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robot munipulator and then compared to similar integer
order methocl.

il. M,qruulrtc,4l BACKGR0UND oF FRACTIoNAL SYSTEMS

Fractional dffirintegration is developed from integer
ditfer e ntiatio n an d int eg ratio n.

Riemann-Liouville's definition of fractional
dffiintegrals inJractional calculus is detined by[IJ:

,DrfG) - Dmlm-"f(t) -#l#fiffi"atl
(r)

where q is the renl positive integration order, f @) is the
Euler Gamma functionp J :

t"(r) = S* "-tf-rdt 
Q)

Second detinition is given by Grunwalcl -Letnikov:
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The Jractional LTI state-space is presentecl In MIMO
case as[6J:

m l f ( a - m + gf (x - mh) (3)

(4)

Where q. is the order ol' the system and u e Rm ,y E

RP , x € Rn are input, output and state vectors,

respectively. System matrices A, B, C and D have

app rop riate dimensio ns.

Here initial conditions are considerecl to be zero
(x(t) = O f or t < 0).

The Jractionul system is stable tf[6]:

o  <  a  12  and la rg(A1, ) l  ,  
" ;  

Yk  =  ! ,  . . . , r t

Where lk l's the kth-eigenvalae of A and -Tt <
arg (7p) < ngraphic.

ilL GENERALIzED RANDOM FUNCTION

Let (9,F,P) be the probability triple where Pc is

fractional probability and is defined as[10,1lJ :
0 ( q ( 1 , P o : F + [ 0 , 1 ]

1. P"(A) > 0 for all AeF
2. P"(O) - 1

3. Jbr all Ai E F iJ'Ap are pairwise disjoint, then
Po(Ui=1Ai)  s I i=rPo(Ai)  (5)
and let D denote the spflce of the (real-valued

nonrundom) scalar C* functions {<p(t)}defined on R. This

function has a compact support and is called the test

Junction in the clistibution theory[9].

[ D a x ( t ) - A x ( t ) + B u ( t )
(  y - C x ( t ) + D u ( t )

Robot Identffication Using Fractional Subspace Method

H, Behzad, H.Toossian Shandiz, A. Noori, T.Abrishami

Ahstract-This papens concerned with fractional
identification of state space model of continuous time MIMO
systems. The methodology used in this pflper involves a
continuous-time fractional operator allowing to find fractional
derivatives of the stochastic input - output data which are treated
in time domain and identiJying the state space matrices of the
system using QR factorization.. There are many advantages in
describing a physical system using fractional CT models in that
the dynamic behavior of the system is, in actuality, inherently

fractional. The elficacy of the approach is examinecl by
comparing with other approaches using integer identiJication.

L lr,trnonucnoN

1l lthough fractional calculus was first introduced in
fl' tAgS by Leibniz and L'Hospital, the first systematic
studies seems to have been made at the beginning and
middle oJ'the nineteenth century by Liouville, Riemann,
and Holmgren[I,2].

In the field of system identification using fractional
orders some research has been done. (Oustaloup[3];
Trigeassou et aU4J; Malti et al[S]). Thomassin et al
(2009)[6] had a thorough review oJ'the old ways. Most oJ'
the researchers were concentrated on rational transfer

function. The present paper, however, considers
identiJication of a continuous-time Jractional system in its
state-space Jbrm.Cois etal (2001)[7] and Poinot etal
(2004)t9l conducted n study on system identification
employing fractional state-space representation. Their
methods, however, are based on minimization of an output
error criterion by nonlinear programming techniques, That
is, os the number ot'parameters to estimate becomes large
in a MIMO system, these methods are considered more
suitable for SISO systems and are dfficult to apply in the
MIMO case.

In this paper we concentrate on subspace methods which
,s nn extension of Ohsumi etal(2001)t9l method for
rational systems. This methotl offers a novel approach to
idenffiing the continuous-time state-space model using
input-output clata. The method is based on higher
derivatives of input ancl output in the presence of both
system and observation noises.
Finally to verify the algorithm, the method was tested on a
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Here dI represents sample space, F represents o-Jields
and P is probabiliy measure.

Ito (1953)F2J and Gelland and Vilenkin(1964)[13,141,
maintained that continuous linear rqndom functional
deJined on D is called a random distribation or a
generalized random function (process); and the totality of
them will be denoted by D' (dual space). In other words, a
random distribution function F is a measurable map from
a probability spnce ({2,F,PJ to the spoce I of distribution

functions on the closed unit interval I, where A is endowed
with its natural Borel o-field, that is, the smallest o-field
containing the customary weak topologyfl5J,

The random distibution y(q)deJined by:

y(q) - flv(t)e(t)dt (q e D) (6)
Where {y(t,w),-@ ( t ( oo,w e O} is a (real) vector

co ntinuo us stoc hctstic p ro c es s.
u sing fractio nal integ ratio n :
y(q) - -*D;"(y(t)q(t)) (qeD) (7)

The random distribution V(p) is called a Gaussian
process if for any function <p(t)eD the random variable
y(q) ts Gaussian[9J.

For g€D the first and second derivatives of the
stochastic process y(t), regarding to distribution, are
calculated by using integration by parts as:

D"y(q) = -..D*"(D"(y(t)).<p(t)) =

- --D;"(y(t). D"<p(t)) -
-v(D"e(t))

D'"y(.p) = -*D-"(Dz"(y(t)). <p(t)) :

--*D;"(D"(y(t)). D"(<p(t))) : --D*"(y(t). Dz"q(t)) =

y(D'".p(t)) e)
In general, the kth derivative of the stochastic process

y(t) is deJined by:

nn"y(,p) = -ooDlo (on"(r(,)).q(t)) =

(-1)k-*D;"  (v(0.  nn"(q(t)))  :

(-1)kv (ou"qco)

IV. Sunsplcn ALGoRITHM FoR FRACTIoNAL TIME DoMAIN
IDENTIFICATION

Use Consider the following continaous-time fractional
stoc hastic linear systems :

D"x(t) = Ax(t) + Bu(t) + w(t)
y(t) - Cx(t) + Du(t) + v(t) (I I)
Where y(t) € Rl, x(t) € Rn, u(t) e R^ are the output,

the input sncl the state vector, and u(t) e Rl ,w(t) € Rn are

system and observation noises, respectively. The noises

{w(t)} and {v(t)} are botlr assumed to be stationary white
Gaussian processes which has a zero-mean. The

covariance matrix of the noises is:

r, [;,(.3] [,"'(t) .','q,)]] =

t$ ll oa-,r

In the relation above,6 denotes the Dirac-delta function
and E, represents mathematical expectation. VI/e assume

that input {u(t)} is independent of system noises and our
objective is to find system order (n), system dffirentiation
order (a) and matrices (A,B,C,D) using continuous
stationary random input and output data, {u(t)} and {y(t)},
(-oo < t < *m). States of the system can be estimated
using kalman-Jilter.

According to Thomassin etal method(2009), system
dffirentiation order (ae(0,2))can be estimated, by
minimizing a quadratic criterion:

.  1 " .d = arg min; ll9.(q) - y,ll3

Consider Jirst the case where the noise and disturbance
is zero.

D"x ( t )=Ax( t )+Bu( t )
y ( r ) - C x ( t ) + D u ( t ) (r4)
According to subspace algorithm quadruple (A,B,C,D)

can be calculate u.sing Jractional clerivatives of input ancl
output at least up to (i-I)th clerivutive. Though we have the
input-output algebraic (m atrk) relationship :

x(txtj) = riXi(t)(tj) + Hiui(txtj) (1 s)

l c l
f , - l  . l  I

[co]-']
l D  0  0 l

H,=l  t , t  ?  , "  ? l
Lca'-re cAi-38 ... ;l

I  v(tr) y(tz) y(tN) I
Yi(t) = 

| 
o"t,tt, D"v(tr) D"v.('*) 

|
[pt i -1)ay(t1) p( i - r )qy(t2) p( i - r )"y( tp) .1

Now matrices liand Hi ca.n be calculated using least
square method and finally the quadruple (A,B,C,D) will be
known. But it should be noted that the system output is
stained with noise and since derivatives of noisy output can
not be calculated, we used the test function and
distribution theory. Considering this theory, input, output
and states oJ'the system are expressed as Jbllow:
y(q) - -*D;"(y(t)q(t)) (qeD)

u(q) = -*D;"(u(t)q(t)) (qeD)

x(e) : -*D;"(x(0<p(t)) (qeD)
Now we write the output ancl its derivatives:

--D;o(Do(v(t))q(t, t i)) - C--D;ct(D"(x(t))q(t ', t i))

+D--D;c (o"(rC,l),p(t ' ,  t ;))  +

--D*o (0" ("Crl),p(t, ti ))
Using relation (10) and (11):

-y(D"q)(t i)  -  cAx(q)(t;)
+cBu(<p) (ri) - Du(D"e)(t;)

+cw(e) (r;) - v(D"q)(t;)

(16)

(r 7)

(r 3)

(10)

And through the seme, 2ath derivative is calculated as

(12) follow:



v(D'"q)(ti) = cazx(<p)(ti) + cABu(e)(t;)

-CBu(D"ql( t i )  + Du(D2"9) ( t ; )

+cAw(q)(ri) - cw(Dqe)(,i) + v(Dz"e)(t,) Q8)

Repeating this with a(i-L) times , a(i-L)th derivative is

calculnted as Jbllows:
- ( 1) i- t y(pti-t)d<pr) (t; )
- cAi-1x((p Xti) + CAi-zBuC.p Xti)
-cAi-3Bu(n"<p)(t;) + "'

+ (- 1;i-t Du(D(i-rl"qxtj )
+CAi-2w(,p Xti)

-cAi-3w(D"q )(rt)  + . . .+ (-1)r-zg-(p(i-zr"<p)(t,)  +

(- rli-tu,pci- tl" <p) (t,)
And Jinally input-output algebraic relationship can be

calculated:

v(e)(t,) = rix(q)(t,) + H'ulqxti) + x1w(<p)(ti) +

u(.p)(ti) (20)

thhich V(q)(ti) is asfollow:

v( .p)( t i )  -  lv r (q)( r i ) ,vr (D"q)( , ' ) ,  " ' ,
(- 1)'-'yt (oti-tr"*; (,, )lt

e  ! E ) t ' " " " " " \

E aof
. E n l  I

(1e)

(21)
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oStructure of u(q) (,,) , u(,p)(ti) g w(q)(t,) ,s similar

lo y(<p)(t;) and the structure of ri , Hi and XleRi/'in is as

follow:

(22)
(b)

g 100
E s oc o[ , =1 " , ^  |  ( 23 )

Lcc-'l
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ThereJbre, by arranging the output column vector (20)

in a row (i:1 to N) we have the input-output algebraic

relationship:

Yi (q) =

fixi(q) + H1U1(<p) + Xiwi(q) + V(q) (q eD) (2s)

Where state and output matrices are as follow:
Xi(q) -  [x(q)( t t ) ,x( ,p)( tz) , . . ' ,x(9)( t*) ]  (n x N)

vi (q) - [v(q) (tr), v(q) (tr), ... , v(q) (t1r)] (i/ x N),

And U1(<p)eRi-*N,wi(q).pinxN anct Yi(q).pi/xN wil l

befounded similarly ro Y1(<P).
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(c)

Fig.I. step response for robot manipulstor (a) make an step to the Jirst

input and measure the outpnts (b) make srr step to the second input and

mcasure the outputs (c) make an step to the third inpat and measure the

outp.tts.

V. SVSTPU NENTIFICATION

The In this section we'll review how to remove noise and

obtain quadruple (A,B,C,D) using the algorithm developed

by Ohsumi etal to fractional order.
Theory 1) Assume that {u(t)},{v(t)} and {w(t)} he

independent zero-mean stochastic processes. Pick q, q, € D

ancl assuming that Up(g)eRh-*N is a matrk with random

o'5f
0 f

-o.5 L

0

(a

g

=
o
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801
e0l
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Tima (s)

Time (s)



tlistribution that has a structure similsr to

Ui(<p)eRi*xNinstead of the test functio, Q(t,t1) and the

number of block rows i, then:

frWteluil(rF) - o,frv'te)uil(.t ) - 0 as N + oo (26)
ProoJ!
According to
wi(q) = [q-r)kw(Dk"q(tj))]u=.,r,...,,-1:j=1,2,...,* 

(27)

un(v) - [1-r)ru(Dp"{, (t i))lo=',r,...,h_1:j=1,2,...,5 QS)

We have for the (k, p)-element of the matrix

*wt.pluil(U) ;
1

fr [wteluil(,u)Jno -
1

fr [c-tlu*(nk*<p)(tr), ..., (-1)kw(ok"e)(tn)]

x [ ( -1;nu(Dp"V)(tr ) ,  . . . ,  ( -1)pu(Dp"U)(t*) ]  
t

= (-1)k*p * ri:, -(Du"e)(t;)ur1Dn"v)(t,)
And for Jked k and p:

z(t') - *(Du"qxt;)ur1Dn"{rxtj)
This is a stationary stochastic sequence.
Therefore prove summarized to show the following two

CASES:

n the ergodicity is hotdibr Z(ri)

i i) E{z(t,)} - s

(2e)

(30)

dt

H -o-z
tr
E -0.4
.s
fi -0-6
oa -0"8

q 0.22
(!
t

# 0.?
E
.P o.re
u
o*  o. te

tU

s
o

F

To prove (t) it's suJticient

functionR"(t) .'

R"( t )  = E{[z( t j  +.)  -  E{z(t ,

to find the covariance

+')] l lz(, i) -

(33)

Ezrir (31)

And verify that it tends to zero as lrl tuncl to infinity. So
average is ohtained as follow:

E{z(q)} - E[ral(uk".p) (ti)u'(Dp"\UXtj)]

-  E [-*n;" (w(t)uk"e(r,r,)) -*D;"(ur(t)Dna{(s ,  t i ))}

--D*o -*D;"E{w(t) ut (r) }nn",p (t', t, ) on"qr (s', t, ) - I
(32)

ll/here {w(t)} and {u(t)} are independent zero-mean
random processes. hence:

R,(t) = E{z(ti + t)zr(t,)1
- E{[w(pk".p)(t, + t)ur1nn"U)(t, +.)]

x [w(nk"q) (tj)u'(DP"VXtj )]']
= [-".D-*"--D*"(ru(s, 

- sr)

x op"v(sr. ,  t j  *  t )on"qr(sr ' ,  t i ) ) ]

x Q -"oD--"(Dk".p(sr', t; + t)Dk"q(rr', t i))

Where r.,(sr - sz) = E{ur(sr)u(ur)}.

' E

r 10n

Fig.Z. input-o,ttput tlutu (a)lirst ,lflrriputoro, (b) second munipalutor
(c)third munipulutor

as regarcls lru(t)l S ct for -a < r < m ,we have for
the bracketed term in the last equality that:

|  -*D;"-*D-a(r . , (s,  -  sr)Dnaty(tr ' ,  t i  + t )on"ry( t r ,  t i ) ) l

(  -*D*o-*D*" l ru(sr  -  sr)Dpa$(tr ' ,  t t  + t ) l

x l ln"ry(sr', t i) l

c, [-*D;" Inr"qr(sr', t; * t) l ] x [--n;"lnn"rg(sr', t i) l ]  <
c2(const) (34)

On the other hand the last integral in equation (31) is as

follow:

2 3 4
Time (S)

inputl

? 0
6
t
o
G
z -0.2
e
ct
Dr -o.4





- -D;o(Dk"(q(rr ' , t '  + t ) )ok" (e(rr ' , , i ) ) l  -  0 as l t l  ->


@ (35)


Since Dk".p(. ;.) has compact support, and according to


(34) and (35) we have:
R"(t) -+ 0 as ltl -r oo


And consequently the ergodicitY:


i r,t' z(t') - s[zfti)] (N -r oo)
Holcts Jbr the random sequence deJined by


implies that :


fr [*'ce )uil(v)]r.o :
(-1)k*p * f [ ,  z(t i)  N ] *c-1)k*pE{z(t i)}


The second part is hold according to


consequently the ftrst assertion in (26) follows.
the second assertion also follows-


Theory 2) pick g,r$ eD and assume that U'n('lt) is cs


equation of theory (1). perform QRfactorization as (39):


[u,(.p)l  [1,,  0 ot[qi ' l
lunt ,p l  = l t ,  Lzz o I la l r l
IXC,pl I [t 


" 
Ls, L*J lelrl


Then theJbllowing relations are given Jbr
large N:


* r,, : [ {**,(e)er,} + Hi {fr 1,,}


*t, ,  = \{** '(e)ar,}
ll/here L32 is noiseless matrix antl contafn.s span.ol{r1}.


ProoJ!


postmultiptying both sides of equation (25) ry *Qp


and L^Qw resPectivelY we have:


rtrtelorr = [ {*t,t*lqr,} * t ' {*ui(q)Q,,} 
=


x'{*wce)Qr,} + *',(q)Qr, 
(42)


ftv'celorz 
= ri {**'(e)Qr,} * 


"'{*u,(p)Qrr} 
=


I [ftwce)Q,.,] * *",(q)Q,, (43)
Combining these into an equution, we obtain:


"l


^X(o)[Qrr, 
Qrr]


: n [*xi(q)[Qr'' a"]]


*  n, [*u i (q) [er , ,e ' l ]


*x'{*w(q)[Qr,,  arr] ]  * *u,( 'p)[Qr,r,  Qr,r]  (44)


Now according to (39):


rQr,, Qul - uil(u) [fi;]"


0.2


0
c
!
T -0.2
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* 
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o
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(c)


Fig.3. comparing real, tractionol estimated and integer estimated
output (o)lirst mtnipulator, (b) second monipulator, (c)third monipulator


Where * denotes the Moor-Penrose pseudo-inverse. The


third term in the right part of equation (44) becomes &s


follow:


t , { *wi (q) [Qr, ,Qrr l ]  =


(36)


(37)


(30). This


(38)


(32)and
Similarly,


(3e)


(40)


(4r)


(4s)


3.5


x 1od
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-0"1


at


E -9 .15
o
tr


6 -O.2
'!


|,l
o
tr *0-25


1 . 5  2


x  1oa
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Fraclional & Inleger ldentitication Third Manipulator







(46)


in which the convergence to zero fls N -+ oo yields from
Theorem 1. Similarly, the method is established for the


fourth term in the RHS of G4.
Hence for large N, equation (44) becomes as follow:


rtv,tellQr.r, Qr,rl - * lxi(q)[Qr' Qr.r] +


* 
t ,u,(*)  [Qrr ,  Qrz]  @7)


Now according to (39) the left part of the equation is
expressed as:


1
,-Yi(P)[Qrt ,  Qp]


V N
T= 


fi 
(Ltt QIt * Lu QL


t Lse QIs)[QLr, arr]+ [Lsr, Lsr]
vN 


gs)
AndJbr the second right part oJ'the equation we obtain:


* ",u,(*) 
[Qrr, Qu] = 


* H,LrrQI. [Qrr, Qr.r]  =


* r, [Lrr, o] (4s)


Hence equation (47)becomes as follow:


fr [lrr,Lrr] = fr tnx'(q)Qrr,fixi(q)QLrl +


ft [H,t rr, o] (so)
By extracting two block matrices, we obtain (40) and


(4r).


W. SIMULATIoN


In order to test the algorithms, an experiment was
conducted. In this experiment, quadruple (A,B,C.D) and


fractional order of system (a) were identified.


The algorithm is ahle to Jind optimum ea(0,2) by
minimizing equation (I 3).


In the following experiments, the Gaussian test function


fir, {i*,c*luilc,r,l} lB]. *:o*


with o:1/4 was selected as follow:


,p(ut;) - exp {-ry} (o > o)
"  ' t  2 0  J


0 0 . 5  1 1 . 5 2
$ample


(a)


o.22


4.215


o.21


e 0.205
.E
!


# o'2
E'
.F o.ros
6


I  o.1e


0.185


0.18


0.175


Sample


(c)


Fis'4'investisutins'#:i;::i;;:,'ii:;;:::l:.:lt:,:::,:"'''utator'(b)


robot is in open loop manner nncl without controller.
Experiment result shows that the response rate is t=2. 9s
for the first manipulator and 0.7s ,0.5s for the second und
third one respectively. As the outputs are almost
independent, it is reasonable to decompose the system to
th ree ̂ S/,SO in dep end ent m anip u lator.


Persistent exciting input in the next step was adopted in


o-4


o"2


- Feal Outpul
, Fr*ctional ldenlificalion


e
"gtt
o
tr
c
.9
!=
o
o
n(s r)


The number oJ' state variables (n) is assumed to be
known. In all simulation stadies, the continuous-time
processes were discretized with time-partition /t, and the
sampling instants t;(l = L,2,...,N) were taken with equal
distance and constant integer M as:


t ; + r = t j  + M A t (s2)
In this test we applied the fractional algorithm to a


robot with three manipulators named Phantom antl
compared the results with integer one, In the experiment,
we considered sampling interval M/t=0.625s and time
interval /t=0.00625s.
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Fractional ldentification First Manlpulalor


Fractional ldentification Second Manipulator


Fractional ldentilicatlon Third Manipulator
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such a way that it can stimulate all the various modes of
the system. The input signal is a pseudo-random binary


sequence (PRBS).
After sampling, data were examined to be pre-filtered


in case they are false or destroyed information or signs


of nonlinear effect are observed in the data. For complete


injbrmation reJbr to F|SQ. To investigate amount oJ'


output sensor noise, a pseuclo-random binary sequence
(PRBS) with K= 3 periods each of length M : 63 for the


first manipulator and M:127 for second and third, are
exactly measured. Then, a record of N : KM =189 for
manipulator one and N=KM:381 data points tbr second
and third is collected. The data set over the 2'd periods is


displayed in Figure (2).
As we know, robots are nonlineur while state-space


model is linear, so the measurement data are made around
the operating point.


Choosing the same rank (a)for all inputs in such a h)fly


that output error being minimized is a maior problem of


MIMO systems. For coupled systems there is a compromise
between the same rank (a) and minimum output, but as


shown in Fig(l) this robot has a decoaple manipulator and


consequently smount of a in each of manipulator is


independent of the other. Finully an input is applied to


each of the manipulators and the effect is measured in


output.
FiS@ compflres actual output, Jractional estimated


output and integer estimated output. As shown in this


ligure, a more accurate response was received from a


fractio nal identificatio n exp e rim ent. Fractio nal state-sp ac e
matrices of'robot are as Jbllow:
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To verify the simulation, we investigate our simulation
using test data. Results are depicted in FiSG).
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robot munipulator and then compared to similar integer
order methocl.


il. M,qruulrtc,4l BACKGR0UND oF FRACTIoNAL SYSTEMS


Fractional dffirintegration is developed from integer
ditfer e ntiatio n an d int eg ratio n.


Riemann-Liouville's definition of fractional
dffiintegrals inJractional calculus is detined by[IJ:


,DrfG) - Dmlm-"f(t) -#l#fiffi"atl
(r)


where q is the renl positive integration order, f @) is the
Euler Gamma functionp J :


t"(r) = S* "-tf-rdt 
Q)


Second detinition is given by Grunwalcl -Letnikov:


Dnf (x) -
x-a


h
1 s r


l f r n  I  )  ( - 1 ) n


i:'o hq L 
'


m=0


r @ + L )


The Jractional LTI state-space is presentecl In MIMO
case as[6J:


m l f ( a - m + gf (x - mh) (3)


(4)


Where q. is the order ol' the system and u e Rm ,y E


RP , x € Rn are input, output and state vectors,


respectively. System matrices A, B, C and D have


app rop riate dimensio ns.


Here initial conditions are considerecl to be zero
(x(t) = O f or t < 0).


The Jractionul system is stable tf[6]:


o  <  a  12  and la rg(A1, ) l  ,  
" ;  


Yk  =  ! ,  . . . , r t


Where lk l's the kth-eigenvalae of A and -Tt <
arg (7p) < ngraphic.


ilL GENERALIzED RANDOM FUNCTION


Let (9,F,P) be the probability triple where Pc is


fractional probability and is defined as[10,1lJ :
0 ( q ( 1 , P o : F + [ 0 , 1 ]


1. P"(A) > 0 for all AeF
2. P"(O) - 1


3. Jbr all Ai E F iJ'Ap are pairwise disjoint, then
Po(Ui=1Ai)  s I i=rPo(Ai)  (5)
and let D denote the spflce of the (real-valued


nonrundom) scalar C* functions {<p(t)}defined on R. This


function has a compact support and is called the test


Junction in the clistibution theory[9].


[ D a x ( t ) - A x ( t ) + B u ( t )
(  y - C x ( t ) + D u ( t )


Robot Identffication Using Fractional Subspace Method


H, Behzad, H.Toossian Shandiz, A. Noori, T.Abrishami


Ahstract-This papens concerned with fractional
identification of state space model of continuous time MIMO
systems. The methodology used in this pflper involves a
continuous-time fractional operator allowing to find fractional
derivatives of the stochastic input - output data which are treated
in time domain and identiJying the state space matrices of the
system using QR factorization.. There are many advantages in
describing a physical system using fractional CT models in that
the dynamic behavior of the system is, in actuality, inherently


fractional. The elficacy of the approach is examinecl by
comparing with other approaches using integer identiJication.


L lr,trnonucnoN


1l lthough fractional calculus was first introduced in
fl' tAgS by Leibniz and L'Hospital, the first systematic
studies seems to have been made at the beginning and
middle oJ'the nineteenth century by Liouville, Riemann,
and Holmgren[I,2].


In the field of system identification using fractional
orders some research has been done. (Oustaloup[3];
Trigeassou et aU4J; Malti et al[S]). Thomassin et al
(2009)[6] had a thorough review oJ'the old ways. Most oJ'
the researchers were concentrated on rational transfer


function. The present paper, however, considers
identiJication of a continuous-time Jractional system in its
state-space Jbrm.Cois etal (2001)[7] and Poinot etal
(2004)t9l conducted n study on system identification
employing fractional state-space representation. Their
methods, however, are based on minimization of an output
error criterion by nonlinear programming techniques, That
is, os the number ot'parameters to estimate becomes large
in a MIMO system, these methods are considered more
suitable for SISO systems and are dfficult to apply in the
MIMO case.


In this paper we concentrate on subspace methods which
,s nn extension of Ohsumi etal(2001)t9l method for
rational systems. This methotl offers a novel approach to
idenffiing the continuous-time state-space model using
input-output clata. The method is based on higher
derivatives of input ancl output in the presence of both
system and observation noises.
Finally to verify the algorithm, the method was tested on a
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Here dI represents sample space, F represents o-Jields
and P is probabiliy measure.


Ito (1953)F2J and Gelland and Vilenkin(1964)[13,141,
maintained that continuous linear rqndom functional
deJined on D is called a random distribation or a
generalized random function (process); and the totality of
them will be denoted by D' (dual space). In other words, a
random distribution function F is a measurable map from
a probability spnce ({2,F,PJ to the spoce I of distribution


functions on the closed unit interval I, where A is endowed
with its natural Borel o-field, that is, the smallest o-field
containing the customary weak topologyfl5J,


The random distibution y(q)deJined by:


y(q) - flv(t)e(t)dt (q e D) (6)
Where {y(t,w),-@ ( t ( oo,w e O} is a (real) vector


co ntinuo us stoc hctstic p ro c es s.
u sing fractio nal integ ratio n :
y(q) - -*D;"(y(t)q(t)) (qeD) (7)


The random distribution V(p) is called a Gaussian
process if for any function <p(t)eD the random variable
y(q) ts Gaussian[9J.


For g€D the first and second derivatives of the
stochastic process y(t), regarding to distribution, are
calculated by using integration by parts as:


D"y(q) = -..D*"(D"(y(t)).<p(t)) =


- --D;"(y(t). D"<p(t)) -
-v(D"e(t))


D'"y(.p) = -*D-"(Dz"(y(t)). <p(t)) :


--*D;"(D"(y(t)). D"(<p(t))) : --D*"(y(t). Dz"q(t)) =


y(D'".p(t)) e)
In general, the kth derivative of the stochastic process


y(t) is deJined by:


nn"y(,p) = -ooDlo (on"(r(,)).q(t)) =


(-1)k-*D;"  (v(0.  nn"(q(t)))  :


(-1)kv (ou"qco)


IV. Sunsplcn ALGoRITHM FoR FRACTIoNAL TIME DoMAIN
IDENTIFICATION


Use Consider the following continaous-time fractional
stoc hastic linear systems :


D"x(t) = Ax(t) + Bu(t) + w(t)
y(t) - Cx(t) + Du(t) + v(t) (I I)
Where y(t) € Rl, x(t) € Rn, u(t) e R^ are the output,


the input sncl the state vector, and u(t) e Rl ,w(t) € Rn are


system and observation noises, respectively. The noises


{w(t)} and {v(t)} are botlr assumed to be stationary white
Gaussian processes which has a zero-mean. The


covariance matrix of the noises is:


r, [;,(.3] [,"'(t) .','q,)]] =


t$ ll oa-,r


In the relation above,6 denotes the Dirac-delta function
and E, represents mathematical expectation. VI/e assume


that input {u(t)} is independent of system noises and our
objective is to find system order (n), system dffirentiation
order (a) and matrices (A,B,C,D) using continuous
stationary random input and output data, {u(t)} and {y(t)},
(-oo < t < *m). States of the system can be estimated
using kalman-Jilter.


According to Thomassin etal method(2009), system
dffirentiation order (ae(0,2))can be estimated, by
minimizing a quadratic criterion:


.  1 " .d = arg min; ll9.(q) - y,ll3


Consider Jirst the case where the noise and disturbance
is zero.


D"x ( t )=Ax( t )+Bu( t )
y ( r ) - C x ( t ) + D u ( t ) (r4)
According to subspace algorithm quadruple (A,B,C,D)


can be calculate u.sing Jractional clerivatives of input ancl
output at least up to (i-I)th clerivutive. Though we have the
input-output algebraic (m atrk) relationship :


x(txtj) = riXi(t)(tj) + Hiui(txtj) (1 s)


l c l
f , - l  . l  I


[co]-']
l D  0  0 l


H,=l  t , t  ?  , "  ? l
Lca'-re cAi-38 ... ;l


I  v(tr) y(tz) y(tN) I
Yi(t) = 


| 
o"t,tt, D"v(tr) D"v.('*) 


|
[pt i -1)ay(t1) p( i - r )qy(t2) p( i - r )"y( tp) .1


Now matrices liand Hi ca.n be calculated using least
square method and finally the quadruple (A,B,C,D) will be
known. But it should be noted that the system output is
stained with noise and since derivatives of noisy output can
not be calculated, we used the test function and
distribution theory. Considering this theory, input, output
and states oJ'the system are expressed as Jbllow:
y(q) - -*D;"(y(t)q(t)) (qeD)


u(q) = -*D;"(u(t)q(t)) (qeD)


x(e) : -*D;"(x(0<p(t)) (qeD)
Now we write the output ancl its derivatives:


--D;o(Do(v(t))q(t, t i)) - C--D;ct(D"(x(t))q(t ', t i))


+D--D;c (o"(rC,l),p(t ' ,  t ;))  +


--D*o (0" ("Crl),p(t, ti ))
Using relation (10) and (11):


-y(D"q)(t i)  -  cAx(q)(t;)
+cBu(<p) (ri) - Du(D"e)(t;)


+cw(e) (r;) - v(D"q)(t;)


(16)


(r 7)


(r 3)


(10)


And through the seme, 2ath derivative is calculated as


(12) follow:







v(D'"q)(ti) = cazx(<p)(ti) + cABu(e)(t;)


-CBu(D"ql( t i )  + Du(D2"9) ( t ; )


+cAw(q)(ri) - cw(Dqe)(,i) + v(Dz"e)(t,) Q8)


Repeating this with a(i-L) times , a(i-L)th derivative is


calculnted as Jbllows:
- ( 1) i- t y(pti-t)d<pr) (t; )
- cAi-1x((p Xti) + CAi-zBuC.p Xti)
-cAi-3Bu(n"<p)(t;) + "'


+ (- 1;i-t Du(D(i-rl"qxtj )
+CAi-2w(,p Xti)


-cAi-3w(D"q )(rt)  + . . .+ (-1)r-zg-(p(i-zr"<p)(t,)  +


(- rli-tu,pci- tl" <p) (t,)
And Jinally input-output algebraic relationship can be


calculated:


v(e)(t,) = rix(q)(t,) + H'ulqxti) + x1w(<p)(ti) +


u(.p)(ti) (20)


thhich V(q)(ti) is asfollow:


v( .p)( t i )  -  lv r (q)( r i ) ,vr (D"q)( , ' ) ,  " ' ,
(- 1)'-'yt (oti-tr"*; (,, )lt


e  ! E ) t ' " " " " " \


E aof
. E n l  I


(1e)


(21)
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oStructure of u(q) (,,) , u(,p)(ti) g w(q)(t,) ,s similar


lo y(<p)(t;) and the structure of ri , Hi and XleRi/'in is as


follow:


(22)
(b)


g 100
E s oc o[ , =1 " , ^  |  ( 23 )


Lcc-'l
l D  o  o l


u , - l  c B  D  9 l  e 4 ). . , 1 : : . . . : l
LcRi-zB cAi-38 DJ


ThereJbre, by arranging the output column vector (20)


in a row (i:1 to N) we have the input-output algebraic


relationship:


Yi (q) =


fixi(q) + H1U1(<p) + Xiwi(q) + V(q) (q eD) (2s)


Where state and output matrices are as follow:
Xi(q) -  [x(q)( t t ) ,x( ,p)( tz) , . . ' ,x(9)( t*) ]  (n x N)


vi (q) - [v(q) (tr), v(q) (tr), ... , v(q) (t1r)] (i/ x N),


And U1(<p)eRi-*N,wi(q).pinxN anct Yi(q).pi/xN wil l


befounded similarly ro Y1(<P).
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Fig.I. step response for robot manipulstor (a) make an step to the Jirst


input and measure the outpnts (b) make srr step to the second input and


mcasure the outputs (c) make an step to the third inpat and measure the


outp.tts.


V. SVSTPU NENTIFICATION


The In this section we'll review how to remove noise and


obtain quadruple (A,B,C,D) using the algorithm developed


by Ohsumi etal to fractional order.
Theory 1) Assume that {u(t)},{v(t)} and {w(t)} he


independent zero-mean stochastic processes. Pick q, q, € D


ancl assuming that Up(g)eRh-*N is a matrk with random


o'5f
0 f


-o.5 L


0


(a


g


=
o


oor
801
e0l


0


Time (s)


Tima (s)


Time (s)







tlistribution that has a structure similsr to


Ui(<p)eRi*xNinstead of the test functio, Q(t,t1) and the


number of block rows i, then:


frWteluil(rF) - o,frv'te)uil(.t ) - 0 as N + oo (26)
ProoJ!
According to
wi(q) = [q-r)kw(Dk"q(tj))]u=.,r,...,,-1:j=1,2,...,* 


(27)


un(v) - [1-r)ru(Dp"{, (t i))lo=',r,...,h_1:j=1,2,...,5 QS)


We have for the (k, p)-element of the matrix


*wt.pluil(U) ;
1


fr [wteluil(,u)Jno -
1


fr [c-tlu*(nk*<p)(tr), ..., (-1)kw(ok"e)(tn)]


x [ ( -1;nu(Dp"V)(tr ) ,  . . . ,  ( -1)pu(Dp"U)(t*) ]  
t


= (-1)k*p * ri:, -(Du"e)(t;)ur1Dn"v)(t,)
And for Jked k and p:


z(t') - *(Du"qxt;)ur1Dn"{rxtj)
This is a stationary stochastic sequence.
Therefore prove summarized to show the following two


CASES:


n the ergodicity is hotdibr Z(ri)


i i) E{z(t,)} - s


(2e)


(30)


dt


H -o-z
tr
E -0.4
.s
fi -0-6
oa -0"8


q 0.22
(!
t


# 0.?
E
.P o.re
u
o*  o. te


tU


s
o


F


To prove (t) it's suJticient


functionR"(t) .'


R"( t )  = E{[z( t j  +.)  -  E{z(t ,


to find the covariance


+')] l lz(, i) -


(33)


Ezrir (31)


And verify that it tends to zero as lrl tuncl to infinity. So
average is ohtained as follow:


E{z(q)} - E[ral(uk".p) (ti)u'(Dp"\UXtj)]


-  E [-*n;" (w(t)uk"e(r,r,)) -*D;"(ur(t)Dna{(s ,  t i ))}


--D*o -*D;"E{w(t) ut (r) }nn",p (t', t, ) on"qr (s', t, ) - I
(32)


ll/here {w(t)} and {u(t)} are independent zero-mean
random processes. hence:


R,(t) = E{z(ti + t)zr(t,)1
- E{[w(pk".p)(t, + t)ur1nn"U)(t, +.)]


x [w(nk"q) (tj)u'(DP"VXtj )]']
= [-".D-*"--D*"(ru(s, 


- sr)


x op"v(sr. ,  t j  *  t )on"qr(sr ' ,  t i ) ) ]


x Q -"oD--"(Dk".p(sr', t; + t)Dk"q(rr', t i))


Where r.,(sr - sz) = E{ur(sr)u(ur)}.


' E


r 10n


Fig.Z. input-o,ttput tlutu (a)lirst ,lflrriputoro, (b) second munipalutor
(c)third munipulutor


as regarcls lru(t)l S ct for -a < r < m ,we have for
the bracketed term in the last equality that:


|  -*D;"-*D-a(r . , (s,  -  sr)Dnaty(tr ' ,  t i  + t )on"ry( t r ,  t i ) ) l


(  -*D*o-*D*" l ru(sr  -  sr)Dpa$(tr ' ,  t t  + t ) l


x l ln"ry(sr', t i) l


c, [-*D;" Inr"qr(sr', t; * t) l ] x [--n;"lnn"rg(sr', t i) l ]  <
c2(const) (34)


On the other hand the last integral in equation (31) is as


follow:


2 3 4
Time (S)


inputl


? 0
6
t
o
G
z -0.2
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- -D;o(Dk"(q(rr ' , t '  + t ) )ok" (e(rr ' , , i ) ) l  -  0 as l t l  ->



@ (35)



Since Dk".p(. ;.) has compact support, and according to



(34) and (35) we have:
R"(t) -+ 0 as ltl -r oo



And consequently the ergodicitY:



i r,t' z(t') - s[zfti)] (N -r oo)
Holcts Jbr the random sequence deJined by



implies that :



fr [*'ce )uil(v)]r.o :
(-1)k*p * f [ ,  z(t i)  N ] *c-1)k*pE{z(t i)}



The second part is hold according to



consequently the ftrst assertion in (26) follows.
the second assertion also follows-



Theory 2) pick g,r$ eD and assume that U'n('lt) is cs



equation of theory (1). perform QRfactorization as (39):



[u,(.p)l  [1,,  0 ot[qi ' l
lunt ,p l  = l t ,  Lzz o I la l r l
IXC,pl I [t 



" 
Ls, L*J lelrl



Then theJbllowing relations are given Jbr
large N:



* r,, : [ {**,(e)er,} + Hi {fr 1,,}



*t, ,  = \{** '(e)ar,}
ll/here L32 is noiseless matrix antl contafn.s span.ol{r1}.



ProoJ!



postmultiptying both sides of equation (25) ry *Qp



and L^Qw resPectivelY we have:



rtrtelorr = [ {*t,t*lqr,} * t ' {*ui(q)Q,,} 
=



x'{*wce)Qr,} + *',(q)Qr, 
(42)



ftv'celorz 
= ri {**'(e)Qr,} * 



"'{*u,(p)Qrr} 
=



I [ftwce)Q,.,] * *",(q)Q,, (43)
Combining these into an equution, we obtain:



"l



^X(o)[Qrr, 
Qrr]



: n [*xi(q)[Qr'' a"]]



*  n, [*u i (q) [er , ,e ' l ]



*x'{*w(q)[Qr,,  arr] ]  * *u,( 'p)[Qr,r,  Qr,r]  (44)



Now according to (39):



rQr,, Qul - uil(u) [fi;]"
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Fig.3. comparing real, tractionol estimated and integer estimated
output (o)lirst mtnipulator, (b) second monipulator, (c)third monipulator



Where * denotes the Moor-Penrose pseudo-inverse. The



third term in the right part of equation (44) becomes &s



follow:



t , { *wi (q) [Qr, ,Qrr l ]  =



(36)



(37)



(30). This
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(32)and
Similarly,



(3e)



(40)



(4r)



(4s)



3.5



x 1od



-0.05



-0"1



at



E -9 .15
o
tr



6 -O.2
'!



|,l
o
tr *0-25



1 . 5  2



x  1oa



Fractional & Integer ldentiflcation First Manlpulator



ffi R€al Outpul
*. * * Integarldenlification
,, Fractionalldenlif icalion



Fractional & Inleger ldentification Second Manipulator



0.22



a 0.21
5
G



E 0..
:E
I  0.1e
d.



0 . 1 8



0 . 1 7



Fraclional & Inleger ldentitication Third Manipulator











(46)



in which the convergence to zero fls N -+ oo yields from
Theorem 1. Similarly, the method is established for the



fourth term in the RHS of G4.
Hence for large N, equation (44) becomes as follow:



rtv,tellQr.r, Qr,rl - * lxi(q)[Qr' Qr.r] +



* 
t ,u,(*)  [Qrr ,  Qrz]  @7)



Now according to (39) the left part of the equation is
expressed as:



1
,-Yi(P)[Qrt ,  Qp]



V N
T= 



fi 
(Ltt QIt * Lu QL



t Lse QIs)[QLr, arr]+ [Lsr, Lsr]
vN 



gs)
AndJbr the second right part oJ'the equation we obtain:



* ",u,(*) 
[Qrr, Qu] = 



* H,LrrQI. [Qrr, Qr.r]  =



* r, [Lrr, o] (4s)



Hence equation (47)becomes as follow:



fr [lrr,Lrr] = fr tnx'(q)Qrr,fixi(q)QLrl +



ft [H,t rr, o] (so)
By extracting two block matrices, we obtain (40) and



(4r).



W. SIMULATIoN



In order to test the algorithms, an experiment was
conducted. In this experiment, quadruple (A,B,C.D) and



fractional order of system (a) were identified.



The algorithm is ahle to Jind optimum ea(0,2) by
minimizing equation (I 3).



In the following experiments, the Gaussian test function



fir, {i*,c*luilc,r,l} lB]. *:o*



with o:1/4 was selected as follow:



,p(ut;) - exp {-ry} (o > o)
"  ' t  2 0  J
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robot is in open loop manner nncl without controller.
Experiment result shows that the response rate is t=2. 9s
for the first manipulator and 0.7s ,0.5s for the second und
third one respectively. As the outputs are almost
independent, it is reasonable to decompose the system to
th ree ̂ S/,SO in dep end ent m anip u lator.



Persistent exciting input in the next step was adopted in



o-4



o"2



- Feal Outpul
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The number oJ' state variables (n) is assumed to be
known. In all simulation stadies, the continuous-time
processes were discretized with time-partition /t, and the
sampling instants t;(l = L,2,...,N) were taken with equal
distance and constant integer M as:



t ; + r = t j  + M A t (s2)
In this test we applied the fractional algorithm to a



robot with three manipulators named Phantom antl
compared the results with integer one, In the experiment,
we considered sampling interval M/t=0.625s and time
interval /t=0.00625s.
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such a way that it can stimulate all the various modes of
the system. The input signal is a pseudo-random binary



sequence (PRBS).
After sampling, data were examined to be pre-filtered



in case they are false or destroyed information or signs



of nonlinear effect are observed in the data. For complete



injbrmation reJbr to F|SQ. To investigate amount oJ'



output sensor noise, a pseuclo-random binary sequence
(PRBS) with K= 3 periods each of length M : 63 for the



first manipulator and M:127 for second and third, are
exactly measured. Then, a record of N : KM =189 for
manipulator one and N=KM:381 data points tbr second
and third is collected. The data set over the 2'd periods is



displayed in Figure (2).
As we know, robots are nonlineur while state-space



model is linear, so the measurement data are made around
the operating point.



Choosing the same rank (a)for all inputs in such a h)fly



that output error being minimized is a maior problem of



MIMO systems. For coupled systems there is a compromise
between the same rank (a) and minimum output, but as



shown in Fig(l) this robot has a decoaple manipulator and



consequently smount of a in each of manipulator is



independent of the other. Finully an input is applied to



each of the manipulators and the effect is measured in



output.
FiS@ compflres actual output, Jractional estimated



output and integer estimated output. As shown in this



ligure, a more accurate response was received from a



fractio nal identificatio n exp e rim ent. Fractio nal state-sp ac e
matrices of'robot are as Jbllow:



paper.



Rnrennlcns



Ul S.Das, Functionsl Fractional Calculrts for System ldentification
and Controls, (Springer ,2008)



I2l C.A,Monje,Y,Chen,B.M,Vinagre,,D,Xne,V, Feliu, t'ractional'orders
systen s und controlr(springer, Inc., 2010),



I3l A. Oustaloup, L. Le Lay and B. Mathieu, Identification of rutn
integer order system in the time-domain,IEEE-CESA'96, SMC
IMACS M u lticonference, I 996.



t4l C J.-C.Trigeassou, , T. Poinot, , J. Li.n, , A.Oastaloup, , F. Levron,



Mocteling and identification of a non integer order systcm' In Proc.



oJ'the European Control Confbrence, 1999.



tst Y R. Matti, S. Victor, A. Oustaloup, H. Garnier, An optimal
instrunrcntal variable method for continuous-time liactional moclel
identilication, In Proc of the t/" IFAC ll/orld congress,2008,



t6l M. Thomassin, R.Malti, multivqriable identification of continuous-
tim e fractio nal s.ystem, I nternatio nal Design E ngin eeri ng Tec hnicsl



Conferences & Cottrputers and Information in Engineering
Coffirence,2009.



Il O. Cois, A, Oustaloup, T. Poinot, J.-L Battaglia, Fractional state
varinbe filter tbr systen itlentificntion by Jiactional model, In Proc.



oJ' the Europeun Control Contbrence, 2001, Spuin.



I8l T. Poinot, J.-C. Trigeassou, Identificctti on of fractional systems
using an output-error technique, Nonlinear Dynannics, 2004' pp.



I 33-I 54.



191 A. Ohsumi, K. ,Kameyama, K. Yamaguch, Subspace identiftcation



fo r co nti nuo us-t im e sto c h a stic sy stem s vi a d istri b ution -b a sed
approach, Automutica, 2001,pp. 63_79.



lI0l H. Mostafaei, P. Ahmadi Ghotbi, Fractional Probability Measure
snd Its Properties, Journal oJ'Sciences, 2010, pp. 259-264.



ItIl G. Jumarie, Probability calculus ofJractional order andfractional
Taylor's series npplic:ation Io Fokker-Planc:k equation and
inform atio n of no n-rundom fun ctions, sciencetlirect, C haos,
Solitons and Fractals, 2009, pp. 1428-1448.



fl21 K.Ito, Stationary rundom distributions, Memoirs of College of
Science, Univ. Kyoto, (1953).



[13] I.M.GelJhnd, G.E. Shilov, Generslized Functions,( 1964).



II4l I.M.Gelfand, N.Ya Vilenkin, Generalized Functions,( 1964).



U5l L.E Dubins, D.A. Reednrnn, Random Distribution Functions,
Proc:lifth Berkeley sym, On math., stltist., and prub.,|976, vo,l2



P6l L.Schrvartz, The'orie des Distributions, 1950, Psris.



=[-'1"'-+3ror _. lrrr] [ii]
* 
['n" f 



'o-' 
o otsz 



, ,[--] [l:]
lY' l  l -10.8342 0 0 l [*t l
l v r l - l  o  - 3 . t r o 4  o  l l * ' l
lvrj I o o -z.osoel[x3l



To verify the simulation, we investigate our simulation
using test data. Results are depicted in FiSG).
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robot munipulator and then compared to similar integer
order methocl.



il. M,qruulrtc,4l BACKGR0UND oF FRACTIoNAL SYSTEMS



Fractional dffirintegration is developed from integer
ditfer e ntiatio n an d int eg ratio n.



Riemann-Liouville's definition of fractional
dffiintegrals inJractional calculus is detined by[IJ:



,DrfG) - Dmlm-"f(t) -#l#fiffi"atl
(r)



where q is the renl positive integration order, f @) is the
Euler Gamma functionp J :



t"(r) = S* "-tf-rdt 
Q)



Second detinition is given by Grunwalcl -Letnikov:



Dnf (x) -
x-a



h
1 s r



l f r n  I  )  ( - 1 ) n



i:'o hq L 
'



m=0



r @ + L )



The Jractional LTI state-space is presentecl In MIMO
case as[6J:



m l f ( a - m + gf (x - mh) (3)



(4)



Where q. is the order ol' the system and u e Rm ,y E



RP , x € Rn are input, output and state vectors,



respectively. System matrices A, B, C and D have



app rop riate dimensio ns.



Here initial conditions are considerecl to be zero
(x(t) = O f or t < 0).



The Jractionul system is stable tf[6]:



o  <  a  12  and la rg(A1, ) l  ,  
" ;  



Yk  =  ! ,  . . . , r t



Where lk l's the kth-eigenvalae of A and -Tt <
arg (7p) < ngraphic.



ilL GENERALIzED RANDOM FUNCTION



Let (9,F,P) be the probability triple where Pc is



fractional probability and is defined as[10,1lJ :
0 ( q ( 1 , P o : F + [ 0 , 1 ]



1. P"(A) > 0 for all AeF
2. P"(O) - 1



3. Jbr all Ai E F iJ'Ap are pairwise disjoint, then
Po(Ui=1Ai)  s I i=rPo(Ai)  (5)
and let D denote the spflce of the (real-valued



nonrundom) scalar C* functions {<p(t)}defined on R. This



function has a compact support and is called the test



Junction in the clistibution theory[9].



[ D a x ( t ) - A x ( t ) + B u ( t )
(  y - C x ( t ) + D u ( t )



Robot Identffication Using Fractional Subspace Method



H, Behzad, H.Toossian Shandiz, A. Noori, T.Abrishami



Ahstract-This papens concerned with fractional
identification of state space model of continuous time MIMO
systems. The methodology used in this pflper involves a
continuous-time fractional operator allowing to find fractional
derivatives of the stochastic input - output data which are treated
in time domain and identiJying the state space matrices of the
system using QR factorization.. There are many advantages in
describing a physical system using fractional CT models in that
the dynamic behavior of the system is, in actuality, inherently



fractional. The elficacy of the approach is examinecl by
comparing with other approaches using integer identiJication.



L lr,trnonucnoN



1l lthough fractional calculus was first introduced in
fl' tAgS by Leibniz and L'Hospital, the first systematic
studies seems to have been made at the beginning and
middle oJ'the nineteenth century by Liouville, Riemann,
and Holmgren[I,2].



In the field of system identification using fractional
orders some research has been done. (Oustaloup[3];
Trigeassou et aU4J; Malti et al[S]). Thomassin et al
(2009)[6] had a thorough review oJ'the old ways. Most oJ'
the researchers were concentrated on rational transfer



function. The present paper, however, considers
identiJication of a continuous-time Jractional system in its
state-space Jbrm.Cois etal (2001)[7] and Poinot etal
(2004)t9l conducted n study on system identification
employing fractional state-space representation. Their
methods, however, are based on minimization of an output
error criterion by nonlinear programming techniques, That
is, os the number ot'parameters to estimate becomes large
in a MIMO system, these methods are considered more
suitable for SISO systems and are dfficult to apply in the
MIMO case.



In this paper we concentrate on subspace methods which
,s nn extension of Ohsumi etal(2001)t9l method for
rational systems. This methotl offers a novel approach to
idenffiing the continuous-time state-space model using
input-output clata. The method is based on higher
derivatives of input ancl output in the presence of both
system and observation noises.
Finally to verify the algorithm, the method was tested on a
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Here dI represents sample space, F represents o-Jields
and P is probabiliy measure.



Ito (1953)F2J and Gelland and Vilenkin(1964)[13,141,
maintained that continuous linear rqndom functional
deJined on D is called a random distribation or a
generalized random function (process); and the totality of
them will be denoted by D' (dual space). In other words, a
random distribution function F is a measurable map from
a probability spnce ({2,F,PJ to the spoce I of distribution



functions on the closed unit interval I, where A is endowed
with its natural Borel o-field, that is, the smallest o-field
containing the customary weak topologyfl5J,



The random distibution y(q)deJined by:



y(q) - flv(t)e(t)dt (q e D) (6)
Where {y(t,w),-@ ( t ( oo,w e O} is a (real) vector



co ntinuo us stoc hctstic p ro c es s.
u sing fractio nal integ ratio n :
y(q) - -*D;"(y(t)q(t)) (qeD) (7)



The random distribution V(p) is called a Gaussian
process if for any function <p(t)eD the random variable
y(q) ts Gaussian[9J.



For g€D the first and second derivatives of the
stochastic process y(t), regarding to distribution, are
calculated by using integration by parts as:



D"y(q) = -..D*"(D"(y(t)).<p(t)) =



- --D;"(y(t). D"<p(t)) -
-v(D"e(t))



D'"y(.p) = -*D-"(Dz"(y(t)). <p(t)) :



--*D;"(D"(y(t)). D"(<p(t))) : --D*"(y(t). Dz"q(t)) =



y(D'".p(t)) e)
In general, the kth derivative of the stochastic process



y(t) is deJined by:



nn"y(,p) = -ooDlo (on"(r(,)).q(t)) =



(-1)k-*D;"  (v(0.  nn"(q(t)))  :



(-1)kv (ou"qco)



IV. Sunsplcn ALGoRITHM FoR FRACTIoNAL TIME DoMAIN
IDENTIFICATION



Use Consider the following continaous-time fractional
stoc hastic linear systems :



D"x(t) = Ax(t) + Bu(t) + w(t)
y(t) - Cx(t) + Du(t) + v(t) (I I)
Where y(t) € Rl, x(t) € Rn, u(t) e R^ are the output,



the input sncl the state vector, and u(t) e Rl ,w(t) € Rn are



system and observation noises, respectively. The noises



{w(t)} and {v(t)} are botlr assumed to be stationary white
Gaussian processes which has a zero-mean. The



covariance matrix of the noises is:



r, [;,(.3] [,"'(t) .','q,)]] =



t$ ll oa-,r



In the relation above,6 denotes the Dirac-delta function
and E, represents mathematical expectation. VI/e assume



that input {u(t)} is independent of system noises and our
objective is to find system order (n), system dffirentiation
order (a) and matrices (A,B,C,D) using continuous
stationary random input and output data, {u(t)} and {y(t)},
(-oo < t < *m). States of the system can be estimated
using kalman-Jilter.



According to Thomassin etal method(2009), system
dffirentiation order (ae(0,2))can be estimated, by
minimizing a quadratic criterion:



.  1 " .d = arg min; ll9.(q) - y,ll3



Consider Jirst the case where the noise and disturbance
is zero.



D"x ( t )=Ax( t )+Bu( t )
y ( r ) - C x ( t ) + D u ( t ) (r4)
According to subspace algorithm quadruple (A,B,C,D)



can be calculate u.sing Jractional clerivatives of input ancl
output at least up to (i-I)th clerivutive. Though we have the
input-output algebraic (m atrk) relationship :



x(txtj) = riXi(t)(tj) + Hiui(txtj) (1 s)



l c l
f , - l  . l  I



[co]-']
l D  0  0 l



H,=l  t , t  ?  , "  ? l
Lca'-re cAi-38 ... ;l



I  v(tr) y(tz) y(tN) I
Yi(t) = 



| 
o"t,tt, D"v(tr) D"v.('*) 



|
[pt i -1)ay(t1) p( i - r )qy(t2) p( i - r )"y( tp) .1



Now matrices liand Hi ca.n be calculated using least
square method and finally the quadruple (A,B,C,D) will be
known. But it should be noted that the system output is
stained with noise and since derivatives of noisy output can
not be calculated, we used the test function and
distribution theory. Considering this theory, input, output
and states oJ'the system are expressed as Jbllow:
y(q) - -*D;"(y(t)q(t)) (qeD)



u(q) = -*D;"(u(t)q(t)) (qeD)



x(e) : -*D;"(x(0<p(t)) (qeD)
Now we write the output ancl its derivatives:



--D;o(Do(v(t))q(t, t i)) - C--D;ct(D"(x(t))q(t ', t i))



+D--D;c (o"(rC,l),p(t ' ,  t ;))  +



--D*o (0" ("Crl),p(t, ti ))
Using relation (10) and (11):



-y(D"q)(t i)  -  cAx(q)(t;)
+cBu(<p) (ri) - Du(D"e)(t;)



+cw(e) (r;) - v(D"q)(t;)



(16)



(r 7)



(r 3)



(10)



And through the seme, 2ath derivative is calculated as



(12) follow:











v(D'"q)(ti) = cazx(<p)(ti) + cABu(e)(t;)



-CBu(D"ql( t i )  + Du(D2"9) ( t ; )



+cAw(q)(ri) - cw(Dqe)(,i) + v(Dz"e)(t,) Q8)



Repeating this with a(i-L) times , a(i-L)th derivative is



calculnted as Jbllows:
- ( 1) i- t y(pti-t)d<pr) (t; )
- cAi-1x((p Xti) + CAi-zBuC.p Xti)
-cAi-3Bu(n"<p)(t;) + "'



+ (- 1;i-t Du(D(i-rl"qxtj )
+CAi-2w(,p Xti)



-cAi-3w(D"q )(rt)  + . . .+ (-1)r-zg-(p(i-zr"<p)(t,)  +



(- rli-tu,pci- tl" <p) (t,)
And Jinally input-output algebraic relationship can be



calculated:



v(e)(t,) = rix(q)(t,) + H'ulqxti) + x1w(<p)(ti) +



u(.p)(ti) (20)



thhich V(q)(ti) is asfollow:



v( .p)( t i )  -  lv r (q)( r i ) ,vr (D"q)( , ' ) ,  " ' ,
(- 1)'-'yt (oti-tr"*; (,, )lt
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oStructure of u(q) (,,) , u(,p)(ti) g w(q)(t,) ,s similar



lo y(<p)(t;) and the structure of ri , Hi and XleRi/'in is as



follow:



(22)
(b)
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ThereJbre, by arranging the output column vector (20)



in a row (i:1 to N) we have the input-output algebraic



relationship:



Yi (q) =



fixi(q) + H1U1(<p) + Xiwi(q) + V(q) (q eD) (2s)



Where state and output matrices are as follow:
Xi(q) -  [x(q)( t t ) ,x( ,p)( tz) , . . ' ,x(9)( t*) ]  (n x N)



vi (q) - [v(q) (tr), v(q) (tr), ... , v(q) (t1r)] (i/ x N),



And U1(<p)eRi-*N,wi(q).pinxN anct Yi(q).pi/xN wil l



befounded similarly ro Y1(<P).
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(c)



Fig.I. step response for robot manipulstor (a) make an step to the Jirst



input and measure the outpnts (b) make srr step to the second input and



mcasure the outputs (c) make an step to the third inpat and measure the



outp.tts.



V. SVSTPU NENTIFICATION



The In this section we'll review how to remove noise and



obtain quadruple (A,B,C,D) using the algorithm developed



by Ohsumi etal to fractional order.
Theory 1) Assume that {u(t)},{v(t)} and {w(t)} he



independent zero-mean stochastic processes. Pick q, q, € D



ancl assuming that Up(g)eRh-*N is a matrk with random
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tlistribution that has a structure similsr to



Ui(<p)eRi*xNinstead of the test functio, Q(t,t1) and the



number of block rows i, then:



frWteluil(rF) - o,frv'te)uil(.t ) - 0 as N + oo (26)
ProoJ!
According to
wi(q) = [q-r)kw(Dk"q(tj))]u=.,r,...,,-1:j=1,2,...,* 



(27)



un(v) - [1-r)ru(Dp"{, (t i))lo=',r,...,h_1:j=1,2,...,5 QS)



We have for the (k, p)-element of the matrix



*wt.pluil(U) ;
1



fr [wteluil(,u)Jno -
1



fr [c-tlu*(nk*<p)(tr), ..., (-1)kw(ok"e)(tn)]



x [ ( -1;nu(Dp"V)(tr ) ,  . . . ,  ( -1)pu(Dp"U)(t*) ]  
t



= (-1)k*p * ri:, -(Du"e)(t;)ur1Dn"v)(t,)
And for Jked k and p:



z(t') - *(Du"qxt;)ur1Dn"{rxtj)
This is a stationary stochastic sequence.
Therefore prove summarized to show the following two



CASES:



n the ergodicity is hotdibr Z(ri)



i i) E{z(t,)} - s



(2e)



(30)



dt
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To prove (t) it's suJticient



functionR"(t) .'



R"( t )  = E{[z( t j  +.)  -  E{z(t ,



to find the covariance



+')] l lz(, i) -



(33)



Ezrir (31)



And verify that it tends to zero as lrl tuncl to infinity. So
average is ohtained as follow:



E{z(q)} - E[ral(uk".p) (ti)u'(Dp"\UXtj)]



-  E [-*n;" (w(t)uk"e(r,r,)) -*D;"(ur(t)Dna{(s ,  t i ))}



--D*o -*D;"E{w(t) ut (r) }nn",p (t', t, ) on"qr (s', t, ) - I
(32)



ll/here {w(t)} and {u(t)} are independent zero-mean
random processes. hence:



R,(t) = E{z(ti + t)zr(t,)1
- E{[w(pk".p)(t, + t)ur1nn"U)(t, +.)]



x [w(nk"q) (tj)u'(DP"VXtj )]']
= [-".D-*"--D*"(ru(s, 



- sr)



x op"v(sr. ,  t j  *  t )on"qr(sr ' ,  t i ) ) ]



x Q -"oD--"(Dk".p(sr', t; + t)Dk"q(rr', t i))



Where r.,(sr - sz) = E{ur(sr)u(ur)}.
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Fig.Z. input-o,ttput tlutu (a)lirst ,lflrriputoro, (b) second munipalutor
(c)third munipulutor



as regarcls lru(t)l S ct for -a < r < m ,we have for
the bracketed term in the last equality that:



|  -*D;"-*D-a(r . , (s,  -  sr)Dnaty(tr ' ,  t i  + t )on"ry( t r ,  t i ) ) l



(  -*D*o-*D*" l ru(sr  -  sr)Dpa$(tr ' ,  t t  + t ) l



x l ln"ry(sr', t i) l



c, [-*D;" Inr"qr(sr', t; * t) l ] x [--n;"lnn"rg(sr', t i) l ]  <
c2(const) (34)



On the other hand the last integral in equation (31) is as



follow:
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