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Abstract: Although some research has been presented about the 
application of Kernel Least Mean Square (KLMS) algorithm in the 
estimation and approximation of functions, this algorithm wasn’t 
applied to the control of nonlinear systems. In this paper, an 
efficient and novel adaptive Control strategy based on Kernel 
Least Mean Square is introduced to realize the control of a 

nonlinear aircraft system. Actually the KLMS algorithm is a 
growing radial basis function (GRBF) network, when Kernel 
function is a Gaussian function. In this research, based on 
Lyapunov theory, KLMS is used as an online method for tuning the 
kernel size to control nonlinear systems. This technique certifies 
the stability and provides an acceptable accuracy. Finally, we 
utilize this algorithm to control a nonlinear fighter aircraft by 
using a dynamic model of the F-18 aircraft. 

Keywords: Kernel Least Mean Square, Lyapunov 

theory, Online learning;Tracking a maneuver. 

1. Introduction 
When an aircraft is moving in rectilinear without any change 
in velocity or direction of movement, it is impossible to 
make a maneuver just by tuning control surfaces. On the 
other hand, because of complexities in the aircraft dynamic 
and nonlinear properties due to the high aerobatic 
maneuvers, the control of aircraft maneuver is difficult. For 
example in Herbest maneuver although a conventional 
controller may certify stability of aircraft maneuver, it can't 
provide a good tracking performance. So it is needed to 
design an appropriate controller to track the desired 
maneuver and ensure the stability of the system. Since neural 
networks are powerful tools to approximate mapping 
between input and output of nonlinear systems, they can be 
widely used in the area of modeling, identification and 
control of nonlinear systems. Recently, various neural 
networks with different structures have been implemented in 
the control of nonlinear aircraft. These researches show that 
Radial Basis Function Networks (RBFN) have an acceptable 
performance in the control of nonlinear systems. The 
simplicity of implementing is an advantage of RBFN. In one 
research, RBFN was used to identify the dynamic of F-16 
aircraft and control it [1]. In another research an online 
controller based on fully tuned RBFN was proposed to 
control aircraft maneuver [2]. In this paper, for the first time 

famed KLMS algorithm [3, 4] is used as an online method to 
control nonlinear systems like fighter aircraft. KLMS 
algorithm has improved the basic idea of least mean square 
in the viewpoint of machine learning. If the kernel function is 
in the Gaussian form, this algorithm  would be a growing 
radial basis function network which doesn't need to tune the 
weight vector and the centers of the Gaussian function. 
Because of the simplicity in the structure of this algorithm, it 
can be used in control applications. Current paper uses an 
adaptive method based on the Lyapunov stability theory for 
tuning kernel size to control an aircraft maneuver with 
nonlinear dynamic. 

2. The kernel least mean square algorithm 

2.1 Least Mean Square 

The least mean square technique, firstly, was proposed by 

Widrow and Hoff and, due to its simplicity, is widely used in 

the signal processing [5]. This algorithm is the most famous 

adaptive technique based on the method of steepest descent. 

If the actual, estimated output, and input of  given system 

whose dynamic is under estimation are considered ( )y n , 

ˆ ( )y n , and ( )x n , respectively, the cost function and weight 

update equation can be written as: 

 ˆ ( ) ( ).Ty n w x n  

 2 2
c ˆf =(y(n)-y(n) ) =e (n).  

 w(n +1) =w(n)- = w(n) +2  e(n) x(n) .cf

w
 



 

Where w is the weight vector;    is the cost function and

  is the convergence rate. Normalized least mean square 

algorithm can be used to certify stability and improve 
convergence speed [6]. 
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2.2 Kernel Forms(Tricks) 

Already some research has been reported about kernel 
forms like kernel support vector machine [7], kernel 
principal component analysis [8], regularization network [9], 
KLMS [3, 4] in application of machine learning and signal 
processing. Among these methods, the KLMS is a proper 
and simple approach for use in online applications. The 
fundamental viewpoint of kernel forms is to map input data 
   to a high dimensional feature space of vectors (  ). In 
this space inner products can be defined by using a kernel 
function. 

 ( , ) ( ), ( ) .i j i jx x x x      

The kernel function can be in a Gaussian or polynomial 
form. In this paper the Gaussian form is used.

 



2

2
( , ) exp( ).

2

x y
x y




   

  is the kernel size which has an effective role in the 
performance of the algorithm. The polynomial kernel 
function is defined as: 

 ( , ) (1 ) .nx y xy    

  represents the order of kernel function. 

3. Nonlinear Controller Design Using Kernel Least 

Mean Square Algorithm 

3.1 Control Approach Based Kernel Least Mean 

Square 

To use KLMS in control, based on least mean square 
algorithm, weight update equation  would be: 



ˆ
( 1) ( ) 2 ( )

ˆ
( ) 2 ( ) .

y
n n e n

y u
n e n

u






    



 
  

 

 

Where ŷ is the actual output of system and supposed to 

be controlled.   is the learning rate and ( )e n is tracking 

error between actual output and desired output dy . Since the 

control input or output of KLMS is in the form of

( ) ( ), ( ( ))du n n y n   , the weight update equation in a 

high dimensional space is written  as: 


ˆ

( 1) ( ) 2 ( ) ( ( )).d
y

n n e n y n
u

 


   


 

Computation of current equation is impractical. The non-
recursive type of this weight vector when initial condition,

(0)  , is considered zero is obtained in the form : 



1

0

ˆ ( )
( ) 2 ( ) ( ( )).

( )

n

d

i

y i
n e i y i

u i
 






 


  

 while ( )n  is in a high dimensional space, the output of 

network is defined in the following form. 



1

0

1

0

( ) ( ), ( ( ))

ˆ
( ) ( ( )), ( ( ))

ˆ
( ) ( ( ), ( )).

d

n

d d

i

n

d d

i

u n n y n

y
e i y i y n

u

y
e i y i y n

u





 









  


   












 

As mentioned, ( )u n is the input control of system and   

is the step size of the algorithm. While Gaussian form of 
kernel is used, the output of controller is rewritten in the 
form : 



21

2
0

( ) ( )ˆ
( ) ( ) exp( ).

2

n
d d

i

y i y ny
u n e i

u









 


  

It's necessary to know that   is usually considered as a 
constant value. It can be updated to gain a better 
performance. 

3.2 Adaptive Rule to Update Kernel Size 

The kernel size can be updated instead of a fix value to 
improve tracking accuracy. The proposed technique is based 
on online feedback error learning. 

The system dynamic to be controlled is defined by a 
nonlinear continuous equation. 

 ( , ).x f x u  

Without loss of generality, some assumptions can be 
considered as: 

1.
 

( , )f x u , is smooth and (0,0) 0f  . 

  2. The total  number of state is k. The number of control 
inputs is r, which is equal to the number of states controlled. 
Simultaneously, the rest of states converge to the equilibrium 
points. 

Under these assumtions, desired control inputs can be 

determined as: 



21

2
0

1

0

( ) ( )ˆ
( ) ( ) exp( )

2

ˆ
( ) .

n
d d

d

i

n

i

x i x nx
u t e i

u

x
e i

u

















 




 







 



3 

 

Where the optimal kernel size is , ( ) ( ) ( )de i x i x i 

is the tracking error and   is the optimal kernel function. 

The tracking error dynamic of system is expressed as: 

 ( , ) - ( , ).d de f x u f x u  

using Taylor series expansion and ignoring higher order  
terms, we have: 

 

  ̇   ( )   ( )̇ (    ) 

Where A(t) and B(t) are in the form of: 

 , ,
( , ) ( , )

( ) | , ( ) | .
d d d dx u x uT T

f x u f x u
A t B t

x u

 
 

 
 

In the proposed approach a conventional controller is 
utilized to certify the stability of the overall system along 
tracking desired maneuver. The conventional controller can 
be a PID, LQR which is parallel to the main controller. In 
this research a proportional controller, which provides a 
stable closed loop system is applied. 

The total control input is given by: 

 ( ) .klms pKu u t e  

Assume that the output of KLMS ( klmsu ) and weight 

vector can be written as : 

 ˆˆ .T

Ku w   

 [ (1) (2)... ( 1)] .TW e e e n   

ere ̂  is the estimated kernel function. So, estimated 
error would be : 

 ˆ    

Finally, the error dynamics of system is obtained as : 

 ( ) ( ) ( ) ( ).pC t A t B t K t   

 ˆ( ) ( ) .Te C t e B t w    

The main condition to make C(t) stable is depended on 

designed ( )pK t . 

An option for Lyapunov function is proposed as : 

 1/ 2 ( ) 1/ 2T TV e M t e     

Where ( )M t , and  are symmetric, positive definite 

matrix and fixed, positive definite matrix, respectively. By 
the equations mentioned above, the derivative of Lyapunov 
function is obtained as: 

 ( ) ( ) ( )T T T TV e t e wB t M t e       

Where ( )t  represents:  

 

Finally, the derivative of Lyapunov function will be 
achieved as: 

 ( ) ( ( ) ( ) )T T TV e t e wB t M t e       

It's obvious that  ̇ is negative when 


1 ( ) ( )Tw B t M t e    

While  ̇     the tuning rule for kernel function is : 

 1ˆ ( ) ( )Tw B t M t e    

The discrete form of this equation is  obtained as follows: 


1

1

ˆ ˆ ˆ( ) ( 1) ( )

( ) ( ) ( ).T

n n n

w B n M n e n 

   

  
 

Here 1 is a constant value which represents learning 

rate. 

Since ̂ , is a function of ̂ , the tuning rule for updating 
kernel size is achieved as : 


2

1 2

ˆ
ˆˆ ˆ( 1) ( ) ( )

ˆ

ˆ ( ) ( ) ( ) ( )
ˆ

T

Tk
T

n n n

u
n B n M n e n

  


  



   




 



 



4. Illusrative application 
In this section the performance of the proposed technique 

is investigated. The 6DOF nonlinear model of an F-18 as a 
fighter aircraft is used to demonstrate the performance of 
designed controller. Simulation is implemented under 
MATLAB software. 

4.1 Aircraft Model 

Before illustrating tracking performance, a short 
description of nonlinear model of aircraft motions is 
represented. The detail of model is available in [10, 11]. 

Force equations: 

( ) 1/ 2( ( ) ( ) ( ) ( ) ( ))            (25)TH t C t M t M t C t M t   
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 ,sin( ) ( ) /x tu rv qw g qSC T m      

 ,cos( )sin( ) /y tv pw ru g qSC m      

 z,tq  u - p  v + gcos( ) cos( ) + qSC /w m   

Moment equations: 

 1 1 4 3 l,t 4 n,t( c p + c r + c he )q + qSb (c C + c C ).p   


2 2

5 7 6 7 ,( c p -c he )r + c ( r - p  ) + qSc c m tq C  

 8 2 9 4 l,t 9 n,t ( c p - c  r + c he ) q + qSb ( c C + c C )r   

In the above equations,      are defined as 



2 2
1

2
2

2
3

2
4

5

6

7

2 2
8

2
9

( ( - ) -  ) /( - )   

( ( - )) /( - )

/( - )

/( - )

( - ) /

/

1/

( ( - ) - ) /( - )

/( - )

z y z xz x z xz

xz x y z x z xz

z x z xz

xz x z xz

z x y

xz y

y

x x y xz x z xz

x x z xz

c I I I I I I I

c I I I I I I I

c I I I I

c I I I I

c I I I

c I I

c I

c I I I I I I I

c I I I I



 















 

4.2 Simulation Results 

As mentioned, the presented technique is utilized to 
control a maneuvering fighter aircraft with 6DOF nonlinear 
dynamic model named F-18. In this research the variables 
affect the maneuver style are  (angle of attack) 

and  ̇ (stability axis roll rate). This maneuver is similar to the 
maneuver studied in[2]. The equations of these variables are:  

 1tan ( / )w u   

 cos( ) sin( )p r     

The maneuver starts at the initial condition of 

tv =400ft/sec , = 2.837deg , h=1000m/sec. A pitch 

command is implemented to increase   from it's initial 

value to 15 deg.  ̇ is controlled to maintain in desired 
value and repels crash of aircraft when tries to turn 180 deg 
about stability axis in executing maneuver. So, the aircraft 
stays stable in this situation. On the other hand, the side slip 

angle () has to lie in less than 1 deg. The control surfaces 

are e and a  whose ranges  are: 

 

 

As the results demonstrate,   and  ̇ track the desired 

inputs and doesn't deviate from admissible range. 



Fig. 1: Angle of attack(deg)tracking 

 

Fig. 2: Stability Axis roll rate(deg) 

 

Fig. 3: Sideslip angle(deg) 
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Fig. 4: Elevator deflection(deg/s) 

 

Fig. 5: Aileron deflection(deg/s) 

 

Fig. 6: Rudder deflection(deg/s) 

 

5. Conclusion 
In this paper the KLMS algorithm was applied for the 

first time to control a nonlinear system like a 6DOF model of 
an aircraft. In the proposed technique, based on adaptive 
rule, the kernel size was updated to reduce tracking error and 
insure stability of the system. The simulation results 
represent the capability of the proposed control method. 
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