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ABSTRACT
The tracking problem of the fractional-order nonlinear systems is assessed by ex-
tending new event-triggered control designs. The considered dynamics are accompa-
nied by the uncertain strict-feedback form, actuator faults and unknown disturbances.
By using the neural networks and the fault compensation method, two adaptive fault
compensation event-triggered schemes are designed. Unlike the available control de-
signs, two static and dynamic event-triggered strategies are proposed for the nonlinear
fractional-order systems, in a sense that the minimum/average time-interval between
two successive events can be prolonged in the dynamic event-triggered approach. Be-
sides, it is proven that the Zeno phenomenon is strictly avoided. Finally, the simulation
results prove the effectiveness of the presented control methods.

1. Introduction
In the past decades, many control strategies such as adaptive methodologies Regaya, Farhani, Zaafouri

and Chaari (2019); He and Meng (2017), backstepping techniques Yu and Lin (2016); Swaroop, Hedrick,
Yip and Gerdes (2000); Regaya, Zaafouri and Chaari (2013), neural networks (NNs) Lewis, Liu and
Yesildirek (1995), fuzzy logic systems (FLSs) Sun, Mou, Qiu, Wang and Gao (2018); Regaya, Farhani,
Zaafouri and Chaari (2017b) and optimal control Li, Chai, Lewis, Ding and Jiang (2018a), etc were of
concern for a class of nonlinear systems with unknown dynamics. In these time-triggered control (TTC)
solutions, the control signals are executed periodically. Although the TTC approach can facilitate the
control design procedure and stability analysis, it wastes the limited network resources (e.g. bandwidth
and energy consumption). Recently, the periodic sampling control based on fixed time interval has been
presented to deal with this problem. Nevertheless, it is sometimes less preferable, because the sampling
takes place periodically regardless of whether the current behaviors of the system states need or not. In
order to eliminate the shortcomings of TTC and periodic sampling methods, an event-triggered control
(ETC) is introduced in Mazo and Tabuada (2011).

In the ETC approaches, the data is transmitted in an aperiodic manner, which saves the network re-
sources. The transmission data over networked systems depend on predetermined criterionwhich is named
an event-triggering rule. Motivated by the real-world demands, there exist some studies run on the ETC
approach for nonlinear systems with the strict-feedback dynamics Xing, Wen, Liu, Su and Cai (2016),
non-affine forms Yang, Meng, Yue, Zhang and Liang (2020b), DoS attacks Zhao, Niu and Zhao (2019),
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discrete-time structures Wang, Wang, Chen and Sheng (2019), and finite-time performance Zhang and
Yang (2019). By applying the dynamic surface technique, researchers in Zhang, Yao, Xu and Zhang
(2020) presented an ETC algorithm for dynamic positioning of marine surface ships. In Zhang, Li, Sun
and He (2018), a distributed fault-tolerant controller with the designed adaptive event-triggering rule was
introduced for a class of uncertain nonlinear multi-agent systems. The mentioned ETC results are only
limited to the classical integer-order systems, not applicable in the fractional-order systems.

As is known, many real applications like the signal processing, chaotic systems, electrical circuits,
robotics andmechanical systems can be represented by the fractional-order systems, Kilbas, Srivastava and
Trujillo (2006). Unlike the classical integer-order systems, the distinguished feature of the fractional-order
systems is their infinite dimensions. This feature is generated by the non-locality property of the fractional-
order derivatives. Hence, the pseudo-state concept is applied for the fractional-order systems. On the
other hand, the controller design is more complicated for the fractional-order systems, in comparison with
that of the integer-order ones, because some conventional rules for the integer-order calculations, like
the Chain and Leibniz rules, are not well established for the fractional-order derivatives. Therefore, it
is not trivial to extend the direct Lyapunov scheme as well as its associated control methods from the
integer-order to the fractional-order systems. Recently, based on the serial-parallel estimation model and
the dynamic surface approach, the authors in Yang, Yu, Lv, Zhu and Hayat (2020a) extended an adaptive
output tracking control for a class of nonstrict-feedback fractional-order systems. Researchers in Song,
Zhang, Song and Zhang (2020) provided an adaptive neuro-fuzzy tracking control of the fractional-order
uncertain nonlinear systemswith the input saturation. By applying the backstepping scheme, the presented
NN adaptive control architecture in Shahvali, Azarbahram, Naghibi-Sistani and Askari (2020) for the
fractional-order nonlinear multi-agent systems assures that distributed consensus errors are limited in
a preset bound. In Li, Wang and Tong (2021), an adaptive fault-tolerant control scheme obtained for
the fractional-order strict-feedback systems. A distributed adaptive fault compensation design studied in
Gong, Lan and Han (2020) for the fractional-order multi-agent systems with the actuator failures. Notably,
these approaches are all designed with respect to the TTC, where the limited network resources are not of
major concern. To overcome this drawback, some results are provided to address the ETC problem for the
linear fractional-order systems by Hu, He, Zhang and Zhong (2020); Ye, Su and Sun (2018); Ye and Su
(2018). Unlike these results, systems with the nonlinear fractional-order dynamics and uncertain factors
are more common, yet more challenging. There exists only one article Li, Liu and Chen (2018b), where
the ETC problem for the nonlinear fractional-order systems is assessed. The scope of this ETC method is
limited to the chaotic fractional-order systems with the single integrator dynamics that satisfied Lipschitz’s
condition. Besides, when some of actuators become faulty in the presented ETC approach for fractional-
order systems, it may lead to the loss of control objectives. The demand for reliability and safety of a
system to operate under actuator fault is a significant issue. A classic method with hardware redundancy
is originally used to avoid failure. However, physical redundancy in real applications has some problems
such as the limitation of space, weight and cost. Hence, the design of event-triggered fault compensation
control for the uncertain nonlinear fractional-order systems such that can minimize the impact of faults,
whilst reducing both energy consuming and extra costs owing to hardware redundancy is our theory and
practical motivations.

All the previous static ETC designs, similar to proof Girard (2014) result in conservatism minimum
inter-event time interval. Recently, Girard (2014) extended the available static ETC approaches by pre-
senting a mechanism named the dynamic event-triggering rule for the linear systems. This method assures
a larger minimum inter-event time than the corresponding static ETC schemes. Due to this advantage, the
dynamic ETC is developed for the nonlinear systems Xu, Liu, Wang and Zhou (2020), stochastic sys-
tems Wang, Zheng and Zhang (2017b), and linear multi-agent systems Hu, Yang, Huang and Gui (2018).
However, the dynamic ETC method is not discussed for the fractional-order systems.

The focus of this study is on the NN adaptive static and dynamic ETC designs for a class of the
fractional-order nonlinear systems subject to unmatched dynamics, unknown functions, external distur-
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bances, and actuator faults. There exist at least three main technical challenges associated with these
proposed control problems.

First, two static and dynamic ETC methods are proposed, where the fractional-order strict-feedback
systems execute their actuators only at sequences of time moments. In this context, how to design infinite
dimension static and dynamic event-triggering rules to decide when the actuators are updated for the
fractional-order systems is the first challenge.

Second, the methods of avoiding the Zeno phenomenon for the integer-order ETC schemes applied in
Xing et al. (2016); Yang et al. (2020b); Zhao et al. (2019); Zhang and Yang (2019); Zhang et al. (2020,
2018) are no longer valid in the two proposed approaches, because the conventional Chain rule is not
applicable for the fractional-order derivatives. To overcome this difficulty, a new method is proposed to
approximate the fractional-order derivative of the measurement error signal, (i.e., see the proof of third
statement of Theorem 2).

Third, a new relative dynamic event-triggering rule is proposed with respect to the control input in
this article. Hence, this requires different stability analysis than the existing dynamic ETC methods. Ad-
ditionally, as the actuators may encounter to loss of effectiveness, stuck, bias faults, and also the system
functions are completely unknown, it is not easy to obtain the tracking of the desired trajectory and reduce
the data transmission load in the controller to actuators’ channels, simultaneously.

To face these challenges, the NN adaptive fault compensation control is combined with the design of
static and dynamic ETC methods for the fractional-order systems. The main contributions of this article
are as follows

1) Unlike all the available TTC schemes for the fractional-order systems, the static ETC protocol is
offered for the fractional-order uncertain strict-feedback systems. According to the designed static event-
triggering rule in the controller to actuators’ channels, the transmission load and updating rate of the
actuators are reduced, simultaneously.

2) A new dynamic event-triggering rule is proposed for the strict-feedback fractional-order (integer-
order) systems, which contains the static ETC strategies in Hu et al. (2020); Ye et al. (2018); Ye and Su
(2018); Li et al. (2018b) (Xing et al. (2016); Yang et al. (2020b); Zhao et al. (2019); Zhang and Yang
(2019); Wang et al. (2019); Zhang et al. (2020, 2018)) as its special form. Also, a new internal dynamic
variable is applied in the triggering rule which assures a larger inter-event time interval than the existing
static ETC results. On the other hand, all the existing dynamic ETC methods are mainly presented for
the systems without unknown dynamics and actuator faults. Hence, the problem of unknown nonlinear
dynamics with faulty actuators in the dynamic ETC design is assessed in this article.

3) Given that the actuators of the fractional-order systems are faulty, the static and dynamic event-
triggered fault compensation controls are proposed by introducing infinite dimension fault compensator
variables. The previous works in Gong et al. (2020); Li et al. (2021) investigate the fault compensa-
tion issue for the fractional-order systems, however they are in the TTC manner. Besides, the employed
fractional-order differentiator (FOD) in this article not only removes the explosion of complexity prob-
lem in Shahvali et al. (2020); Li et al. (2021) but also can assure the global stability in contrast with the
dynamic surface control methods in Yang et al. (2020a); Song et al. (2020)

4) The presented ETC designs in Yang et al. (2020b); Wang et al. (2019); Zhang et al. (2020, 2018)
can only assure the semi-global ultimate bound stability due to applying the conventional NNs and FLSs.
According to the static and dynamic event-triggered approaches proposed in this article, all the yield
closed-loop signals of the networked systems are globally converged to their ultimate bounds.

This study is structured as follows. The preliminaries are introduced in Section 2; the problem is
formulated in Section 3; the controller designs and related stability analysis are discussed in Section 4;
the simulation results are shown in Section 5, and the article is concluded in Section 6.
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2. Preliminaries
Notations: In this article, the set of real scalars and natural numbers are symbolized by ℝ and ℕ,

respectively. ℝ≥0 (ℝ>0) defines the set of non-negative (strict positive) real scalars. To describe the set of
non-negative integers, ℤ≥0 is applied. For the complex numbers z ∈ ℂ, symbols arg(z) and Re(z) are the
argument and the real part of z, respectively. The notation ℝn is the n-dimensional Euclidean space. For
x ∈ ℝ, its absolute value is expressed by |x|. The Euclidean norm of the column vector x̄ ∈ ℝn is rep-
resented by ||x̄||. Let In be the identity matrix with n-dimension. The notations �max(A) ∶= max{�(A)}and �min(A) ∶= min{�(A)} are defined, where �(A) is the set of all the eigenvalues of square real matrix
A ∈ ℝn×n. A > 0, representing the positive definite property for A ∈ ℝn×n, and diag[a1,… , an] is thereal diagonal matrix of their argument with n-dimension. For the signal x(t) ∈ ℝ, notation |x(t)|∞ is the
∞-norm. In this article, superscripts (s) and (d) denote static and dynamic ETC approaches, respectively.

Fractional-order calculation: The two common fractional-order derivatives are Riemann-Liouville
and Caputo. The popularity of the Caputo is because only the integer-order derivatives of its initial states
appear in its Laplace transform (LT); consequently, it is applied to represent the fractional-order model in
this article.

For q ∈ (l − 1,l) with l ∈ ℕ, the q-order Caputo derivative of function f (t) is defined as (Podlubny
(1999))


t0
Dq
t f (t) =

1
Γ(l − q) ∫

t

t0

f (l)(p)
(t − p)q+1−l

dp, (1)

where f (l)(t) is the l-th time derivative of f (t) and Γ(1 − q) = ∫ +∞0 p−q exp(−p)dp. Hereafter, it is
assumed that l = 1. The LT of the q-order Caputo derivative is expressed as (Podlubny (1999))

{
t0
Dq
t f (t)

}
= sqF (s) − sq−1f (t0), (2)

where  is the LT operator and F (s) is the LT of f (t).
Definition 1 (Podlubny (1999)): The Mittag-Leffler function is defined as

M(q,)(z) =
+∞∑
m=0

zm

Γ(qm + )
, (3)

with z ∈ ℂ and  ∈ ℝ>0, whose the LT of the Mittag-Leffler function with � ∈ ℝ is expressed as

{t−1M(q,)(−�tq)
}
= sq−

sq + �
, Re(s) > |�|−q . (4)

Lemma 1 (Podlubny (1999)): If  ∈ ℝ>0, � ∈ ℝ>0, and q ∈ ℝ>0 are satisfied by �q
2 < � < �q and

q ∈ (0, 1), then there exists Ξ ∈ ℝ>0, in a sense that the Mittag-Leffler function is bounded by

|M(q,)(z)| ≤ Ξ
1 + |z| , � ≤ |arg(z)| ≤ �. (5)

Lemma 2 (Podlubny (1999)): If x̄(t) = [x1(t),… , xn(t)]T ∈ ℝn is the smooth vector function, then
the following relations are satisfied for any t ≥ t0


t0
Dq
t

(
x̄T(t)x̄(t)

)
=
+∞∑
j=0

(
q
j

)

t0
Dj
t x̄
T(t)t0D

�−j
t x̄(t), (6)
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t0
Dq
t

(
x̄T(t)x̄(t)

)
≤ 2x̄T(t)t0Dq

t x̄(t). (7)

Lemma 3 (Shahvali et al. (2020)): For any given continuous and positive definite function V (x̄(t)) ∶
ℝn → ℝ≥0, if there exist the two bounded parameters � > 0 and % ≥ 0 in a sense that t0D

q
t V (x̄(t)) ≤

−�V (x̄(t)) + %, ∀t ≥ t0, then this fractional-order differential inequality has an unique solution for every
bounded initial condition, and yields

V (x̄(t)) ≤ V (x̄(t0))M(q,1)

(
− �(t − t0)q

)
+ %d
�
, (8)

where d ∶= max{1,Ξ} which Ξ is defined in (5).
Remark 1: The stability analysis of the fractional-order nonlinear systems is different from the integer-

order ones. This is because the fractional-order derivative of the standard quadratic Lyapunov functions
generates some infinite series according to Eq. (6). To overcome this difficulty, the fractional-order Lya-
punov stability (i.e., Lemma 1, Eq. (7), and Lemma 3) are applied in this article.

Neural networks: In general, the radial basis function neural networks (RBFNNs) have been widely
employed in extending the adaptive control strategies to handle parametric uncertainties in structured dy-
namics, Lewis et al. (1995); Gao, Song andWen (2016). According to Gao et al. (2016), for any continuous
function f (X(t)) ∶ ℝn → ℝ, there exists a RBFNN such that

f (X(t)) = w∗T�(X(t)) + �(X(t)), (9)
�s(X(t)) = exp

[
−
(X(t) − cs)T(X(t) − cs)

�s

]
, s = 1,… , r, (10)

where X(t) ∈ ℝn is the input vector of the NN, r is the NN node number, w∗ = [w∗1,… , w∗r ]
T ∈

ℝr is the ideal constant NN weight vector which minimizes the modeling error �(X(t)), �(X(t)) =
[�1(X(t)),… , �r(X(t))]T ∈ ℝr is the activation vector of the NN, and its members are the Gaussian
basis functions defined in Eq. (10). �s ∈ ℝ>0 and cs = [cs,1,… , cs,n]T ∈ ℝn are the standard deriva-
tion and the center vector of the Gaussian function, respectively. The ideal weight vector of the NNs is
bounded, in a sense that ||w∗|| ≤ w, where w is an unknown scalar.

The following Lemmas are very important in the subsequent control designs and their stability analy-
sis.

Lemma 4 (Xing et al. (2016)): For any real positive bounded parameter � and ∀x(t) ∈ ℝ, the follow-
ing inequality holds true

0 ≤ |x(t)| − x(t) tanh(x(t)∕�) ≤ ��, (11)
where � ∶= supt>0{ t

1+exp(t)} = 0.2785.
Lemma 5 (Khalil and Grizzle (2002)): For any (ȳ1(t), ȳ2(t)) ∈ ℝn and Γ > 0, the following inequal-

ities hold true
• ȳT1 (t)ȳ2(t) ≤ ��1

�1
||ȳ1(t)||�1 + 1

�2��2
||ȳ2(t)||�2 ,

• �min(Γ)||ȳ1(t)||2 ≤ ȳT1 (t)Γȳ1(t) ≤ �max(Γ)||ȳ1(t)||2,
where � ∈ ℝ>0, �1 and �2 are the positive parameters satisfying �1 + �2 = �1�2.

Milad Shahvali et al.: Preprint submitted to Elsevier Page 5 of 25

                  



Event-triggered control for fractional-order systems

3. Problem Formulation
The focus of this article is on a class of the fractional-order uncertain strict-feedback systems Song

et al. (2020); Shahvali et al. (2020); Li et al. (2021), the dynamics of which are described through the
following equations

⎧⎪⎨⎪⎩


t0
Dq
t xk(t) = xk+1(t) + fk(x̄k(t)) + dk(t),

t0
Dq
t xn(t) = (B(x̄n(t)))

Tu(t) + fn(x̄n(t)) + dn(t),
y(t) = x1(t), k = 1, 2,… , n − 1,

(12)

where 
t0
Dq
t xm(t) is the Caputo fractional derivative of the pseudo state xm(t) ∈ ℝ for m ∈ {1,… , n},

0 < q < 1 is the order of the fractional derivative which is known, u(t) = [u1(t),… , u (t)]T ∈ ℝ and
y ∈ ℝ are the actuators’ output vector and the system output, respectively, and  represents the number
of actuators. x̄m(t) = [x1(t),… , xm(t)]T ∈ ℝm is the pseudo state vector, fm(x̄m(t)) ∈ ℝ is the smooth
unknown functionwith fm(0,… , 0) = 0, dm(t) ∈ ℝ is the unknown and bounded external disturbance, and
B(x̄n(t)) = [B1(x̄n(t)),… , B (x̄n(t))]T is the known and bounded vector function with Bi(x̄n(t)) ∈ ℝ>0

for i ∈ {1,… ,}.
Assume that the actuators’ output for the fractional-order system in Eq. (12) is modeled through
u(t) = (I − &)#�(t) + &ū(t) + ΘΔ(t), (13)

where & = diag[&1,… , & ], the value of &i is 0 or 1, # = diag[#1,… , # ], 0 < #i ≤ 1 is an un-
known efficient constant factor which representing the proportion of effectiveness of the control input,
and ū(t) = [ū1(t),… , ū (t)]T is an unknown time-varying vector function which is bounded. Θ =
diag[(�1)T,… , (� )T] is an actuator constant uncertainmatrixwith �i = [pi1,… , pib]

T,Δ(t) = [�1(t),… , �s(t)]T

is a bounded and unknown time-varying vector with �i(t) = [vi1(t),… , vib(t)]
T, and �(t) = [�1(t),… , � (t)]T

is a control input vector. The time occurrence of fault for the i-th actuator (tfi ), pattern and its value are
assumed unknown.

The considered actuator fault model in Eq. (13) includes the following normal case and the typical
actuator faults

1. &i = 0, �i = 0, and #i = 1 imply that the i-th actuator operates normally.
2. &i = 0, #i = 1, and �i ≠ 0 indicate the bias fault for the i-th actuator.
3. &i = 1, �i = 0 and #i = 1 imply that the i-th actuator works under stuck.
4. &i = 0, �i = 0, and 0 < #i < 1 means the i-th actuator undergoes the partial loss of effectiveness.
Remark 2: System in Eq. (12) represents the fractional-order nonlinear systems with the strict-

feedback form consisting of some power and electrical applications, like machine-infinite bus power sys-
tems Song et al. (2020), doubly-fed induction generators Aounallah, Essounbouli, Hamzaoui andBouchafaa
(2018), hydro-turbine governing systems Xu, Chen, Zhang andWang (2015), and Chua’s and Duffing sys-
tems Podlubny (1999).

Control problem: The control problem of this article is to design the static and dynamic event-
triggered fault compensation methods for the fractional-order system (12) with the actuator fault (13)
such that

1. All the signals in the closed-loop system are globally uniformly ultimately bounded, while the track-
ing error (i.e., �1(t) = x1(t) − xd(t)) is ultimately restricted to a compact set with adjustable size
a > 0 as follows

Π ∶=
{
�1(t) ∈ ℝ|||Limt→+∞|�1(t)| ≤ a

}
,

where xd is a desired trajectory.
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2. There exist two positive constants t∗(s) and t∗(d) such that
t(s)j+1 − t

(s)
j ≥ t∗(s), t(d)j+1 − t

(d)
j ≥ t∗(d), ∀j ∈ ℕ,

namely, the Zeno behavior does not happen.
To solve the aforesaid control problem, first, a global NN fault compensation TTC is designed. Next,

by combining the new static ETC techniquewith theNN fault compensation, the static event-triggered fault
compensation control is devised which saves energy resources than the proposed TTC. To overcome the
conservatism minimum inter-event time interval in the proposed static ETC, an internal dynamic variable
is incorporated into the static ETC so that the practical dynamic ETC is introduced.

As to this control problem, the following Assumptions are made.
Assumption 1 (Li et al. (2021)): For the fractional-order system in Eq. (12), if any up to-1 actuators

stuck, and the others lose effectiveness, the closed-loop system can still be driven to obtain the control
objective.

Assumption 2: The desired trajectory xd(t) ∈ ℝ and its q-order fractional derivative 
t0
Dq
t xd(t) ∈ ℝ

are exist, continuous and bounded. However, t0D
q
t xd(t) is unknown for control design.

Assumption 3 (Gao et al. (2016)): The NN modeling error satisfies the following inequality
|�(X(t))| ≤ '̄∗ +  ∗�(X(t)), (14)

where '̄∗ and  ∗ are the unknown positive scalars, and �(X(t)) is a known positive function.
Remark 3: Assumption 1 is necessary and standard for the controllability of the fractional-order and

also the integer-order systems in presence of actuator faults. Assumption 2 reduces conservatism in Yang
et al. (2020a); Song et al. (2020); Shahvali et al. (2020); Gong et al. (2020), where xd , 

t0
Dq
t xd(t) and

t0
D2qt xd(t) should be known and available for control design. In the most adaptive NN control results,

the modeling error is assumed to be bounded by a constant over a compact set. However, it cannot be
ensured before the stability of the closed-loop system is established. In this article, Assumption 3 similar
to Gao et al. (2016) is more general form of assumption on modeling error in Shahvali et al. (2020); Wang
et al. (2019); Zhang et al. (2020, 2018) specifies that the modeling error is bounded by a state-dependent
function. This enables us to provide the closed-loop stability analysis over the whole state space, not just
over a compact set, and thus removes the unreasonable assumption in the conventional adaptive NN control
approaches. As a result, Assumptions 1-3 do not pose a strong limitation from a practical viewpoint upon
the considered class of the fractional-order systems and also the proposed control strategy.

4. Main results
After proposing the NN fault compensation TTC procedure for the fractional-order systems, two static

and dynamic ETC methods are devised. Hereafter, symbol t is removed from relations when is unneces-
sary.
4.1. Time-triggered fault compensation approach

The backstepping strategy is adopted to design the fault compensation time-triggered controller for
the fractional-order strict-feedback systems. Using this control approach, the actual control input can
be designed as � i = ℘̂i$n+1

Bi(x̄n)
, for all i = 1,… , , where ℘̂i and $n+1 are given letter. To this end,

the coordinate transformation is presented as (Khalil and Grizzle (2002); Regaya, Farhani, Zaafouri and
Chaari (2017a, 2018))

�m = xm −$m, m = 1,… , n, (15)
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where �m is the error surface,$1 ∶= xd , and$m for m = 2,… , n is the virtual control law which is given
later.

Now, the design procedure is began.
∙ First step: From (12), (15), and with respect to the universal approximation of RBFNNs (9),(i.e.,

f1(x̄1) = w∗T1 �1(x̄1) + �1(x̄1)), one can follow that

t0
Dq
t �1 =


t0
Dq
t x1 −


t0
Dq
t xd ,

= x2 + f1(x̄1) + d1 − 
t0
Dq
t xd ,

= x2 +w∗T1 �1(x̄1) + �1(x̄1) + d1 −

t0
Dq
t xd . (16)

In contrast to the common assumption for the integer-order systems in Zhao et al. (2019); Zhang
and Yang (2019); Wang et al. (2019); Zhang et al. (2020, 2018), where the time derivatives of the desired
trajectory are known, the q-order fractional derivative of the desired trajectory is often unknown (Shahvali
et al. (2020)). To overcome this difficulty, a fractional-order differentiator (FOD) with input xd , and two
pseudo state variables �11 and �12 is used to estimate 

t0
Dq
t xd as follows (Sheng, Wei, Cheng and Shuai

(2017))
⎧⎪⎨⎪⎩


t0
Dq
t �11 = �12 ,


t0
Dq
t �12 = −a1 tanh

(
�11 − xd +

�12 |�12 |
a1

(
1 − Γ2(q+1)

Γ(2q+1)

))
,

(17)

where a1 > 0 is a design factor, the pseudo states �11 and �12 are converged into xd and 
t0
Dq
t xd with

bounded estimation errors as "11 = xd − �11 and "12 =
t0
Dq
t xd − �12 , respectively. Then, the following isyielded


t0
Dq
t �1 =x2 +w

∗T
1 �1(x̄1) + �1(x̄1) + d1 − �12 − "12 . (18)

The virtual control and the adaptive law are designed as

$2 = − c1�1 − ŵT1�1(x̄1) − '̂1 tanh
(�1
�

)
−  ̂1�1(x̄1) tanh

(�1�1(x̄1)
�

)
+ �12 , (19)


t0
Dq
t ŵ1 =Γw1

(
�1�1(x̄1) − rw1ŵ1

)
, (20)


t0
Dq
t '̂1 ='1

(
�1 tanh

(�1
�

)
− r'1'̂1

)
, (21)


t0
Dq
t  ̂1 = 1

(
�1�1(x̄1) tanh

(�1�1(x̄1)
�

)
− r 1  ̂1

)
, (22)

where c1 > 0 and � > 0 are the design parameters, Γw1 > 0, '1 > 0 and  1 > 0 are the adaptive gains,and rw1 > 0, r'1 > 0 and r 1 > 0 are the sigma modification factors.
Choose the Lyapunov function candidate as
V1 =

1
2
�21 +

1
2
w̃T1Γ

−1
w1
w̃1 +

1
2'1

'̃21 +
1
2 1

 ̃21 , (23)

where w̃1 = w∗1 − ŵ1, '̃1 = '∗1 − '̂1, and  ̃1 =  ∗1 −  ̂1.Applying (7) together with (23) and (18) results in

t0
Dq
t V1 ≤�1

(
x2 +w∗T1 �1(x̄1) + �1(x̄1) + d1 − "12 − �12

)
− w̃T1Γ

−1
w1


t0
Dq
t ŵ1 −

1
'1

'̃1

t0
Dq
t '̂1 −

1
 1

 ̃1

t0
Dq
t  ̂1.

(24)
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Event-triggered control for fractional-order systems

Through Assumption 3 and Lemma 4, the following inequality is obtained
�1
(
�1(x̄1) + d1 − "12

) ≤'∗1�1 tanh
(�1
�

)
+  ∗1�1�1(x̄1) tanh

(�1�1(x̄1)
�

)
+ p1, (25)

where |"12 | ≤ "∗12 , |d1| ≤ d∗1 , '∗1 = "∗12 + '̄∗1 + d∗1 , and p1 = ��('∗1 + ∗1 ). Substituting (25) in (24) yields

t0
Dq
t V1 ≤�1

(
x2 +w∗T1 �1(x̄1) + '

∗
1 tanh

(�1
�

)
+  ∗1�1(x̄1) tanh

(�1�1(x̄1)
�

)
− �12

)
− w̃T1Γ

−1
w1


t0
Dq
t ŵ1

− 1
'1

'̃1

t0
Dq
t '̂1 −

1
 1

 ̃1

t0
Dq
t  ̂1 + p1. (26)

Combining (15), (19)-(22) with (26) gives

t0
Dq
t V1 ≤ − c1�21 + �1�2 + rw1w̃T1 ŵ1 + r'1 '̃1'̂1 + r 1  ̃1 ̂1 + p1. (27)

∙ Second step (2 ≤ k ≤ n − 1): From (12), (15), and universal approximation of NNs (9), Eq. (28) is
yielded


t0
Dq
t �k = xk+1 +w

∗T
k �k(x̄k) + �k(x̄k) + dk −


t0
Dq
t$k. (28)

In the proposed backstepping control design procedure, the repeated fractional-order derivative of the
virtual control should be calculated, (i.e., t0D

q
t$k). This calculation cannot be derived exactly, because

the Chain rule is not well established for the fractional-order derivative. To overcome this drawback, a
FOD with a design factor ak > 0, input$k, and two pseudo states �k1 and �k2 is used to estimate 

t0
Dq
t$k

as follows
⎧⎪⎨⎪⎩


t0
Dq
t �k1 = �k2 ,


t0
Dq
t �k2 = −ak tanh

(
�k1 −$k +

�k2 |�k2 |
ak

(
1 − Γ2(q+1)

Γ(2q+1)

))
,

(29)

where �k1 and �k2 are converged into$k and 
t0
Dq
t$k with bounded estimation errors as "k1 = $k − �k1

and "k2 =
t0
Dq
t$k − �k2 , respectively. It follows that


t0
Dq
t �k =xk+1 +w

∗T
k �k(x̄k) + �k(x̄k) + dk − �k2 − "k2 . (30)

The virtual control and the adaptive update law are designed as
$k+1 = − ck�k − ŵTk�k(x̄k) − '̂k tanh

(�k
�

)
−  ̂k�k(x̄k) tanh

(�k�k(x̄k)
�

)
+ �k2 , (31)


t0
Dq
t ŵk =Γwk

(
�k�k(x̄k) − rwkŵk

)
, (32)


t0
Dq
t '̂k ='k

(
�k tanh

(�k
�

)
− r'k'̂k

)
, (33)


t0
Dq
t  ̂k = k

(
�k�k(x̄k) tanh

(�k�k(x̄k)
�

)
− r k  ̂k

)
, (34)

where ck > 0 and � > 0 are the design parameters, Γwk > 0, 'k > 0 and  k > 0 are the adaptive gains,and rwk > 0, r'k > 0 and r k > 0 are the sigma modification factors.
Define the Lyapunov function candidate as
Vk =

1
2
�2k +

1
2
w̃TkΓ

−1
wk
w̃k +

1
2'k

'̃2k +
1
2 k

 ̃2k , (35)
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where w̃k = w∗k − ŵk, '̃k = '∗k − '̂k, and  ̃k =  ∗k −  ̂k.According to (30), (35) and Lemma 2 one has

t0
Dq
t Vk ≤ �k

(
xk+1 +w∗Tk �k(x̄k) + �k(x̄k) + dk − "k2 − �k2

)
− w̃TkΓ

−1
wk


t0
Dq
t ŵk −

1
'k

'̃k

t0
Dq
t '̂k

− 1
 k

 ̃k

t0
Dq
t  ̂k. (36)

Being similar to the same case of Eq. (25), the following is obtained

�k
(
�k(x̄k) + dk − "k2

) ≤'∗k�k tanh
(�k
�

)
+  ∗k�k�k(x̄k) tanh

(�k�k(x̄k)
�

)
+ pk, (37)

where |"k2 | ≤ "∗k2 , |dk| ≤ d∗k , '∗k = "∗k2 + d
∗
k + '̄

∗
k, and pk = ��('∗k +  

∗
k ). As to (37), 

t0
Dq
t Vk is

reexpressed as

t0
Dq
t Vk ≤�k

(
xk+1 +w∗Tk �k(x̄k) + '

∗
k tanh

(�k
�

)
+  ∗k�k(x̄k) tanh

(�k�k(x̄k)
�

)
− �k2

)
− w̃TkΓ

−1
wk


t0
Dq
t ŵk

− 1
'k

'̃k

t0
Dq
t '̂k −

1
 k

 ̃k

t0
Dq
t  ̂k + pk. (38)

Substituting (31)-(34) into (38), the following holds

t0
Dq
t Vk ≤ −ck�2k + �k�k+1 + rwkw̃Tkŵk + r'k '̃k'̂k + r k  ̃k ̂k + pk. (39)

∙ Final step: By considering (12), (13) and (15), the q-order fractional derivative of �n is computed
as follows


t0
Dq
t �n =

∑
i=1

Bi(x̄n)
(
(1 − &i)#i� i + &iūi + (�i)T�i

)
+w∗Tn �n(x̄n) + �n(x̄n) + dn −


t0
Dq
t$n, (40)

The following FOD with a design factor an > 0 is applied to estimate 
t0
Dq
t$n as

⎧⎪⎨⎪⎩


t0
Dq
t �n1 = �n2 ,


t0
Dq
t �n2 = −an tanh

(
�n1 −$n +

�n2 |�n2 |
an

(
1 − Γ2(q+1)

Γ(2q+1)

))
,

(41)

where �n1 and �n2 are converged into$n and 
t0
Dq
t$n with the bounded estimation errors as "n1 = $n−�n1

and "n2 =
t0
Dq
t$n − �n2 , respectively. Then, (40) can be rewritten as


t0
Dq
t �n =

s∑
i=1

Bi(x̄n)
(
(1 − &i)#i� i + &iūi + (�i)T�i

)
+w∗Tn �n(x̄n) + �n(x̄n) + dn − �n2 − "n2 . (42)

For real applications without prior knowledge of the actuator faults, the actual TTC law is designed as

� i =
℘̂i$n+1
Bi(x̄n)

, i = 1,… , , (43)

where $n+1 is the virtual control, besides according to the definition of #i, there mathematically exists
unknown constant parameter (i.e., ℘i∗), like that ∑s

i=1℘
i∗(1 − &i)#i = 1, in which ℘i∗ is approximated
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by ℘̂i.
The virtual control and the adaptive update law are

$n+1 = − cn�n − ŵTn�n(x̄n) − '̂n tanh
(�n
�

)
−  ̂n�n(x̄n) tanh

(�n�n(x̄n)
�

)
+ �n2 , (44)


t0
Dq
t ŵn =Γwn

(
�n�n(x̄n) − rwnŵn

)
, (45)


t0
Dq
t '̂n ='n

(
�n tanh

(�n
�

)
− r'n'̂n

)
, (46)


t0
Dq
t  ̂n = n

(
�n�n(x̄n) tanh

(�n�n(x̄n)
�

)
− r n  ̂n

)
, (47)


t0
Dq
t ℘̂

i = −  i℘
(
�n$n+1 + ri℘℘̂

i
)
, i = 1,… , , (48)

where cn > 0 and � > 0 are the design parameters, Γwn > 0, 'n > 0,  n > 0 and  i℘ > 0 are the adaptive
gains, and rwn > 0, r'n > 0, r n > 0 and ri℘ > 0 are the sigma modification factors.

The following Lyapunov candidate function is of concern

Vn =
1
2
�2n +

1
2
w̃TnΓ

−1
wn
w̃n +

1
2'n

'̃2n +
1
2 n

 ̃2n +
∑
i=1

#i

2 i℘
(1 − &i)(℘̃i)2, (49)

where w̃n = w∗n − ŵn, '̃n = '∗n − '̂n,  ̃n =  ∗n −  ̂n, and ℘̃i = ℘i∗ − ℘̂i.
Based on the (42), (43), and Lemma 2, the q-order fractional derivative of Vn is obtained as


t0
Dq
t Vn ≤�n

(
$n+1 −

s∑
i=1

#i℘̃i(1 − &i)$n+1 +w∗Tn �n(x̄n) + ℏ + �n(x̄n) + dn − "n2 − �n2

)
− w̃TnΓ

−1
wn


t0
Dq
t ŵn

− 1
'n

'̃n

t0
Dq
t '̂n −

1
 n

 ̃n

t0
Dq
t  ̂n −

∑
i=1

#i

 i℘
(1 − &i)℘̃i 

t0
Dq
t ℘̂

i, (50)

where ℏ = ∑
i=1 B

i(x̄n)
(
&iūi + (�i)T�i

). Similar to Eqs. (25) and (37) in previous steps, the following is
evident

�n
(
�n(x̄n) + dn + ℏ − "n2

) ≤'∗n�n tanh
(�n
�

)
+  ∗n�n�n(x̄n) tanh

(�n�n(x̄n)
�

)
+ pn, (51)

where |"n2 | ≤ "∗n2 , |dn| ≤ d∗n , |ℏ| ≤ ℏ∗, '∗n = "∗n2 + d∗n + '̄∗n + ℏ∗ and pn = ��('∗n +  ∗n ).Substituting (51) into (50), we have


t0
Dq
t Vn ≤�n

(
$n+1 −

∑
i=1

#i℘̃i(1 − &i)$n+1 +w∗Tn �n(x̄n) + '
∗
n tanh

(�n
�

)
+  ∗n�n(x̄n) tanh

(�n�n(x̄n)
�

)
− �n2

)

− w̃TnΓ
−1
wn


t0
Dq
t ŵn −

1
'n

'̃n

t0
Dq
t '̂n −

1
 n

 ̃n

t0
Dq
t  ̂n −

∑
i=1

#i

 i℘
(1 − &i)℘̃i 

t0
Dq
t ℘̂

i + pn.

(52)
From Eqs. (44)-(48) and (52), the following inequality is obtained


t0
Dq
t Vn ≤ − cn�2n + rwnw̃Tn ŵn + r'n '̃n'̂n + r n  ̃n ̂n +

∑
i=1

#i(1 − &i)ri℘℘̃
i℘̂i + pn. (53)
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4.1.1. Stability analysis of TTC
The results as mentioned earlier are briefed in the following theorem.
Theorem 1: Let Assumptions 1-3 are satisfied, then by considering the closed-loop networked system

including the fractional-order nonlinear dynamics (12) with the actuator faults (13), the actual control law
(43), the virtual laws (19), (31) and (44), the FOD (17), (29) and (41), the following hold

• All signals of the closed-loop networked system are globally uniformly ultimately bounded.
• The tracking error ultimately converges into the neighborhood of the origin with adjustable size as

follows
Π ∶=

{
�1(t) ∈ ℝ|||Limt→+∞|�1(t)|2 ≤ 2%d�

}
.

Proof: The total Lyapunov function candidate is selected as V =
∑n
m=1 Vm. Note to (27), (39), (53),

and applying Lemma 5, the q-order fractional derivative of the proposed V results in


t0
Dq
t V ≤ − (c1 − 0.5)�21 −

n−1∑
m=2

(cm − 1)�2m − (cn − 0.5)�
2
n −

1
2

n∑
m=1

(
rwm ||w̃m||2 + r'm '̃2m + r m  ̃2m

)

− 1
2

∑
i=1

#i(1 − &i)ri℘(℘̃
i)2 + 1

2

n∑
m=1

(
rwm ||w∗m||2 + r'm'∗2m + r m 

∗2
m

)

+ 1
2

∑
i=1

#i(1 − &i)ri℘(℘
i∗)2 +

n∑
m=1

pm. (54)

From (54), one has

t0
Dq
t V ≤ −�V + %, (55)

where � = minm=1,…,n
i=1,…,

{
2(cm−1), �min(Γwm )rwm , 'mr'm ,  mr m , 

i
℘r

i
℘

}
and % = 0.5∑n

m=1

(
rwm ||w∗m||2+

r'm'
∗2
m

+ r m 
∗2
m + 2pm

)
+ 0.5

∑
i=1 #

i(1 − &i)ri℘(℘
i∗)2.

From (55), Lemmas 3 and 1, we have V (t) ≤ V (t0)M(q,1)(−�(t−t0)q)+
%d
� , and V (t) ≤ V (t0)Ξ

1+|�(t−t0)q |+
%d
� .Therefore, it can be deduced that the solutions of the resulting closed-loop networked system are globally

uniformly ultimately bounded; thus, the first part of the Theorem 1 is proved. Moreover, 12�21 (t) ≤ V (t)

implies that Π ∶=
{
�1(t) ∈ ℝ|||Limt→+∞|�1(t)|2 ≤ 2 %d�

}
. This completes the proof of the second part of

Theorem 1. ■
Remark 4: The dynamic surface control approaches in Yang et al. (2020a); Song et al. (2020) remove

the explosion of complexity drawback by introducing the first-order fractional filter (FOFF) as follows
∅kt0D

q
t �k + �k = $k, k = 2,… , n. (56)

where 0 < ∅k < 1 is a design parameter. Similar to Swaroop et al. (2000), the presented filter in Yang et al.
(2020a); Song et al. (2020) is highly sensitive to ∅k and only semi-global stability is ensured. However,
in the proposed approach, FOD is applied to eliminate the explosion of complexity drawback. Compared
to the FOFF, the main characteristics of the applied FOD is fast convergence and good filtering precision.
Therefore, in this article the global tracking stability with high accuracy is assured thanYang et al. (2020a);
Song et al. (2020).
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4.2. Static event-triggered fault compensation approach
The proposed fault compensation structure with a static ETC strategy is combined to avoid unnecessary

energy consumption caused by updating the actuators and transmitting the signals in continuous time. For
simplicity, because all the virtual control laws are updated in the time-trigger manner, only the actual
control design in the final step is discussed.

To design the fault compensation static ETC, the following two auxiliary signals are proposed as

� i(s)e =
℘̂i$n+1
Bi(x̄n)

, i = 1,… , , (57)

�̆i(s) = −(1 + ℵi)
(
� i(s)e tanh

(� i(s)e Bi(x̄n)�n
�i

)
+ � i1 tanh

(� i1Bi(x̄n)�n
�i

))
, i = 1,… , , (58)

where 0 < ℵi < 1, �i > 0, and � i1 > 0 are the design parameters, �n,$n+1, and ℘̂i are given in Eqs. (15),
(44), and (48), respectively.

For the i-th actuator, a control input and static event-triggering rule are respectively designed as
� i(s) = �̆i(s)(ti(s)j ), ∀t ∈ [ti(s)j , ti(s)j+1), (59)
ti(s)j+1 = inf

{
t ∈ ℝ>0 ||| |�

i(s)| − ℵi|� i(s)| − � i2 ≥ 0
}
, (60)

where �i(s) = �̆ i(s)−� i(s) is the measurement error, � i(s) is the control input, and inequality 0 < � i2 < � i1(1−
ℵi) for design parameter � i2 is satisfied. ti(s)j (j ∈ ℤ≥0 and ti(s)0 = 0) is an event-triggered time moment for
i-th actuator in the proposed static ETC method which satisfies ti(s)0 < ti(s)1 < ti(s)2 < … < ti(s)j < …, and
limj→+∞ t

i(s)
j = +∞.

Remark 5: It is important to note that the i-th actuator output (� i(s)) is updated according to the current
sampled auxiliary signal (�̆i(s)) whenever its static event-triggering rule in Eq. (60) is satisfied which is
applicable for digital implementation. From the measurement error signal, it can be deduced that for every
triggering time moment (t = ti(s)j ), this signal is equal zero, and for the time interval t ∈ [ti(s)j , ti(s)j+1), each
actuator output holds a last transmitted control signal as a piecewise constant, (i.e., � i(s) = �̆i(s)(ti(s)j )).
Thus, the transmission load between the controller and the actuators (also the actuators’ execute) are
effectively reduced.
4.2.1. Stability analysis of static ETC

The main results of the static ETC for the fractional-order networked systems are presented as follows.
Theorem 2: Let Assumptions 1-3 are satisfied. Consider the closed-loop fractional-order networked

system (12) subject to the actuator fault (13) with the actual control input (59), the virtual laws (19), (31),
and (44); then, under the proposed static event-triggering rule (60) with the design parameters 0 < ℵi < 1,
� i1 > 0, and 0 < � i2 < � i1(1 − ℵi) the following hold

• All signals of the closed-loop networked system are globally uniformly ultimately bounded.
• The tracking error ultimately converges into the neighborhood of the origin with adjustable size as

follows

Πs =
{
�1(t) ∈ ℝ|||Limt→+∞|�1(t)|2 ≤ 2 %̆d�

}
.

• The Zeno phenomenon is strictly excluded, (i.e., t(s)j+1 − t(s)j ≥ t∗(s) > 0, ∀j ∈ ℕ).
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Proof: ConsideringV =
∑n
m=1 Vm together with (27), (39), (42), and applying Lemma 5, the following

is obtained

t0
Dq
t V ≤�n

( ∑
i=1

Bi(x̄n)(1 − &i)#i� i(s) + ℏ +w∗Tn �n(x̄n) + �n(x̄n) + dn − �n2 − "n2

)
− (c1 − 0.5)�21 −

n−1∑
m=2

(cm − 1)�2m

+ 0.5�2n − 0.5
n−1∑
m=1

(
rwm ||w̃m||2 + r'm '̃2m + r m  ̃2m

)
+ 0.5

n−1∑
m=1

(
rwm ||w∗m||2 + r'm'∗2m + r m 

∗2
m

)

+
n−1∑
m=1

pm − w̃TnΓ
−1
wn


0D

q
t ŵn −

1
'n

'̃n

t0
Dq
t '̂n −

1
 n

 ̃n

t0
Dq
t  ̂n −

∑
i=1

#i

 i℘
(1 − &i)℘̃i 

t0
Dq
t ℘̂

i.

(61)
According to (Xing et al. (2016)) and Eq. (60), for any t ∈ [ti(s)j , ti(s)j+1), it can be deduced that there

exists |�ip| ≤ 1 for p = 1, 2 such that �̆ i(s) = (1 + ℵi�i1)� i(s) + �i2� i2. Therefore, it can easily be obtained
that �i(s) = �̆i(s)

1+ℵi�i1
−

�i2�
i
2

1+ℵi�i1
. Hence, it results in from Eq. (58) that

� i(s) = − (1 + ℵ
i)

1 + ℵi�i1

(
� i(s)e tanh

(� i(s)e Bi(x̄n)�n
�i

)
+ � i1 tanh

(� i1Bi(x̄n)�n
�i

))
−

�i2�
i
2

1 + ℵi�i1
. (62)

Then, Eq. (63) is yielded from (62) as follows

Bi(x̄n)�n#i�i(s) ≤ − Bi(x̄n)�n#i
(
� i(s)e tanh

(� i(s)e Bi(x̄n)�n
�i

)
+ � i1 tanh

(� i1Bi(x̄n)�n
�i

))
+ Bi(x̄n)#i|�n|

� i2
1 − ℵi

.

(63)
According to Lemma 4, the following inequalities hold true

−�nBi(x̄n)#i� i1 tanh
(� i1Bi(x̄n)�n

�i
) ≤ − Bi(x̄n)#i� i1|�n| + �#i�i, (64)

−�nBi(x̄n)#i� i(s)e tanh
(� i(s)e Bi(x̄n)�n

�i
) ≤Bi(x̄n)#i�n�i(s)e + �#i�i. (65)

Substituting Eqs. (64) and (65) into (63), with respect to (57), and recalling definition ℘̂i, the following
inequality is yielded

�n
∑
i=1

Bi(x̄n)(1 − &i)#i� i(s) ≤�n$n+1 − �n$n+1

∑
i=1

#i(1 − &i)℘̃i + 2�
∑
i=1
(1 − &i)#i�i. (66)

Combining Eqs. (61), (66), (44)-(48) and after a simple calculation similar to (51), Eq. (67) is obtained


t0
Dq
t V ≤ − (c1 − 0.5)�21 −

n−1∑
m=2

(cm − 1)�2m − (cn − 0.5)�
2
n −

1
2

n∑
m=1

(
rwm ||w̃m||2 + r'm '̃2m + r m  ̃2m

)

− 1
2

∑
i=1

ri℘(1 − &
i)#i(℘̃i)2 + 1

2

∑
i=1

ri℘(1 − &
i)#i(℘i∗)2 + 1

2

n∑
m=1

(
rwm ||w∗m||2 + r'm'∗2m + r m 

∗2
m

)

+
n∑

m=1
pm + 2�

∑
i=1
(1 − &i)#i�i. (67)
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According to Eq. (67), the following inequality holds true

t0
Dq
t V ≤ −�V + %̆, (68)

where %̆ = %+ 2�∑s
i=1(1 − &

i)#i�i, % and � are defined under Eq. (55). From (68), Lemmas 1 and 3, one
can obtain V (t) ≤ V (t0)Ξ

1+|�(t−t0)q | +
%̆d
� . Hence, the first statement of the Theorem 2 directly follows from Eq.

(68). According to the definition of the Lyapunov function, Πs =
{
�1(t) ∈ ℝ|||Limt→+∞|�1(t)|2 ≤ 2 %̆d�

}

is obtained. Hence, the tracking error remains in the adjustable compact set including origin. The second
statement of the Theorem 2 is now assured.

For ∀t ∈ [ti(s)j , ti(s)j+1), the |�i(s)| = |�̆i(s) − �̆ i(s)(ti(s)j )| = |
ti(s)j

D−qt

ti(s)j

Dq
t �̆
i(s)| can be obtained. Thus, one

has

|�i(s)| ≤ 1
Γ(q) ∫

t

ti(s)j

(t − p)q−1|
ti(s)j
Dq
t �̆
i(s)(p)|dp. (69)

According to (Wang,Wen, Gou, Ye andChen (2017a)), 
ti(s)j

Dq
sg(ℎ(s)) can be approximated by )

)ℎg(ℎ)

ti(s)j

Dq
sℎ(s)

with the error approximation U which is bounded by Ū . Thus, 
ti(s)j

Dq
t �̆
i(s) = A + U , where A =

∑n
a=1

(
()�̆ i(s)∕)xa)ti(s)j

Dq
t xa + ()�̆

i(s)∕)�a2 )

ti(s)j

Dq
t �a2 + ()�̆

i(s)∕)'̂a) ti(s)j

Dq
t '̂a + ()�̆

i(s)∕) ̂a)ti(s)j

Dq
t  ̂a +

()�̆ i(s)∕)ŵa)ti(s)j

Dq
t ŵa

)
+()�̆ i(s)∕)℘̂i)

ti(s)j

Dq
t ℘̂

i+()�̆ i(s)∕)xd)ti(s)j

Dq
t xd . BecauseA andU are bounded sig-

nals, the ∣ 
ti(s)j

Dq
t �̆
i(s) ∣≤ ℑi is satisfied, whereℑi is an unknown parameter. Thus, from (69) the following

inequality for i = 1,… , is satisfied

|�i(s)| ≤ ℑi

Γ(q + 1)
(t − ti(s)j )q , ∀t ∈ [ti(s)j , ti(s)j+1). (70)

Based on the event-triggering rule (60), the next event cannot occur before the ti(s)j+1 moment, which
satisfies |�i(s)(ti(s)j+1)| = ℵi|� i(s)(ti(s)j+1)|+ � i2. By considering this fact and Eq. (70), the following is yielded

ℵi|� i(s)(ti(s)j+1)| + � i2 ≤ ℑi

Γ(q + 1)
(ti(s)j+1 − t

i(s)
j )q . (71)

From Eq. (71), ti(s)j+1 − t
i(s)
j ≥ (Γ(q+1)(� i2+ℵi|�i(s)(ti(s)j+1)|)

ℑi

)−q
> 0 is obtained, and the Zeno behavior is

strictly alleviated. Following this, the third statement of the Theorem 2 is established, and finally this
Theorem is completely proved. ■

4.3. Dynamic event-triggered fault compensation approach
In this subsection, a dynamic ETC strategy in the framework of adaptive fault compensation is as-

sessed for the networked fractional-order systems. Hereafter for simplicity, only the actual dynamic ETC
design and the closed-loop stability are of concern.

It is observed in Eq. (60) that the proposed static event-triggering rule includes some fix design param-
eters, which should be adjusted in an off-line manner by an expert designer. The tuning of these parameters

Milad Shahvali et al.: Preprint submitted to Elsevier Page 15 of 25

                  



Event-triggered control for fractional-order systems

may lead to undesirable performance on the static ETC, (e.g., some unnecessary data transmission from the
controller to the actuators and updates of the actuators), particularly whenever the tracking performance
is approaching. To overcome this drawback, the dynamic ETC mechanism with an internal dynamical
variable is introduced.

For designing the fault compensation dynamic ETC, the following are proposed

� i(d)e =
℘̂i$n+1
Bi(x̄n)

, i = 1,… , (72)

�̆i(d) = −(1 + ℵi)
(
� i(d)e tanh

(� i(d)e Bi(x̄n)�n
�i

)
+ � i1 tanh

(� i1Bi(x̄n)�n
�i

)
+ � i3�

i tanh
(� i3Bi(x̄n)�i�n

�i
))
,

(73)
where � i3 is a positive design parameter, $n+1, ℘̂i, and ℵi, � i1, �i are given in Eqs. (44), (48), and (58),
respectively.

At this stage, the control input and dynamic event-triggering rule for i-th actuator are respectively
proposed as

� i(d) = �̆ i(d)(ti(d)j ), ∀t ∈ [ti(d)j , ti(d)j+1), (74)
ti(d)j+1 = inf

{
t ∈ ℝ>0 ||| |�

i(d)| − ℵi|� i(d)| − � i2 − � i4�i ≥ 0
}
, (75)

where �i(d) = �̆i(d) − �i(d) is the measurement error, � i(d) is the control input, and inequalities 0 < � i2 <
� i1(1−ℵ

i) and 0 < � i4 < � i3(1−ℵi) for design parameters � i2 and � i4 are respectively satisfied. ti(d)j (j ∈ ℤ≥0
and ti(d)0 = 0) is an event-triggered time moment for i-th actuator in the proposed dynamic ETC which
satisfies ti(d)0 < ti(d)1 < ti(d)2 <… < ti(d)j <…, and limj→+∞ ti(d)j = +∞.

Choose an internal dynamic variable �i as follows

t0
Dq
t �
i = !i

(
ℵi|� i(d)| + � i2 − |�i(d)|

)
− �i�i, �i(t0) ≥ 0, (76)

where !i and �i are the two positive design parameters.
Remark 6: The internal dynamic variable in Eq. (75) is regulated by the proposed fractional-order

differential equation in Eq. (76) which contains the actuator output, the measurement error, some design
parameters, and negative self-feedback. The applied negative self-feedback is contributive to assuring the
boundedness of the dynamical variable (for more detail, see Lemma 6). Unlike the proposed static event-
triggering rule in (60), using �i in (75) has a significant role on tuning the threshold dynamically. Note
that the count of actuators’ updates is effectively reduced by applying �i in the proposed ETC method.

Remark 7: In Eq. (76), if !i = 0 is selected, the result will be �i = �i(t0)M i
(q,1)(−�

itq). Then,
the proposed event-triggering rule (75) is turned into the static ETC case, similar to Li et al. (2018b). In
Eq. (75), if � i4 is selected as zero, then the proposed static ETC rule in (60) is obtained; consequently, the
static even-triggering rules in Eq. (60) and Li et al. (2018b) can be observed as limit cases of this proposed
dynamic even-triggering rule.

Definition 2: The system (76) is input-to-state practically stable (ISpS) with respect to the control
input � i(d), if for �i(t0) ∈ L∞ and � i(d) ∈ L∞ these exist  i(⋅) ∈ ∞, �i(⋅) ∈ , and mi > 0 such that

|�i| ≤ �(|�i(t0)|, t − t0) +  i(|� i(d)|∞) + mi. (77)
The definitions ∞ and  functions are given in Khalil and Grizzle (2002).

Assumption 4: The dynamical variable is ISpS; i.e., the system (76) has an ISpS Lyapunov function
V i(�i) which satisfies

ài(|�i)|) ≤ V i(�i) ≤ ái(|�i|), (78)
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t0
Dq
t V

i(�i) ≤ −aiV i(�i) +  i(|� i(d)|) + mi, (79)
where ái(⋅), ài(⋅), and  i(⋅) are ∞ functions, ai > 0 and mi > 0 are known parameters.

Remark 8: The dynamical variable system in Eq. (76) is assumed to be ISpS with the input � i(d)
in Assumption 4. Although Eq. (79) in Assumption 4 may be a restrictive condition, it is satisfied in
many real applications due to control inputs should have reasonable bounded amplitudes. The similar
assumptions can be seen in Girard (2014); Sahoo, Xu and Jagannathan (2015); Szanto, Narayanan and
Jagannathan (2016); Postoyan, Tabuada, Nešić and Anta (2014).

Lemma 6: For the fractional-order differential equation (76) with �i(t0) ≥ 0, the following holds true
Ω�i =

{
�i(t) ∈ ℝ≥0 |||| �

i(t) ≤ !i(� i2 + ℵ
i supt0≤�≤t |� i(d)(�)|) + �i(t0)

�i

}
. (80)

Proof: According to Eq. (75), for all t ∈ (ti(d)j , ti(d)j+1), the inequality |�i(d)| − ℵi|�i(d)| − � i2 − � i4�i < 0is obtained, which implies that

t0
Dq
t �
i > −(!i� i4 + �

i)�i. (81)

Moreover, at ∀t = ti(d)j+1, the relation |�i(d)| − ℵi|� i(d)| − � i2 − � i4�i = 0 is obtained, therefore, Eq. (82) isyielded

t0
Dq
t �
i = −(!i� i4 + �

i)�i. (82)
According to definition of the Mittag-Leffler function in (3), and (81) and (82), the �i ≥ 0 on t ∈ [t0,+∞)is obtained.

On the other hand, let �i(t) > !i(� i2+ℵ
i supt0≤�≤t |�i(d)(�)|)+�i(t0)

�i . Therefore, the following is obtained

t0
Dq
t � < −!

i(|�i(d)| − ℵi|� i(d)| + ℵi sup
t0≤�≤t

|�i(d)(�)|) − �i(t0), (83)

and as a result �i < 0, which contracts the fact that �i > 0. Hence, the above-mentioned supposition is
not satisfied, and it would lead to 0 ≤ �i(t) ≤ !i(� i2+ℵ

i supt0≤�≤t |�i(d)(�)|)
�i on t ∈ [t0,+∞). Thus, the �i(t) in Eq.

(76) is an ISpS variablewith respect to the � i(d)(t). The proof is completed. ■

4.3.1. Stability analysis of dynamic ETC
The results concerning the dynamic ETC of the fractional-order networked systems are addressed as

follows.
Theorem 3: Let Assumptions 1-4 are satisfied. Consider the fractional-order system (12) subject to

the actuator fault (13) with the virtual control laws (19), (31), (44), and the internal dynamic variable
(76). Then, under the dynamic event-triggering rule (75) and the actual control input (74) with design
parameters 0 < ℵi < 1, !i > 0, �i > 0, �i > 0, 0 < � i2 < � i1(1 − ℵ

i), and 0 < � i4 < � i3(1 − ℵ
i), the

following hold
• The overall closed-loop networked system is globally uniformly ultimately bounded.
• The tracking error ultimately converges into the neighborhood of the origin with adjustable size as

follows
Πd =

{
�1(t) ∈ ℝ|||Limt→+∞|�1(t)|2 ≤ 2 %̄d�

}
.
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• The Zeno behavior is strictly excluded, (i.e., t(d)j+1 − t(d)j ≥ t∗(d) > 0,∀j ∈ ℕ).

Proof: For any t ∈ [ti(d)j , ti(d)j+1), similar to (Xing et al. (2016)), it can be deduced from Eq. (75) that
there exists |�ip| ≤ 1 for p = 1, 2, 3 such that �̆ i(d) = (1 + ℵi�i1)�

i(d) + �i2�
i
2 + �

i
4�
i
3�
i. Therefore, by

applying (73), Eq. (84) is yielded

� i(d) = − (1 + ℵi)
1 + ℵi�i1

(
� i(d)e tanh

(� i(d)e Bi(x̄n)�n
�i

)
+ � i1 tanh

(� i1Bi(x̄n)�n
�i

)
+ � i3�

i tanh
(� i3Bi(x̄n)�i�n

�i
))

(84)

−
� i2�

i
2

1 + ℵi�i1
−

� i4�
i
3�
i

1 + ℵi�i1
.

Similar to (63), the following is obtained

Bi(x̄n)�n#i�i(d) ≤ − Bi(x̄n)�n#i
(
�i(d)e tanh

(� i(d)e Bi(x̄n)�n
�i

)
+ � i1 tanh

(� i1Bi(x̄n)�n
�i

)

+ � i3�
i tanh

(� i3�iBi(x̄n)�n
�i

))
+ Bi(x̄n)#i|�n|

� i2
1 − ℵi

+ Bi(x̄n)#i�i|�n|
� i4

1 − ℵi
.

(85)
From Lemma 4, the following inequalities are yielded

−�nBi(x̄n)#i� i1 tanh
(� i1Bi(x̄n)�in

�i
) ≤ −Bi(x̄n)#i� i1|�n| + �#i�i, (86)

−�nBi(x̄n)#i� i(d)e tanh
(� i(d)e Bi(x̄n)�n

�i
) ≤ Bi(x̄n)#i�n� i(d)e + �#i�i, (87)

−�nBi(x̄n)#i� i3�
i tanh

(� i3Bi(x̄n)�i�n
�i

) ≤ −Bi(x̄n)#i� i3�i|�n| + �#i�i. (88)

From (85)-(88), (72), with respect to the Theorem 3, and recalling definition ℘̂, the following inequal-
ity is obtained

�n
∑
i=1

Bi(x̄n)(1 − &i)#i� i(d) ≤�n$n+1 − �n$n+1

∑
i=1
(1 − &i)#i℘̃i + 3�

∑
i=1
(1 − &i)#i�i. (89)

Combining Eqs. (61), (89), (44)-(48), and after a simple calculation similar to Eq. (51), the following
is yielded


t0
Dq
t V ≤ − (c1 − 0.5)�21 −

n−1∑
m=2

(cm − 1)�2m − (cn − 0.5)�
2
n −

1
2

n∑
m=1

(
rwm ||w̃m||2 + r'm '̃2m + r m  ̃2m

)

− 1
2

∑
i=1

ri℘(1 − &
i)#i(℘̃i)2 + 1

2

n∑
m=1

(
rwm ||w∗m||2 + r'm'∗2m + r m 

∗2
m

)

+ 1
2

∑
i=1

ri℘(1 − &
i)#i(℘∗i)2 +

n∑
m=1

pm + 3�
∑
i=1
(1 − &i)#i�i. (90)
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From Eq. (90), the following holds true

t0
Dq
t V ≤ −�V + %̄, (91)

where %̄ = %̆+�∑
i=1(1−&

i)#i�i, � and %̆ are defined under Eq. (68). From Eq. (91), Lemmas 1 and 3, the
V (t) ≤ V (t0)Ξ

1+|�(t−t0)q | +
%̄d
� is obtained. Hence, the first objective of the Theorem 3 is established. According

to the obtained upper bound of the Lyapunov function, it can be deduced that the tracking error ultimately
converges into a compact set Πd =

{
�1(t) ∈ ℝ|||Limt→+∞|�1(t)|2 ≤ 2 %̄d�

}
. Now, the second objective of

the Theorem 3 is proved.
To assure that the proposed dynamic ETC is feasible, one has ti(d)j+1−t

i(d)
j ≥ (Γ(q+1)(� i2+ℵi|�i(d)(ti(d)j+1)|)+� i4�i(t

i(d)
j+1))

ℑi

)−q
>

0 in a similar way of the static ETC as in the previous subsection. The details of this proof are omitted here.
Hence, the proof of the Theorem 3 iswholly given. ■

Remark 9: The sizes of the ultimate bounds for the tracking errors subject to the proposed static and
dynamic ETC methods (Πs and Πd , respectively) can be reduced by increasing the values of ℵi, � i1, � i3,control gains cm, adaptive gains �min(Γwm ),  m , 'm , and decreasing �i and sigma-modification factors
rwm , r m , r'm . Higher tracking accuracy may require large control amplitude and short period of control
updates, which would increase number of actuator executes; consequently, there should be a trade-off be-
tween the tracking accuracy, control input amplitude, and the number of actuator executes.

Remark 10: In comparison with the available results, the main additive value and conservatism of
these proposed methods are as follows

Additive value: The Zeno-free static and dynamic event-triggered fault compensation control ap-
proaches of the networked fractional-order nonlinear uncertain systems are proposed for the first time,
in a sense that for the closed-loop networked system these methods assure the global stability and save the
energy resources.

Conservatism: In this article, all the pseudo state variables of the fractional-order systems are mea-
surable, and the uniform ultimate bound stability is obtained, while, in many real applications, they are
not measurable, and also tracking with high accuracy is required. As one of the future studies, assessing
the asymptotic observer-based event-triggered tracking control for the fractional-order nonlinear systems
would be an interesting subject.

The implementation of the dynamic ETC fault compensation algorithm for the fractional-order sys-
tems is briefed as Algorithm 1. Note, if � i3 = 0 and � i4 = 0 are set in this algorithm, it would be converted
into the static ETC fault compensation algorithm.

5. Simulation results
In this section, the control performance and efficiency of the proposed static and dynamic event-

triggered fault
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Figure 1: System output (solid) and desired signal (dash).

Algorithm 1. Control algorithm of fractional-order systems via dynamic event-triggered strategy
Require:
1: Set t0 = 0, ji(d) = 0 and �i(d)(t0) = 0, i = 1,… , .
2: Initialize all design constants, such !i, �i, � i1, � i2, ℵi, and so on.
3: Set initial states, such u(t0), xm(t0), m = 1,… , n, �i(t0) and so on.
Ensure:
4: for t do t†0 + dt ∶ dt ∶ tfinal5: Update desired trajectory xd(t).6: for m do 1,… , n
7: Compute error surface �m(t) by (15).8: Compute virtual and adaptive laws$m(t) and ŵm(t), '̂m(t),  ̂m(t) by (19), (31), (44) and (20)-(22),

(32)-(34), (45)-(47), respectively.
9: for i do 1 ∶ 1 ∶ 
10: Compute fault compensator law ℘i(t) and internal dynamic variable �i(t) by (48) and (76).
11: Compute � i(d)e (t) and �̆ i(d)(t) by (72) and (73).
12: Compute �i(d)(t) and relative threshold.
13: if �i(d)(t) exceeds the relative threshold then
14: Update � i(d)(t) by (74).
15: Update �̆ i(d)(ti(d)j ) = � i(d)(t), ji(d) = ji+1(d), and �i(d)(ti(d)j ) = 0
16: Update x(t) at ti(d)j+1 by � i(d)(t).17: else
18: Update x(t) at ti(d)j+1 by � i(d)(t) which is got by zero order hold.
19: end if
20: end for
21: end for
22: end for
[†] for t = t0, system states and actuators are updated by ui(t0).

compensation control approaches are demonstrated by the following simulation example.
The model of fractional-order uncertain strict-feedback system suffering from the actuator faults is
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Figure 2: Pseudo state.

event-triggered control 
time-triggered control

event-triggered moments 

Figure 3: Control input.

Table 1. Tracking performance for different strategies.

Control Schemes RMS IAE TA

TTC (Li et al. (2021)) 1.731 6.590 0.138
Static ETC 1.565 6.442 0.092
Dynamic ETC 1.490 6.190 0.095

described as follows
⎧⎪⎨⎪⎩


0D

0.95
t x1 = x2 + f1(x̄1) + d1,

0D
0.95
t x2 = u + f2(x̄2) + d2,

y = x1,
(92)

where x1 and x2 are pseudo state variables, d1 and d2 are external disturbances, u is the output of the
actuator, and the desired signal is selected as xd = sin(t).To illustrate the validity of the proposed ETC schemes, the following dynamics are selected f1(x̄1) =
0.1x1, f2(x̄2) = x1x2 exp(x1x2), and d1 = d2 = 0.1 sin(t).For simulation, the Gaussian basis function for introducing the activation vector of the RBFNNs are
selected as �r(Xi) = exp(−0.25||Xi + 2 − 0.5(r − 1)||2), for r = 1,… , 7, and i = 1, 2, where X1 = x1and X2 = [x1, x2]T.In this study, the actuator failure patterns are simulated as: the actuator undergoes a loss of effective-
ness pattern at 80% from t = 10s and encounters with bias Θ = 0.6, Δ(t) = 1 for t ≥ 30.

The initial values for this simulation are all set as x1(0) = 0.2, x2(0) = 0, �11 (0) = 0.1, �12 (0) = 0.2,
�21 (0) = 0.1, �22 (0) = 0.3, ŵ1 = [0,… , 0] ∈ ℝ7, ŵ2 = [0,… , 0] ∈ ℝ7, '̂1(0) = 0.2, '̂2(0) = 0.1,
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Figure 4: Fault compensator parameter.

Figure 5: Event-triggered condition.

Figure 6: Number of events.

 ̂1(0) = 0,  ̂2(0) = 0.5, ℘̂(0) = 0.1 and �(0) = 0.2.The design positive parameters for these proposed schemes are as c1 = c2 = 5, a1 = a2 = 20,
'1 = '2 = 3, Γw1 = Γw2 = 3diag{1, 1, 1, 1, 1, 1, 1},  1 =  2 = 2, 1℘ = 1, r'1 = r'2 = 0.1,
rw1 = rw2 = 0.2, r 1 = r 2 = 0.2, r1℘ = 0.5, ℵ1 = 0.7, � = 5, �11 = 10, �12 = 0.1, �13 = 30, �14 = 8,
!1 = 1, �1 = 0.3 and �1 = 10.

For the fractional-order system (92), these proposed ETC schemes can be applied in addressing the
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Figure 7: Time intervals of triggering events.

Figure 8: Dynamical variable.

Table 2. Computational resource for different strategies.

Control schemes Simulation time (s) max{tj+1 − tj} (s) min{tj+1 − tj} (s) ave{tj+1 − tj} (s) Control updates

TTC (Li et al. (2021)) 0-50 0.001 0.001 0.001 5000
Static ETC 0-50 1.58 0.002 0.1369 365
Dynamic ETC 0-50 1.43 0.012 0.2244 185

fault compensation problem subject to the following two cases.
Case 1 (Dynamic event-triggered): By applying the dynamic ETC method proposed in Theorem 3

for (92), the simulation results are shown in Figs. 1-8. As observed in Fig. 1, the system’s output can fol-
low the desired trajectory with bounded error. The bounded trajectory of the second pseudo state is shown
in Fig. 2. The outputs of the dynamic event-triggered controller (�1(d)) and the virtual control (�1(1)e ) are
displayed in Fig. 3 as bounded signals. From the partial enlarged landscape in Fig. 3, it can be obviously
seen that the proposed dynamic ETC mitigates the update times of the controller, and as a result, reduce
the load of communication channel between controller and actuator. Besides, it can be derived that the
proposed approach decreases the amount of the controller updates by about 14 % in [20(s), 25(s)] than
the static ETC strategy under the same conditions. The boundedness of the fault compensation signal
trajectory is revealed in Fig. 4. Fig. 5 demonstrates that the absolute value of the measurement error
signal (|�|) and the dynamic relative threshold (ℵ|�| + �2 + �4�) are bounded, where the measurement
error is increased in 10(s) due to lose of effectiveness fault, and then, held in a small area. As observed
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in Fig. 6, the count of events is 185 in the period [0(s), 50(s)], which is less than both the control updates
required in the TTC and the static ETC strategies. Therefore, it can be found that the introduction of the
internal dynamic variable (�) in the event-triggering rule (75) is applicable in reducing the count of ac-
tuator updates. The corresponding time intervals of sequential events in dynamic ETC are shown in Fig.
7, where the Zeno phenomenon of the closed-loop system does not occurs. In Fig. 8, the boundedness of
the non-negative internal dynamical variable is depicted.

These results indicate that this proposed dynamic ETC method can assure the stability of the faulty
system. Besides, a proper dynamic event-triggered threshold can be selected to decrease the frequency of
the controller updates.

Case 2 (Comparative results): To further illustrate the benefits of this proposed dynamic ETC
method, simulation of the time-triggered fault compensation control in Li et al. (2021) and the proposed
static event-triggered fault compensation control method are run for the system Eq. (92). For a precise
evaluation and quantitative comparisons, two tables to are provided when the TTC, the static ETC, and
the dynamic ETC strategies are applied.

Some indices of tracking performance, likemean square of tracking error (MSE),
√

1
50 ∫ 500 |�21 |dt), in-

tegral of absolute tracking error (IAE), ∫ 500 |�1|dt, and tracking accuracy (TA) in [0(s), 5(s)],max0≤t≤5 |�1(t)|for different triggering schemes are tabulated in Table 1. As observed in Table 2, by tuning appropriate
design parameters the tracking error by the dynamic ETC control is smaller than the other triggered meth-
ods.

For the computational complexity, different indices are evaluated for the proposed algorithms in Table
2. According to the minimum, maximum, and average time interval of events, as to saving in commu-
nication and computation resources, the triggering count is reduced according to the dynamic triggering
design; thus, it can be deduced that this dynamic ETC strategy is more effective than its counterparts.

6. Conclusions
Two new static and dynamic ETC methods are proposed to address the tracking problem for a class of

the nonlinear systems. The assessed class of nonlinear systems is equipped with the fractional-order struc-
tures and have unmatched uncertainties with both external disturbances and actuator faults. The conven-
tional drawback that actuators of the fractional-order systems need to update in the periodic time intervals
is eliminated in this article, which, in turn, saves resource consumption. In this attempt, first, by defining
the measurement error and the relative threshold signals, the fault compensation static event-triggering
rule is proposed. Next, by defining the novel interval dynamical signal, the new fault compensation dy-
namic event-triggered is extended. It is revealed that in both the proposed event-triggered schemes, the
Zeno behavior is not happening. In this article, the strict-feedback fractional-order system is considered.
A nonstrict-feedback case Shahvali and Askari (2016); Shahvali, Naghibi-Sistani and Askari (2018) is an
interesting topic that needs further study.

CRediT authorship contribution statement
Milad Shahvali: Conceptualization, Methodology, Software, Validation, Formal analysis, Investiga-

tion, Writing - Original Draft, Writing - Review, Editing. Mohammad-Bagher Naghibi-Sistani: Super-
vision, Project administration. Javad Askari: Supervision, Project administration.

References
Aounallah, T., Essounbouli, N., Hamzaoui, A., Bouchafaa, F., 2018. Algorithm on fuzzy adaptive backstepping control of fractional-

order for doubly-fed induction generators. IET Renewable Power Generation, 12, 962–967.
Gao, H., Song, Y., Wen, C., 2016. Backstepping design of adaptive neural fault-tolerant control for MIMO nonlinear systems. IEEE

Transactions on Neural Network and Learning Systems, 28, 2605–2613.

Milad Shahvali et al.: Preprint submitted to Elsevier Page 24 of 25

                  



Event-triggered control for fractional-order systems

Girard, A., 2014. Dynamic triggering mechanisms for event-triggered control. IEEE Transactions on Automatic Control, 60, 1992–
1997.

Gong, P., Lan, W., Han, Q.L., 2020. Robust adaptive fault-tolerant consensus control for uncertain nonlinear fractional-order multi-
agent systems with directed topologies. Automatica, 117, 109–011.

He, W., Meng, T., 2017. Adaptive control of a flexible string system with input hysteresis. IEEE Transactions on Control System
Technology, 26, 693–700.

Hu, T., He, Z., Zhang, X., Zhong, S., 2020. Leader-following consensus of fractional-order multi-agent systems based on event-
triggered control. Nonlinear Dynamics, 99, 2219–2232.

Hu,W., Yang, C., Huang, T., Gui,W., 2018. A distributed dynamic event-triggered control approach to consensus of linearmultiagent
systems with directed networks. IEEE Transactions on Cybernetics, 50, 869–874.

Khalil, H.K., Grizzle, J.W., 2002. Nonlinear systems. 3nd, ed. Upper Saddle River, NJ: Prentice hall.
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., 2006. Theory and applications of fractional differential equations. 1st, ed. New York:

Elsevier Science Limited.
Lewis, F.L., Liu, K., Yesildirek, A., 1995. Neural net robot controller with guaranteed tracking performance. IEEE Transactions on

Neural Networks, 6, 703–715.
Li, J., Chai, T., Lewis, F.L., Ding, Z., Jiang, Y., 2018a. Off-policy interleaved Q-learning: optimal control for affine nonlinear

discrete-time systems. IEEE Transactions on Neural Networks and Learning Systems, 30, 1308–1320.
Li, Q., Liu, S., Chen, Y., 2018b. Combination event-triggered adaptive networked synchronization communication for nonlinear

uncertain fractional-order chaotic systems. Applied Mathematics and Computation, 333, 521–535.
Li, Y.X., Wang, Q.Y., Tong, S., 2021. Fuzzy adaptive fault-tolerant control of fractional-order nonlinear systems. IEEE Transactions

on Systems, Man, and Cybernetics: Systems, 51, 1372–1379.
Mazo, M., Tabuada, P., 2011. Decentralized event-triggered control over wireless sensor/actuator networks. IEEE Transactions on

Automatic Control 56, 2456–2461.
Podlubny, I., 1999. Fractional differential equations. 1st, ed. San Diego: Academic Press.
Postoyan, R., Tabuada, P., Nešić, D., Anta, A., 2014. A framework for the event-triggered stabilization of nonlinear systems. IEEE

Transactions on Automatic Control, 60, 982–996.
Regaya, C.B., Farhani, F., Zaafouri, A., Chaari, A., 2017a. An adaptive sliding-mode speed observer for induction motor under

backstepping control. International Journal of Innovative Computing, Information and Control, 11, 763–771.
Regaya, C.B., Farhani, F., Zaafouri, A., Chaari, A., 2017b. High-performance control of IM using MRAS-fuzzy logic observer.

International Journal of Tomography & Simulation, 30, 40–52.
Regaya, C.B., Farhani, F., Zaafouri, A., Chaari, A., 2018. A novel adaptive control method for inductionmotor based on backstepping

approach using dSpace DS 1104 control board. Mechanical Systems and Signal Processing, 100, 466–481.
Regaya, C.B., Farhani, F., Zaafouri, A., Chaari, A., 2019. Proportional-integral field oriented control of induction motor with fuzzy

logic gains adaptation. International Journal of Control Systems and Robotics, 4, 115–123.
Regaya, C.B., Zaafouri, A., Chaari, A., 2013. Speed sensorless indirect field-oriented of induction motor using two type of adaptive

observer, in: Proc. IEEE Conf. Elec Engineering, Software Applic, Hammamet, Tunisia, pp. 1–5.
Sahoo, A., Xu, H., Jagannathan, S., 2015. Neural network-based event-triggered state feedback control of nonlinear continuous-time

systems. IEEE Transactions on Neural Networks and Learning Systems, 27, 497–509.
Shahvali, M., Askari, J., 2016. Distributed containment output-feedback control for a general class of stochastic nonlinear multi-

agent systems. Neurocomputing 179, 202–210.
Shahvali, M., Azarbahram, A., Naghibi-Sistani, M.B., Askari, J., 2020. Bipartite consensus control for fractional-order nonlinear

multi-agent systems: An output constraint approach. Neurocomputing, 397, 212–223.
Shahvali, M., Naghibi-Sistani, M.B., Askari, J., 2018. Adaptive output-feedback bipartite consensus for nonstrict-feedback nonlinear

multi-agent systems: a finite-time approach. Neurocomputing 318, 7–17.
Sheng, D., Wei, Y., Cheng, S., Shuai, J., 2017. Adaptive backstepping control for fractional-order systems with input saturation.

Journal of The Franklin Institute, 354, 2245–2268.
Song, S., Zhang, B., Song, X., Zhang, Z., 2020. Neuro-fuzzy-based adaptive dynamic surface control for fractional-order nonlinear

strict-feedback systems with input constraint. IEEE Transactions on Systems, Man, and Cybernetics: Systems, to be published,
doi: 10.1109/TSMC.2019.2933359.

Sun, K., Mou, S., Qiu, J., Wang, T., Gao, H., 2018. Adaptive fuzzy control for nontriangular structural stochastic switched nonlinear
systems with full state constraints. IEEE Transactions on Fuzzy Systems, 27, 1587–1601.

Swaroop, D., Hedrick, J.K., Yip, P.P., Gerdes, J.C., 2000. Dynamic surface control for a class of nonlinear systems. IEEE Transac-
tions on Automatic Control, 45, 1893–1899.

Szanto, N., Narayanan, V., Jagannathan, S., 2016. Event-sampled direct adaptive nn state-feedback control of uncertain strict-
feedback system, in: In Proc. IEEE 55th Conf. IEEE Decis. Control (CDC), LasVegas, NV, USA,, IEEE. pp. 3395–3400.

Wang, J., Wen, Y., Gou, Y., Ye, Z., Chen, H., 2017a. Fractional-order gradient descent learning of BP neural networks with Caputo
derivative. Neural Networks, 89, 19–30.

Wang, M., Wang, Z., Chen, Y., Sheng, W., 2019. Adaptive neural event-triggered control for discrete-time strict-feedback nonlinear
systems. IEEE Transactions on Cybernetics, 50, 2946–2958.

Milad Shahvali et al.: Preprint submitted to Elsevier Page 25 of 25

                  



Event-triggered control for fractional-order systems

Wang, Y., Zheng, W.X., Zhang, H., 2017b. Dynamic event-based control of nonlinear stochastic systems. IEEE Transactions on
Automatic Control, 62, 6544–6551.

Xing, L., Wen, C., Liu, Z., Su, H., Cai, J., 2016. Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE
Transactions on Automatic Control, 62, 2071–2076.

Xu, B., Chen, D., Zhang, H., Wang, F., 2015. Modeling and stability analysis of a fractional-order francis hydro-turbine governing
system. Chaos, Solitons & Fractals, 75, 50–61.

Xu, B., Liu, X., Wang, H., Zhou, Y., 2020. Event-triggered control for nonlinear systems via feedback linearisation. International
Journal of Control, to be published, doi: 10.1080/00207179.2020.1730008.

Yang,W., Yu,W., Lv, Y., Zhu, L., Hayat, T., 2020a. Adaptive fuzzy tracking control design for a class of uncertain nonstrict-feedback
fractional-order nonlinear SISO systems. IEEETransactions on Cybernetics, to be published, doi: 10.1109/TCYB.2019.2931401.

Yang, Y., Meng, Q., Yue, D., Zhang, T., Liang, J., 2020b. Adaptive recursive sliding-mode dynamic surface and its event-triggered
control of uncertain non-affine systems. Journal of The Franklin Institute, 357, 3469–3497.

Ye, Y., Su, H., 2018. Leader-following consensus of general linear fractional-order multiagent systems with input delay via event-
triggered control. International Journal of Robust and Nonlinear Control, 28, 5717–5729.

Ye, Y., Su, H., Sun, Y., 2018. Event-triggered consensus tracking for fractional-order multi-agent systems with general linear models.
Neurocomputing, 315, 292–298.

Yu, X., Lin, Y., 2016. Adaptive backstepping quantized control for a class of nonlinear systems. IEEE Transactions on Automatic
Control, 62, 981–985.

Zhang, C.H., Yang, G.H., 2019. Event-triggered global finite-time control for a class of uncertain nonlinear systems. IEEE Trans-
actions on Automatic Control, 65, 1340–1347.

Zhang, G., Yao, M., Xu, J., Zhang, W., 2020. Robust neural event-triggered control for dynamic positioning ships with actuator
faults. Ocean Enginearing, 207, 280–292.

Zhang, Y., Li, H., Sun, J., He, W., 2018. Cooperative adaptive event-triggered control for multiagent systems with actuator failures.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49, 1759–1768.

Zhao, H., Niu, Y., Zhao, J., 2019. Event-triggered sliding mode control of uncertain switched systems under denial-of-service
attacks. Journal of The Franklin Institute, 356, 11414–11433.

Milad Shahvali et al.: Preprint submitted to Elsevier Page 26 of 25

                  



Conflict of interest
The authors declare that they have no conflict of interest.

1

                  


