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Abstract. In any Bayesian inference problem, the posterior distribution is a product of the
likelihood and the prior: thus, it is affected by both in cases where one possesses little or no
information about the target parameters in advance. In the case of an objective Bayesian
analysis, the resulting posterior should be expected to be universally agreed upon by ev-
eryone, whereas . subjective Bayesianism would argue that probability corresponds to the
degree of personal belief. In this paper, we consider Bayesian estimation of two-parameter
exponential distribution using the Bayes approach needs a prior distribution for parame-
ters. However, it is difficult to use the joint prior distributions. Sometimes, by using linear
transformation of reliability function of two-parameter exponential distribution in order to
get simple linear regression model to estimation of parameters. Here, we propose to make
Bayesian inferences for the parameters using non-informative priors, namely the (depen-
dent and independent) Jeffreys’ prior and the reference prior. The Bayesian estimation was
assessed using the Monte Carlo method. The criteria mean square error was determined
evaluate the possible impact of prior specification on estimation. Finally, an application on
a real dataset illustrated the developed procedures.
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1. Introduction and Background
The two-parameter exponential distribution plays vital role in survival analysis and has

extensive applications in reliability, engineering, queueing theory, and medical sciences. The
researchers studied different estimation methods for a two-parameter exponential distribu-
tion. The most important method is the Bayesian method. Bayes estimation depends on
its applications in assuming that the parameter is a random variable with an ability density
function. The main challenge was determining the prior probability distribution of the pa-
rameters in the two cases with information and non-information. [1], [11], [12], [8] and [3]
have used approximate methods.

In this paper, we will prove that Jeffrey’s prior leads to a proper posterior while the reference
prior leads to an improper posterior. We also show how to represent the two-parameter
exponential distribution in a hierarchical form by augmenting the model with a latent variable,
making the Bayesian computations easier to implement. This representation would also allow
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the user to implement inferences using all-purpose Bayesian statistical packages, like Win
BUGS [9] or [10]. [2] estimate the parameters of two-parameter exponential distribution
using the linear transformation (LT) of the reliability function. They mainly explore prior
distributions for estimation parameters of a two-parameter exponential distribution. One of
these prior distributions is Jeffreys’ joint prior distribution. Nevertheless, we show that the
prior distribution given by [12] is proper and applicable.

This paper proposes a method for estimating the two-parameter exponential distribution
by modeling a simple linear regression model based on the cumulative distribution function.
The proposed method estimates the distribution parameters based on the Bays method and
then compares the proposed method with the approximation method [11] using the mean
squares error.

The main goal of this article is to present Bayesian estimators with appropriate posterior
distribution related to the prior distribution of the same, which is shown by the point that the
posterior distribution is finite in the parameter space. and rendering estimators compared
to estimators provided by [2], [5] and [4]. So, according to the methods of estimating the
parameters of the two-parameter exponential distribution presented by many researchers. We
have theoretically shown that the posterior distribution is finite with respect to objective Bayes
and the estimators will perform better as a result. Recently a large number of researchers,
including [13], [5], and [14] used objective Bayes estimation to estimate parameters. In this
article, the objective Bayes estimators of the parameters of the two-parameter exponential
distribution are compared to the estimators provided by [7], [12], [11], and [2] and show that
the MSE of these estimators are less.

The remainder of this paper is organized as follows. In Section 2, we present the two-
parameters exponential distribution and list some of its properties, and we deal with the
method of maximum likelihood in estimating µ and θ. In section 3.1, we formulated the
Bayesian estimation using linear transformation of reliability function. In section 3.2, we
provided the Bayesian estimation by using non-informative priors. In section 4.1, a simulation
study is presented. The methodology is illustrated on the real dataset in section 4.2.

2. Model Definitions
Here we use the model definition from [11] and [12].

2.1. Definition. A continuous random variable X has a two-exponential distribution with
parameters µ and θ if its probability density function is given by

(2.1) f(x|µ, θ) = 1

θ
e−

(x−µ)
θ , x > µ,

where the parameters µ > 0 and θ > 0 are interpreted as a measure of guarantee and failure
rate, respectively. We refer to this distribution as Exp(µ, θ). The median is (µ− θ ln(2)). To
estimate the parameters, suppose that X1, X2, ..., Xn is a random sample of size n from (2.1).
The likelihood function can be written as

(2.2) L(x1, x2, ..., xn|µ, θ) = L(x|µ, θ) = 1

θn
e−

1
θ

∑n
i=1(xi−µ) =

1

θn
e−

1
θ
(nx̄−nµ).

Let l(µ, θ) = log(L(x|µ, θ)), then the maximum likelihood estimation of µ and θ are µ̂ =

min(X1, X2, ..., Xn) and θ̂ = X̄ − µ̂, respectively.
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3. Bayesian Estimation
3.1. Bayesian Estimation using a linear transformation of the reliability function.
[2] transformed the reliability function of the two-parameter exponential distribution to esti-
mate the distribution parameters by taking the natural logarithm to the facility of (2.1). The
solution is as follows.

(3.1) R(xi) = exp

(
−xi − µ

θ

)
.

Taking the natural logarithm for both sides of (2.1), then

(3.2) − lnR(xi) = θ−1xi − µθ−1.

This equation is similar to the following simple linear regression model.
(3.3) yi = β0 + β1xi + ei, i = 1, 2, ..., n.

So, the estimators of the two-parameter exponential distribution are as follows.
(3.4) θ̂ = β̂−1

1L , µ̂ = −β0Lθ̂.

In general, model (3.3) will be
(3.5) Y = Xβ + U, U ∼ N2(0, σ

2I2),

where Y and U are vector of size (n× 1), X is a matrix of size (n× 2), and β is a vector of
regression parameters of size (2× 1). Then, the likelihood function is

(3.6) L(β, σ2|x) = e−
1

2σ2 (Y−Xβ)(Y−Xβ)

(2π)
n
2 (σ2)

n
2

.

As β and σ2 are unknown, the conditional conjugate prior distribution for β and σ2 are given,
respectively of
(3.7) β|σ2 ∼ N2(β0

, σ2V0),

(3.8) σ2 ∼ IG

(
a0
2
,
b0
2

)
,

where V0 is a symmetric positive defined matrix of size (2 × 2). From (3.7) and (3.8), the
joint prior distribution for β and σ2 is defined as

(3.9) p(β, σ2) = p(β|σ2)p(σ2).

The joint posterior distribution for (β, σ2) can be found by equations (3.6) and (3.9) as follows.

(3.10) p(β, σ2|data) ∝ (σ2)−
a0+n

2
+1e−

s2T
2σ2

1

σ2
e−

1
2σ2 (β̂Ls

−c)′D(β̂
Ls

−c).

It represents the kernel of IG
(
a0+n

2 ,
s2T
2

)
N(c, σ2D−1), where c =

(
c1
c2

)
= (I2+ν−1

0 )−1(ν−1
0 β0+

β̂) and D−1 = I2 + ν−1
0 . This can be written as follows.

D−1 =

[
d∗11 d∗12
d∗21 d∗22

]
, s2T = b0 + (n− 1)s2e + d, s2e =

(Y −Xβ̂
Ls
)′(Y −Xβ̂

Ls
)

n− 1
,
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d = (β̂
0
− β̂

Ls
)′((I2 + ν0)

−1)(β̂
0
− β̂

Ls
) , this is constant.

So, the Bayesian estimation for β0 and β1 are defined as the followed value respectively,

(3.11) β̂0L = c1, β̂1L = c2.

By using substitute values of β̂0L, β̂1L in the equation (3.4), then the estimated values of the
exponential distribution parameters in the proposed method will be as follows.

(3.12) θ̂LT = c−1
2 , µ̂LT = −c1c

−1
2 .

Note that in any Bayesian inference problem, the posterior is a product of the likelihood
and the prior and thus is affected by both. In cases where one possesses little or no information
about the target parameters in advance. In objective Bayesian, the resulting posterior should
be expected to be universally agreed upon by everyone, whereas a subjective Bayesian would
argue that probability corresponds to the degree of personal belief.

3.2. Prior specifications. The Bayesian estimation approach has received significant at-
tention failure time data analysis. It uses one’s prior knowledge about the parameters and
also considers the available data. If one’s prior knowledge about the parameter is available,
it is suitable to use an informative prior. However, one does not have any prior knowledge
about the parameter and cannot obtain vital information from experts in this regard, then
a non-informative prior will be a suitable alternative to use ([6]). [2] used the joint Jeffreys’
prior as

(3.13) p(µ, θ) ∝ 1

θ
I(0,∞)(µ), θ > 0.

According to (2.2), the posterior density for µ and θ is

(3.14) p(µ, θ|x) = nsn−1

Γ(n− 1)θn+1
e−

1
θ
{s+n(x(1)−µ)},

where s =
∑n

i=1(xi − x(1)). The marginal posterior density of µ is given by

p(µ|x) =
∫ ∞

0
p(µ, θ|x)dθ

= n(n− 1)
sn−1

{s+ n(x(1) − µ)}n−1
.

So

(3.15) µ̂Bayes = E(µ|x) = x(1) −
s

n(n− 2)
.

By using (3.14), the marginal posterior density of θ is given by

p(θ|x) =
∫ x(1)

0
p(µ, θ|x)dθ =

sn−1

Γ(n− 1)

θ−
s
θ

θn
.

Then

(3.16) θ̂Bayes = E(θ|x) = s

(n− 2)
.

We conclude that the posterior distribution by using this prior is proper.
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Let us recall the hierarchical form for two-parameter exponential distribution which is
presented in Section 2. The conditional density of µ and θ for the prior distribution given by
[11] and [12] can be obtained as follows.

(3.17) πJ2(µ, θ) = π(µ)π(θ) =
1

µθ
, µ > 0, θ > 0,

(3.18) π(µ, θ) ∝ 1

θν0+1
exp

(
−δ0 − λ0µ

θ

)
, 0 < µ ≤ η0, θ > 0,

such that ν0 ≤ λ0 ≤ δ0
η0

.

Proposition 3.1. For any sample size, the posterior distribution under the independent
Jeffrey’s prior (3.17) is improper.

Proof. Using an independent Jeffrey’s prior, the joint posterior density of µ and θ is given by

π(µ, θ|x) ∝ n

θn+1

1

µ
e−

1
θ

∑n
i=1(xi−µ), µ > 0, θ > 0.

We next show that the integral of this expression is infinite.∫ ∞

0

∫ ∞

0

n

θn+1

1

µ
e−

nx̄
θ
−nµ

θ d µdθ =

∫ ∞

0

n

θn+1
e−

nx̄
θ

(∫ ∞

0

1

µ
e

nµ
θ

)
dθ

=

∫ ∞

0

n2

θn+2
e−

nx̄
θ

(∫ ∞

0

∞∑
t=0

((nµ
θ

)t−1

t!

)
dµ

)
dθ

=

∫ ∞

0

n2

θn+2
e−

nx̄
θ

( ∞∑
t=0

1

t!

∫ ∞

0

(nµ
θ

)t−1
dµ

)
dθ

=

∫ ∞

0

n2

θn+2
e−

nx̄
θ

( ∞∑
t=0

1

t!

[
1

t

(n
θ

)t−1
µt−1

∣∣∣∞
0

])
dθ

=

∫ ∞

0

n2

θn+2
e−

nx̄
θ (∞)dθ = ∞.

□

Proposition 3.2. For any sample size, the posterior distribution under the prior given by
[11] and [12] or (3.18) is proper.

Proof. Under this prior distribution, the joint posterior density of µ and θ is given by

(3.19) π(µ, θ|x) ∝ 1

θn+ν0+1
exp

(
−δ0 − λ0µ

θ
+

nµ− nx̄

θ

)
, 0 < µ ≤ η0, θ > 0.
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We next show that the integral of this expression is finite.∫ ∞

0

∫ η0

0
π(µ, θ|x)dµ dθ ∝

∫ ∞

0

∫ η0

0

1

θn+ν0+1
exp

(
−δ0 − λ0µ

θ
+

nµ− nx̄

θ

)
dµ dθ

=

∫ ∞

0

1

θn+ν0+1

∫ η0

0
exp

(
−λ0µ+ nµ

θ

)
dµ dθ

=

∫ ∞

0

1

θn+ν0+1
exp

(
−δ0 + nx̄

θ

)[
θ

n+ λ0
exp

(
(n+ λ0)η0

θ

) ∣∣∣η0
0

]
dθ

=
k

n+ λ0

∫ ∞

0

1

θn+ν0
exp

(
−δ0 + nx̄

θ

)[
exp

(
(n+ λ0)η0

θ

)
− 1

]
dθ

=
1

n+ λ0

∫ ∞

0

exp
(
− δ0+nx̄−nη0−nλ0

θ

)
θn+ν0

dθ − 1

n+ λ0

∫ ∞

0

exp
(
− δ0+nx̄

θ

)
θn+ν0

dθ.

So∫ ∞

0

∫ η0

0
π(µ, θ|x)dµ dθ ∝ 1

n+ λ0

∫ ∞

0

exp
(
− δ0+nx̄−nη0−nλ0

θ

)
θn+ν0

dθ − 1

n+ λ0

∫ ∞

0

exp
(
− δ0+nx̄

θ

)
θn+ν0

dθ

=
1

n+ λ0

Γ(n+ ν0 − 1)

(δ0 + nx̄− nη0 − nλ0)n+ν0−1
− 1

n+ λ0

Γ(n+ ν0 − 1)

(δ0 + nx̄)n+ν0−1
< ∞.

□

Therefore, we conclude that the posterior distribution by using this prior is proper. Let
us recall the hierarchical form for two-parameter exponential distribution which is presented
in Section 2, we obtain conditional density of µ and θ for the prior distribution given by [11]
and [12] as follows.

π(µ, θ|x) ∝ 1

θN+1
exp

(
−δ0 + nx̄− (n+ λ0)µ

θ

)
=

1

θN+1
exp

(
−nx̄+ δ0

θ
+

(n+ λ0)µ

θ

)
,(3.20)

such that N = n+ ν0. Then

π(µ|x) ∝
∫ ∞

0

1

θN+1
exp

(
−nx̄+ δ0

θ
+

(n+ λ0)µ

θ

)
dθ =

Γ(N)

((nx̄+ δ0)− (n+ λ0)µ)
N
.

So

(3.21) π(µ|x) = k1Γ(N)

((nx̄+ δ0)− (n+ λ0)µ)
N
, 0 < µ < η0,

where 1
k1

=
∫ η0
0

Γ(N)

((nx̄+δ0)−(n+λ0)µ)
N dµ. It easy to show that

k1 =
(N − 1)(n+ λ0)

Γ(N)
[
((nx̄+ δ0)− (n+ λ0)η0)

−N+1 − (nx̄+ δ0)−N+1
]

=
(n+ λ0)

Γ(N − 1)
[
((nx̄+ δ0)− (n+ λ0)η0)

−N+1 − (nx̄+ δ0)−N+1
] ,
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and

π(µ|x) ∝
∫ η0

0

1

θN+1
exp

(
−nx̄+ δ0

θ
+

(n+ λ0)µ

θ

)
dµ

=
1

θN+1
exp

(
−nx̄+ δ0

θ

)∫ η0

0
exp

(
(n+ λ0)µ

θ

)
dµ

=
1

(n+ λ0)

1

θN
exp

[(
−(nx̄+ δ0)

θ
+

(n+ λ0)η0
θ

)
− exp

(
−(nx̄+ δ0)

θ

)]
.(3.22)

Then
(3.23)

π(θ|x) = 1

(n+ λ0)

k2
θN

exp

[(
−(nx̄+ δ0)

θ
+

(n+ λ0)η0
θ

)
− exp

(
−(nx̄+ δ0)

θ

)]
, θ > 0,

where
k2 =

(n+ λ0)

Γ(N − 1)
[
((nx̄+ δ0)− (n+ λ0)η0)

−N+1 − (nx̄+ δ0)−N+1
] .

Here, to obtain Bayes estimation of µ and θ by using the equation, we have

µ̂Obj−B = E(µ|x) =
∫ η0

0

k1Γ(N)µ

((nx̄+ δ0)− (n+ λ0)µ)
N
dµ.

Let u = µ, du = dµ, and 1
((nx̄+δ0)−(n+λ0)µ)

N dµ = dν. So

ν =
1

(N − 1)(n+ λ0)
((nx̄+ δ0)− (n+ λ0)µ)

−N+1 .

Then

µ̂Obj−B=E(µ|x)=k1Γ(N)

{
η0 ((nx̄+δ0)−(n+λ0)η0)

−N+1

(n+λ0)(N−1)
−
∫ η0

0

((nx̄+δ0)−(n+λ0)µ)
−N+1

(n+ λ0)(N − 1)
dµ

}

= k1Γ(N)

{
η0 ((nx̄+δ0)−(n+λ0)η0)

−N+1

(n+λ0)(N−1)
− 1

(n+λ0)(N−1)

[
((nx̄+δ0)−(n+λ0)µ)

−N+2

(n+ λ0)(N − 2)

∣∣∣η0
0

]}

=
k1Γ(N)

N − 1

{
η0 ((nx̄+δ0)−(n+λ0)η0)

−N+1

(n+λ0)
− ((nx̄+δ0)−(n+λ0)η0)

−N+2

(n+λ0)2(N − 2)
+

(nx̄+ δ0)
−N+2

(n+λ0)2(N − 2)

}
,

(3.24)

and

θ̂Obj−B=E(θ|x)= k2
(n+λ0)

∫ ∞

0

θ

θN

[
exp

(
−((nx̄+δ0)−(n+λ0)η0)

θ

)
− exp

(
(nx̄+δ0)

θ

)]
dθ

=
k2

(n+λ0)

[∫ ∞

0

1

θN−1
exp

(
−((nx̄+δ0)−(n+λ0)η0)

θ

)
dθ−

∫ ∞

0

1

θN−1
exp

(
(nx̄+δ0)

θ

)
dθ

]
=

k2
(n+λ0)

Γ(N−2)
[
((nx̄+δ0)−(n+λ0)η0)

−N+2−(nx̄+δ0)
−N+2

]

=
1

N − 2

[
((nx̄+ δ0)− (n+ λ0)η0)

−N+2 − (nx̄+ δ0)
−N+2

]
[
((nx̄+ δ0)− (n+ λ0)η0)

−N+1 − (nx̄+ δ0)−N+1
] .

(3.25)
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4. Practical part
4.1. Simulation. In order to apply what was mentioned in the theoretical part, the simu-
lation approach was used. The Monte Carlo method was used the cumulative distribution
function and to generate data followed two-parameter exponential distribution. Samples were
generated with sizes n = 10(10)90 for the two-parameter exponential distribution. The model
was then estimated using the posterior obtained from Jeffreys’ priors. Let θ̂(j) be the estimate
of parameter θ for the j-th replication, j = 1, 2, ..., N . These are the parameter posteri modes
calculated from the N = 10000 simulated values for each replication. In order to evaluate
the estimation method, the criteria was considered the mean square error (MSE), which is
defined as

MSE =
1

N

N∑
j=1

(θ̂(j) − θ)2.

4.2. Empirical Results. The results are presented in the following tables, including a com-
parison between the estimations of scale and location. The µ and θ parameters were Bayes
estimator from the formulas as in (3.15) and (3.16) and based on objected Bayes formulas as
(3.24) and (3.25) with different initial values for η0 = 2.05, δ0 = 12, ν0 = 0.85, and λ0 = 2.
The results of MSE criteria values for the estimator are also presented. Tables 1-4 show
that the MSE values of the estimators in the objective method are less than using the Bayes
method. Also, the MSE value of parameters decreases as the sample size increases.

Note that in all tables based on MSE the estimators of µ and θ using of objective method
is better. By considering results of Tables 3 and 4, we can say that for fixed value of µ with
decreasing of θ, the MSE decreases when the sample size increased. Therefore, the use of
prior distribution given in [11] and [12] recommended when we consider estimators based on
objective Bayesian method. Here to compare the objective Bayesian estimator with the linear
transformation of reliability function according to [2], the results are given in Table 5. One
should noted that the MSE values of the estimators in the objective method are less than its
values by using the Bayes method.

n µ̂Obj−B θ̂Obj−B µ̂Bayes θ̂Bayes MSEµ̂Obj−B
MSEθ̂Obj−B

MSEµ̂Bayes
MSEθ̂Bayes

10 1.4772 1.6873 1.4747 1.7015 3.7571e− 04 5.4111e− 02 2.4210e− 02 3.0795e− 01
20 1.4086 1.6091 1.4968 1.6020 1.0293e− 04 4.9818e− 02 5.9040e− 03 1.3144e− 01
30 1.4217 1.6055 1.4986 1.5469 4.4235e− 05 4.5297e− 02 2.2281e− 03 8.9572e− 02
40 1.4280 1.6214 1.4979 1.5450 2.0407e− 05 3.5998e− 02 1.2963e− 03 6.1509e− 02
50 1.4323 1.6317 1.4985 1.5255 1.0753e− 05 2.9077e− 02 8.8633e− 04 4.4924e− 02
60 1.4351 1.6499 1.4994 1.5174 7.1678e− 06 2.7553e− 02 6.3381e− 04 3.8525e− 02
70 1.4370 1.6328 1.4996 1.5254 4.4332e− 06 2.2981e− 02 4.6399e− 04 3.1050e− 02
80 1.4385 1.6410 1.4986 1.5303 3.2701e− 06 2.1988e− 02 2.9238e− 04 2.8742e− 02
90 1.4398 1.6358 1.5008 1.5181 2.4239e− 06 2.0516e− 02 3.1804e− 04 2.6217e− 02

Table 1. MSEs and average values of estimates when µ = 1.5, θ = 1.5.

4.3. Actual data. The following data were selected from Tires Factory, where the working
time (hours) between failures were deduced by the time recorded in the internal statements of
the factory for six months. A test was carried out in R software. The results showed that the
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n µ̂Obj−B θ̂Obj−B µ̂Bayes θ̂Bayes MSEµ̂Obj−B
MSEθ̂Obj−B

MSEµ̂Bayes
MSEθ̂Bayes

10 1.8527 2.3776 1.9327 4.5373 2.5000e− 03 3.8380e− 01 1.7210e− 01 21.899e− 01
20 1.9168 2.9300 1.9915 4.2720 7.2980e− 04 3.5422e− 01 4.1984e− 02 9.3469e− 01
30 1.9516 3.1482 1.9965 4.1253 3.1451e− 04 3.2211e− 01 1.5844e− 02 6.3696e− 01
40 1.9707 3.3272 1.9944 4.1201 0.00014511 0.2559875 0.00921882 0.4374008
50 1.9844 3.4090 1.9961 4.0680 7.6469e− 05 2.0677e− 01 6.3028e− 03 3.1946e− 01
60 1.9938 3.4793 1.9985 4.0464 5.0971e− 05 1.9593e− 01 4.5071e− 03 2.7395e− 01
70 2.0005 3.5626 1.9991 4.06775 3.1525e− 05 1.6342e− 01 3.2995e− 03 2.2080e− 01
80 2.0058 3.6223 1.9964 4.0809 2.3254e− 05 1.5636e− 01 2.0791e− 03 2.0439e− 01
90 2.0104 3.6389 2.0022 4.0482 1.7236e− 05 1.4589e− 01 2.2616e− 03 1.8643e− 01

Table 2. MSEs and average values of estimates when µ = 2, θ = 4.

n µ̂Obj−B θ̂Obj−B µ̂Bayes θ̂Bayes MSEµ̂Obj−B
MSEθ̂Obj−B

MSEµ̂Bayes
MSEθ̂Bayes

10 2.7769 3.3312 2.9564 5.5238 3.5000e− 03 6.0620e− 01 3.0590e− 1 33.710e− 1
20 2.8595 4.1966 2.9926 5.2185 1.1000e− 03 5.6200e− 01 6.1400e− 1 14.3960e− 1
30 2.9054 4.6270 2.9961 5.1309 4.6460e− 04 4.7689e− 01 3.0179e− 02 9.3315e− 01
40 2.9323 4.9399 2.9943 5.1620 2.2025e− 04 3.8862e− 01 1.4963e− 02 6.5352e− 01
50 2.9525 5.0696 2.9967 5.0804 1.3368e− 04 3.6149e− 01 1.0526e− 02 5.5228e− 01
60 2.9661 5.1973 2.9993 5.0669 7.6342e− 05 2.9346e− 01 6.9892e− 03 4.2124e− 01
70 2.9766 5.2783 2.9978 5.0436 4.0829e− 05 2.6349e− 01 5.1691e− 03 3.5948e− 01
80 2.9843 5.3847 3.0007 5.0716 3.7625e− 05 2.5299e− 01 4.8152e− 03 3.2984e− 01
90 2.9911 5.4163 2.9965 5.0398 2.4663e− 05 2.0875e− 01 2.9360e− 03 2.6730e− 01

Table 3. MSEs and average values of estimates when µ = 3, θ = 5.

n µ̂Obj−B θ̂Obj−B µ̂Bayes θ̂Bayes MSEµ̂Obj−B
MSEθ̂Obj−B

MSEµ̂Bayes
MSEθ̂Bayes

10 2.8533 2.3673 2.9643 3.3678 1.6000e− 3 2.4580e− 1 1.1180e− 1 14.2490e− 1
20 2.9184 2.8952 2.9988 3.1568 3.8994e− 04 1.8907e− 01 2.7496e− 02 4.9172e− 01
30 2.9506 3.1791 2.9959 3.1340 1.7494e− 04 1.7915e− 01 9.9781e− 03 3.5355e− 01
40 2.9710 3.3141 2.9942 3.0779 7.4747e− 05 1.3185e− 01 5.1218e− 03 2.2342e− 01
50 2.9839 3.4336 2.9957 3.0782 4.7603e− 04 1.2871e− 01 3.0341e− 03 1.9621e− 01
60 2.9935 3.4998 2.9993 3.0530 2.7009e− 05 1.0382e− 01 2.8620e− 03 1.4813e− 01
70 3.0006 3.5504 2.9975 3.0406 1.8286e− 05 9.4799e− 02 1.6164e− 03 1.2946e− 01
80 3.0061 3.5923 3.0000 3.0304 1.2744e− 05 8.5692e− 02 1.4115e− 03 1.1357e− 01
90 3.0104 3.6397 2.9981 3.0420 9.3748e− 06 7.9348e− 02 9.9925e− 04 1.0110e− 01

Table 4. MSEs and average values of estimates when µ = 3, θ = 3.

data had two-parameter exponential distribution with scale parameter θ = 97.85 and location
parameter µ = 0.25.

The following table depicts the estimated value by proposed and approximate Bayes meth-
ods when the values of the positive definite matrix are fixed at ν110 = 8, ν220 = 8, ν120 =
ν210 = 0.1, and selecting initial values of parameters close to estimated values β00 = −0.028,
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n µ̂Obj−B θ̂Obj−B µ̂Bayes θ̂Bayes MSEµ̂Obj−B
MSEθ̂Obj−B

MSEµ̂Bayes
MSEθ̂Bayes

10 1.9298 2.0947 1.3693 1.9358 0.004925 0.008975 0.006523 0.000716
25 1.9298 2.0947 1.6239 1.9898 0.004925 0.008975 0.007969 0.000127
50 1.9298 2.0947 1.7449 2.0146 0.004925 0.008975 0.005851 0.000021
100 1.9298 2.0947 1.8539 2.0318 0.004925 0.008975 0.003269 0.000013

Table 5. MSEs and average values of estimates when θ = µ = 2 (Initial
values for β00 = −28 & β01 = 0.3 )

β01 = 0.01, θ0 = 97, and µ0 = 0.25 by using different sample sizes.
140.5 312 22.5 48.75 72.5 49.75 218.25 22.25 9.25 68.25 75.5 22.5 23.25 22 63 23 58.75 237.5
193.5 30.25 17.75 141 146.5 127.5 257.75 352 42.5 138.5 51 35.75 173 41.75

Method Object Bayes Pl-Bayes
µ̂ 6.045425 0.4920

θ̂ 74.209891 97.0620

− logL(µ̂, θ̂) 178.8498 179.611

AIC = 2k − 2l(µ̂, θ̂) 361.6978 363.2219

BIC = k log(n)− 2l(µ̂, θ̂) 364.6293 366.1534

Table 6. Estimated value, Log-likelihood and its AIC and BIC of the real example.

The results in Table 6 show that the estimator of parameters based on objective Bayes
estimation is proper. Therefore, we conclude that objective Bayes estimation should be used.
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