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Abstract
Distribution feeder reconfiguration (DFR) and capacitor allocation are used in dis-
tribution systems to reduce power losses improve reliability and keep the voltage 
within acceptable limits. Distribution feeder reconfiguration is an important issue 
which can improve the network performance by changing the status of switches 
to satisfy some objective functions. The performance can be further improved by 
simultaneous application of capacitors. The DFR problem is intrinsically complex 
and nonlinear; combination with capacitor allocation the problem becomes more 
complex than before, hence a precise optimization method is required to solve the 
problem. In this paper a multi-objective framework is presented for DFR along with 
capacitor allocation problem over multiple time intervals as dynamic DFR consid-
ering distributed generation, energy storage systems and photovoltaic units. The 
common objectives of DFR problem in traditional distribution systems are power 
losses and voltage deviations. Usually less attentions have been paid to reliability 
and security of distribution network. In the present paper the operation cost, reliabil-
ity and voltage stability index are considered as objective functions. A novel hybrid 
optimization method called is proposed to solve the problem. The proposed method 
is a combination of Improved particle swarm optimization and Modified shuffled 
leaping algorithms. The obtained results justify its superior performance in solving 
the proposed complex optimization problem.
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1 Introduction

Generally, distribution systems are designed in mesh type, but operated in radial, 
because many operations such as voltage control and protection are based on 
radial configuration. The distribution feeder reconfiguration (DFR) is performed 
by managing the open/close status of sectionalizing and tie-switches in order to 
optimize some objective functions while satisfying the operational constraints 
without islanding formation of any bus in distribution network. In modern distri-
bution systems, the DGs, ESSs and electric vehicles (EVs) have taken an impor-
tant position [1]. The integration of DGs and ESSs has a significant impact on the 
distribution network regarding the voltage profile of buses and branch currents 
[2]. If these devices are not properly managed the stability of system may encoun-
ter instability. The effects of DGs, EVs and ESSs on solving the DFR problem are 
considered in [7, 9, 10, 12–18, 20, 21]. In the following, the static and dynamic 
models of DFR problem and the modelling of DFR problem in this study and 
the method for solving the problem are presented. In [3], authors have presented 
a comprehensive survey on DFR problem including the characterised solution 
methods. In the static DFR framework, depending on the objective functions, the 
information about the load pattern and the electricity price, the DFR problem has 
solved. In this framework, the load pattern and electricity price are considered 
to be fixed. In [3–18], the DFR problem has been modelled as static framework. 
Static DFR problem is inherently a composite and non-differentiated complex 
optimization problem which is difficult to solve. During the past years, differ-
ent mathematical methods have been used to solve the DFR problem [4–6]. For 
example, authors in [4] proposed the distance measurement technique (DMT). A 
new method based on brute force approach to solve the DFR problem to reduce 
power losses is provided in [5]. In [6], the DFR problem is modelled as an inte-
ger programming (IP) optimization to reduce the total power losses. However, 
these numerical methods cannot guarantee in presenting the global optimal solu-
tion because of having some constraints such as the continuity and derivability of 
the objective functions. Hence, these numerical and mathematical algorithms are 
not suitable candidates for solving the Multi-objective DFR problem. A literature 
survey shows that various evolutionary optimization algorithms have been used to 
solve the DFR problem [7–22]. In [7] a hybrid PSO-MSFLA is proposed to solve 
the DFR problem considering DGs in order to improve the reliability and secu-
rity. In [8] an Invasive Weed Optimization (IWO) algorithm is provided to solve 
the multi-objective DFR problem in radial distribution systems. In [9] a Deci-
mal coded Quantum PSO (DCQPSO) is presented to solve the multi-objective 
DFR problem considering DGs. Authors introduced a Social Spider Optimization 
(SSO) algorithm to solve the DFR considering Electric Vehicles (EVs) and Vehi-
cle-to-Grid (V2G) [10]. In [11] a new hybrid Big Bang-Big Crunch algorithm 
(HBB-BC) is provided to solved the multi-objective DFR along with capacitor 
placement in balanced and unbalanced radial distribution systems. Authors pre-
sented a multi-objective Hybrid Big Bang-Big Crunch algorithm (MOHBB-BC) 
to solve the multi-objective DFR problem and allocation of DGs [12]. In [13] a 
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heuristic approach according to uniform voltage distribution based constructive 
reconfiguration algorithm (UVDA) is proposed to solve the DFR problem and 
optimal DG sizing. In [14], an enhanced gravitational search algorithm (ESGA) 
is suggested to solve the DFR problem in presence of DGs. In [15], a PSO algo-
rithm is suggested to solve a risk-based reconfiguration of electric distribution 
networks in presence of reward/penalty scheme considering load and genera-
tion uncertainty, Scenario theory (ST) was used for risk modelling. Authors sug-
gested a GA to solve the DFR problem considering DGs in order to minimize the 
cost of purchased energy regarding hourly Locational Marginal Prices (LMPs) 
of wholesale market [16]. Authors presented a branch exchange (BE) method to 
solve the multi-objective DFR problem considering DGs in order to improve the 
power quality [17]. In [18] an enhanced Gravitational Search Algorithm (EGSA) 
is proposed to solve the multi-objective DFR problem considering DGs in order 
to improve the transient stability.

The survey on this subject shows that most of references have been used static 
framework to solve DFR problem which is not appropriate due to the time varia-
tion of the load pattern and electricity price, especially in smart grids [19]. Power 
systems encounter more uncertainties in both sides of generation and demand due to 
uncertainty in load patterns and electricity prices. A common approach is the devel-
opment of operational problems such as economic load dispatch, optimal power 
flow and DFR over multiple time intervals regarded as dynamic DFR. In Dynamic 
DFR (DDFR) framework, the load pattern and electricity price are not constant over 
different time intervals. Therefore, the load pattern and electricity price are pre-
dicted for specified time interval, then DFR problem for this time interval is solved. 
In [20–22], the DFR problem has been modelled as Dynamic framework. In [20] 
Ant Colony Optimization (ACO) technique is presented for simultaneous dynamic 
scheduling of feeder reconfiguration and capacitor switching in presence of DGs 
considering uncertain and variant generation. Authors proposed a hybrid evolution-
ary algorithm which is combination of Grey Wolf Optimizer (GWO) and Improved 
PSO (IPSO) to solve the dynamic DFR problem considering DGs, Time varying 
electricity prices and different load levels [21]. In [22] the combination of dynamic 
programing and harmony search is presented for DFR problem to power loss reduc-
tion and reliability improvement.

In this study, the Distribution feeder reconfiguration along with capacitor alloca-
tion (DFR&CA) problem is solved as a dynamic optimization problem over mul-
tiple time intervals. For this purpose, the load pattern and electricity price related 
to next day are predicted. Then, feeder reconfiguration is implemented in distribu-
tion network related to next day by management of switches (sectionalizing and tie-
switches) regarding different objectives and engineering and physical constraints.

Advantages of DFR&CA in dynamic framework compared to other works in the 
literature are as follows.

• Due to changes in the load pattern and electricity prices, solving the DFR prob-
lem in different time intervals is important due to cost reduction and manage-
ment of electrical power resources. These matters are considered in the present 
work which are not taken into account in static framework.
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• In this study, the hourly load and price changes are considered in dynamic DFR 
and capacitor allocation problem in 24 h related to next day while in previous 
works this problem is solved only over long period of time leading to significant 
error.

Many recent research works on the DFR problem have focused on different 
objectives such as reducing power losses, voltage deviation and operational cost, but 
less attention has been paid to reliability and network security. Therefore, improv-
ing distribution network reliability can be a major concern. For this reason, Energy 
Not Supplied (ENS) along with Voltage Stability Index (VSI) and operation cost are 
considered as objective functions. Solving the multi-objective DDFR&CA problem 
in radial distribution network requires an accurate and powerful optimization algo-
rithm. To do so, a new hybrid algorithm based on combination of Improved Par-
ticle Swarm Optimization and Modified Shuffled Frog Leaping Algorithm (IPSO-
MSFLA) is proposed to deal with the complexities of DDFR&CA as a non-linear 
and non-convex problem having many local optima. On one hand the PSO is widely 
used in power system optimization because of its simple implementation, on the 
other hand the SFLA compared with other evolutionary algorithms benefits from 
minimum storage requirement. By reviewing papers [7, 9, 15, 21], it is observed that 
these algorithms have been widely used to solve this problem. However, the both 
algorithms have some weaknesses such as; premature converge and convergence 
towards the global optimal in long time period, hence, a new initiative strategy is 
added to each in order to improve the population diversity and the search ability of 
algorithm such as: presenting a new mutation in MSFLA and changing the learn-
ing factors in IPSO algorithm. In the optimization of DDFR&CA problem the PSO, 
SFLA and IPSO-MSFLA algorithms are implemented to demonstrate the superior-
ity of the proposed hybrid algorithm over PSO and SFLA algorithms.

Advantages of IPSO-MSFLA with respect to original PSO and SFLA algorithms 
are as follows.

• Improving the diversity of population and search ability of IPSO-MSFLA by 
splitting the initial population between IPSO and MSFLA. Then, each algorithm 
executes an optimization process to get the global best solution.

• The possibility of premature convergence or falling into local optimum in IPSO-
MSFLA algorithm is reduced by modifying the mutation strategy in MSFLA 
and learning factors in IPSO

• Improving the accuracy and performance of IPSO-MSFLA algorithm by choos-
ing the best global obtained from IPSO and MSFLA.

In this study, by considering VSI, ENS and operation cost as objective functions, 
it is imperative to tackle the problem as a multi-objective optimization problem. In 
this multi-objective problem, the proposed algorithm utilizes the concept of Pareto 
optimality. In addition, an external repository is considered to storage the Pareto 
solutions during the search process. Finally, a fuzzy decision making is used to find 
the best compromise solution.

In this regard, the following points are summarised.
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• The multi-objective DDFR&CA problem in radial distribution network is mod-
eled considering three objective functions including operation cost, VSI and 
ENS.

• The effects of DGs, ESSs and PVs on different objective functions are investi-
gated simultaneously

• A new hybrid algorithm based on combination of the improved Particle Swarm 
Optimization and Modified Shuffled Frog Leaping Algorithm (IPSO-MSFLA) is 
proposed.

• A new method for calculating the VSI is presented; the advantage of this strategy 
over other methods is that it can be implemented in mesh and radial networks.

Rest of this paper is organized as follows. Sections 2 and 3 describe formulation 
of the problem including objective functions, constraints and background theory. 
In Sect. 4 IPSO, MSFLA and IPSO-MSFLA algorithms are introduced. Section 5 
presents a multi-objective solution methodology. Section  6 renders the simula-
tion results in two parts. Pareto solution analysis and conclusions are presented in 
Sects. 7 and 8, respectively.

2  Problem formulation

In this section the objective functions along with the DDFR&CA problem formula-
tion are provided.

2.1  Objective functions

Due to the importance of reliability and network security in this study, improvement 
of VSI and reduction of ENS in addition to operation cost are considered as the 
main objective functions.

2.1.1  Operation cost

(1)

f1(X) =

T�
t=1

⎛⎜⎜⎝

Ndg�
j=1

Pricet
DG,j

Pt
DG,j

+

Nsub�
s=1

Pricet
Sub,s

Pt
Sub,s

+

Nsw�
k=1

PriceSw,k
���S

t
k
− St0

k

���
⎞⎟⎟⎠
,

(2)X =

[
Tie SW Pdg QCap PES

]
,

(3)Tie =
[
TieT

1
, TieT

2
,…TieT

Ntie

]
,

(4)SW =

[
SWT

1
, SWT

2
,… SWT

Ntie

]
,



 H. Lotfi et al.

1 3

where Pt
DG,j

 and Pt
Sub,s

 are the active power outputs of the jth DG and sth sub-station 
at the tth time interval, respectively. Pricet

DG,j
 and Pricet

Sub,s
 are the electricity price 

of jth DG and sth sub-station at the tth time interval, respectively. PriceSw,k is the 
switching cost. Ndg and Nsw are the number of DG and switches, respectively. St

k
 and 

St0
k

 are the new and original states of kth switch at the tth time interval, respectively. 
Where X is the vector of control variables, Tiet

i
 is the state of the ith tie-switch at the 

tth time interval. SWT
i
 is the sectionalizing switch number that forms a loop with 

Tiet
i
 . Ntie and Nsw are the number of the tie switches and number of switches, respec-

tively. QT
Cap,r

 and PT
ESS,g

 are the reactive power of the rth capacitor and active power 
of charge/discharge of the gth ESS at the tth time interval, respectively. Ncap and 
NESS are the number of Capacitor and the number of ESS, respectively.

2.1.2  Energy not supplied (ENS)

ENS is one of the most significant reliability indices that represents the behaviour of 
the system and reflects the expected unsupplied energy of system due to faults over the 
period of study [23, 24]. The ENS at each node can be calculated as follows:

Consider a distribution network with NB nodes, NB > 1 and node 0 as the source of 
this network. Assume that all nodes except the source have an active power Pi (kW), 
where V = {0, 1, 2,… , NB − 1} is the set of node in distribution network.Ui,j is service 
unavailability related to the reparation time of all branches connected to the node i and 
Ui,j is service unavailability related to the restoration time of all branches connected to 
the node i. Ui,j and Ui,j are defined as follows: �i,j : failure rate (fail/km-year),ti,j : average 
reparation time (h/fail), t′

i,j
 : average restoration time (h/fail), di,j : length of line (km):

Finally, The ENS of whole distribution network is calculated without considering 
the reference node as follows:
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2.1.3  Voltage stability index (VSI)

In distribution networks, various factors, such as excessive power overloads, inappro-
priate performance of the transformer, and many other factors, cause voltage instabil-
ity in each of the network points [24, 25]. One aim in this research is to improve the 
voltage stability of network through the DFR. Security analysis can be done in a dis-
tribution system by assessing the voltage stability index (VSI) to maintain stability fol-
lowing disturbances. In this paper the voltage stability is defined based on Thevenin 
equivalent. The Thevenin equivalent for all nodes of network is shown in Fig. 1.

With respect to the load flow technique, Eqs. (12) and (13) are obtained, and leading 
to Eq. (14):

The Eq. (15) can be calculated from Eq. (14):

After establishing B2 − 4C ≥ 0 constraint for Eq. (15), the VSI will be defined as 
Eq. (16):

(11)f2(x) =

NBUS∑
i=2

ENSi.

(12)I(j) =
Vth − Vj

Rth + jXth

,

(13)P(j) − jQ(j) = Vj × I(j),

(14)P(j) − jQ(j) = Vj ×
Vth − Vj

Rth + jXth

.

(15)
|||Vj

|||
4

− ||Vth
||2 − 2P(j)Rth − 2Q(j)Xth ⋅

|||Vj
|||
2

+
(
P2(j) + Q2(j)

)
⋅ (R2

th
+ X2

th
) = 0.

Fig. 1  Thevenin equivalent system of bus j 



 H. Lotfi et al.

1 3

In order reaching to a stable operating condition, VSI for all buses should be greater 
than zero, also Nbus is the number of buses:

The f3(x) function is defined as Eq. (21). The penalty factor is performed to remove 
the unstable decision variables during optimization process. M is a large number, for 
example in this study the value of M is 105:

2.2  Constraints

To solve the DDFR&CA problem, some equality constraints described in Sects. 
2.2.1 and 2.2.2 must be satisfied, as physical limits. Also some inequality constraints 
described in Sects. 2.2.3–2.2.8 must be satisfied, as engineering limits.

2.2.1  Radial structure of the network

where Nbus and Nsource are the number of buses and number of substations, respec-
tively. Nt

branch
 is the number of braches at the tth time interval.

2.2.2  Distribution power flow equations

Power flow equations must be satisfied throughout the optimization process. These 
equations can be expressed as follows:

(16)
VSI(j) =

(||Vth
||2 − 2P(j)Rth − 2Q(j)Xth

)2

− 4

⋅

(
P2(j) + Q2(j)

)
⋅ (R2

th
+ X2

th
), j = 2, 3,… , Nbus.

(17)VSI =
[
VSI(2), VSI(3),… , VSI(Nbus)

]
,

(18)bvsi(i) =

{
0 VSI(i) > 0

1 VSI(i) ≤ 0
,

(19)bvsi =
[
bVSI(2), bVSI(3),… , bVSI(Nbus)

]
,

(20)penalty factor = M × sum(bVSI).

(21)f3(x) =
1

min(VSI)
+ penalty factor.

(22)Nt
branch

= Nbus − Nsource,

(23)Pi =

Nbus∑
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ViVjYij cos
(
�ij − �i + �i

)
i = 2, 3,… , Nbus,

(24)Qi =

Nbus∑
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ViVjYij sin
(
�ij − �i + �i

)
,
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where Pi and Qi are the net injected active and reactive powers at the ith bus. Vi and 
�i are the amplitude and angle of voltage at ith bus, Yij and �ij are the amplitude and 
angle of branch admittance between ith and jth buses.

2.2.3  Bus voltage limit

Bus voltage magnitudes must be kept at acceptable range, where Vmin and Vmax are 
the minimum and maximum acceptable voltage value of the ith bus, and Vt

i
 is the volt-

age magnitude of the ith bus at the tth time interval.

2.2.4  Feeder limit

where It
f,i

 and IMax
f,i

 are the current amplitude at the tth time interval and its maximum 
current of the ith feeder, respectively. Nfeeder is the number of feeders.

2.2.5  Transformer limit

where It
t,i

 and IMax
t,i

 are the current amplitude at the tth time interval and its maximum 
current of the ith transformer, respectively. Nt is the number of transformers.

2.2.6  DGs constraints

In general, DG units in distribution network are modelled as PV or PQ nodes [1]. If 
DGs are considered as PV model, they should be able to generate reactive power to 
keep the voltage amplitudes within proper boundaries. In this study the DG units are 
modelled as PQ nodes.

2.2.7  Capacitor constraints

The minimum and maximum reactive power values of the capacitor are as follows:

where Qmin
cap

 , Qmax
cap

 are the minimum and maximum values of generated reactive 
power of capacitor, respectively, and Qt

cap,i
 is the reactive power magnitude of the ith 

capacitor at the tth time interval.

2.2.8  ESSs constraint

In order to increase the efficiency and life of the ESSs, there are some restrictions that 
ESSs follow during a day [2]. These restrictions are as follows:

(25)Vmin ≤ Vt
i
≤ Vmax.

(26)
|||I
t
f,i

||| ≤ IMax
f,i

i = 1, 2,… , Nfeeder,

(27)
|||I
t
t,i

||| ≤ IMax
t,i

i = 1, 2,… , Nt,

(28)Qmin
cap

≤ Qt
cap,i

≤ Qmax
cap

,
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.

where Eh
k
 is the amount of energy storage in the kth ESS at hth hour. Ph

ch,k
 and Ph

dis,k
 

are the permitted rate of charge and (discharge) of kth ESS at hth hour, respectively. 
�ch,k and �dis,k are the efficiency of the kth ESS during charge and discharge, respec-
tively. Emax

k
 and Emin

k
 are the maximum and minimum amount of the energy storage 

in kth ESS.Pmax
ch,k

 and Pmax
dis,k

 are the maximum charging and discharging rate of the kth 
ESS at hth hour.

3  Background theory

In the following the meta-heuristic algorithms i.e. PSO and SFLA are introduced.

3.1  Particle swarm optimization (PSO)

Particle swarm optimization is an evolutionary-based optimization algorithm inspired 
by the social behavior of bird’s migration. In this algorithm, each particle represent 
a possible solution in the search space, and this particle has two parameters includ-
ing position and velocity [26, 27]. velocity and position of ith particle are updated as 
follows:

where xk
i
 , vk

i
 are the position and velocity of ith particle at kth iteration. c1 and c2 are 

are two positive constants, also as known social learning factor. r1 and r2 are ran-
dom numbers between zero and one. pbk

i
 is the best personal fitness of ith particle at 

kth iteration,gbk is the best value among all the best personal fitness at kth iteration. 
W is the inertia weight, which usually decreases from 1 to 0 linearly according to 
Eq. (36):

(29)
Eh
k
= Eh−1

k
+ �ch,kP

h
ch,k

× Δt −
1

�dis,k
Ph
dis,k

× Δt,

(30)Δt = 1h, k = 1, 2,…NESS, h = 1, 2,… , 24,

(31)
Emin
k

≤ Eh
k
≤ Emax

k
; k = 1, 2,…NESS

h = 1, 2,… , 24,

(32)Ph
ch,k

≤ Pmax
ch,k

; k = 1, 2,… , NESS, h = 1, 2,… , 24,

(33)Ph
dis,k

≤ Pmax
dis,k

; k = 1, 2,… , NESS, h = 1, 2,… , 24,

(34)vk+1
i

= Wvk
i
+ c1r1

(
pbk

i
− xk

i

)
+ c2r2(gb

k − xk
i
),

(35)xk+1
i

= xk
i
+ vk+1

i
,
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iter is the current iteration number and itermax is the maximum iteration num-
ber.Wmax and Wmin are the minimum and maximum boundaries of inertia weight 
[28].

3.2  Shuffled frog leaping algorithm (SFLA)

The SFLA was introduced by Eusuff and Lanssey. This algorithm is inspired 
by the group life of the frogs, each frog in this algorithm represent a possible 
solution in the search space [29, 30]. In this algorithm, the initial population is 
divided into several memeplexes, the number of frogs in each memeplex is equal. 
Based on this categorization, there are two types of search techniques in this 
algorithm, the first technique is the local search, according to which the frogs in 
each memeplex exchange information, improve their position based on food (the 
best answer), and the second technique is the exchange of information between 
memeplexes, according to which, after each local search in the memeplexes, the 
information obtained is compared between the memeplexes, to implement this 
algorithm, first the initial parameters of the algorithm are initialized, and then the 
initial population with P frogs is generated randomly. The fitness of each frog is 
calculated and after sorting the population based on descending order, the total 
population is divided into m memeplexes, each of these memeplexes includes n 
members, then a local search for the mutation of the worst frogs is done toward 
the best frogs by Eqs. (37–39):

where rand is a random number between zero and one. Dmin and Dmax are the mini-
mum and maximum displacement boundaries of frog. The frog with best fitness in 
the entire population is shown as Xg . After applying the above changes, if the new 
frog has a better response than the worst frog in the group, is replaced. Otherwise, 
these actions are repeated with the replacement of Xb with Xw , if after applying the 
above changes, no suitable answers found, a new frog is generated randomly and it 
is replaced with the worst frog, this trend continues for the specified number of rep-
etitions until the stopping criterion is reached.

4  Proposed approach

In the following the Improved Particle swarm optimization (IPSO), the Modified 
Shuffled Frog-leaping algorithm (MSFLA) and the IPSO-MSFLA algorithms are 
briefly introduced.

(36)
W = Wmax −

Wmax −Wmin

itermax

⋅ iter,

(37)Di = rand ⋅ (Xb − Xw),

(38)Xnew
w

= Xw + Di,

(39)−Dmin ≤ Di ≤ Dmax,
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4.1  Improved particle swarm optimization (IPSO)

The learning factors c1 and c2 have a significant impact on determining the personal 
and global best solutions in original particle swarm optimization algorithm. In order 
to improve the performance of the original PSO algorithm, c1 and c2 are set as social 
parameters and shown in the equation below [31]:

where F(gbest(k)) is the fitness of the global optimum solution at kth iteration. gbest(k) 
cannot be selected according to the objective function fitness. The proposed method 
for calculating gbest(k) is described in Sect. 5. α is inverse value of the best compro-
mise objective value in the first iteration which is shown:

4.2  Modified shuffled frog leaping algorithm (MSFLA)

In original SFLA, only the worst frog in the memeplexes improves its position 
according to (42–43). This learning mechanism is inadequate for particles, espe-
cially that the better frogs have less learning chances. In addition, with this learning 
strategy, frogs in the memeplexes easily converge to local minimal. To avoid the 
above defects and improve the performance of the original SFLA, we will change 
the evolutionary process of frogs. In the new evolutionary process, all frogs partici-
pate in the evolutionary process, and frogs improve their position by learning from 
better frogs. Therefore, the leaping step of the ith frog is modified as:

where xqz is a randomly selected frog with better fitness than xq
i
 . The better frogs 

generally maintain their movement while the worst mainly learns from better frogs. 
This strategy is useful to avoid falling to local minimum and to improve the SFLA 
performance. r1 and r2 are the random numbers between zero and one. c1 and c2 are 
the constant values. Now the steps in MSFLA can be provide as follows:

(40)Cj = 1 +
1

(1 + exp(−� × F(gbest(k))
k

j = 1, 2,

(41)� =
1

F
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gbest(1

)) .
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= c1 ⋅ r

q

1
⋅ d

q

i
+ c2 ⋅ r

q

2
⋅
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z
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i
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q

i
+ D

q+1

i
,
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Step 1  Generate an initial population of the particles with randomly position and 
velocity.

Step 2  Calculate the objective function for all particles of population.
Step 3  Divide the particles into K memeplexes based on descending order of fit-

ness value.
Step 4  Determine  Xi and  Xz in each memeplex.
Step 5  Update the position of ith frog based on equations (42-43).
Step 6  It should be noted that this procedure should be repeated for all 

memeplexes.
Step 7  Memeplex shuffle. at this step, in order to exchange information among all 

memeplexes, all memeplexes are combined together and restored again.
Step 8  Check the convergence criterion, If the convergence criterion is satisfied, 

the optimization process is finished, and the best frog  (Gbest) is selected as 
the final solution, otherwise return to Step 4.

4.3  Hybrid IPSO‑MSFLA

The main idea of integrating the MSFLA and IPSO is to utilize the advantages of both 
algorithms. In order to implement a hybrid algorithm for solving the multi-objective 
DDFR&CA problem, (2 × Np) initial population are randomly generated. MSFLA 
and IPSO algorithms will start their optimization process with Np size population. The 
obtained new solutions are combined and divided again between two algorithms. Fig-
ure 2 shows the flowchart of the proposed hybrid algorithm.

Fig. 2  The flowchart of hybrid algorithm
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5  Multi‑objective optimization methodology

Multi-objective optimization refers to the simultaneous optimization of two or more 
conflicting objectives associated with specific constraints. Multi-objective optimization 
problems present a possibly high number of solutions rather than a single optimal solu-
tion [31]. The problem is described as follows:

where fi(x) is the ith objective function and Hi(x) and Gj(x) are equal and unequal 
constraints. n is the number of objective functions and x is the optimization vari-
ables vector.

5.1  Fuzzy model for multi‑objective optimization

Since the objective functions are not precise and are not in the same range, so fuzzy 
sets are used to replace each objective function as a value between 0 and 1. A fuzzy 
set is generally shown by a membership function ( �i ) [32].The mathematical model for 
membership function as defined (45):

where �i is the fuzzy set for ith objective function i.e. fi(X) . f
min
i

 and fmax
i

 are lower 
and upper bounds of the objective function. To solve multiple objectives problems, 
the fuzzy solution can be calculated as (46):

(44)Min f(x) =
[
f1(x), f2(x),… fn(x)

]T
,

Gj(x) ≥ 0, Hi(x) = 0,

(45)�i(x) =

⎧
⎪⎨⎪⎩

1 fi(X) ≤ f min
i

0 fi(X) ≥ f max
i

f max
i

−fi(X)

f max
i

−f min
i

f min
i

≤ fi(X) ≤ f max
i

,

Fig. 3  Active power of solar PV units
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5.2  Pareto optimal solution

The Pareto optimal method is an appropriate approach to the multi-objective problem, 
which can be used to obtain a set of solutions rather than one [31]. This method works 
based on the dominance concept, the solution x2 is dominated by x1 , when the follow-
ing conditions are met:

5.3  Fuzzy decision strategy

In this paper, an external repository is used to store all non-dominant solutions in 
each iteration. The solutions that are stored in this repository in all iterations are 
sorted based on the type of decision making strategy. During this process, the best 
Compromise solution is selected by choosing the top solutions in this collection [31] 
as follows:

where m is the number of non-dominant solutions, n is the number of objective 
functions, Wk is weight of the kth objective function. Value of Wk is selected by the 
operator based on the importance of the objective function.

6  Simulation results

6.1  Evaluation of the IPSO‑MSFLA algorithm to solve the DDFR&CA problem

The proposed IPSO-MSFLA algorithm is used to solve the single and multi-objec-
tive DDFR&CA problems in absence and presence of DGs, ESSs and PV units in 
IEEE95-node test system [33]. The IEEE95-node test system consists of three DGs 
with capacity 1000 kW which are located at nodes #6, #25, #50, and four capacitors 
with capacity of 100 kVAr located at nodes #10, #20, #34, #70, two 3000 kW PV 
units installed on buses #41, #88 and their relevant 300 (kWh) energy storage units. 
The cost of sub-station is 0.041 $/kWh and the related costs of DG units are 0.042 
$/kWh for all DGs and 0.041 $ for each switching. Figures 3 and 14 (see Appendix) 
show the single-line diagram of 95-node test system and active power generation 
of PV units. MATLAB programing code for the IPSO-MSFLA algorithm and the 

(46)F(x) = min
{
�1(x),�2(x),�3(x)

}
.

(47)∀i ∈
{
1, 2,…Nobj

}
, fi

(
x1
)
≤ fi

(
x2
)
,

(48)∃j ∈
{
1, 2,…Nobj

}
, fj(x1) < fj(x2).

(49)N�(j) =

∑n

k=1
Wk × �fk∑m

j=1

∑n

k=1
Wk × �fk

,
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proposed objective functions are developed. The load profile for the 24-time inter-
vals is shown in Table 1. According to the Fig. 3, it is clear that, the solar radiation 
is from 5 a.m. to 8 p.m., So the generated power is at this time interval. The maxi-
mum generated power value is from 10 a.m. to 3 p.m., which the maximum level of 
solar radiation is at this time interval. The maximum output power of each PV unit 
is 3 MW at the peak of the solar radiation, this pattern used in this study for each 
solar cell is extracted from in [2] but on a larger scale. The initial values of the VSI, 
operation cost and ENS before Distribution Feeder Reconfiguration are 1.0530 Pu, 
$141,998.91 and 348.56 kWh/year, respectively. Then, in order to better analyse sin-
gle-objective optimization, the reduction amount of objective functions relative to 
the initial values before DDFR is presented as percentage format.

6.1.1  DDFR&CA problem without DGs, ESSs and PV units (case 1)

In this case, the DDFR&CA problem is solved without DGs, ESSs and PV units 
in the 95-node test system. The intension in this case study is first to evaluate the 
capability of the proposed algorithm in solving the DDFR&CA problem and sec-
ond the effects of DGs, ESSs and PVs on different objective functions which are 
studied in the next section. The best obtained results from proposed IPSO-MSFLA 
algorithm for each objective are highlighted in Table  2. Tables  3 and 4 show the 
comparison between the results of the proposed IPSO-MSFLA and other algorithms 
to optimize operation cost and ENS in case 1. It should no noted that because there 
is no similar article for comparison, two hybrid algorithms i.e. Hybrid PSO-SFLA 
[6] and PSO-MSFLA [23] are selected amongst published papers and simulated to 
solve DDFR&CA problem. Tables 5 and 6 represent the optimal switching state and 
optimal capacity of capacitors within 24 h related to ENS optimization for case 1.

Comparison of results for the various objective functions in Table  2, the con-
flict between the various objective functions is clear. For example, the ENS value is 
339.842 (kWh/year), when the objective is cost minimization. The optimal value of 
ENS is 326.323 (kWh/year), when the objective is ENS minimization. The differ-
ence between objective functions shows that three objective functions are in contra-
diction so, they do not improve all together. However, in the multi-objective optimi-
zation using the Pareto-optimality concept in the proposed IPSO-MSFLA algorithm, 
a good compromise between the objective functions can be made to obtain the opti-
mal solution for two or three objective functions. In this section Pareto-optimality 
concept is used to solve the multi-objective DDFR&CA problem in the absence of 
DGs, ESSs and PV units. All two and three-dimensional Pareto-optimal solutions 
for different objective functions are shown in Figs. 4, 5, 6 and 7 in order to prove 
the ability of the proposed IPSO-MSFLA algorithm in solving DDFR&CA prob-
lem. Referring to Figs. 4, 5, 6 and  7, it is clear that, the best obtained value for each 
objective function in all Pareto-fronts is somewhat close to its corresponding optimal 
value (Table 2) when each objective function is optimized individually. Therefore, 
the ability of the proposed IPSO-MSFLA to solve the multi-objective optimization 
problem is proved. To illustrate the superiority of the proposed IPSO-MSFLA algo-
rithm, the single-objective results for operation cost and ENS optimization obtained 
by the proposed algorithm and other algorithms are listed in the Tables  3 and 4. 
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These results are obtained by 15 dependent trials for each algorithm. It is obvious 
that the proposed hybrid algorithm provides a better solution than others. Accord-
ing to Table 2, it is clear that the value of the VSI obtained from the IPSO-MSFLA 
algorithm is reduced about 2.1% than the initial state. Also, according to Tables 3 
and 4 the ENS and operation cost are reduced about 5% and 1.51% than the initial 
state. In the initial state, feeder reconfiguration has not been implemented in the test 
network. The operation cost saving obtained from the proposed hybrid algorithm is 
about $ 2130

Table 1  The load profile for different time intervals

BUS 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1 1
2–14 1 1 1 1.25 1.25 1.25 1.5 1.5 1.5 1.75 1.75 1.75
15–29 0.25 0.25 0.25 0.5 0.5 0.5 0.75 0.75 0.75 1 1 1
30–45 1 1 1 0.75 0.75 0.75 0.5 0.5 0.5 0.25 0.25 0.25
46–62 1 1 1 1.25 1.25 1.25 1.5 1.5 1.5 1.75 1.75 1.75
63–76 0.25 0.25 0.25 0.5 0.5 0.5 0.75 0.75 0.75 1 1 1
77–95 1 1 1 0.75 0.75 0.75 0.5 0.5 0.5 0.25 0.25 0.25

BUS 13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 1 1 1 1 1 1 1 1
2–14 1.5 1.5 1.5 1.25 1.25 1.25 1 1 1 0.75 0.75 0.75
15–29 1.25 1.25 1.25 1.5 1.5 1.5 1.75 1.75 1.75 1.5 1.5 1.5
30–45 0.5 0.5 0.5 0.75 0.75 0.75 1 1 1 1.25 1.25 1.25
46–62 1.5 1.5 1.5 1.25 1.25 1.25 1 1 1 1.25 1.25 1.25
63–76 1.25 1.25 1.25 1.5 1.5 1.5 1.75 1.75 1.75 1.5 1.5 1.5
77–95 0.5 0.5 0.5 0.75 0.75 0.75 1 1 1 1.25 1.25 1.25

Fig. 4  Two-dimensional Pareto-front for operation cost and ENS
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6.1.2  DDFR&CA problem with DGs, ESSs and PV units (case 2)

In this case, the proposed IPSO-MSFLA algorithm is implemented to solve a single 
and a multi-objective DDFR&CA problem in presence of DGs, ESSs and solar PV 
units in IEEE95-node test system. The best obtained results for each objective func-
tion are highlighted in Table 7. Tables 8 and 9 show the comparison between the 
results of the proposed IPSO-MSFLA algorithm and other algorithms for ENS and 
operation cost optimization in Case 2, respectively. Tables 10 and 11 represent the 
optimal switching state within 24 h related to ENS and operation cost optimization 
for Case 2. Tables 12 and 13 represent the optimal capacity of capacitors and DGs 
outputs within 24 h related to ENS and operation cost optimization for Case 2. Fig-
ure 8 represent the optimal ESSs outputs within 24 h related to ENS optimization 

Table 2  Best solution obtained by the proposed IPSO-MSFLA algorithm for different objective functions 
for Case 1

Objective functions ENS (kWh/year) Operation cost ($) VSI (Pu)

ENS (kWh/year) 329.312 140,188.31 1.0492
Operation Cost ($) 339.842 139,865.14 1.0459
VSI (Pu) 348.414 140,268.49 1.0304

Table 3  Results of proposed IPSO-MSFLA and other algorithms for operation cost for 15 Trials

Algorithm Operation cost ($)

Best Worst Standard devia-
tion

Reduction (%)

PSO 140,290.22 140,480.41 58.42 1.21
SFLA 140,209.43 140,381.24 56.15 1.26
Hybrid PSO-SFLA [23] 140,130.51 140,277.57 53.18 1.30
PSO-MSFLA [7] 140,009.42 140,145.52 51.89 1.42
IPSO-MSFLA 139,865.14 139,985.21 49.18 1.51

Table 4  Results of proposed IPSO-MSFLA and other algorithms for ENS for 15 Trials

Algorithm ENS (kWh/year)

Best Worst Standard devia-
tion

Reduction (%)

PSO 342.475 355.214 5.49 2
SFLA 338.214 349.126 5.25 3
Hybrid PSO-SFLA [23] 335.651 343.258 4.98 4
PSO-MSFLA [7] 333.545 339.426 4.57 4.5
IPSO-MSFLA 329.312 333.415 4.15 5
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for Case 2, also Fig.  9 represent the optimal ESSs outputs within 24  h related to 
operation cost optimization for Case 2.

It is clear from Table 7, the control settings correspond to the ENS is reduced 
while VSI of the system and operation cost are increased. Therefore, it is necessary 
to solve the multi-objective DDFR&CA problem for this case. All two and three-
dimensional Pareto-optimal solutions for different objective functions using pro-
posed IPSO-MSFLA algorithm are shown in Figs. 10, 11, 12 and  13. These figures 
show that the proposed IPSO-MSFLA algorithm can handle this optimization prob-
lem regardless of its complexity and number of objective functions.

As shown in Figs. 10, 11, 12 and 13, the proposed IPSO-MSFLA algorithm can 
find several non-dominant solutions for each optimization case. A best compromise 
solution is chosen from the solution of the Pareto front, and part of the solution 
can be ignored. In other words, an optimal solution is chosen to optimize two or 

Table 5  The optimum switching scheme obtained from the proposed IPSO-MSFLA algorithm in ENS 
optimization for case1

LL Load Level

L.L Open reconfiguration switches

Sw1 Sw2 Sw3 Sw4 Sw5 Sw6 Sw7 Sw8 Sw9 Sw10 Sw11

1 4 7 8 22 25 35 66 65 74 32 28
2 4 43 79 20 26 35 67 65 85 87 30
3 4 40 15 81 45 35 61 64 85 71 83
4 77 43 15 81 82 33 19 56 74 32 83
5 77 5 15 39 26 84 16 58 72 71 27
6 4 40 15 39 49 51 19 65 72 76 30
7 4 78 15 81 82 33 19 56 74 87 27
8 69 41 15 39 82 52 19 60 74 31 30
9 4 43 15 39 49 35 19 65 55 87 29
10 77 78 15 21 82 33 67 65 53 32 30
11 4 7 15 39 49 35 19 60 74 71 30
12 4 5 15 81 49 52 67 86 74 71 83
13 4 78 79 22 82 84 67 65 74 32 83
14 77 78 10 22 49 84 66 65 72 87 30
15 4 41 15 22 49 35 80 65 72 75 83
16 77 43 79 39 26 52 67 65 85 87 27
17 77 78 15 39 82 35 19 65 53 76 83
18 77 43 79 39 26 52 67 65 74 71 83
19 4 43 15 39 26 35 19 65 74 87 83
20 77 41 15 20 26 52 66 56 74 71 30
21 68 7 15 81 26 52 19 60 74 71 30
22 4 43 15 39 49 35 19 65 85 32 83
23 4 5 79 81 49 84 66 65 85 32 30
24 4 7 15 22 26 35 80 65 72 31 30
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Table 6  The optimum capacity 
of capacitor obtained from 
the proposed IPSO-MSFLA 
algorithm in ENS optimization 
for case1

L.L Capacitor switching (kVAr)

Cap1 Cap2 Cap3 Cap4

1 71 95 100 100
2 100 100 100 100
3 100 100 100 100
4 20.5 87 100 100
5 100 100 100 93.5
6 22 100 80.5 100
7 99.5 96.5 99 100
8 100 79.5 83 24
9 100 100 95.5 100
10 100 98.5 100 100
11 100 40 96 100
12 100 100 100 94.5
13 5 99.5 20.5 100
14 98 71 14.5 100
15 89.5 100 100 100
16 96 100 5 58
17 82.5 100 100 100
18 97 86 100 99.5
19 14.5 100 100 100
20 100 100 63.5 100
21 62.5 100 99.5 100
22 100 100 97 100
23 96 100 100 100
24 100 48 100 100

Fig. 5  Two-dimensional Pareto-front for VSI and ENS
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three objective functions. However, the system operator can apply his/her personal 
preference in choosing any one of solutions. Tables 8 and 9 show the optimum val-
ues for ENS and operation cost in presence of DGs, ESSs and PV units employing 
PSO, MSFLA and IPSO-MSFLA algorithms. The best, worst, average results along 
with the standard deviation for PSO, MSFLA and IPSO-MSFLA algorithms in 15 
dependent trials are identified.

The better results of the proposed IPSO-MSFLA algorithm are obvious from 
Tables  8 and 9. The comparison the results of case 2 with cases 1 shows that 
including DGs, ESSs and PV units in the test network, the ENS and VSI are 
reduced which are desired outcomes of this study. According to Table 7 the value 
of the VSI obtained from the IPSO-MSFLA algorithm is reduced about 2.3% than 
the initial state. Also, with refer to Tables 8 and 9, it is clear that the values of 
ENS and operation cost obtained from the IPSO-MSFLA algorithm are reduced 
by 9.5% and 1.26% than the initial state. In the initial state, feeder reconfigura-
tion is not performed in the test network. The amounts of operation cost saving 
obtained from the proposed hybrid algorithm is about $ 1740

Fig. 6  Two-dimensional Pareto-front for VSI and operation cost

Fig. 7  Three-dimensional Pareto-front for VSI, ENS and operation cost
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Table 7  Best solution obtained by the proposed IPSO-MSFLA algorithm for different objective functions 
in case 2

Objective functions ENS (kWh/year) Operation cost ($) VSI (Pu)

ENS (kWh/year) 314.762 140,299.54 1.0465
Operation cost ($) 328.215 140,260.61 1.0423
VSI (Pu) 342.314 140,331.31 1.0294

Table 8  Results of proposed IPSO-MSFLA and other algorithms for ENS for 15 Trials

Algorithm ENS (kWh/year)

Best Worst Standard devia-
tion

Reduction (%)

PSO 331.372 350.235 6.55 4.9
SFLA 323.515 338.765 6.23 7.1
Hybrid PSO-SFLA [23] 321.563 333.743 5.89 7.9
PSO-MSFLA [7] 318.412 327.554 5.55 8.5
IPSO-MSFLA 314.762 321.778 4.85 9.5

Table 9  Results of proposed IPSO-MSFLA and other algorithms for operation cost for 15 Trials

Algorithm Operation cost ($)

Best Worst Standard devia-
tion

Reduction (%)

PSO 140,279.15 140,398.24 64.15 1.11
SFLA 140,269.88 140,385.56 58.45 1.14
Hybrid PSO-SFLA [23] 140,265.61 140,381.62 55.76 1.19
PSO-MSFLA [7] 140,263.45 140,378.84 53.14 1.21
IPSO-MSFLA 140,260.61 140,374.62 51.88 1.23

Fig. 8  Active power output of ESSs obtained from the proposed algorithm in ENS optimization for case 2
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7  Pareto‑solution analysis

In a multi-objective optimization problem in contrast to a single objective opti-
mization, there is a set of Pareto solutions rather than an optimal solution. In this 
paper, two different indices i.e.: Diversification Metric (DM) and Generational 
Distance (GD) are used to validate the Pareto optimal front.

Diversification Metric (DM) For an N-dimensional optimization problem, if there is 
k number of points in the Pareto-front, the Centroid Cj for jth dimension is calculated 
as follows [7]:

(50)Cj =

∑k

r=1
Ynr

k
,

(51)n = 1, 2,… , Nobj,

Table 10  The optimum switching scheme obtained from the proposed IPSO-MSFLA algorithm in ENS 
optimization for case2

LL Open reconfiguration switches

Sw1 Sw2 Sw3 Sw4 Sw5 Sw6 Sw7 Sw8 Sw9 Sw10 Sw11

1 3 7 8 22 26 35 80 65 55 71 83
2 68 40 15 39 49 35 67 65 55 32 27
3 4 78 79 39 26 52 66 65 55 76 83
4 4 7 15 39 82 52 19 65 55 76 83
5 4 40 15 22 26 35 66 65 55 87 83
6 68 43 15 22 26 52 67 56 72 76 30
7 77 7 15 39 49 33 67 56 72 71 30
8 77 7 15 22 26 35 67 56 55 71 30
9 68 40 15 36 49 50 66 65 55 32 27
10 4 40 15 39 26 52 67 65 85 76 27
11 70 41 15 22 82 35 19 65 72 76 30
12 77 7 15 22 26 52 19 65 74 87 30
13 70 7 15 39 49 52 67 86 55 71 30
14 77 43 15 39 82 35 67 65 74 87 30
15 68 40 15 22 49 52 19 65 55 32 30
16 4 40 15 22 26 84 80 56 72 76 83
17 77 7 15 22 49 35 19 65 55 76 30
18 77 43 15 39 26 84 67 65 72 32 30
19 3 43 15 22 49 34 67 65 85 87 30
20 77 43 15 81 26 52 67 65 74 32 27
21 70 43 79 81 49 52 67 86 85 32 83
22 77 43 15 39 26 35 80 65 55 32 30
23 4 43 15 39 49 52 19 65 85 76 30
24 4 43 10 39 49 35 66 65 55 76 30
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where Ynr is nth dimension of the rth point, finally the formulation DM is as follows, It 
is noted that more values for DM show that all generated arrays are close to each other:

Generational distance (GD) GD measures how far is each solution in the non-
dominated solutions set [7], and is modelled as follows:

where Es is the Euclidean geometric distance between each of these non-dominant 
solutions and the closest number of Pareto-optimal collection. Therefore, the lower 
value for the GD parameter is more favourable.

(52)DM =

Nobj∑
n=1

k∑
r=1

(Ynr − Cr)
2.

(53)GD =

�∑n

s=1
E2
s

k
,

Table 11  The optimum switching scheme obtained from the proposed IPSO-MSFLA algorithm in OP-
Cost optimization for case2

LL Load level

LL Open reconfiguration switches

Sw1 Sw2 Sw3 Sw4 Sw5 Sw6 Sw7 Sw8 Sw9 Sw10 Sw11

1 69 42 15 81 26 35 19 65 55 75 30
2 70 7 79 22 49 35 80 58 72 87 83
3 68 7 15 37 49 35 19 65 55 87 83
4 68 42 15 81 49 52 19 60 55 32 30
5 4 7 15 22 49 35 66 60 55 76 30
6 70 7 15 39 26 84 80 65 72 32 30
7 70 43 15 81 49 84 19 60 55 32 83
8 69 43 15 39 82 52 80 60 55 32 30
9 69 43 15 22 26 84 19 86 55 32 30
10 68 78 15 39 49 84 19 58 55 87 27
11 68 43 15 22 26 35 19 62 55 32 30
12 68 43 15 22 26 52 19 62 55 32 30
13 69 43 15 39 26 35 19 60 55 32 27
14 70 7 79 22 82 84 19 60 55 32 30
15 70 7 15 81 49 35 19 86 55 76 28
16 68 7 14 39 49 35 19 60 55 87 27
17 70 78 13 39 49 84 19 60 55 76 30
18 4 43 79 39 82 35 80 60 74 87 30
19 4 43 15 38 82 35 19 60 55 32 30
20 70 43 79 81 26 35 80 60 55 32 28
21 4 7 15 22 26 35 19 60 72 32 83
22 70 7 15 22 82 52 19 60 85 87 30
23 69 43 15 22 82 52 19 65 55 76 83
24 70 43 15 39 26 84 19 86 55 87 30
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The obtained best values of GD and DM in two-dimensional Pareto-fronts 
related to Multi-Objective DDFR&CA problem are shown in Table 14, which are 
achieved by the proposed IPSO-MSFLA algorithm.

From Table 14, it is obvious that the proposed hybrid algorithm is able to han-
dle multi-objective optimization problems very well.

8  Conclusion

In this study, a new hybrid evolutionary algorithm based on improved particle 
swarm optimization and modified shuffled frog leaping algorithm (IPSO-MSFLA) 
is presented for dynamic distribution feeder reconfiguration (DDFR) along with 
capacitor allocation (DDFR&CA) problem in the absence and presence of DGs, 
ESSs and PV units. The considered objective functions are: operation cost, ENS 
and VSI. Constraints of the problem are: preserving the radial structure of the net-
work, limits for bus voltages, limits for line currents and capacity of transformers. 

Table 12  The optimum capacity 
of capacitor and DGs outputs 
obtained from the proposed 
algorithm in ENS optimization 
for case2

LL Capacitors output (kVAr) DGs output (kW)

Cap1 Cap2 Cap3 Cap4 DG1 DG2 DG3

1 97.5 94 99 43 960 985 970
2 99 97 97.5 96 1000 975 975
3 99 88 97.5 97 975 975 960
4 97.5 97.5 99 46 970 970 875
5 100 98.5 94 97.5 990 975 975
6 94 97 97 98.5 990 975 975
7 97.5 100 97.5 99.5 950 975 975
8 100 99 99 97.5 990 900 975
9 100 97.5 97.5 100 975 975 990
10 97.5 99 99 99 975 970 970
11 99.5 97.5 99.5 97.5 970 975 975
12 97.5 97.5 96 97 975 970 990
13 99 99 97 97 975 975 970
14 97.5 97.5 97.5 97.5 975 975 900
15 97.5 97.5 97.5 97.5 995 970 975
16 100 97.5 99.5 96 970 960 960
17 96 97 97.5 97.5 925 975 975
18 100 97.5 97.5 97.5 985 975 970
19 96 100 97.5 97.5 1000 995 990
20 99.5 97.5 35 96 990 970 960
21 100 97 99 99 1000 935 975
22 99 97.5 97 97.5 975 975 985
23 89.5 97 96 97.5 995 985 990
24 97 97.5 97.5 97.5 985 975 970
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Table 13  The optimum 
capacity of capacitor and DGs 
outputs obtained from the 
proposed algorithm in OP-Cost 
optimization for case2

LL Load level

LL Capacitors output (kVAr) DGs output (kW)

Cap1 Cap2 Cap3 Cap4 DG1 DG2 DG3

1 8.5 9.5 5 5 50 50 1000
2 5 5 75 31.5 50 950 60
3 5 5 44 5 50 115 50
4 5 5 29 93 245 1000 50
5 5 97.5 5 5 50 50 120
6 51.5 5 5 5 50 425 50
7 5 67.5 61.5 5 65 990 955
8 5 100 5 5 50 50 50
9 91.5 5 6 94.5 50 50 50
10 5 9.5 96.5 75 50 50 50
11 9.5 5 9.5 5 75 50 400
12 5 5 9.5 5 50 50 50
13 7.5 5 9.5 5 50 50 50
14 75.5 5 5 5 50 50 635
15 5 5 89.5 5 420 65 50
16 5 5 10 100 115 50 50
17 5 5 5 5 50 50 95
18 5 9.5 15 5 50 95 530
19 98 100 5 9 200 50 985
20 69 13.5 5 100 50 50 965
21 5 5 5 8 50 95 685
22 5 5 23 5 50 50 930
23 5 17 9 5 50 50 50
24 5 6.5 5 5 65 50 50

Fig. 9  Active power output of ESSs obtained from the proposed algorithm in Operation Cost optimiza-
tion for case 2
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Fig. 10  Two-dimensional Pareto-front for operation cost and ENS

Fig. 11  Two-dimensional Pareto-front for VSI cost and ENS

Fig. 12  Two-dimensional Pareto-front for VSI and operation cost
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With regard to multi-objective DFR problems, in the proposed hybrid algorithm the 
concept of Pareto optimality is utilized. The multi-objective DDFR&CA problem is 
solved with and without DGs, ESSs and solar PV units and the obtained results are 
provided through tables and figures. The obtained results from the proposed IPSO-
MSFLA algorithm are compared with other algorithms in single-objective and 
multi-objective optimization considering different objective functions. The obtained 
results justify the superior performance of the proposed hybrid algorithm in solving 
such more complex optimization problem. Finally, the following results can be sum-
marized from this paper.

• The proposed IPSO-MSFLA algorithm has a good performance to solve the 
DDFR&CA problem in IEEE95-nodes test system.

• The proposed IPSO-MSFLA algorithm can handle single and multi-objective 
optimization problems regardless of their complexity and scale.

• Application of DGs, ESSs and PV units leads to reduction in ENS objective and 
improvement in VSI objective function.

• DFR and capacitor allocation in distribution system will upgrade VSI and ENS 
indices. In addition, using the ENS along with the operation cost, the economic 
and reliable operation of system are provided.

Appendix

See Fig. 14

Fig. 13  Three-dimensional Pareto-front for VSI, ENS and operation cost

Table 14  Best GD and DM for Pareto-optimal solutions obtained by the IPSO-MSFLA algorithm

Dimensional of the problem Indicators

GD (case 1) GD (case 2) DM (case 1) DM (case 2)

ENS&operation cost 4.99 2.295 71,220.32 36,340.56
ENS&VSI 1.24 3.354 2291.523 30,457.42
Operation cost&VSI 8.842 7.111 89,977.52 17,838.43
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