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Abstract— In this paper an energetic based approach is presented 

for a class of Linear Parameter Varying (LPV) systems subject to 

sensor and component faults. The main purpose of this research 

is to estimate the stator winding faults of an electrical induction 

motor. To this end, a quasi-LPV model is derived, on the basis of 

the nonlinear model of induction motor. Then, an algebraic 

technique is addressed to derive a regressor description of the 

system energy balance, where the regressor coefficients are stator 

winding fault. This formulation provides the possibility of using 

the Least Square(LS) technique to component fault estimation. 

The effectiveness of the proposed method is illustrated in a final 

numerical example. 

Keywords-dissipativity; induction motor; component fault; fault 

estimation; linear matrix inequality; linear parameter varying 

1 INTRODUCTION 

Induction Motors(IM) are widely used in modern industry 
and thus monitoring and detecting of electrical and mechanical 
damages for them become an important issue in industrial 
applications. According to [1], the major faults of IM can be 
categorized as bearing related faults(40%), stator winding 
faults(38%), rotor related faults(10%) and other faults(10%), 
among many, the stator winding faults are quite difficult to be 
detected online at early stages during the normal operation of 
the motor. With this in mind, several stator winding related 
fault detection and isolation(FDI) techniques have been 
proposed in the literature [2–21]. An online monitoring 
technique based on motor current signature analysis(MCSA) 
was demonstrated in [2,3] and [4] for fault diagnosis in 
induction motors. The main disadvantage of the method is that 
knowledge on the design and operation of induction motors are 
crucial ingredients for correct data interpretation and reliable 
diagnosis of the faults. Furthermore, this technique requires the 
motor operation at steady state. In [5], a novel technique is 

presented to detect turn faults in a single phase of the stator of 
an induction machine. This scheme needs an accessibility to 
the machine electrical neutral in its wye-configuration, which 
strictly limit its application. The extended park vector approach 
has been considered by [6] to detect a change in the unbalance 
in operating three-phase motors which may lead to diagnosis 
the occurrence of stator winding faults. They did not take into 
consideration that any of the motor non-idealities that causes a 
change in the unbalance may influence the fault detection 
method. The proposed method in [7] addresses a sensor-less 
fault detection method based on sum of ac components of 
phase power indicator. A high degree of attention must be used 
in this scheme to avoid false alarm. The negative sequence 
current and voltage based fault detection is considered in [8,9] 
and [10]. The proposed strategy is very sensitive to supply 
voltage unbalances which may produce false alarms. Modern 
techniques based on artificial intelligence approach have also 
been applied in [11,21] to detect inter turn faults of the motor. 
Although some researches has been done for diagnosis of stator 
winding faults, model based fault detection strategies have 
received a growing attention in the past years, due to the early 
fault detection properties [13,14,16–21]. For example, an 
adaptive observer is proposed in [17] to generate a vector of 
specific residual. This allows for a fast detection of incipient 
faults. In [16], a parametric low differential order model was 
coupled with an adaptive Kalman filter for recursively 
estimating the states and parameters of continuous time model 
with discrete measurements for fault detection ends. In [19], 
the nonlinear model of the electrical motor was first 
approximated in a quasi-LPV model. Then an FDI filter was 
designed to achieve a compromise between disturbance 
decoupling and fault sensitivity over a prescribed frequency 
range. The subject of model based inter-turn short circuit fault 
detection in the stator of an induction motor was proposed in 
[13]. The Set Membership Identification approach was 



2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA) 

 

 

  

suggested in [18] to diagnose short circuit faults in stator 
winding. Although most of the strategies that have been 
proposed in this area are based on residual generation and 
evaluation, but fault detection, based on the identification 
method, is a motivation for work.  

Recently, considerable attention has been focused on the 
area of fault detection and estimation based on dissipativity 
approach. One of the salient features of this technique is the 
potential of extending to non-linear systems. In fault diagnosis 
area, see e.g. [22,23] that extend energetic approaches to fault 
detection. In [22], a bond graph system model is used to 
generate residual signals for fault diagnosis. The proposed 
method is based on the observation of energetic exchanges 
amongst system components. The main disadvantage of the 
method is that it is not robust with respect to measurement 
noise and uncertainty. An energy balance based fault detection 
method was considered also in [23], for sensor fault detection 
in steel galvanizing process. It does not take into account the 
effect of disturbances on the proposed scheme.  

Dissipativity is characterized by the presence of a storage 
function and an energetic supply rate. The basic assumption is 
that the energy stored in the passive systems can not be more 
than the energy supplied by the environment outside. In [24], 
this characteristic is used in fault diagnosis in the sense that 
when this inequality fails then it is supposed that faults appear 
in the system. The passivity based fault detection method was 
extended to an energy based framework in [25], where, besides 
the stored energy and supplied energy, the dissipated energy 
has also been modeled for the dissipative systems and an 
optimal fault detection approach based on the energy balance 
was suggested. 

 The problem of robust fault tolerant control for dissipative 
Hamiltonian systems subject to actuator faults is considered in 
[26]. They proposed an energy based robust controller to 
ensure local uniform asymptotic stability of the equilibrium 
point and the disturbance attenuation performance of the faulty 
system. The main disadvantage of this method is that the 
proposed controller has the drawback of being discontinuous, 
which may lead to the chattering effect sometimes. The energy 
balance framework has been used by [27], to exploit LQ 
control characteristics in fault detection. It does not take into 
account the state un-measurable case. An energy monitoring 
based fault detection and isolation method is proposed in [28]. 
They investigate how the energy monitoring of robotic systems 
can be applied for detection and isolation of robot actuator 
faults. In [29], an Unknown Input Observers based approach 
using a bond graph model is proposed. The dissipativity theory 
is used in [30, 31] to develop a fault detection and diagnosis 
scheme for process systems in linear and non-linear contexts 
respectively. One major disadvantage of this method is that it is 
not sensitive to individual faults. The problem of robust 
dissipative fault tolerant control for discrete-time systems with 
actuator faults is investigated in [32]. In [33], the energy 
balance framework is used to estimate the faults. The idea 
behind is to design a dissipative fault estimation observer for 
multi-agent systems based on Galerkin method and singular 
perturbation theory. 

In this paper, a novel polytopic fault estimation technique is 
developed for an electrical induction motor which is subjected 
to stator winding faults. To this end, the nonlinear model of the  
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Figure1. The control signal u(t) 

electrical motor is first approximated in a quasi LPV model as 
demonstrated in [19]. Then, the fault energy is represented as a 
function of the stored energy, supply energy and dissipated 
energy. The design objective is to develop a polytopic scheme 
which can estimate winding faults. Differently from [29,33], 
where fault detection based on dissipativity observer has been 
considered, here we develop the energy based fault diagnosis 
approach of [25] for LPV systems. The key difference of our 
approach with respect to [33] is that the dissipativity properties 
of the system is determined from process input/output data. 
Another specific feature of our scheme is to perform the fault 
estimation approach, which has not been addressed in [13, 14, 
16–21, 25]. Beside, our setup is capable of fault isolation, 
along with disturbance rejection. The polytopic fault estimation 
scheme is based on the Lyapunov function, thus it can be 
applied to either linear or non-linear systems. Moreover, 
properties of the presented observer are formally proved and 
discussed. 

2 IM MODEL WITH STATOR FAULTS 

 This section has been assigned to derive an LPV model 

approximation of IM model, which will be used for diagnosis 

purposes. 

2.1 Nonlinear Model of IM 

Induction motors are the essential components in the vast 
majority of industrial processes, which have been considered as 
a theoretically interesting and practically important class of 
nonlinear systems due to the highly coupled nature of them. It 
is well known that the dynamic d-q frame, the space vector and 
the spiral vector modulation are the most used to model and 
study the transient behavior of induction machines under 
dynamic conditions [34]. Here, the rotating d-q frame model is 
taken into account. This model is being carried out through the 
utilization of Park’s transform[35]. It is worth pointing out that, 
the subscripts ‘s’ and ‘r’ denote, respectively, stator and rotor 
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quantities. By defining [ i ]T T
n rd rq sd sqix    as the 

state variables, the IM model with stator fault can be 
represented in an stationary reference dq-frame, as follow 
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Where p denotes the number of pole pairs, K the damping 

coefficient, J  is the moment of inertia, a is the angular speed 

of the rotating d-q frame, rC is the load torque and  

1
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    . Moreover,  is the leakage factor 

which can be computed as follow: 

2

1 M

r s

L
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 Furthermore, rR and sR are the rotor and stator 

resistances, respectively. sL , rL and ML represent the stator, 

rotor and rotor/stator mutual inductances, respectively. It is 

worth of pointing that, the fault 
d

f refers to stator winding short 

circuit current and b represents for bias fault. Also, the vector 

: [ ]Tqd q d   represents the percentage of short circuited 

windings and the vector direction corresponds to the faulted 
phase. Further details on this model can be found in [36]. 

2.2 LPV Approximation of Nonlinear Model of IM 

In what follows, we describe a simple way to achieve a 
quasi-LPV approximation of IM. Such a model is based on the 
well-known Jacobian linearization approach, where the 
nonlinear plant behavior is approximated by a family of linear 
systems. As a result, a quasi LPV model approximation is 
constructed by suitably blending a set of linearized model of 
the nonlinear system holding around suitable equilibrium 
points. In this way, one can rewrite the nonlinear model of IM 
in a compact form as follow: 
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(3) 

Consider the following state variables:  

[ i ]T T
n rd rq sd sqix     (4) 

One can derive the following quasi-LPV model similar to 
the method which has been described in [36]: 
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Where (t) Rn
nx   is the state vector, (t) R un

u   is a known 

input. Moreover, (t) Rmy  represents the plant output 

provided by the physical redundant sensors possibly effected 

by bias fault (t) Rqb  .  Additionally, 1( ) [ (t),..., (t)]lt   is 

the set of normalized scheduling terms as follow: 
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Besides, for each equilibrium point  ( , ),i 1,...,l
in ix u  , the 

term ,x i i i i iA x B u  needed to be added in the formulation 

as a corresponding offset. 

Additionally, the sdv and sqv of stator voltage are 

considered as scheduling variables, where 
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Moreover, the scheduling parameters have been defined as 
follow: 
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Where the measurable parameters ip obtained by 

normalizing and centering the physical signals sdv and sqv as 

follow: 
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In order to exploit a simple quasi-LPV model description, 
one can re-describe the quasi-LPV model (5) as follow:  

,

1

( ) ( ) ( ) Ef(t)

Gd(t) ( )

( ) ( ) b(t)

n n

l

i x i

i

n

x t A x t B u t

t

y t Cx t F

 

 


  



 

  



 

(11) 

where 

2 2

2

2 2

2

1

0 0

2
0

3

2
0

3

2
0 (1 )

3 ( )

2
(1 ) 0

3 ( )

( ) ( ),  ( ) ( )f ( )

r
M

r

r
M

r

r s M r

s r M r

r s M r

s r M r

qd d n d

R
L

L

R
L

LE

L R L R

L L L L

L R L R

L L L L

f t f t d t x t t 

 
 
 
 
 
 
 

  
 

 
 

 
 

  

 

 

(12) 

Notice that ( )f t  considered as the fault effect, including the 

percentage of short circuit winding and the vector direction 

among its parameters. Moreover, in order to exploit the 

unknown input structure, we consider ( )d t  as an unknown 

input.   

3 PROPOSED STRATEGY FOR STATOR FAULT DIAGNOSIS 

3.1 Problem Statement 

Let us consider plant whose dynamics is described by (11). 
Of particular interest will be those systems in which the system 
matrices are described in polytopic framework whose 
mathematical description depends on parameters that change 
values over time. These parameters are generally considered as 
bounded and taking values inside a set  , often assumed to be 
a compact and convex polytope. This means that the system 
matrix 

: ( ,B )S      (13) 

 can be expressed as 

 

1 1

( )S , ( ) 1

l l

i i i

i i

S t t  
 

    

(14) 

where  

: ( , )i i iS A B  (15) 

 are constant system matrices of appropriate dimension. In 

particular, this implies that the system matrices ( ), nS t t R  

belong to the convex hull of 1, , NS S ,i.e. 

1( ) ( , , )NS t Conv S S  (16) 

The objective of this paper is to present an energetic based 
approach to estimate the component fault which can be coupled 
with a polytopic observer to estimate the bias fault. 

 To this end, an augmented unknown input structure has 
been used to decouple the component fault effect from the bias 
fault and unknown inputs. 

Then, the energy based framework in [25] has been 
extended to the following new structure 

fault sup stor diss       (17) 

 which implies that the fault rate energy( fault ) can be 

expressed as a function of stored energy( stor ), supply rate 

energy( sup ) and dissipated rate energy( diss ). This energy 

balance points out that fault estimation can be carried out, if we 
have been provided by the stored, supplied and dissipated 
energy value. While the aforementioned energies are function 
of system states, we proposed an algebraic technique to 
describe them by the input and output measured variables. 
Next, the energy balance has been re-described in a regression 
form where the regression coefficients are component fault 
matrix elements.  

Before describing the proposed scheme, let us recall first 
the usual concept of dissipativity and assumptions that are 
made.  

Definition1: Consider the process defined by (11) without 
fault. This process is said to be dissipative with respect to the 

supply rate ( , )S u y , if there exist a function 

( , ) ( ) ( ) ( ) 0V x x t Q x t   , called the storage function, and  

input function ( )u t  such that the dissipation inequality 

( , ) ( ) ( , ) ( ) ( , )xV x x t V x t S u y      (18) 

holds true for all signals ( , , , )x u y   satisfies  

A1: It is assumed that the input and the output variables of 
the system are bounded before and after the fault occurrence. 

So, there exist compact sets un
  and m  such that 

the input and the output variables remain bounded before and 
after the fault occurrence, i.e., for all ,t u   and y  . 

A2: It is assumed that the pair ( , )A C  is observable. 

A3: It is assumed that the trajectories (.)  are continuously 

differentiable while  

( ) , ( ) ,t t t R      (19) 
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where   is a compact set. This implies that there exists 

positive scalars i  such that the 

| |i i   (20) 

A4: It is assumed that the bias fault is varying slowly, i.e. 

( ) 0b t   (21) 

3.2 Energetic Approach for Fault Diagnosis 

     In order to estimate the short circuit winding fault, one can 
consider the bias fault as an actuator fault, following the 
procedure described in [38], by adding an auxiliary state 
variable having a faster response than all other physical system 
states as follow: 
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As a result, the related augmented model can be described as 
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(24) 

In order to decouple the multiplicative fault effect from the 
unknown input, following the procedure described in [39], we 

assumed to be provided by the matrices †( )H G CG  and 

T I HC   such that  

( ) ( )rank CG rank G  (25) 

   then a possible structure for unknown input description of (23) 
is given by 

( ) ( ) ( ) ( )
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Equation (26) is equivalent to 
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(27) 

where ( )w t  is the input vector as follow 
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Notice that the condition ( ) ( )rank CG rank G  guarantees that 

0TG  . 

 To design the passivity based fault detection method for (27), 
the passivity conditions should be investigated. The following 
Lemma gives us the passivity conditions for (27).   

 Lemma1:  The system (27) with supply rate  
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  and storage function ( , ) ( ) ( ) ( )V X X t Q X t   is passive if 

assumption A3 holds and there exist a symmetric positive 

definite matrix iQ , symmetric matrix 0Q  and the matrix iN  

such that  
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Proof:  To construct the energy balance (17) for system (27), 
consider the following kind of storage function 

 ( , ) ( ) ( ) ( )V X X t Q X t   (31) 

  The rate of change of storage function along trajectories of the 
system will be appear as follow 

( , ) ( ) ( ) ( )

             ( ) ( ) ( ) ( ) ( ) ( )

V X X t Q X t

X t Q X t X t Q X t
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  Considering (26), one can re-write (32) as 
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  which is equivalent to 
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Figure 2. The stator winding fault estimation results  

 Assuming to be provided by the matrix N   such that 
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 In addition, expression (36) is equivalent to  
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(40) 

 The necessary and sufficient condition for system (27) to be 

dissipative is that 0stor sup    which implies that 

0A T Q Q TA Q          (41) 

Due to (14),  it obviously follows 
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for any matrix 0Q  such  that  0 0iQ Q  . The matrix 0Q  is a 

slack variable introducing an additional degree of freedom. 
Then, inequality  (41) holds if 

0

1

( ) 0

N

i i

i

A T Q Q TA Q Q    


       

(44) 

which can be expressed as (30). 

Q.E.D. 

Now we have all ingredients to design a passivity based fault 

detection method. More formally, given the set of input ( ( )u t ) 

and output ( ( )y t ) of the plant, we are interested to estimate the 

component fault. To this end, consider the following Theorem. 

Theorem1: Let the conditions expressed in (30) be held. Also 

assume to be provided by a matrix ( )M t  such that 

( )C M t C A T Q Q TA        (45) 

Then, the system described in (23) will take the following 
innovation form 

( ) ( ) ( )Y t t f t  (46) 

where 

( ) ( ) ( ) ( ) ( )

       ( ) ( ) ( ) 2 ( ) ( )

       2 ( ) ( )

       2offset ( )

( ) 2 ( )

Y t y t N y t y t N y t

y t M t y t y t H C N y t

u t B T C N y t

C T N y t

t y t N CTE

 



 





  

    

   

  

 

 

(47) 

 

Proof: 

Assuming that the conditions expressed in (30) hold, one can re-
write (33)  as follow 

( , ) ( ) ( ) ( ) ( ) ( ) ( )

              ( ) ( ) ( )

            ( )( ( )

             2 ( ) ( ) 2 ( ) ( )

             2 ( ) ( ) 2off

)

set

V X y t N y t y t N y t

X t Q X t

X t A T Q Q TA Q X t

y t H C N y t u t B T C N y t

f t E T C N y t

    

  



  



  



    

       

       Q ( )T X t

 

(48) 

   Moreover, assuming to be provided by the matrix ( )M t  at 

each instant of time t  such that 

( )C M t C A T Q Q TA        (49) 

Then, one can re-describe  (48) as 

( ) ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) 2 ( ) ( )

     2 ( ) ( ) 2 ( ) ( )

     2 ( ) ( ) 2offset C ( )

y t N y t y t N y t X t Q X t

y t M t y t y t H C N y t

X t Q X t u t B T C N y t

f t E T C N y t T N y t

  



  

 

   

    

     

       

 

(50) 

Expression (50) is equivalent to 

2 ( ) ( ) ( ) ( ) ( ) ( )

            ( ) ( ) ( ) 2 ( ) ( )

           2 ( ) ( ) 2offset ( )

y t N CTEf t y t N y t y t N y t

y t M t y t y t H C N y t

u t B T C N y t T C N y t

  



  

    

    

       

 

(51) 

which can be written in compact form as 

( ) ( ) ( )Y t t f t  (52) 

Where 
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( ) ( ) ( ) ( ) ( )

       ( ) ( ) ( ) 2 ( ) ( )

       2 ( ) ( )

       2offset ( )

( ) 2 ( )

Y t y t N y t y t N y t

y t M t y t y t H C N y t

u t B T C N y t

T C N y t

t y t N CTE

 



 





  

    

   

  

 

 

(53) 

Q.E.D. 

Based on the regression form (46), the optimization 
algorithm developed by [37], is still applicable here. 

To this end, we will search solutions that minimize the 
estimation error as follow 

2

( )
0

ˆ
( ) arg min  ( ( ) ( ) ( ))

t

f t

f t Y f t d      

(54) 

Remark1: It is worth of pointing that, following the 
procedure described in [40], the LS technique could be coupled 
with an LPV Unknown Input Observer (LPV-UIO), to estimate 
the stator winding faults, simultaneously with system states and 
bias faults 
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Figure3. The stator winding fault estimation error 

 

4 CONCLUSION 

In this paper, a novel polytopic fault estimation technique is 

developed for an electrical induction motor which is subjected 

to stator winding faults. To this end, the nonlinear model of 

the electrical motor is first approximated in a quasi LPV 

model. Then, the fault energy is represented as a function of 

the stored energy, supply energy and dissipated energy. The 

design objective was to develop a polytopic scheme which can 

estimate winding faults. Property of the presented observer are 

formally proved and discussed. 

 

5 ILLUSTRATIVE EXAMPLE 

In this section, the effectiveness of the proposed scheme is 
investigated by considering the linear stable model which has 
been described in (5), where 

1

0 63 13 3 0

0 4 0 0 0

0 0 4 0 0

48 765 38603 0047 377

5 38603 765 377 47

   A

 
 
 
  
 

 
    

 

(57) 

2

0 64 1 3 0

0 4 0 0 0

0 0 4 0 0

48 765 38603 47 377

6 38603 765 377 47

A

  
 


 
  
 

 
     

 

(58) 

3

0 41 1 0 0

0 4 28 0 0

0 28 4 0 0

0 765 33683 47 377

6 33683 765 377 47

A

 
 


 
   
 

 
    

 

(59) 

 

 

Table1. Chosen equilibrium configuration for LPV 
interpolation 

 1 2

 

u u u 

 

1 2 3 4 5

 

x x x x x x    

 

 1 70

 

8u   

 

1 219.5527 -0.0282 0.2751 -1.4128 6.8054x    

 

 2 7 8

 

0u  

 

2 219.5527 0.0346 0.2744 0.1591 6.9487x      

 3

 

0 8u  

 

3 191.5748 -0.0369 0.0502 -0.0637 -4.4144

 

x    

 

 4 0 8u 
 

4 191.5748 0.0369 -0.0502 0.0637 4.4144

 

x    
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4

0 41 1 0 0

0 4 28 0 0

0 28 4 0 0

9 765 33683 47 377

6 33683 765 377 47

A

 
 


 
   
 
  
     

 

(60) 

 

1...4

0 0

1 0 0 0 00 0

,  C= 0 0 0 1 00 0

0 0 0 0 1189.011 0

0 189.

 

011

B

 
 

  
  
  
   

 
 

 

(61) 

-0.0116

-0.0058

32.0195

32.019

0 0 1 0 0 0 0

0 0 1 0 0 0

,  0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 05 1

E G

   
   
   
    
   
   
   
   

 

(62) 

Moreover, in the estimator design we pick 0.0056   to 

ensure a faster response for the auxiliary state defined in (22). 

 Notice that for the LPV interpolation, the equilibrium 
configuration has been chosen as Table (1). 

Furthermore, the input ( ) ( ) ( )sd squ t v t v t
    , e.g. 

provided by a controller is depicted in Fig(1). Also, the short 
circuit winding fault will affect the system as follow 

 5 10qd   
(63) 

The corresponding fault estimation results and the 
estimation error are reported in Fig(2) and (3). 
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