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Abstract—In this paper, based on Bergman minimal model, a 

robust strategy for regulation of blood glucose in type 1 diabetic 

patients is presented. Glucose/insulin concentration in the patient 

body is controlled through the injection under the patient’s skin by 

the pump. Many various controllers for this system have been 

proposed in the literature. However, most of them suffer from an 

important disadvantage that is long settling time of the control 

system. Thus, the contribution of this paper in comparison with 

previous related works is presenting a back-stepping sliding mode 

control that considerably reduces the required time for glucose to 

reach its desired level. Due to the sliding mode design, the proposed 

controller is robust against external disturbances. Due to the 

backstepping design, convergence of each state variable of the 

system to its desired value can be guaranteed separately. Simulation 

results, verify the satisfactory performance of the proposed 
controller.  

Keywords- Sliding mode control, backstepping design, blood 

glucose regulation, Bergman minimal model 

I. INTRODUCTION 

 

Diabetes is discussed as a serious condition in which the 
body’s production and use of insulin are impaired, causing 
glucose concentration level to increase in the bloodstream. 
Insulin is a hormone by specific cells, called beta cells, in the 
pancreas. In order to transfer blood glucose into cells, insulin 
is required. Two types of diabetes have been recognized. In 
type I diabetes mellitus (T1DM),the b-cells in the pancreas that 
are responsible for producing insulin are destroyed by the 
immune system of the patients .Thus, the current solution for 
treatment is the delivery of exogenous insulin to maintain the 
glucose levels close to normal. 

Based on continuous glucose monitoring (CGM) systems 
and insulin pumps technologies, a controller that automatically 
monitors and regulates the blood glucose level can be 
designed. In other words, it can play the role of an artificial 
pancreas system to replace the conventional treatment 
strategies in T1DM. In recent decades, various approaches 
have been presented in the literature for intelligent control of 
blood glucose. In this paper, the 3rd order minimal model of 
Bergman [1] is adopted. 

Various approaches have been presented to design a 
feedback controller for blood glucose regulation, such as fuzzy 
logic control [2-5], recurrent neural networks [6], model 
predictive control (MPC) [7] ,high order sliding mode control 
[8], optimal control [9] and back-stepping sliding mode 
control[10]. Also, based on fractional order control, 
interesting approaches have been introduced in the field of 
blood glucose regulation [11-15].  

This paper presents a robust controller for glucose-insulin 
system using backstepping sliding mode design. Although 
various controllers for this system have been presented in the 
literature, most of them suffer from an important disadvantage 
that is the long time required for glucose to reach the desired 
level. For example, glucose settling time in [10] and [13] is 
about 350 minutes which is too long. Therefore, designing a 
more powerful controller with shorter glucose settling time is 
an important contribution of this paper. In fact, including the 
integral of the tracking error in the sliding surface in this 
paper has reduced the tracking error considerably and 
enhanced the glucose settling time. 

This paper is organized as follows. Section 2, describes the 
glucose-insulin model. Section 3 develops the proposed 
controller and presents the stability analysis. Section 4 
illustrates simulation results and comparisons. Finally, section 
5 concludes the paper. 

II. GLUCOSE - INSULIN DYNAMIC 

Many models for describing glucose-insulin process has been 

presented. Bergman’s minimal model has been proposed in 

1980 by Doctor Richard Bergman. The main advantage of the 

Bergman minimal model is its simplicity. According to [16], it 

is the common model that is usually referenced in the 

literature. Bergman Minimal Model (BeM)is described as [16]: 
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in which 1( )x t , 2 ( )x t  and 3( )x t  are plasma glucose 

concentration, the insulin influence on glucose concentration 
reduction, and insulin concentration in plasma respectively, 

( )u t R∈ is injected insulin rate in (mU/min), bG is the basal 

pre-injection level of glucose (mg/dl), bI is the basal pre-

injection level of insulin (µU/ml), 1p the insulin independent 

rate constant of glucose uptake in muscles and liver (1/min), 

2p the rate for decrease in tissue glucose uptake ability 

(1/min), 3p the insulin-dependent increase in glucose uptake 

ability in tissue per-unit of insulin concentration above the 

basal level ((µU/ml)/min). The term [ ]( ) bt x t Gγ
+

−  

represents the pancreatic insulin secretion after a meal in take 
at t = 0. It has been assumed that the parameters in (1) are 
nominal parameters that may be different from their actual 

values. Thus, the terms 
1

∆ , 
2

∆  and 
3

∆  are the lumped 

uncertainties originated from these mismatches. It is assumed 

that these uncertainties are bounded as 
1 1k∆ ≤ , 

2 2d∆ ≤  

and 
3 3d∆ ≤  where 

1
k  , 

2
d  and 

3
d  are known positive 

constants. As this work is focused on insulin therapy which is 
usually administrated to type I diabetes mellitus patients, γ is 
assumed to be zero to represent the true dynamic of this 
disease and t should also be considered zero. The parameter n 
is the first order decay rate for insulin in blood. This 
disturbance can be modeled by a decaying exponential function 
of the following form [16]:  

(2) ( ) exp( ) 0D t A Bt B= − >  

The pump can be modeled as a first order linear system: 

(3) 4

1
( ) ( ( ) ( ))u t w t u t

a
= − + ∆&

 

where ( )w t is insulin rate command in pump as input, and the 

parameter a  is pump time constant. Also, 4∆  is the lumped 

uncertainty originated from the mismatch between the actual 

and nominal a . 

III.  THE PROPOSED CONTROLLER AND STABILITY ANALYSIS 

Define the tracking error of glucose as 

1 1 1( ) ( )de x t x t= −       (4) 

where 1 ( )dx t  is the desired blood glucose Also, consider the 

following sliding surface 
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0

t
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in which
1
λ  is a design parameter. Taking the derivative of (5) 

results in 
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Substitution of 
1
x&  from (1) into (6) and solving 1
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in which 1 1
sign( )d s  has been added to the control law to 

compensate for the external disturbance ( )D t  and the lumped 

uncertainty 
1 1

( )D tδ∆ = + . In other words, we 

have, 1 1d > ∆ .Now, applying the control law (7) into the (1) 

results in 

1 1 1 1 1 1 1
sign( )

d
x x e D d sλ= − + +∆ −& &                       (8) 

which can be rewritten as  

1 1 1 1
sign( )s D d s= +∆ −&                                   (9) 

In order to verify that the control law (7) guarantees the 
stability ,consider the following positive definite function: 

2
1 1

1

2
V s= (10) 

Taking the derivative of (10) leads to 

1 1 1V s s=& &                            (11) 

Substitution of (9) into (11) results in  

1 1 1 1 1( sign( ))V s D d s= +∆ −&                          (12) 

It is obvious that  

1 1 1 1 1 1sign( )V s D s d s≤ +∆ −&           (13) 

In other words, we have  

1 1 1 1 1 1 1 1( )V s d s s d≤ ∆ − = ∆ −&     (14) 

Since 1 1d ≥ ∆ , it can be concluded that  

1 0V ≤&                                                 (15) 

Now, consider (1-b). Define the tracking error as 

2 2 2de x x= −                                       (16) 

where 2dx  is the desired value of 2x . Also, consider the 

following sliding surface  

2 2 2 2
0

t

s e e dtλ= + ∫                    (17) 

in which 
2

λ  is a design parameter. Taking the derivative of 

(17) results in 

2 2 2 2 2 2 2 2d
s e e x x eλ λ= + = − +& & & &                       (18) 

Substitution of 2
x&  from (1) into (18) and solving 2

0s =&  results 

in  
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in which 2 2
sign( )d s  has been considered for compensation of 

the lumped uncertainty 2
∆ .  Now, applying the control law 

(19) into the (1) results in 

2 2 2 2 2 2 2
sign( )

d
x x e d sλ= − +∆ −& &        (20) 

In other words 

2 2 2 2
sign( )s d s= ∆ −&                                (21) 

consider the following positive definite function 

2
2 2

1

2
V s=    (22) 

Taking the time derivative of (22) results in 

2 2 2V s s=& &                                       (23) 

Substitution of (21) into (23) leads to  

2 2 2 2 2( sign( ))V s d s= ∆ −&    (24) 

It follows from (24) that  

2 2 2 2 2 2sign( )V s s d s≤ ∆ −&        (25) 

which can be rewritten as 

2 2 2 2 2 2 2 2( )V s d s s d≤ ∆ − = ∆ −&                  (26) 

Since 
2 2

d > ∆ , it can be concluded that  

2 0V ≤&                                                 (27) 

Now, consider (1). Define the tracking error as 

3 3 3de x x= −         (28) 

where 3dx  is the desired value of 3x . Also, consider the 

following sliding surface  

3 3 3 3
0

t

s e e dtλ= + ∫                    (29) 

in which 
3
λ  is a design parameter. Taking the derivative of 

(29) results in 

3 3 3 3 3 3 3 3d
s e e x x eλ λ= + = − +& & & &                      (30) 

Substitution of 3
x&  from (1) into (30) and solving 3

0s =&  results 

in 

[ ]3 3 3 3 3 3
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d b d
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Similar to the procedure given in (4) to (15), it can be shown 
that  

3 3 3 3( ) 0V s d≤ ∆ − ≤&                                   (32) 

In which  
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4 4 4 4sign( )d dw u au a e ad sλ= + − −&     (34) 

In fact, it can be simply shown that this control law will result 
in 

4 4 4 4( ) 0V s d≤ ∆ − ≤&                                  (35) 

in which  

2
4 4

1

2
V s=                                        (36) 

4 4 4 4
s e e dtλ= + ∫   (37) 

4 d
e u u= −                              (38) 

Now the following theorem is presented.  

Theorem 1: Consider the dynamic system (1). If the control 
laws (7), (19), (31) and (34) are applied to this system ,then the 

closed-loop signals are bounded and the tracking errors 1
e , 

2
e , 3

e  and 4
e  asymptotically converge to zero.  

Proof :Define the Lyapunov  function candidate as 

4 4
2

1 1

1

2
i i
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= =∑ ∑                            (39) 

in which 1
V , 2

V , 3
V  and 4

V  are defined in (10), (22), (33) and 

(36), respectively. Based on (14), (26), (32) and (35) it can be 
concluded that  
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i

V s d

α=

≤ − ∆ −∑&
14243

                              (40) 

According to (9) and (21), 
1
s&  and 

2
s&  are bounded. Similarly, it 

can be concluded that 
3
s&  and 

4
s&  are bounded.  

Table 1 The model parameters 

Bergman minimal model 

0  1

1(min)
−

P  

0123.0  1

2(min)
−

P  

8102.8 −×  1

3(min)
−P  

2659.0  )(min
1−

n  

7  
bI  

70  
bG  

200  
1(0 )X  

50  
3
(0 )X  
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Fig.1 Glucose concentration 
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Fig. 2Plasma insulin concentration 

VI.  SIMULATION RESULTS 

Consider the model described in [11]. Its parameters are 

given in Table 1.The parameter of the controller have been set 

to 1 2 3 40.015, 0.05, 0.14, 0.1λ λ λ λ= = = = . Also, To 

investigate the controller robustness against parametric 

uncertainty, 10 percent uncertainty has been applied to 2
P  and 

3
P . Moreover, the external disturbance ( ) 20exp( 0.5 t)D t = −  

affects the control system at 400 (min)t = .The blood glucose 

level is presented in Fig. 1. As shown in this figure, the 

controller can reduce the blood glucose concentration from 

the initial value of 200 (mg/dl) to the approximate value of 80 

(mg/dl) which is our desired level. In comparison with 

controller designed in [10], the proposed controller is 

superior. The reason is that a steady state is clearly seen in 
the response of the proposed controller, while there is not any 

steady state for glucose signal presented in [10]. The Plasma 

insulin concentration in (mU/L) is illustrated in Fig.2. As 

shown in this figure, this signal shows acceptable values.  

 CONCLUSION 

    In this paper, a robust controller based on back stepping 

sliding mode design for blood glucose regulation in type I 

diabetes patients has been presented. Uncertainties including 
external disturbance and parametric uncertainty have been 

considered in the design procedure. Including the integral of 

the tracking error in the sliding surface in this paper has 

reduced the tracking error considerably. Therefore, in 

comparison with some previous related works, the proposed 

controller is superior. Simulation results verify the 

satisfactory performance of the proposed controller. 
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