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1 Introduction

The measured vacuum energy V ≈ (2.3 10−3 eV)4 is unnaturally small in the Standard

Model. The measured weak scale v ≈ 174 GeV is unnaturally small in extensions of the

Standard Model with heavy new physics significantly coupled to the Higgs, for example

in string theory. Motivated by these naturalness issues, theorists tried to devise natural

extensions of the Standard Model such that new physics keeps V and v naturally small.

But such new physics has not been observed and experimental bounds are now so strong

that proposed solutions become tuned and/or theoretically contrived.

On the other hand, it has been noticed that the smallness of both V and v can be

interpreted in terms of anthropic selection — a topic started by astrophysicists [1–3] that

acquired relevance for fundamental theory. Values of V and v much smaller than the

Planck scale are generically needed to have big objects within horizons. What is striking

is that the measured values of V and v as well as of light fermion masses mf seem close to

plausible anthropic boundaries:

• Galaxies can only form if the vacuum energy is at most two orders of magnitude

larger than its observed value [4]. This argument was originally used by Weinberg to

expect a vacuum energy at a level around what has been later observed.
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• Weak interactions play a major role only in two cosmological circumstances: Big

Bang Nucleosynthesis (see [5]) and core-collapse supernova explosions [6]. In both

cases special physics happens for v ∼ Λ
3/4
QCDM

1/4
Pl , up to omitted order one factors

such that the critical value of v is close to the measured value. In this special small

range of v neutrino-driven core-collapse supernova explosions spread intermediate-

mass nuclei presumably necessary for ‘life’, such that weak interactions might be

playing a role of anthropic relevance [6].

• Furthermore, the values of light fermion masses mu, md, me lie not far from anthropic

boundaries [7–9]. For example, the Standard Model allows for a complex chemistry

of many nuclei because the proton is the lightest baryon, and neutrons are stable

within nuclei (while being unstable as free particles): these and other features arise

thanks to quark masses with appropriate numerical values. In the Standard Model

mf = yfv: anthropic selection of mf would imply an extra indirect anthropic bound

on the weak scale v if Yukawa couplings yf had fixed values in the landscape (a

possibility that seems unlikely in view of the multiple boundaries on mu, md, me).

These findings indicate that anthropic selection seems playing a role. Anthropic selection

is realised, compatibly with our present observational and theoretical understanding, in

theories that possess a huge number N � 10160 of physically inequivalent local minima.

Then, inflationary dynamics and vacuum decay can give rise to a ‘multiverse’ with large

super-horizon regions of space in different local minima.

Theories where the smallness of v, V is attributed to anthropic selection received much

less attention than theories based on symmetries or other natural mechanisms. Indeed

physicists and philosophers prefer theories that are predictive and testable. An unique

mono-vacuist theory able of predict everything is physicists’ dream, but Nature might

have chosen otherwise: a poly-vacuistic nightmare that would downgrade our present ob-

servational understanding of physics to stamp collecting with one stamp, as experiments

in our universe might not allow to test other vacua. On the other hand, available experi-

mental data disfavoured so much falsifiable natural theories that the falsifiability criterion

itself prompts us to consider the multiverse hypothesis.

Proceeding in this direction, basic multiverse issues have not yet been considered much.

Can a large enough and diverse enough number of vacua be obtained within renormalizable

relativistic quantum field theory (QFT) in 3+1 dimensions where scalar potentials are at

most quartic? Or a multiverse needs some deeper theory, such as string theory, that

reduces to QFT as its low-energy Taylor-like expansion (or, equivalently, large-distance

multipole-like expansion)?

In general, the vacuum energy V (and possibly the weak scale v) receive dominant

contributions from the heaviest states of the theory, so that any QFT description of the

landscape might be incomplete. We proceed with a QFT description assuming that heav-

ier states (if present) do not dominantly contribute to V and v, for example because of

supersymmetry broken in appropriate ways. More in general, studying such landscape

issues needs the full theory of quantum gravity, that could go beyond QFT. Such theory

might be string theory that possibly contains a landscape: many authors tried to study its
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interesting specific properties (see e.g. [10–15]) but the very existence of a successful string

landscape is not firmly established. We confine our attention to more controllable QFT

landscapes, that might have different features than the string-theory one.

A concrete problem is that anthropic selection needs many more vacua that what

can be counted in practice. For example, string theory might give rise to a complicated

landscape, but its existence is not established. In order to know that a big landscape of

vacua really exists, one needs to assume landscapes with special controllable structures.

Finding vacua with small vacuum energy is another possibly NP-hard problem [16].

A special QFT landscape for the cosmological constant was obtained using a few hun-

dreds of independent scalars φi with two non-degenerate minima each, giving 2N different

values of the vacuum energy [17]. However, a landscape of independent scalars does not

generate a wide range of values for the Higgs mass, unless the Higgs boson is introduced

as a special field coupled to the others. A landscape where the Higgs is one among many

scalars can be problematic: mixed scalar interactions destroy the landscape (drastically re-

ducing the number of vacua, as was generically estimated using random matrix theory [18])

around when they are big enough that scalar masses are efficiently scanned, as needed for

an anthropic interpretation of the weak scale. Moreover, in this kind of landscape, minima

are typically not sufficiently stable [19].

Does a landscape for the cosmological constant and for the Higgs mass exist?

In section 2 we will answer positively, considering a different landscape, where an

approximate ZN2 symmetry makes computations tractable. We find that mixed quartics can

be as large as scalar self-quartics, and that, under reasonable conditions, the vacuum energy

and the squared Higgs mass and Yukawa couplings can be efficiently scanned. In section 3

we reconsider vacuum stability, finding weaker bounds than in [17], and that special vacua

where one light scalar is accidentally light avoid catastrophic vacuum decay if its self-cubic

is absent. This is what happens for the Higgs doublet, thanks to gauge invariance. In

section 4 we show that Coleman-Weinberg potentials are not incompatible with a landscape.

In section 5 we consider a non-Gaussian landscape probability distribution that might result

in enhanced predictivity. Conclusions are given in section 6.

2 A quantum field theory landscape?

We consider a QFT in 3 + 1 space-time dimensions with N real scalars φi where i =

{1, . . . , N}. The Lagrangian contains kinetic terms, dimension-less ξ couplings to gravity,

and a scalar potential V

L =
(∂µφi)

2

2
− V − 1

2
(M̄2

Pl + ξiφ
2
i )R+ · · · (2.1)

Here · · · denotes possible gauge vectors, fermions and Yukawa interactions. The scalar

potential is

V = V0 −
M2
ij

2
φiφj −

Aijk
3
φiφjφk +

λijkl
4

φiφjφkφl = V0 + V2 + V3 + V4. (2.2)
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An extra linear term is absent for those scalars φ charged under gauge interactions, and can

be shifted away for the other neutral φ. If some scalars are components of gauge multiplets,

the gauge symmetries restrict their couplings. We assume a mass scale M somehow smaller

than M̄Pl. As usual, we can rotate to a basis where M2 is diagonal.1

In gauge theories, self-cubics A are allowed for scalars in representations restricted by

a trace-less condition: for example the adjoint of SU groups, the symmetric of SO groups,

the anti-symmetric of Sp groups. Scalars in fundamentals have a unique self-quartic, and

two inequivalent self-quartics are usually allowed for two-index representations (symmetric,

anti-symmetric, adjoint).

2.1 Independent scalars: the LorentzN landscape

Establishing if a generic potential has many local minima is a problem without general

solutions. One needs to proceed through direct enumeration: find each extremum, expand

around it and check if all squared N mass eigenvalues are positive. Then the difficulty is

that finding 10160 or more local minima is prohibitively slow.

In order to have a computable landscape, the authors of [17] considered a simple

special potential such that direct enumeration is not needed to establish that it admits

MN minima: a “rectangular” potential given by the sum of N independent potentials Vi
with M minima each,

V (φ1, . . . , φN ) =

N∑
i=1

Vi(φi). (2.3)

The action has an enhanced LorentzN symmetry in the sub-Planckian limit. In a renor-

malizable QFT one scalar has M = 2 minima. These minima give rise to a landscape of

MN different values of the vacuum energies,

V = minV +
N∑
i=1

ηi ∆Vi, ∆Vi = Vi(φ
high
i )− Vi(φlow

i ) ≥ 0 (2.4)

where ηi = 0 (1) selects the lower (higher) vacuum of φi. The statistical distribution of

V tends to a Gaussian in the formal limit N → ∞ if a condition described by Lyapunov

is satisfied. Such condition roughly means that the ∆Vi must be comparable, in the sense

that they do not grow or decrease too much at large N . A non-Gaussian landscape will be

considered in section 5.

However, N independent scalars do not give rise to a landscape of many different

Higgs masses, unless the Higgs is added as a special extra scalar that interacts with other

scalars through mixed quartic or cubic couplings [17]. Given that the Higgs mass now

seems unnatural and can plausibly be anthropically selected [6], we would like to interpret

its unnatural lightness by finding a QFT landscape where the Higgs is a scalar with no

ad-hoc special properties. We then need to consider interacting scalars.

1Furthermore, as long as we focus on counting minima, without loss of generality we could rescale scalars

to a basis where all φi have the same |M2|, at the price of non-canonical kinetic terms.
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2.2 Interacting scalars

However, the presence of generic scalar interactions (cubic and/or quartic) can destroy

the landscape of [17], because most stationary points become saddles rather than minima.

In the presence of large generic interactions one naively expects that all N mass squared

eigenvalues are positive with 2−N probability, because each eigenvalue can be either pos-

itive or negative at each minimum. So one expects (M/2)N vacua, with M = 2 for a

renormalizable potential. Thereby a generic renormalizable potential has (M/2)N ∼ a few

vacua, which means no landscape. For example, just one vacuum is present in the opposite

“elliptical” limit where the quartic has the form (
∑

i ciφ
2
i )

2.

A more negative conclusion is reached applying random matrix theory to the squared

mass matrices of the scalars at each extremum. The probability that all eigenvalues are

positive is smaller than 2−N because eigenvalues repel. A statistical argument implies that

such probability falls off as e−N
2/4 at large N in the limit where all entries (diagonal and

off-diagonal) are comparable [18].2

This random matrix argument applies when off-diagonal cubics and/or quartics are

large enough as to make off-diagonal entries in the squared mass matrices M2
ij at the

minima so large that some eigenvalue becomes negative. Scanning scalar masses (so that

the Higgs can be accidentally light) requires large enough mixed interactions, possibly

conflicting with having many minima.

2.3 A bi-quadratic ZN
2 landscape

In order to find a computable landscape such that both the Higgs mass and the vacuum

energy density can be accidentally small, we allow for possibly large mixed quartics that re-

spect Z2 symmetries acting independently on each scalar as φi → −φi. Each spontaneously

broken Z2 gives rise to 2 minima, such that 2N minima arise when all Z2 are spontaneously

broken. The potential is written as

V = Ṽ0 + V2 + V4 + Vodd with V2 = −1

2
M2
i φ

2
i and V4 =

1

4
λijφ

2
iφ

2
j (2.5)

where Vodd denotes extra smaller cubic or quartic terms that break the Z2 symmetries.3

The potential is stable at large field values provided that all eigenvalues of λij are non-

negative. This relevant condition will play an extra role in the following.

2In the regime where many minima become saddles with tachionic scalars, the rare minima tend to have

accidentally light scalars, as large positive squared mass eigenvalues are even more statistically disfavoured

than positive squared mass. Using random matrix techniques we estimate that the lightest scalar is acci-

dentally lighter by an amount that scales as N4/3. Unless the number N of scalars is huge, this factor is

not significant for Higgs naturalness.
3Various sources can generate a scalar potential with ZN2 symmetry. 1) In the presence of gauge interac-

tions with couplings g, one-loop RGE running towards low energy generates positive quartics λij & g4/(4π)2

when gauge multiplets i and j are charged under a common gauge group. 2) In possible dimensionless theo-

ries of gravity, RGE gravitational corrections at one-loop generate mixed quartics λij & g4
grav/(4π)2 among

all multiplets, where ggrav is a dimension-less gravitational coupling (see eq. (23) of [20] for the precise RGE).

3) Special mixed quartics are obtained from the potential with independent scalars, taking into account that

its LorentzN symmetry is explicitly broken by the gravitational ξ couplings, assumed to be ZN2 symmetric

as in eq. (2.1). Rotating to the Einstein frame gEin
µν = gµν×f with f = 1+ξiφ

2
i /M̄

2
Pl the scalar kinetic term

become non-canonical, and the Einstein-frame potential becomes VEin = V/f2. Expanding VEin in powers

of 1/M̄Pl gives mixed quartics 6ξiξjφ
2
iφ

2
jV0/M̄

4
Pl, thereby contributing as a special λij with rank 1.
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In the Z2-symmetric limit the minimum conditions are linear equations in v2
j = 〈φj〉2:

M2
i = λijv

2
j (2.6)

which can be easily solved. The potential can be re-written in terms of the v2
i as

V = V0 +
1

4
λij(φ

2
i − v2

i )(φ
2
j − v2

j ) + · · · V0 = Ṽ0 −
M2
i (λ−1)ijM

2
j

4
(2.7)

If some v2
i is negative the corresponding φi has one minimum at 0 (for bounded-from-below

potentials) and does not contribute to doubling the number of minima, as the corresponding

Z2 remains unbroken.

Let us here focus on scalars with v2
i > 0. Their mass matrix is

Vij =
∂2V

∂φi∂φj
= (−M2

i + λikφ
2
k)δij + 2λijφiφj = 2λijvivj . (2.8)

where the first term cancels at the minima. All minima have the same mass matrix of scalar

fluctuations, up to field redefinitions φi → −φi. Since detV = (
∏

2v2
i ) detλ, the squared

masses eigenvalues of V have the same sign as the eigenvalues of λ. This shows that all

extrema are minima as long as the positivity condition V4 ≥ 0 is satisfied. The minimum

condition (according to which all eigenvalues of Vij must be a positive at a minimum) in

general is restrictive and difficult to control. Without special bi-quadratic potential it adds

no extra condition. Unlike in the more general situation considered in [18] Vij is not a

random matrix, and its positivity is guaranteed by positivity of the potential.

Positivity of eigenvalues of λij does not imply that off-diagonal quartics must be small.

For example, for N = 2 the positivity condition can be explicitly written as

λ11,22 > 0, detλ = λ11λ22 − λ2
12 > 0. (2.9)

For generic N we can consider, for example, the special structure λij = λ ε
|i−j|
λ that gives

detλ = λN (1− ε2λ)N−1, so that positivity of V is satisfied for |ελ| < 1. This λij leads to a

Gaussian landscape of vacuum energies, and to a non-Gaussian landscape of Higgs masses

of the type discussed in section 5.

In general we can parameterize λij in terms of its eigenvalues λi and of its mixing

matrix Rij as

λij = RT · diag(λi) ·R. (2.10)

A Gaussian landscape for masses is obtained assuming comparable mixing angles. The

eigenvalues can be chosen independently of the rotation matrix R, that can have large

mixing angles.4 Notice that λij can be rotated to a diagonal form by acting with rotations

R on φ2
i (rather than on φi), an operation not allowed by the symmetries of kinetic or

mass terms. This means that the bi-quadratic landscape is not equivalent to the landscape

of [17]. Indeed, the ZN2 symmetry of the bi-quadratic landscape differs from the LorentzN

symmetry of the landscape of [17].

4The rotation with largest mixing angles has |Rij |2 = 1/N for N odd (there are N + 1 choices of signs

such that RT ·R = 1).
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Figure 1. Each dot is a minimum in the Z2-symmetric limit. For illustrative purposes we replace

2N points in N dimensions by points in 2 dimensions. Adding Z2-breaking terms some minima

disappear or appear; a light scalar is present around the boundary (blue curve); the identity of the

light scalar (and thereby its Yukawa couplings) varies in the landscape. Another boundary (in red)

separates minima according to the sign of their vacuum energy; a small cosmological constant is

present around the boundary.

2.4 An approximatively bi-quadratic landscape

All vacua of the Z2 landscape have the same energy density and the same scalar masses:

the Z2 symmetry cannot be exact in order to have minima with accidentally small vacuum

energy and Higgs mass. As long as the Z2-breaking effects Vodd are smaller than potential

barriers one still has a controllable landscape of many vacua. Small linear terms and/or

small cubic terms and/or more generic quartics can contribute to Vodd.

The Z2-breaking terms can be increased until some scalar eigenvalues in some minima

start becoming tachionic and the corresponding Z2-symmetric minimum disappears. If

such boundary cuts the landscape in two comparable parts, scalar masses are efficiently

scanned so that the observed light Higgs arises with its fine-tuning probability ∼ 10−34

and no extra suppression.

Among the surviving minima some have V > 0, others V < 0. If the V = 0 boundary

cuts the landscape in two comparable parts, the vacuum energy is efficiently scanned so

that the observed vacuum energy arises with its fine-tuning probability ∼ 10−120 and no

extra suppression. These considerations are pictorially illustrated in figure 1.

We considered the tree-level potential. Quantum corrections at one and more loops

shift the boundaries V = 0 and M2 = 0, so that the special vacua with small tree-level V

and v acquire large V and v. What matters is that vacua with small V and v still exist,

as long as quantum corrections are small enough to preserve the tree-level structure of the

landscape.
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Figure 2. We consider N = 100 scalars with the bi-quadratic potential of eq. (2.7) for quartics λij
as in eq. (2.10), with comparable diagonal eigenvalues λi ≈ 1 extracted from a Gaussian, mixing

angles θ ∼ 0.1, vacuum expectation values vi = v. We add cubic terms Vodd = O(0.1)vφ3i . We

compute 105 random local minima and show their distribution of the vacuum energy (left plot) and

of the lightest scalar squared mass (right panel).

2.5 Scanning scalar masses and the vacuum energy

We now estimate how the vacuum energy and the Higgs mass scan in the landscape. We

validate estimates by considering a numerical example (with results shown in figure 2):

we consider a Z2 landscape with quartics as in eq. (2.10), assuming comparable quartic

eigenvalues λi ∼ λ, comparable masses Mi ∼M , and comparable off-diagonal quartics that

we can parameterize as λoff ∼ θλ in terms of the angles θ . 1 of the rotation matrix R.

Under these assumptions we expect a Gaussian landscape.

The Z2 symmetries are broken by small cubics −1
3Aφ

3 with A = 2εM
√
λ, or by small

linear terms −µ3φ with µ3 = 2εM3/
√
λ, or by extra quartics. For each scalar, its possible

vacuum expectation values scan as φ ' [±1 + ε]M/
√
λ. Such vacuum expectation values

contribute to vacuum energies as [−1+O(ε)]M4/(4λ). Summing the contribution of the N

scalars gives a distribution of values of V and of squared scalar masses m2 with standard

deviation

δV ≈
√
Nε

M4

λ
, δm2 ≈

√
NθεM2. (2.11)

A significant scanning of scalar masses, δm2 ∼ M2 such that nearly massless scalars are

not rare, is obtained for √
Nθε & 1. (2.12)

This condition can be more easily satisfied in the ZN2 landscape for θ (i.e. off-diagonal

quartics that do not split minima) larger than ε (i.e. odd terms that split minima).

On the other hand, it is not guaranteed that the scanning of vacuum energies is wide

enough to include vacua with nearly vanishing vacuum energy. This depends on the un-

known absolute value of the vacuum energy.5 Many vacua with small V are encountered if

5Its value can be guessed in different ways. In string-like models with a heavy mass scale, the vacuum

energy might receive power-divergent quantum corrections. In agravity-like models with no heavy mass

scale, the vacuum energy receives a precisely computable physical RGE correction of order g4
gravM̄

4
Pl/(4π)2

(eq. (54b) of [21]) where ggrav is a combination of the dimensionless gravitational coupling. Furthermore, the

vacuum energy receives a physical Quantum Field Theory one loop RGE correction of order NM4/(4π)2.
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the unknown overall additive constant in the potential is such that V = 0 lies around the

common bottom of all minima in the Z2-symmetric limit, as this is the region that gets most

densely scanned in the presence of Z2-breaking terms. No vacua with small V are instead

encountered if V = 0 lies above the top of the potential at φi ∼ 0 or much below the bottom

of the minima. Sizeable ZN2 -breaking terms, ε . 1, allow for a wider scan of the vacuum

energy, up to a range of order Vdiff = Vtop−Vbottom ∼ NM4/λ. In view of this contribution,

one can reasonably expect that vacua with V = 0 are Nσ ∼
√
N standard deviations away

from the central value of V in the landscape [17]. So the number of Minkowski vacua (with

nearly vanishing vacuum energy) depends on N as 2Ne−N
2
σ/2 = e−(N2 ln 2−N2

σ)/2, which

grows with N only if Nσ <
√
N2 ln 2 ≈ 1.17

√
N . This means that a generic landscape

can fail or succeed in generating many Minkowski vacua [17]. Success is possible but not

guaranteed.

2.6 Scanning Yukawa couplings

The authors of [17] assumed that the SM Higgs doublet H is a special fixed scalar

with Yukawa couplings to SM fermions ψ described in a low-energy effective theory as

y(φ/M)Hψψ, where y encodes non-renormalizable operators that depend on landscape

scalars φ. Then [17] argued that the landscape can produce a distribution of Yukawa cou-

plings y peaked at some value with small relative width 1/
√
N , giving some predictivity.

We consider a more general situation, where some linear combination H = (h, 0) of

the many scalars φi happens to be accidentally light in some vacua. The composition of

the light Higgs scalar can vary a lot in different vacua. The full set of scalars can be

decomposed as

φi = ℘ih+ (heavy scalars) (2.13)

with different |℘i| < 1 in each vacuum. Writing the Yukawa coupling of the scalar φi as yi,

the Yukawa coupling of the light higgs is given by

y(n) =
∑
i

yi℘
(n)
i (2.14)

where n runs over the vacua where one Higgs doublet is accidentally light. This structure

is not captured by an effective field theory, as the latter can only describe light degrees of

freedom omitting heavy ones, that instead play an important role.

Let us consider the sub-set of landscape scalars φi with the same gauge quantum

numbers as the Higgs doublet. The number NH of such scalars could be significantly

smaller than N , as most of the scalars φi likely have different quantum numbers than the

light Higgs H, so that their yi vanish.

We experimentally know that all such ultra-heavy Higgs doublets must have vanishing

or small vacuum expectation values, and thereby positive squared masses at the origin. At

the minima away from the origin, the mass matrix M2
H of Higgs-like scalars gets affected

by the vacuum expectation values of other landscape scalars. The values of M2
H at each

minimum follow a statistical distribution that, in many cases, tends to a multi-variate

Gaussian centred on some M2
0 with the variance of eq. (2.11), so that

M2
H = M2

0 ±
√
NθεM2. (2.15)
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An accidentally light Higgs-like scalar arises along the boundary detM2
H = 0. Whenever

the variability is large enough that a light Higgs is not much rarer than its fine-tuning factor

10−34, its composition encoded in the ℘
(n)
i coefficients vary a lot (unless the fluctuations

δM2 are small enough, and the central value M2
0 is so skewed that a light Higgs is dom-

inantly found along a special direction that corresponds to an especially light eigenvector

of M2
0 ).

The statistical distribution of y can easily be non-Gaussian, for the following reason.

Given that Yukawas y observed at low energy show large hierarchies, one can expect that

the same holds true for the values of the fundamental Yukawas yi. Then, even if NH were

large, the sum over NH could not converge to a Gaussian.

3 Vacuum decay in a landscape

Vacuum decay in the landscape is not necessarily dominated by quantum tunnelling of a

vacuum to the nearest vacuum. Even considering one scalar, one can find sample potentials

with N > 2 minima such that jumps over multiple minima either dominate the decay rate,

or have zero rate: the result depends on the relative height of minima and barriers (see

also [22]).

To start, we consider the simple landscape of N independent scalars. We can compute

the decay widths from a typical false vacuum, where N ′ ≤ N of the scalars φi sit in their

higher energy state. Let us denote as Si′ the bounce actions for the N ′ transitions such that

only one of such scalars φi′ tunnels from its higher to its lower local minimum, with bounce

φb
i′(r). Naively, these N ′ bounces can be combined to give 2N

′
bounces where a generic

sub-set of the N ′ scalars tunnels. By defining a tunnelling channel in terms of ηi′ (equal

to 1 for those scalars that tunnel and to 0 for those scalars that do not tunnel) one has an

apparent multi-field bounce φηb
i′ (r) = ηi′φ

b
i′(r) with additive action Sη =

∑N ′

i′=1 ηi′Si′ . This

would mean that multi-field bounces negligibly contribute to the vacuum decay rate, despite

their large number 2N
′
. A similar sharper conclusion is reached observing that multi-field

configurations are not true bounces, because true bounces have only one negative mode [23],

while multi-field configurations have
∑
ηi′ > 1 negative modes. So the number of bounces

is N ′ � 2N
′
.6

Let us compute their actions S ≡ Si′ corresponding to a tunnelling of φ ≡ φi′ only.

The potential along φ has the form V (φ) = V0 −M2φ2/2 − Aφ3/3 + λφ4/4. The bounce

action S can be computed by rescaling to dimensionless variables x = x̃× 6
√
λ/[A(1− 3u)]

and φ = A(1 − u)/2λ + φ̃ × A(1 − 3u)/6λ, shifting the field such that φ = 0 becomes the

false minimum7 and rotating to Euclidean time, obtaining [26]

S =
1

λ

∫
d4x̃E

[
(∂φ̃b)2

2
+ δ

φ̃2
b

2
− φ̃3

b +
φ̃4

b

4
+ Ṽfalse

]
=

4π2

3λ(2− δ)3
× (13.8δ− 10.8δ2 + 2.1δ3)

(3.1)

6We thank J.R. Espinosa for discussions about vacuum decay.
7A constant term has been omitted from the potential, as it is irrelevant at M � M̄Pl. Gravitational

corrections depend on the absolute heights of the potentials making vacuum decay from Minkowski slower

at sub-Planckian energies [24, 25].
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Figure 3. Left: we consider a potential V = −M2φ2/2 − Aφ3/3 + λφ4/4 and show the largest λ

allowed by vacuum stability as function of the ratio R = (Vtop−Vtrue)/(Vtop−Vfalse) of the vacuum

energies at the false and true vacua. We see that even large non-perturbative λ are allowed for order

one ratios R ∼ 2. Right: bounce actions for a 2-field potential with λ11 = λ22 = 1, v = v1 = v2,

Vodd = 0.2φ1v
3
1 + 0.18φ2v

3
2 .

where the first term is the thin-wall limit, and the second term (equal to 1 for δ = 2)

approximates the full result, as found by numerically computing the bounce solution φ̃b.

The parameter δ equals δ = 18u(u− 1)/(1− 3u)2 where u =
√

1 + 4λM2/A2 and ranges

between δ = 0 (two vacua with very different energies) and δ = 2 (two degenerate vacua).

Cosmological stability demands S & 530. The resulting upper bound on λ is plotted in

figure 3 as function of

R ≡ Vtop − Vtrue

Vtop − Vfalse
=

8(9− 4δ)3/2(√
9− 4δ − 3

)2 (
2δ +

√
9− 4δ − 3

) ≥ 1 (3.2)

where Vtop is the potential at the top of its barrier. A significant scanning of the vacuum en-

ergy requires somehow splitted minima, R & 2 i.e. δ & 1.9, and thereby λ . 10 to have cos-

mological stability. A quartic λ = 1 allows cosmological stability of two vacua up to R . 10.

The total decay rate is found summing over all decay channels, e−Seff ≡
∑

i′ e
−Si′ , and

tends to be dominated by the single tunnelling with lower bounce action,

Seff ≈ min
i′
Si′ . (3.3)

The authors of [17] argued that cosmologically long-lived vacua demand relatively small

quartic couplings λ . 0.5 because the Euclidean bounce action that controls vacuum decay

rates d4℘/d4x ∼ M4e−S was estimated as S ∼ 27π2/λ. Cosmological stability demands

S & 4 lnM/H0 ∼ 530 where H0 is the present Hubble rate and M ∼ M̄Pl/10 the typical

scalar mass. The authors of [17] argued that such a small quartic might conflict with the

requirement of generating a wide enough scan of vacuum energies, within some assumptions
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about the potential parameters. Our estimate of the generic vacuum decay bound is weaker

than in [17] mostly because we included the (2 − δ)−3 factor: as a result we find a weaker

bound λ.10.

Let us next consider a landscape of interacting scalars. As long as mixed interactions

are small enough the situation remains as in the landscape of independent scalars: only N ′

vacuum decay channels are open out of 2N
′
. Their bounce actions Si′ however must now be

computed taking all scalars into account, as tunnelling no longer proceeds along straight

trajectories from one minimum to a nearby minimum. Computing the action along a

straight trajectory only gives an upper bound Sstraight on the tunneling action.8 Numerical

codes suggest that, for small and negative off-diagonal quartics, tunnelling trajectories

prefer to circle ‘inside’ (closer to the origin) giving lower bounce actions Si′ with respect

to what obtained setting the cross-quartics to zero. If off-diagonal quartics are small and

positive, tunnelling trajectories prefer to circle ‘outside’, giving higher bounce actions Si′ .

The right panel of figure 3 shows a numerical example. Tunnelling to non-nearby minima

can appear when interactions are so large that they risk to destroy the landscape.

Vacuum decay from SM-like minima with a light scalar. We must next consider

the possibility that vacuum decay could be catastrophically faster for those special minima

of physical interest where one scalar h is accidentally light, so that its mass term negligibly

contributes to the potential barrier. A scalar can become very light in two different ways:

• Light scalars with a large vacuum expectation value v ∼ M , that thereby cannot

be identified with the Higgs. For example, we consider the Z2 landscape. Adding

Z2-breaking terms Vodd some of the vacua present in the Z2-symmetric limit get

destabilised (reducing the landscape), others persist: vacua around the boundary

between these possibilities feature a light scalar. However, such vacua have very

small potential barriers and thereby their vacuum decay is catastrophically fast.9

• Light scalars with small or vanishing vacuum expectation value, that can be identified

with the Higgs. Scalars φ with a large positive squared mass at the origin φi = 0

do not contribute to the landscape in the Z2-symmetric limit. Adding Z2-breaking

terms, vacuum expectation values of other scalars induce a landscape of scalar masses

for scalars with no vacuum expectation values in the Z2-symmetric limit. As a result,

the origin ceases to be a minimum for some scalars that get destabilised (enlarging

the landscape), others persist around the origin: vacua around the boundary between

8Sstraight can be computed as follows. The straight trajectory from one generic minimum with 〈φi〉 = wi
to another generic minimum with 〈φi〉 = w′

i can be parameterized by a canonical scalar combination φ

given by

φi = wi + φni, ni ≡
w′
i − wi
v

, v ≡
√

(w − w′) · (w − w′) (3.4)

where ni is a unit versor. The action Sstraight is then given by eq. (3.1) with λ =
∑
λijn

2
in

2
j .

9This phenomenon can be illustrated considering one scalar φ with renormalizable potential V =

M2φ2/2 + Aφ3/3 + λφ4/4: the same tuning of the parameters that makes V ′′ especially small at one

minimum (relatively to the other minimum) also gives a stronger suppression of the potential barrier.
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Figure 4. Numerical examples for the two characteristic classes of landscape potentials of eq. (3.5)

that lead to a light Higgs-like scalar and another heavy scalar S. The SM false vacuum lies at the

origin. Shaded regions have det Vij > 0. In the left (right) panel the true vacuum has h ∼M (h�
M). The curve with arrow indicates the bounce trajectory; the numerical values of the bounce action

show that Higgs-like scalars can be light without leading to catastrophically fast vacuum decay.

these possibilities feature a light scalar. Vacuum decay is again catastrophically fast

if such light scalar has a very large cubic-self coupling A.10

Cubics are expected to be of order of the heavy scale M , unless suppressed by accidental

tunings (we ignore this possibility) or theoretical reasons. For scalars at the origin, one

possible theoretical reason is group theory of some unbroken gauge invariance. Scalars with

self-cubics forbidden by gauge invariance can be accidentally light without being accompa-

nied by catastrophically fast vacuum decay, and can acquire a small vacuum expectation

value of order m/
√
λ.

This is what happens for the Higgs doublet H = (h, 0)/
√

2: a self-cubic H3 or H2H∗

is forbidden by SU(2)L and/or U(1)Y invariance. The SM minimum with nearly vanishing

h = v � M lies near to the special gauge-invariant point in field space h = 0, so that the

SM minimum is surrounded in all directions by a potential barrier λH |H|4 (as well as by

potential barriers of other scalars involved in the tunnelling). The self-quartic of the SM

Higgs equals λH ≈ 0.126 at the weak-scale.11

While this effective field theory argument captures the key point, vacuum decay cannot

be approximated by integrating out heavier fields and obtaining an effective field theory in

terms of h only, because the range of validity of such Taylor-like expansion is not enough

to cover the O(M) field values relevant for vacuum decay. We thereby study what happens

10Ignoring non-perturbative effects (that might limit the possibility of tuning m� A) such scalars acquire

at tree level vacuum expectation values v ' −m2/3A if m2 < 0.
11And undergoes RGE running possibly becoming small and negative around the Planck scale or some

orders of magnitude below. This instability of the SM potential does not induce catastrophically fast

vacuum decay [27, 28].
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in the presence of one extra landscape scalar φ with a far-away minimum. If φ is a singlet

under SM gauge interactions we can shift φ such that the SM-like minimum corresponds

to φ = 0 and the most generic potential can be written as

V (h, φ) =
λH
4

(h2 − v2)2 +
M2

2
φ2 −

AHφ
2

φh2 −
Aφ
3
φ3 +

λHφ
4
h2φ2 +

λφ
4
φ4. (3.5)

Figure 4 shows numerical examples of V in two characteristic situations.

In the left panel we assume AHφ < 0 so that the weak symmetry is more strongly

broken in the true vacuum than in the physical false vacuum. The bounce involves vacuum

expectation values of order M for the Higgs field, so that the Higgs quartic potential

provides a significant potential barrier, together with the φ-dependent part of the potential.

As a consequence vacuum decay can be extremely slow for typical values of the parameters.

This is confirmed by the numerical example in the figure.12 The bounce action negligibly

depends on the weak scale v in the limit v �M .

In the right panel we assume AHφ > 0 so that the weak symmetry is preserved in the

true vacuum. In the limit v �M vacuum decay proceeds purely through φ, with h sitting

at zero, so that its quartic potential does not contribute to the barrier, and the small Higgs

mass does not facilitate vacuum decay: its vacuum decay rate is not influenced by the light-

ness of h. Vacuum decay can be fast in an unfavourable landscape, but the accidental light-

ness of the Higgs boson is not a risk factor that implies catastrophically fast vacuum decay.

Qualitatively new potentials arise in the presence of heavy scalars charged under the

SM gauge group: one can have mass mixings µ2HH ′∗ with extra heavy Higgs doublets H ′,

and cubics AHH ′∗φ, AHH ′φ with extra heavy scalars H ′ and φ (for example they could

be an extra doublet H ′ and an extra singlet φ; SU(5) unification models predict Higgs color

triplet H ′ and a bi-fundamentas φ under SU(2)L⊗ SU(3)c). Mass mixings can be ignored,

as they vanish in the basis where H is the accidentally light scalar. For the same reason one

can assume that 〈φ〉 = 0 around the SM minimum, so that the new cubics are harmless.

We thereby conclude that a vacuum with a light scalar is not more unstable, provided

that the light scalar (like the SM Higgs) is charged under gauge interactions that forbid

self-cubics.

4 A landscape in dimension-less theories?

The Higgs mass naturalness issue is avoided if the Higgs is not significantly coupled to new

physics much heavier than the weak scale, given that the squared Higgs mass would not

receive unnaturally large physical quantum corrections. This possibility is consistent with

experiments.

Furthermore, in the context of dimension-less theories, the small weak scale can be dy-

namically generated à la Coleman-Weinberg. Many models of this type have been recently

considered, using either small or non-perturbative interactions. In particular, a possible

12The bounce actions and trajectories are easily computed implementing the method of [29, 30]. Our

results agree with results obtained running the public code of [31], based on a different method.
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way of including gravity and the Planck scale was discussed in [20]. However, the small-

ness of the vacuum energy V is unnatural in such context because we know that gravity is

coupled to the Standard Model, so that V receives unnaturally large corrections of order

v4. Furthermore, dynamical generation of mass scales in dimension-less theories typically

leads to a large negative V .

We here show that dimension-less theories can give rise to a landscape of vacua, includ-

ing vacua with a vanishingly small cosmological constant. Indeed, when some first scalar

φ dynamically acquires a vacuum expectation value or a condensate, the dimension-less

potential of all φi becomes a potential with massive parameters, that can give rise to a

landscape of vacua in the same way discussed earlier.

Concerning the sign of the vacuum energy, a Coleman-Weinberg potential V (φ) ≈
λ(φ)φ4/4 with logarithmic running of the quartic, λ(φ) ≈ βλ lnφ/φ∗, has a minimum at

φ ≈ φ∗e
−1/4 with V < 0. More in general, since V (0) = 0, any global minimum at φ 6= 0

necessarily has negative vacuum energy. However, Coleman-Weinberg potentials can also

have local minima with V > 0 provided that the quartic λ runs in an appropriate tuned

way, discussed for example in [20]. In a landscape with enough scalars and vacua, the

tuning needed for the appropriate RGE running of λ is the same tuning needed for a

vacuum with anthropically selected small vacuum energy.

In conclusion, dimension-less theories are not incompatible with a landscape.

5 Non-Gaussian landscapes and predictivity

A theory able of predicting the values of the ‘fundamental’ constants in its low-energy QFT

limit can remain untestable in sub-Planckian experiments if the number of its vacua is too

large. The smallness of the cosmological constant and of the weak scale naively suggest

a landscape of at least 10123+35 ∼ 10160 vacua. On the other hand, SM parameters have

been measured so far up to about 72 digits of precision, in the sense that all experimental

information can be condensed in about 72 dits (“bits” in base 10) of information:

• Measurements of the gauge couplings g1,2,3 amount to about 14 digits of precision;

• The Higgs quartic λH is known from Mh and v with about 2 digits of precision.

• Yukawa couplings of leptons are known to about 18 digits.

• Yukawa couplings of quarks are known to about 8 digits.

• The CKM mixing angles among quarks add about 6–7 extra digits. QCD uncertain-

ties limit the accuracy that can be reached measuring light quarks.

• Neutrino masses and their mixings add about 8 extra digits.

• Cosmology provides about 6 extra digits of precision (and calls for a Dark Matter

extension of the SM).
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Figure 5. Left: distributions of a generic quantity R given by the landscape of eq. (5.1) at large

N and for ε < 1/2 (blue fractal), ε = 1/2 (green flat), ε > 1/2 (red non smooth). A wide Gaussian

would be obtained for ε = 1. Right: fraction of the parameter space covered in fractal landscapes

for different N .

• Very small ratios among scales (V/M4
Pl and v2/M2

Pl) and bounds (in particular on

the QCD angle) give about 10 extra digits, depending on how zeroes are counted.

Furthermore, one can add the number of chiral fermion generations and the dimension

of gauge groups to the list of ‘coordinates’ that define the SM.

Thereby a landscape of more than 1072 vacua risks being untestable. In the worst case

where landscape predictions are distributed with a feature-less Gaussian-like distribution,

vacua compatible with all what we observed can exist a huge number of times just by pure

change. Narrow Gaussians offer increased predictivity [17], but this hope conflicts with the

observation that me, mu, md are small and seem anthropically selected.

We then discuss a possible non-Gaussian landscape. Let us consider a quantity R that

(analogously to the vacuum energy in eq. (2.4)) takes possible values

R =

N∑
n=1

rnfn with rn = ±1. (5.1)

Viewing R as a sum of random variables with values ±fn and variance σ2
n = 2f2

n, the

Lyapunov central-limit theorem tells that the statistical distribution of R converges for

large N to a Gaussian if all fn are comparable. We here explore what happens when this

condition is violated, considering for example the case fn = εn where ε is a possibly small

constant. Similar results would be obtained in the more general case fn ≈ εn.

This example might apply to cases of physical interest: R could be a Yukawa coupling,

or a scalar squared mass in a landscape with mixed scalar quartics λij ∝ ε|i−j| (or, more sim-

ply, a landscape where scalars do not have a common mass scale M). Taking into account

that ε and 1/ε give the same distribution up to a rescaling, we can focus on ε ≤ 1, finding:

• For ε < 1/2 the distribution of R shows a fractal structure of many separated peaks,

as illustrated in figure 5a. A random number, defined up to an accuracy a = εN

equal to the smallest contribution to R, is present in the fractal landscape with

probability ℘ = (2ε)N (black dashed line in figure 5b; the other curves show the

– 16 –



J
H
E
P
0
1
(
2
0
2
0
)
0
5
4

result for different accuracies a). For N → ∞ one gets a fractal with dimension

d = ln 2/ ln(1/ε). As large N is needed, the probability ℘ becomes quickly small

for ε < 1/2. For example, the Higgs squared mass should be vanishing up to an

accuracy of about a ≈ M2
h/M

2
Pl ∼ 10−36 in a Planck-scale landscape, such that at

least N = ln a/ ln ε ≈ 83/| ln ε| scalars are needed. The probability that a light Higgs

is present in the fractal landscape is already smaller than 1% for ε = 0.48.

• For ε = 1/2 one gets a flat landscape distribution that fills the range −1 ≤ R ≤ 1

because R is like writing a random number in base 2. This feature-less landscape

is successful, provided that the scanned range contains the desired value (flat space,

light Higgs, etc).

• For 1/2 < ε < 1 one gets successful landscape distributions that fill the range |R| ≤
ε/(1 − ε), while still exhibiting significant sub-structures, as illustrated in figure 5.

When computing multiple quantities R, one can hope for a peaked enough multi-

dimensional probability distribution such that some predictions are possible.

• For ε = 1 the sub-structures disappear leaving a successful but feature-less Gaussian

landscape, where finding flat vacua needs brute-force computations [16].

6 Conclusions

Theorists developed beautiful theories of new physics such that the weak scale would natu-

rally be much smaller than the Planck scale. Such theories are now in trouble with bounds

on new physics: Nature rejected these theories up to tunings of a part in 100–1000. Such

theories remain less tuned than the SM up to the Planck scale, but the absolute level of

tuning might mean that nature is not a contest where the relatively less tuned theory wins:

our ideas of naturalness might be missing some much bigger ingredient.

The two failures of naturalness with the weak scale v and with the vacuum energy V

prompts us to consider alternative ideas. Anthropic selection in a landscape of many vacua

(also indicated by the special values of light fermion masses) seems the most plausible

interpretation of the small values of v and V .

We presented a renormalizable Quantum Field Theory potential of N ∼ few hundred

scalars that leads to an efficient scanning of the vacuum energy as well as of the weak

scale. We avoid introducing any ad hoc structure for the Higgs. In general, scalars with

accidentally small masses m�MPl can arise in a landscape where scalar masses are widely

scanned. But this risks removing almost all vacua from the landscape, as m2 = 0 is the

critical point where minima (all m2 > 0) are lost becoming saddle points (some m2 < 0).

This potential problem cannot be controlled if this needs counting� 10160 minima. We

bypassed this practical difficulty by assuming an appropriate form for the scalar potential,

such that vacua break approximate ZN2 symmetries. Furthermore, in section 4 we found

that a successful landscape for v and V remains possible also within dimension-less theories

where masses are dynamically generated à la Coleman-Weinberg.
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In section 3 we considered vacuum decay, finding that enough stability is possible,

even for relatively large quartics λ ∼ 1 (see figure 3). Furthermore, we found that vacua

with an accidentally light scalar avoid catastrophically fast vacuum decay provided that

the light scalar has no self-cubic. The SM Higgs doublet satisfies this property thanks to

electroweak gauge invariance.

The accidentally light Higgs doublet present in rare vacua is a different combination

of the various weak doublets present in the full theory: thereby it has different Yukawa

couplings in different vacua, allowing for anthropic selection of light fermion masses, as

suggested by data.

Finally, in section 5 we went beyond previous studies that assumed values of the land-

scape parameters that result in Gaussian probability distributions for the various quantities

of interest. We found that in simple cases one can instead obtain fractal distributions as

well as less dramatic continuous distributions with peaked sub-structures.

While possibly being the correct physics, a landscape of many vacua risks being vacuous

physics, as long as it does not provide testable implications. In section 5 we tried to quantify

the amount of information measured so far at low energy comparing it to the ‘entropy’ of

the landscape. Landscape distributions with narrow peaks would have less ‘entropy’ than a

Gaussian landscape, and would thereby ruin relatively less the predictions of a high-energy

theory, that might remain testable in low-energy experiments.
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