) + Tγ̂(t)B̄u(t) + Tγ̂(t)Ē∆b(t)

+Qγ̂(t)y(t+ 1) (14)

Please notice that (13) is satisfied if Qγ̂ is chosen as

Qγ̂ := Ē(C̄γ̂Ē)†,∀γ̂ ∈ Γ (15)

where the existence of the matrix (C̄γ̂Ē)† is guaranteed
∀γ̂ ∈ Γ by Assumption 1.

As a consequence, the related uncertainty representation
results non-convex and the system (14) cannot be consid-
ered a polytopic LPV form. For this reason, in order to take
advantages of existing LMI based design techniques, in
Behzad et al. (2016) a polytopic embedding approximation
(see Figure 3 for a graphic idea) for matrices Tγ̂ and C̄γ̂
has been used. That approach leads to a design procedure
characterized by a huge number of LMIs. In order to get a
less computation demanding observer design, in this work
we assume to be provided with a LFT representations
of Tγ̂ = LFT (T, θT ) and C̄γ̂ = LFT (C, θC) for certain
matrices T and C respectively and

θT (γ):=diag{θT,1(γ), ..., θT,n(γ)}, |θT,i| ≤ 1, i = 1, ..., n

θC(γ):=diag{θC,1(γ), ..., θC,m(γ)}, |θC,i| ≤ 1, i = 1, ...,m

Such representations can be exploited to get (14) in the
LFT form
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x(t+ 1) = T11Āx(t) + T11B̄u(t) + T11F̄∆b(t)

+T12p(t) +Qγ̂y(t+ 1)

y(t) =C11x(t) + C12p(t) (16)

q(t) =Cqxx(t) +Dquu(t) +Dqb∆b(t) +Dqpp(t)

p(t) = Θ(γ̂)q(t)

where

Cqx :=

[
T21Ā
C21

]
, Dqu :=

[
T21B̄

0

]
, Dqb :=

[
T21F̄

0

]
,

Dqp :=

[
C22 0
0 T22

]
with Θ(γ) being an uncertain parameter obeying the
following structure

Θ(γ) :=

[
θT (γ) 0

0 θC(γ)

]
(17)

Then, a possible structure for an unknown input observer
for the model (16) is given by

x̂(t+ 1) = T11Āx̂(t) + T11B̄u(t)+ L
(
y(t)− ŷ(t)

)
+T12p̂(t) +Qγ̂(t)y(t+ 1)

ŷ(t) =C11x̂(t) + C12p̂(t) (18)

q̂(t) =Cqxx̂(t) +Dquu(t) +Dqpp̂(t)

p̂(t) = Θ(γ̂)q̂(t)

As a consequence, the one-step ahead evolution of the state
estimation error
e(t) := x(t)−x̂(t), p̃(t) := p(t)−p̂(t), q̃(t) := q(t)−q̂(t)
would take the following form

e(t+ 1) =Ne(t) +Nep̃(t) + Few(t) (19)

q̃(t) =Cqxe(t) + Fww(t) +Dqpp̃(t) (20)

p̃(t) = Θ(γ̂)q̃(t) (21)
where
N := T11Ā− LC11, Ne := [T12 −LC12], Fe :=

[
T11F̄ I

]
,

Fw :=

[
T21F̄ 0

0 0

]
, w(t) :=

[
∆b(t)

L(Cγ − Cγ̂)x(t)

]
We are interested at finding a gain L such that difference
equation (19) is stable for any arbitrary time variation of
the variables p̃(t) and q̃(t) and for any input w(t) ∈ `2. As
a consequence, the error e(t) is bounded as

‖e(.)‖
2
< σ ‖w(.)‖

2
(22)

A convex optimization methodology to solve the above
stated design problem is provided in the next Theorem 1.

Theorem 1. Assume that a symmetric positive matrix Q,
a matrix S and positive scalars µ and λ exist such that
the following optimization problem has a solution

min
Q,S,µ,λ

w1µ+ w2λ (23)

subject to:

Q QT11Ā− SC11

[
QT12 −SC12

]
QFe

?Q− I − λC′qxCqx −λC′qxDqp −λC′qxFw
? ? λI − λD′qpDqp −λD′qpFw
? ? ? µI − λF ′wFw

> 0

where w1, w2 > 0 are pre-specified weighting factors. Then,
the boundedness of the observer estimation error as in (22)
is ensured by choosing L = Q−1S.

Proof : Consider the Lyapunov function

V
(
e(t)

)
= e′(t)Qe(t) (24)

The related one-step ahead evolution of the above function
on the observer error trajectory is given by

V
(
e(t+ 1)

)
= e′(t+ 1)Qe(t+ 1) (25)

Using (19), one can recast (25) into

V
(
e(t+ 1)

)
=
(
Ne(t) +Nep̃(t) + Few(t)

)′
Q
(
Ne(t) +Nep̃(t)

+Few(t)
)

(26)
Then, the Lyapunov function increment derived by (24)
and (26) results to be given by

∆V
(
t
)

= V
(
e(t+ 1)

)
− V

(
e(t)

)
= e′(t)

(
N ′QN −Q

)
e(t) + 2ẽ′(t)N ′Nep̃(t)

+2p̃′(t)N ′eFew(t) + 2ẽ′(t)N ′Few(t)

+p̃′(t)N ′eQNep̃(t) + w̃′(t)F ′eQFew̃(t) (27)
It is well-known that the stability of system (19)-(21) with
the H∞ guaranteed performance (22) is ensured if

∆V (t) ≤ −e′(t)e(t) + µw′(t)w(t) (28)
for each q̃(t), p̃(t) satisfying

‖p̃(t)‖
2
≤ ‖q̃(t)‖

2
(29)

By replacing ∆V (e(t)) with the expression (27), one is able
to rewrite inequality (28) as[

e(t)
p̃(t)
w(t)

]′[
N ′QN −Q+ I N ′QNe N ′QFe

N ′eQN N ′eQNe N ′eQFe
F ′eQN F ′eQNe F

′
eQFe − µI

][
e(t)
p̃(t)
w(t)

]
<0

while inequality (29) can be recast as[
e(t)
p̃(t)
w(t)

]′−C ′qxCqx −C ′qxDqp −C ′qxFw
−D′qpCqx I −D′qpDqp −D′qpFw
−F ′wCqx −F ′wDqp −F ′wFw

[e(t)p̃(t)
w(t)

]
<0

As a consequence, by means of the S-procedure, we can
state that the above inequalities are true if and only if
there exists a scalar λ such that[

U11 U12 U13

? U22 U23

? ? U33

]
< 0 (30)

U11 :=N ′QN −Q+ I + λC ′qxCqx

U12 :=N ′QNe + λC ′qxDqp

U13 :=N ′QFe + λC ′qxFw

U22 :=N ′eQNe − λI +D′qpDqp

U23 :=N ′eQFe + λD′qpFw

U33 := F ′eQFe − µI + λF ′wFw
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Notice that, by using Schur’s complement lemma, (30) is
equivalent toQ QN QNe QFe

? Q− I − λC′qxCqx −λC′qxDqp −λC′qxFw
? ? λI − λD′qpDqp −λD′qpFw
? ? ? µI − λF ′wFw

>0

Finally, by taking the change of variable QL = S into
account, the inequality (24) results. 2

3.3 Parameter Estimator

In this section the Parameter Estimator unit of Figure 2
is described. Its task consists in estimating the gain faults
on the matrix ∆(γ̂) and is accomplished via a constrained
batch least-mean-squares approach (Liew (1976)) used
within a windowing data processing strategy. Such an
approach is based on an algorithm that is able to detect
constant or slowly-varying gain faults in systems of the
form (2). The basic idea relies on finding a matrix ∆(γ̂(t))
that matches as much as possible the plant measured
signals and the estimated state in the last N time instants,
being N an arbitrarily chosen positive integer. In this
respect the last N samples of both the physical outputs
y(t) and state estimation x̂(t) of the augmented system (8)
are assumed to be provided at the generic time instant t. In
this way, by considering x̂(t) = x(t) (certainty equivalence
hypothesis), the following consistency equations can be
imposed to the matrix ∆(γ̂(t))

y(t− i) = ∆(γ̂(t))Cyx̂p(t− i) + F b̂(t− i), i = 0, ..., N − 1
(31)

that are equivalent to

y(t− i)− F b̂(t− i) = X(t− i)γ̂(t), i = 0, ..., N − 1 (32)
where

X(t− i) := diag
{
C(1)
y x̂p(t− i), ..., C(m)

y x̂p(t− i)
}

This allows one to recast the problem in the classical
regressor form:

Y (t) = ϕ(t)γ(t) (33)
where

Y (t) :=

 y(t)− F b̂(t)
...

y(t−N + 1)− F b̂(t−N + 1)


are the measures and

ϕ(t) := [X(t), . . . , X(t−N + 1) ]
′

collects the linear regressors. Then, the variable γ̂(t) can be
estimated through the resolution of the following quadratic
program with linear constraints

γ̂(t) := arg min
γ

1
2‖(Y (t)− ϕ(t)γ)‖22

subject to γ ∈ Γ
(34)

Under a constant γ(t) = γ?, it is possible to prove
(Casavola and Garone (2010)) that a sufficient condition
to guarantee convergence of γ̂(t) to γ? for some t? � N is

rank{ϕ(t?)} = n (35)
In particular, if C̄y has not zero columns, a sufficient
condition to ensure (35) is

rank{X̂p(t)} = n (36)

where matrix X̂p(t) is defined as

X̂p(t) := [x̂p(t), . . . , x̂p(t−N)]
′ (37)

Such a property can be guaranteed if the state estimation
x̂p(t) problem is solved under a persistent excitation
condition on the measures provided by the physical sensors
or by a suitable artificial dither injected in the state
estimation x̂p(t) sent to the Parameter Estimator so as to
force that signal to be persistently excited so as to make
condition (36) hold true.

3.4 Reconciliation Algorithm

Finally, the proposed sensor reconciliation method can be
summarized in the following algorithm

LFT-UIO based Sensor Reconciliation Algorithm
(LFT-UIO-SR)

Initialization:
1: compute L, according to Theorem 1
2: chose horizon N for the Parameter Estimator;
3: set ∆(γ̂(t)) = Im and b̂(t) = 0 for t = 0, ..., N − 1;
4: store L, N , ∆(γ̂(t)) and b̂(t), t = 0, ..., N − 1.

On-line phase (generic time t ≥ N):

1: receive y(t) from the sensors;
2: compute Qγ̂(t−1) as in (15);
3: set Tγ̂(t−1) := In+q −Qγ̂(t−1)C̄γ̂(t−1);
4: estimate plant state and bias by evaluating

x̂(t) =Tγ̂(t−1)Āx̂(t− 1) + Tγ̂(t−1)B̄u(t− 1)

+L
(
y(t− 1) − ŷ(t− 1)

)
+Qγ̂(t)y(t)

5: estimate γ̂(t) by solving (34)
6: compute the estimated real output as ŷ(t) = C̄γ̂(t)x̂(t)
7: return the virtual output ẑ(t) = Hz ŷ(t)
8: set t := t+ 1
9: go to step 1

4. ILLUSTRATIVE EXAMPLE

In this section, the effectiveness of the proposed LFT-
UIO-SR scheme is investigated by considering a linear
stable model in form of (1)-(2) characterized by the
following matrices

A =
[

0.98806 0.0096049
−0.32754 0.93033

]
, B =

[
−0.0001
−0.0921

]
,

Cy =

[
1 0
1 0
10 1

]
, E = 0.01×

[
1
1

]
, F =

[
1
1
1

]
with γ supposed to be confined within the polytope
Γ :=

{
γ : [γ

1
, γ

2
, γ

3
]′ ≤ γ ≤ [γ1, γ2, γ3]′

}
, γ
i

= 0.01, γi =

1, i = 1, 2, 3.

The goal of this simulation is to verify the capability of the
proposed method of extracting the first component of the
state xp(t) into the virtual output z(t) = HzCyxp(t) with
the sensor reconciliation matrix given by Hz = [0.5 0.5 0].
Along the simulation, the known input u(t) and the
unknown input v(t) are supposed to be those depicted in
Figure 4.
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Fig. 6. Loss of effectiveness faults profiles

Moreover, the bias profile on the three available physical
sensors changes along the simulations according to the
profile depicted in Figure 5 and faults on the matrix
effectiveness gain will affect the first two sensors as de-
picted in Figure 6. In this scenario, without any sensor
reconciliator block the virtual output would result falsified,
as depicted in Figure 10 (blue dashed line), because of
faults occurrences on the physical sensors.

4.1 Setups

In order to exploit the LFT-UIO-SR with the LFT
unknown input observer described in Section IV.B, the
plant has to be recast in the augmented LFT form (16)-
(17). In this respect, please notice that

C̄γĒ = ∆(γ)G, G := [1, 1, 11]
T
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Fig. 7. Effectiveness Matrix Estimation

and
Qγ = Ē(C̄γĒ)′

(
(C̄γĒ)′(C̄γĒ)

)−1
= ĒG′(GG′)−1∆−1(γ)

As a consequence, the matrix Tγ̂ can be rewritten as

Tγ̂=In+q −Qγ̂C̄γ̂
=In+q − ĒG′(GG′)−1∆−1(γ̂)C̄γ̂

=In+q − ĒG′(GG′)−1∆−1(γ̂) [∆(γ)Cy F ]

=In+q − ĒG′(GG′)−1∆−1(γ̂) (∆(γ) [Cy 03] + [03×2 F ])

=In+q − ĒG′(GG′)−1 [Cy 03]

−ĒG′(GG′)−1∆−1(γ̂) [03×2 F ] (38)
A standard normalization for ∆−1(γ̂) is required. It can
be achieved e.g. by following the approach described in
Cockburn (1998). As a result, one gets

γ−1i = ai + biδi, |δi| ≤ 1

with

a1 =
1

2
(γ + γ) = 101.1, a2 =

1

2
(γ − γ) = 98.99

Then, a LFT representation for Tγ̂ can be obtained as

Tγ̂ = In+q − ĒG′(GG′)−1 [Cy 03]

−ĒG′(GG′)−1(diag{a1, a2, a3}
+diag{b1δ1, b2δ2, b3δ3}) [03×2 F ]

= In+q − ĒG′(GG′)−1 [Cy 03]

−ĒG′(GG′)−1diag{a1, a2, a3} [03×2 F ]

−ĒG′(GG′)−1diag{b1δ1, b2δ2, b3δ3} [03×2 F ]

=LFT (T, θT (δ))

where

T11 := In+q − ĒG′(GG′)−1 [Cy 03] ,

T12 :=−ĒG′(GG′)−1,
T21 := [03×2 F ], T22 := [03×3]

θT (δ) := (diag{a1, a2, a3}+ diag{b1δ1, b2δ2, b3δ3})
For the matrix C̄γ , the LFT representation is achieved in
a simpler manner and it is given by

C̄γ = I3 − (∆(γ)− I) = LFT (C, θC(γ))
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where
C11 := C12 = C21 = I3, C22 := 03, θC(γ) := ∆(γ)− I3

By exploiting the above presented LFT representations,
the following observer gain has been computed according
to the LMI procedure of Theorem 1

L =

[
0.0046 0.0046 −0.0001
0.0088 0.0088 −0.1121
0.4934 0.4934 −0.0976

]
Finally, a windowing horizon N = 30 has been chosen for
the parameter estimator. All simulations have been per-
formed by using the Yalmip interpreter Lofberg (2005) and
the Sedumi solver; all under MATLAB 8.6 environment
running on an Intel Core i5-3330 machine with 3.3 GHz
and 8GB RAM.

4.2 Results and comparisons

A simulative comparison has been attempted between the
presented LFT-UIO-SR scheme and the Sensor Recon-
ciliating approach of Behzad et al. (2016), here referred
to as LPV-UIO-SR and endowed with a LPV polytopic
observer. In order to compute the observer’s gain, the
same embedding polytopic representation used in Behzad
et al. (2016) has been here considered for the matrices
Tγ and C̄γ , that consists in a polytope characterized by
64 vertices. The corresponding gain-scheduled observer’s
gain consists of the same number of elementary (64 gain
matrices), jointly computed through an optimization pro-
cedure involving 262.144 LMIs. On the contrary, the LFT-
UIO-SR scheme requires a procedure with a single LMI
to derive the observer gain. This is not a minor aspect as
it has a strong impact on the offline computational burden
(see Table 1).

In Figures 7-10 these schemes have been compared. In par-
ticular, Figures 8,9 are related to the plant state and bias
estimation respectively. Although both observers achieve
good performance in recovering the true information re-
lated to x

(1)
p , as expected, the LPV-UIO-SR scheme

exhibits a better behavior with respect to LFT-UIO-
SR, both in estimating the state and the bias. This is
mostly due to the fact the observer gain is time-varying
scheduled in the LPV-UIO-SR scheme and it is able to
"adapt" itself more quickly with respect to changes in the
effectiveness matrix. Such an aspect translates in a better
effectiveness parameter (gain matrix) estimation (Figure
7) and in a more accurate virtual output generation (Figure
10). Performance has been quantified by evaluating for
quantities of interest the relative error

Jξ :=
1

Toss

Toss∑
t

Err(ξ(t), ξtrue(t)), (39)

Err(ξ, ξtrue) :=
|ξ − ξtrue|
ξtrue

where Toss denotes the simulation time interval. Results
are reported in Table 1 along with the computational
time required to get the solution in the offline phase. It is
worth commenting that, although LPV-UIO-SR achieve
a better performance, it involves a time-consuming design
procedure that can be impracticable in the case of systems
with a large number physical sensors to be monitored.
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Table 1. Complete break-down of performance
and CPU time for the different approaches

Offline
com-
puta-
tion
time

Jγ1 Jγ2 Jγ3 Jβ Jz

LFT-
UIO-
SR

≈ 3min 6.51 2.15 0.025 6.64 0.012

LPV-
UIO-
SR

≈ 6h 1.59 0.04 0.005 4.53 0.004

5. CONCLUSIONS

In this paper LFT unknown input observers have been
proposed to solve fault-tolerant sensor reconciliation de-
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sign problems for linear discrete-time systems subject to
possible faults on sensor gain and bias. The role of the
observer relies on the estimation of both the state of the
system and the current bias of the physical sensors whereas
a least-squares batch algorithm provides estimates of the
current effectiveness’ matrix of the physical sensors. The
resulting design procedure is quite simple and requires a
low computational burden especially when compared with
the analogous approach of Behzad et al. (2016), where an
LPV UIO has been used to solve the same problem. The
scheme has been fully described, its properties rigorously
proved and, in the final simulation example, it has been
shown able to achieve good performance in recovering
useful data from the pool of redundant sensors.
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