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A B S T R A C T   

As global search techniques, population-based optimization algorithms have provided promising results in 
feature selection (FS) problems. However, their major challenge is high time complexity associated with the 
exploration of a large search space and consequently a large number of fitness function evaluations. Moreover, 
the interaction between features is another key issue in FS problems, directly affecting the classification per
formance through selecting correlated features. In this paper, an estimation of distribution algorithm (EDA)- 
based method is proposed with three important contributions. Firstly, as an extension of EDA, the proposed 
method in each iteration generates only two individuals competing based on a fitness function, evolving during 
the algorithm using our proposed update procedure. Secondly, we provide a guiding technique to determine the 
number of features to be selected for individuals in each iteration. As a result, the number of selected features in 
the final solution would be optimized during the evolution process. These two would lead to increasing the 
convergence speed of the algorithm. Thirdly, as the main contribution of the paper, in addition to considering the 
importance of each feature alone, the proposed method can consider the interaction between features, being able 
to deal with complementary features and consequently increase classification performance. To do this, we 
provide a conditional probability scheme that considers the joint probability distribution of selecting two fea
tures. The introduced probabilities successfully detect correlated features. Experimental results on a synthetic 
dataset with correlated features proved the performance of our proposed approach facing these types of features. 
Furthermore, the results on 13 real-world datasets obtained from the UCI repository showed the superiority of 
the proposed method in comparison with some state-of-the-art approaches. To evaluate the effectiveness of each 
feature subset, support vector machines are used as classifier. The efficiency analysis of the experimental results 
using two non-parametric statistical tests proved that the proposed method had significant advantages in com
parison to other approaches.   

1. Introduction 

Classification as one of the major tasks in machine learning has been 
remarkably applied to a wide range of research topics such as Bioin
formatics [1], intrusion detection systems (IDSs) [2], fraud detection 
[3], and prediction of different diseases (Parkinson [4], Cancers [5], 
COVID-19 [6], etc.). In classification tasks, feature selection (FS) is one 
of the critical preprocessing steps. This step, essential to improve the 
classification performance and to build a robust model, selects the 
optimal subset of features such that the selected features be as infor
mative and small as possible. Thus, FS can lead to reducing the 
computational time and cost of building the model, preventing 

over-fitting, which in turn could increase the generalizability of the 
obtained classifier, and improving its accuracy by removing redundant 
and irrelevant features. However, without prior knowledge, it is difficult 
to discriminate between salient and common features. Moreover, FS is a 
challenging research problem not only due to the large search space, but 
also owning to the correlation among features. While the first one, which 
stems exponentially from the large number of features, would make the 
FS an NP-hard problem and consequently could make the exhaustive 
search an impractical solution, the latter can considerably decrease the 
classification accuracy. 

There have been a large body of literature that aims to overcome 
those FS challenges. Based on the evaluation criteria, these efforts can be 
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generally classified into: filter, wrapper, and embedded approaches [7]. 
To begin with, filter feature selection methods are based merely on the 
inherent characteristics of data, generating candidate feature subsets 
without involving any classification algorithm in evaluating phase. 
Moreover, the wrapper approaches utilize a predetermined learning 
algorithm and consider their performance as the goodness criterion of 
feature subsets, generally leading to better performance than that of 
filter-based methods. However, these algorithms are computationally 
more expensive and need more time to execute compared to filter-based 
algorithms. Finally, embedded approaches, incorporating feature se
lection and training process of the learning model into a single pro
cedure, combine the advantages of two other categories in order to make 
a good trade-off between computational time and accuracy, although 
applying just to specific learning models is the main limitation of this 
category. 

Moreover, from the viewpoint of the searching techniques, the FS 
methods can be categorized into sequential and global search methods 
[8]. The most common methods in the former category are the 
sequential forward selection (SFS) and the sequential backward selec
tion (SBS). The SFS (SBS) starts with the empty (full) set and progres
sively adds (removes) features until the performance of the classifier is 
improved (not decreased). However, they are typically stuck in local 
optima. On the other side, the search strategy of the latter category is 
based on the random search in the solution space to find the best feature 
subset. Nowadays, global search methods, as other population-based 
optimization approaches, report promising and successful results 
dealing with the FS problem [9]. The most common population-based 
optimization methods in solving the FS problem include genetic algo
rithm (GA) [10–12], particle swarm optimization (PSO) [13–16], ant 
colony optimization (ACO) [17,18,19], artificial bee colony (ABC) 
[20–22], and cuckoo search (CS) [23,24]. The main advantages of 
population-based optimization approaches are, firstly, they do not need 
domain knowledge or any assumption about the problem, and secondly, 
they can generate several solutions in a single run due to their 
population-based structure [8]. However, their main challenge is that 
they suffer from high time complexity because of the exploration of a 
large search space and consequently a large number of function evalu
ations. Apart from challenges mentioned, another limitation related to 
all FS methods is that they usually cannot consider the interaction be
tween features. On the one hand, a feature may be weakly relevant to the 
class label individually although the classification accuracy can be 
improved by combining it with some complementary features. On the 
other hand, a feature may be relevant by itself, but it may decrease the 
classification accuracy or generalization when used with some other 
correlated features. 

To overcome the limitations of feature selection methods utilizing 
population-based optimization, our main contribution is to present a 
new method based on the estimation of distribution algorithm (EDA) 
considering the correlated features. EDA [25,26] is one of the 
population-based optimization methods that generates the new candi
date solutions by a probabilistic model. The optimization in this method 
is considered as a sequence of probabilistic model updates. With the new 
candidate solutions being generated by utilizing an implicit distribution 
(variation operators) in conventional population-based optimization 
methods, the EDA utilizes an explicit probability distribution such as 
multivariate interaction, Bayesian network, and etc. 

This paper attempts to present a novel correlation-aware feature 
selection approach so that both the importance of each lone feature and 
the value of the interaction between features are considered. Thus, the 
proposed method would be able to deal with complementary features 
and consequently would improve the classification performance. For 
this purpose, we introduce a conditional probability scheme considering 
the joint probability distribution of selecting two features. The interac
tion between features is also considered by introducing the interaction 
matrix (IM). As will be discussed in Section 3.4, this matrix reflects the 
interaction between each pair of features. In fact, its elements represent 

the probabilities of mutually selecting each pair. Furthermore, the 
proposed method generates only two individuals in each iteration 
competing based on a fitness function and evolve during the algorithm 
execution. Moreover, the proposed approach would be quite fast in 
solving FS problems due to considering the interaction between features 
using IM. Finally, we propose a guiding technique that helps the algo
rithm select the appropriate number of features during the evolution 
process. 

The rest of this paper has been organized in the following way. 
Section 2 provides a brief review of the state-of-the-art FS methods, 
which utilized population-based optimization algorithms. The archi
tecture of the proposed method is illustrated in Section 3. Finally, the 
experimental results followed by some conclusions and areas for future 
research are discussed in Sections 4 and 5, respectively. 

2. Literature review 

As mentioned before, the population-based optimization approaches 
have been widely used to solve the FS problem in the literature. To 
categorize and study these efforts, there exist different ways one of 
which is employed here. We study them in light of two aspects which are 
the representation method and the number of objectives. Based on the 
representation method, the FS algorithms that utilized population-based 
optimization can be classified into binary and continuous representa
tions. In binary representation, 1 s and 0 s are used as values of each 
individuals’ vector element, indicating selecting or non-selecting fea
tures, the continuous representation consists of real values. Generally, in 
continuous representation, a threshold θ is considered to determine 
whether the corresponding feature should be selected or discarded. The 
element value relating to a feature will be selected by the FS method If it 
is greater than θ, otherwise it will be dropped. 

Besides, based on the number of objectives, they can be categorized 
into single-objective (SO) and multi-objective (MO) algorithms. Whilst 
the SO methods usually consider only the classification accuracy as the 
objective function, other criteria are also accompanied in MO methods 
to evaluate the FS model. For instance, in many MO methods, the 
number of selected features is considered as the second objective func
tion in addition to the primary accuracy of the classification algorithm. 
Although there appear to be many approaches in each category that can 
be reviewed, the remaining part of this section surveys only the state-of- 
the-art studies and compares their capabilities. 

Genetic algorithm is the most common and likely the first 
population-based optimization method that has been adopted for the FS 
problem and has been applied in many studies [27,28]. GA finds an 
optimal solution using applying evolutionary operators such as cross
over, mutation, and selection to the population. The authors in [28] 
firstly ranked features according to a filter criterion and then applied GA 
on the high-rank features in an attempt to reduce the search space. 
Moslehi and Haeri [29] used the GA along with the PSO to achieve better 
performance. Having integrated the populations obtained using these 
algorithms, the best solutions from the integrated population were 
selected. In [30], a bi-objective GA is used for an ensemble-based feature 
selection technique, and the boundary region analysis alongside the 
multivariate mutual information were considered as objective functions 
to select informative features. 

Another population-based optimization method that has been widely 
used to solve FS problems in the literature is PSO. It was developed by 
Eberhart and Kennedy [31] in an attempt to deal with search and 
optimization problems. To increase the search capability of selecting 
distinctive features, a hybrid PSO-based FS algorithm with a local search 
strategy (called HPSO-LS) was proposed in [32]. The local search 
strategy provided by employing the correlation information of the fea
tures helps the search process select less the best features. Amoozegar 
and Minaei-Bidgoli [13] proposed a multi-objective FS algorithm, 
namely RFPSOFS, that ranked the features based on their occurrences in 
the archive set. Then, the archive set was refined according to these 
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rated features. Additionally, involved in updating the particle position 
vector, these ranks caused the particles to move purposefully. Most 
PSO-based FS methods have used fixed-length representations causing 
high computational costs for high dimensional data. However, the first 
variable, dynamic length representation for the PSO-based FS method 
(called VLPSO) was proposed in [9] enabling the particles to have 
different lengths. In this way, the swarm was divided into several di
visions so that each division had maximum length and the length of 
divisions were different from each other. Besides, the features were 
sorted in descending order of relevance and subsequently a division by 
shorter length considered the top rank features for the selection process. 
To avoid getting stuck in the local optimum, the length of each division 
could be changed during the evolution process. This algorithm improved 
the performance of PSO by concentrating its search on reduced space 
and more fruitful areas. 

ACO, as one of the most well-known population-based optimization 
approaches which was proposed in 1999 [33], showed promise in the FS 
problem. For example, it was used with ANN in [18] for application in 
text FS that contains high dimensional data. In this method, two global 
and local rules were presented to update the pheromone level. While the 
global updating rule helps the algorithm generate feature subsets with a 
low rate of classification error, the local updating rule gives a chance for 
unrelated features which have not been investigated formerly to be 
selected and thus prevents early convergence. Generally, in ACO-based 
FS methods, there are multiple paths for a specific subset causing an 
uneven distribution of pheromones sediments. To overcome this prob
lem, Ghosh et al. [34] assigned pheromones sediments to nodes instead 
of edges between nodes. They proposed a wrapper-filter FS (WFACOFS) 
method to reduce the computational complexity. The algorithm gener
ated the feature subsets using a filter method and then evaluates them by 
a classifier. Additionally, a fitness-based memory was presented to keep 
the best solutions. So, in this way, FS was performed in a multi-objective 
manner. 

In comparison with mentioned optimization algorithms, ABC was 
proposed later by Kraboga [35]. It deals with the optimization tasks 
using a vector-based representation, appropriate for solving the FS 
problems. With utilizing both binary and continuous representations, 
the authors in [36] have applied GA crossover and mutation to their 
multi-objective ABC-based method that was incorporated with the 
non-dominated sorting process. Moreover, they utilized both binary and 
continuous representations. Kuo et al. [20] proposed an ABC-based 
method selecting relevant features and simultaneously optimizing the 
SVM parameters. A cost-sensitive ABC-based feature selection approach 
called TMABC-FS was proposed in [21]. With minimizing the feature 
cost and maximizing the classification accuracy in the multi-objective 
problem modeling stage, TMABC-FS contributes to introduce two new 
operators, namely diversity-guiding and convergence-guiding searches for 
the onlooker and employed bees, respectively. Furthermore, it considers 
two archive sets, including leader and external archives, in order to 
improve the search procedure of different kinds of bees. 

Estimation of distribution algorithm (EDA) is another population- 
based optimization method used in solving the FS problems. In [37], 
the EDA was applied to the multi-objective feature selection phase in an 
intrusion detection system (IDS). The authors claimed that the proposed 
approach (MOEDAFS) had lower complexity and higher classification 
accuracy. The compact genetic algorithm (cGA) [38] is an EDA-based 
method that represents the population in keeping with the estimated 
probabilistic model over the set of solutions instead of traditional ge
netic operators (crossover and mutation) in the traditional genetic al
gorithm. This method was also applied to solve the FS problem in [39]. 

To improve the performance of the FS problems, other population- 
based optimization methods, some of which are proposed in recent 
studies like the Cuckoo search algorithm in [23], firefly optimization in 
[40], and bat algorithm in [41], have also been used. To summarize this 
section, Table 1 compares the specifications of the surveyed methods. 

Despite all advantages, the population-based optimization methods 
in FS problems suffer from several limitations that can be discussed in 
two directions:  

1) High time complexity: large search space and consequently the large 
number of fitness function evaluations can lead to this problem.  

2) Interaction between features: a feature may be weakly relevant to the 
target class individually, but the classification performance can be 
improved using some complementary features. Moreover, a feature 
may be relevant by itself, but it causes decreased classification per
formance when used with some other features. 

To tackle the mentioned challenges relating to feature selection 
methods utilizing population-based optimization, the main contribution 
of this paper is to propose a correlation-aware EDA-based method and to 
apply it in an attempt to solve the FS problems. The next section will 
detail the structure of the proposed method will be described in detail. 

3. The proposed method 

In this paper, we present a correlation-aware feature selection al
gorithm that not only considers the importance of each feature alone, 
but also can deal with the interaction between features. A good FS 
method should select a subset that features have minimum correlation 
and at the same time increase the classification performance. Therefore, 
the proposed method has the capability of considering the comple
mentary features, and consequently, the classification performance will 
be improved. In addition to this, as we know, one of the main limitations 
of the wrapper-based FS methods, which utilized population-based 
optimization approaches is suffering from high complexity of time due 
to a large number of fitness function evaluations. Fortunately, the pro
posed method generates only two individuals in each iteration. Like the 
cGA, the generated individuals compete with each other in each itera
tion of the algorithm based on a fitness function to determine the winner 
and the loser. These two individuals evolve during the algorithm to find 

Table 1 
Comparison of the state-of-the-art FS methods that utilized population-based optimization.  

Method Population-based algorithm Type Representation method The number of objectives Classifier 

HGA-NN [28] GA Wrapper Binary SO ANN 
HGP-FS [29] GA, PSO Hybrid Continues SO ANN 
Ensemble-FSGA [30] GA Filter Binary MO – 
HPSO-LS [32] PSO Hybrid Continues SO KNN 
RFPSOFS[13] PSO Wrapper Continues MO KNN 
VLPSO [9] PSO Hybrid Continues SO KNN 
ACO-ANN [18] ACO Wrapper Continues SO ANN 
WFACOFS [34] ACO Hybrid Continues SO KNN/ANN 
Hancer et al. [36] ABC Wrapper Binary/ Continues MO KNN 
ABC-SVM-DT [20] ABC Wrapper Continues SO SVM/DT 
TMABC-FS [21] ABC Wrapper Continues MO KNN 
MOEDAFS [37] EDA Wrapper Binary MO – 
cGA-FS [39] cGA Wrapper Continues SO Naive Bayes  
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the best solution. The number of features for each individual is deter
mined based on our guiding technique, which will be discussed in Sec
tion 3.5. In this technique, the number of features for each individual is 
determined randomly by a chi-square distribution with d degrees of 
freedom in each iteration, where d is the number of winner’s features. In 
this way, the best value of d is determined using evolution process, too. 

To consider both the effects of each feature alone and the interaction 
between features in the proposed method, we define two data structures. 

The first one is the significance vector (SV) with size n, and the second one 
is the interaction matrix (IM) with size n × n, where n is the number of 
features. While SV(i)represents the goodness of the corresponding 
feature i, IM(i, j)denotes the goodness of simultaneous presence of two 
features i and j in the final solution. All elements of SV and IM are 
initialized by one to provide the features an equal chance of selection. 
Then, having been generated using the conditional probabilities, one of 
the main advantages of the proposed method, the generated individuals 

Fig. 1. Pseudocode of the proposed method.  
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compete in an attempt to determine the winner and the loser. Finally, SV 
and IM are updated using our update procedure that will be described in 
the following this section. The pseudocode of the proposed method is 
described in Fig. 1. 

In step 1, we initialized all of our variables and data structures. Then, 
based on our introduced probabilities scheme, which will be discussed 
later, two individuals are created in step 2. The main advantage of these 
probabilities is that the correlated features are given less probability 
values. Thus, they will have little chances of being selected. In the next 
step, the created individuals compete based on a fitness function and the 
winner and loser are determined. In step 4, the introduced SV and IM 
data structures are updated based on our introduced update procedure, 
which will be discussed in Section 3.4. Finally, the guiding technique 
helps the algorithm to select the appropriate number of features during 
the evolution process. The number of features for each individual is 
determined randomly by chi-square distribution with d degrees of 
freedom in each iteration, where d is the number of winner’s features. 
These steps repeat until the algorithm is stopped. In the following, we 
will explain the full details of each step in separate subsections. 

3.1. Initialization 

In the first step, we initialize the number of selected features by 
winner by n/2. Moreover, the sets A and B, which indicate the selected 
features for individuals a and b are empty. Finally, all the elements of the 
significance vector SV and the interaction matrix IM are set to 1. It 
should be noted that the SV and IM data structures are used to determine 
the probability of selecting the features in the following steps. By 
assigning equal values to them, all features have the same chance to be 
selected at the beginning of the algorithm. 

3.2. Generating two individuals 

To select the best feature subset, the algorithm generates two inde
pendent individuals in each iteration. The probability of selecting the 
first feature of each individual a and b is determined by its associated 
significance value divided by the sum of the significant value of all 
features: 

P
(

a1
j

)
=

SV(j)
∑n

k=1
SV(k)

; P
(

b1
j

)
=

SV(j)
∑n

k=1
SV(k)

, ∀ j = 1, ..., n. (1) 

The first feature is selected using the roulette wheel mechanism for 
each individual based on the calculated probabilities in Eq. (1). Greater 
probability value gives more chance to jth feature to be selected as the 
first one. In the first iteration, the probability of selecting each feature is 
1/n. However, since the SV is updated at the end of each iteration, it will 
be different for each feature in the successive iterations. 

Similarly, the k-th feature of each individual is selected using the 
roulette wheel mechanism based on the following conditional 
probabilities: 

P
(

ak
j

⃒
⃒
⃒al ∈ A

)
=

(
∏

al∈A
IM
(
aj, al

)
)

× SV
(
aj
)

(
∑

az∈A
∏

al∈A
IM(az, al) × SV(az)

), ∀ k = 2, ..., sa, (2)  

P
(

bk
j

⃒
⃒
⃒bl ∈ B

)
=

(
∏

bl∈B
IM
(
bj, bl

)
)

× SV
(
bj
)

(
∑

bz∈B
∏

bl∈B
IM(bz, bl) × SV(bz)

), ∀ k = 2, ..., sb, (3)  

where in Eq. (2), P(ak
j

⃒
⃒
⃒al ∈ A)denotes the probability of jth element of 

individual a (aj) to be selected as the k-th feature, when a set of features 

A is selected in the previous iterations. The numerator represents the 
goodness of simultaneous presence of aj and previously selected features 
and also the significance value of aj. The denominator represents the 
goodness of simultaneous presence of unselected features Ā and previ
ously selected features A and also the significance value of each unse
lected feature. Similarly, the probability of jth element of individual b 
(bj) to be selected as the k-th feature is determined by Eq. (3). This 
process continues until sa and sb features are selected for individuals a 
and b, respectively. It should be noted that and sb are random numbers 
that determined by chi-square distribution with d degrees of freedom in 
each iteration, where d is the number of winner’s features. We will 
discuss determining these variables in Section 3.5. It should be noted 
that however the IM reflects the interaction between only two features, 
the introduced probability in Eqs. (2) and (3) considers the goodness of 
selecting one feature given selecting a subset of selected features. 

3.3. Competition 

The generated individuals a and b from the previous step are then 
evaluated according to the following fitness function: 

fitness =
accuracy

SFR
,

SFR =
number of selected features

total number of features
.

(4)  

According to Eq. (4), the fitness value of each individual is calculated by 
the classification accuracy achieved by the corresponding selected fea
tures of the individual divided by the selected feature rate (SFR). In this 
way, we can deal with both increasing the classification performance 
and decreasing the number of selected features. In calculating the ac
curacy of each candidate solution, our algorithm benefits from the ad
vantages of support vector machines (SVMs) as the classifier, including 
the generalization ability, strong theoretical foundations, absence of 
local minima, and robustness against noise. After fitness evaluation, the 
individual with greater (smaller) fitness is called the winner (loser). The 
winner and the loser are binary vectors with length n. Thus, wi=1 in
dicates that the i th feature has been selected by the winner, while wi=0 
means that the i th feature has not been selected. Similarly, elements of 
the loser vector are considered as li, which can be either 0 or 1. They are 
used to update the SV and IM in the next step of the proposed algorithm. 
If the current winner’s fitness is greater than the fitness of the best so
lution has been found so far, the best solution is replaced by the current 
winner. 

3.4. Update procedure 

In this step, SV and IM should be updated using the obtained winner 
and loser. We update these two data structures using Table 2 and Table 3, 
respectively. 

As shown in Table 2, each element of the SV is updated based on the 
corresponding values of the winner and the loser vectors. In the case that 
a feature has been selected by both the winner and the loser or that a 
feature has not been selected by both, we cannot decide whether it 
would be good to select the corresponding feature or not. Therefore, the 
corresponding value in SV remains unchanged. In other case that a 
feature is selected by the loser but not by the winner, we decrease the 
chance of selecting it by a predefined value between zero and one, called 

Table 2 
The update procedure of SV based on the winner and the loser vectors.  

loser li = 0 li = 1 
winner   

wi = 0 SV SV −

wi = 1 SV+ SV  
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change factor which is used to strengthen or weaken the significance 
value of feature i. In the last case, when the winner selects a feature while 
the loser does not so, the chance of its selection is increased by the change 
factor. 

In Table 3, the selecting status of each pair of features i and j is 
compared, and some updates on IM are performed based on differences 
between winner and loser. In the following, we discuss how to update the 
IM in some states. The update procedure of the remaining states is 
similar.  

• wi=li and wj=lj: for all four states with this condition, main diagonal 
of the table, no updates on IM are made because the winner and the 
loser has done the same for selecting features i and j. Therefore, we 
cannot decide whether selecting or not selecting features i and j 
together, is good or not.  

• (wi,wj=0,0) and (li,lj=0,1): in this state, both the winner and the loser 
have not selected feature i. Thus, we cannot decide about the 
goodness of selecting this feature. However, since the loser has 
selected the jth feature and the winner has not selected it, we decrease 
the chance of selecting it by the introduced change factor.  

• (wi,wj=0,0) and (li,lj=1,1): here, the winner has not selected any of i 
or j, while the loser has selected both of them. Therefore, we decrease 
the IM(i, j)by the change factor.  

• (wi,wj=0,1) and (li,lj=0,0): in this state, the winner has selected the jth 
feature, and none of the features i and j have been selected by the 
loser. Hence, the chance of simultaneous appearance of features i and 
j remains unchanged.  

• (wi,wj=0,1) and (li,lj=1,1): since the winner has not selected both 
features i and j together, and at the same time, the loser has selected 
both of them, and we decrease the IM(i,j)by a stronger value than the 
change factor (i.e., two or three times higher), since in this state, we 
are more confident in decreasing or increasing the chance of 
selecting the features. 

3.5. Update the estimated number of features for individuals by our 
guiding technique 

One of the advantages of the proposed algorithm is that the number 
of features for each of two individuals in each iteration is determined 
based on the number of winner’s features, a guide to select optimum 
features. To this aim, the number of each individual (sa and sb) in Fig. 1, 
are random numbers determined by chi-square distribution with d de
grees of freedom, where d is the number of winner’s features. For the first 
iteration, d is initialized to n/2. The expected value for the chi-square 
distribution is equal to d, but it is possible to take the values more or 
less as well. Since the variable d is defined as the number of winner’s 
features, which will be updated in each iteration, the number of selected 
features of the final solution will be optimized during the evolution 
process. Moreover, this guiding mechanism ensures that the number of 
features for each individual does not exceed the value determined by the 
chi-square distribution. This can directly increase the convergence speed 
of the algorithm due to the limitation on the number of features for each 
individual, and can help the proposed algorithm select fewer features. In 
Section 4.5, we will discuss the results of applying this technique to 
different datasets. 

4. Experimental results 

In this section, comparing with state-of-the-art studies, we evaluate 
our method using different datasets. It should be noted that the proposed 
algorithm was implemented using MATLAB® 2018a. Besides, all the 
experiments were performed on a machine with 2.60 GHz Intel Core i7 
processor and 6.0GB of DDR3 memory. We will compare our proposed 
method with GA-SVM, cGA-FS [39], WFACOFS [34], MOEDAFS [37], 
and RSVM-SBS [42]. To select the best feature subset, GA-SVM utilizes 
the genetic algorithm as the optimization technique and support vector 
machines as the fitness function. The way in which the following three 
approaches operate were described in Table 1, in Section 2. As for the 
last one, RSVM-SBS combines the sequential backward search (SBS) 
with noise-aware support vector machines, namely RSVM, to deals with 
the FS problem in the presence of outliers. It is worth bearing in mind 
that in all experiments, the datasets were firstly divided randomly into 
75% training, and 25% testing sets, which to ensure a fair comparison, 
we used the same training and testing ones for all methods. As well as, 
the change factor value in our updating procedure was set to 0.01. 
Finally, since each method has some parameters to be tuned, we 
determined the best parameter values for each one using trial and error 
for a fair comparison. For this purpose, we ran each method with the 
same number of fitness function evaluation and determined the best 
values of the hyper parameters. Table 4 summarized the parameters 
utilized to set up all algorithms under comparison. 

4.1. Datasets 

The details of datasets used to assess the proposed approach 
compared with that of other approaches in the literature are summa
rized in Table 5. All datasets in our experiments are obtained from the 
UCI Repository [44]. These datasets are from various fields and can be 
categorized based on the number of features into three groups: small, 
medium, and large. A dataset with less than ten features is considered 
small, while it is placed in the large category if its number of features is 
more than 100, otherwise it would be a medium dataset. We tested our 
algorithm on two small, seven medium, and four large datasets. 

4.2. Performance metrics 

To measure the performance of different methods, some well-known 
metrics were used, including accuracy, precision, recall, F1-score, and a 
one introduced in [42], i.e., the product of accuracy (ACC) rate and the 

Table 3 
The update procedure of IM based on the winner and the loser vectors.  

loser li, lj = 0 ,0 li, lj = 0 ,1 li, lj = 1 ,0 li, lj = 1 ,1 
winner     

wi,wj = 0 ,0 IM IM IM IM −

wi,wj = 0 ,1 IM IM IM IM − −

wi,wj = 1 ,0 IM IM IM IM − −

wi,wj = 1 ,1 IM+ IM+ + IM+ + IM  

Table 4 
Parameter setting.  

Method Parameters Settings 

WFACOFS Exploitation balance factor 1 
Exploration balance factor 1 
Weight of accuracy 100 
Weight of number of features 1 
Pheromone evaporation factor 0.15 
Pheromone evaluation factor 0.8 

RSVM-SBS Kernel function RBF 
C 100 
σ 0.5 

GA-SVM Crossover rate 0.7 
Mutation rate 0.01 
Selection mechanism Roulette wheel 

cGA-FS Np 0.6 
C4.5 Confidence factor 0.25 

Min. instance per leaf 2 
Random forest The number of trees 200 

mtrya ̅̅̅
n

√

OblRF-H [43] The number of trees 500 
Mtry ̅̅̅

n
√

The proposed Method Change factor 0.01  

a the number of the candidate features in each split. 
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percentage of discarded features (PDF). These metrics are defined as 
follows: 

Accuracy =
TP + TN

TP + TN + FP + FN
, (5)  

Precision =
TP

TP + FP
, (6)  

recall =
TP

TP + FN
, (7)  

F1 − score =
2TP

2TP + FP + FN
, (8)  

ACC × PDF = Accuracy × percentageof discardedfeatures, (9)  

where TP, TN, FP, and FN are the number of true positives, true nega
tives, false positives, and false negatives, respectively. 

4.3. The results on a synthetic dataset with correlated features 

One of the main contributions of the proposed method is that it can 
deal with the correlation between features. To investigate this, we 
generated a synthetic dataset. This dataset consisting of 10 correlated 
features and 250 samples with random values in two classes. There was 
no correlation between the first six features, but the values of other 
features are generated as follows: 

f7 = 10 × f1, f8 = (f2 + 3× f3), f9 = f4, f10 = f5/1000, (10)  

where fi denotes the i th feature. A good FS method should not select the 
correlated features. For example, based on Eq. (10), only one of f1 or f7 
should appear in the final solution for our synthetic dataset. After 
running the proposed method on the synthetic dataset, it selects {f1,f2,f3, 
f4,f10} as the best feature set with 98.39% accuracy. The proposed 
method did not select any correlated feature. Table 6 summarizes the 
obtained results for different methods on the synthetic dataset. 

As shown in Table 6, the proposed method has selected the least 
number of features. Meanwhile, it has reported higher accuracy, and 

most importantly, has not selected any correlated feature. However, the 
other methods failed to do so. For example, cGA-FS has selected f4 and f9, 
simultaneously. Similarly, WFACOFS has selected f1 and f7 as well as f5 
and f10. The other methods also have behaved similarly. To better un
derstand how the proposed approach obtained these results, we should 
review the role of the probability scheme, introduced in the previous 
section. Fig. 2 represents the heatmap matrix (HM) of our introduced 
conditional probabilities determined by Eqs. (2) and (3) after 1000 runs 
of the proposed method on the synthetic dataset. The correlated features 
are highlighted in bold. 

Each element HM(i,j) in Fig. 2 denotes the probability of selecting 
the jth feature given the i th one with the sum of the conditional prob
abilities at any column is equal to one, as expected. As we can conclude 
from the heatmap matrix, the probabilities of selecting the correlated 
features have decreased using our update procedure (see Section 3.4). 
For example, HM(5,10) and HM(10,5) have the lowest values in their 
rows. This means when we select f5, the probability of selecting f10 is less 
than the other remaining features. Likewise, when f10 is selected by the 
proposed algorithm, the probability of selecting f5 is less than the other 
features. Smaller values in each row indicate more correlation between 
corresponding features. As we described earlier, although the IM reflects 
the interaction between only two features, the proposed algorithm 
considers other interactions (see Section 3.2). For example, as shown in 
the first row of HM in Fig. 2, the value of HM(1,6) and HM(1,5) are 
lower than HM(1,7) but the algorithm has not selected f1 and f7, 
simultaneously. 

4.4. The results on real-world datasets 

Here, we compare our proposed method with other approaches on 
real-world datasets. For the first experiment in this subsection, we 
compare our results with some basic and also state-of-the-art decision 
tree-based classifiers. It should be mentioned that we chose them for 
comparison because they perform feature selection implicitly. Tables 7 
and 8 show the obtained results of C4.5, random forests, and OblRF-H 
(with and without feature selection) [43] in comparison with the pro
posed method in terms of accuracy and F1-score. 

As shown in Tables 7 and 8, the proposed method reported better 
performance in almost datasets in compared with other methods. To 
prove the performance of the proposed method in comparison to other 
methods, two non-parametric statistical tests, namely Wilcoxon’s 
signed-rank test [45] and Friedman’s test [46], with a significance level 
of 0.05, were performed. The Wilcoxon’s signed-rank test was utilized 
for pairwise performance evaluation between the proposed approach 
and the other methods. Table 9 summarizes the Wilcoxon’s signed-rank 
test results in terms of accuracy and F1-score metrics. 

Results from Table 9 indicate that the proposed approach shows a 
significant difference from the compared methods on all datasets. 

The Friedman’s test was also applied to evaluate the performance of 
all compared methods. The p-values for this test in terms of accuracy and 
F1-score metrics were equal to 3.65E-5 and 2.06E-4, respectively, 
indicating that the overall performance of the proposed method is 
significantly better than the others. 

As we know, the random forest method also provided a ranking of 
the features. For the next experiment, it would be interesting to compare 
the best features obtained by the proposed method and those reported 
by the random forest method. In Table 10, we show the best s features 
that selected by the proposed method based on our obtained probabil
ities and also the s top ranked features that were reported by the random 
forest. Moreover, the classification results using support vector ma
chines for the best features are reported in Table 10. 

As shown in Table 10, the selected features by the proposed method 
are more reliable and provide better performance than that of the 
random forest. 

For the next experiment, it would be interesting to compare our 
proposed method with different classic feature selection methods that 

Table 5 
Details of datasets.  

Dataset Size Number of 
samples 

Number of 
features 

Number of 
classes 

Breast Cancer Small 699 9 2 
Glass Small 214 9 6 
Heart Medium 270 13 2 
Wine Medium 178 13 3 
Segmentation Medium 2310 19 7 
German Medium 1000 24 2 
Ionosphere Medium 351 34 2 
Soybean- 

small 
Medium 47 35 4 

Sonar Medium 208 60 2 
Hill-valley Large 1212 100 2 
Musk1 Large 476 167 2 
Arrhythmia Large 452 279 16 
Isolet5 Large 1559 617 26  

Table 6 
The accuracy (%) for different methods on the synthetic dataset.  

Method Accuracy Selected features 

GA-SVM 98.38 {f1,f5,f6,f7,f8,f9} 
cGA-FS 80.76 {f1,f2,f3,f4,f8,f9} 
WFACOFS 79.03 {f1,f3,f5,f6,f7,f9,f10} 
MOEDAFS 83.87 {f1,f4,f5,f7,f8,f9,f10} 
RSVM-SBS 81.69 {f1,f2,f5,f6,f7,f8,f10} 
The proposed Method 98.39 {f1,f2,f3,f4,f10}  
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was utilized in [47] for intrusion detection application. The authors 
implemented Information Gain (IG), Chi-Square (CS), and Recursive 
Feature Elimination (RFE) feature selection techniques with different 
classifiers. We also used these three FS methods for different datasets. 
Being in filter-based category, the first two methods rank the features 
based on the chi-square score and the information gain score, respec
tively. For each dataset, we calculated the average obtained weighs of 
ranked features and selected those features with higher weights than the 
average. Since SVM reported the best results among different classifiers 
in [47], we used it to evaluate selected features that are obtained by 
different methods. Table 11 reports the obtained results after 10-fold 
cross-validation. 

As shown in Table 11, the proposed method outperformed the other 
methods in almost all datasets. The statistical tests also prove that the 
proposed method was significantly better than the other methods. 
Table 12 summarizes the Wilcoxon’s signed-rank test results in terms of 

both accuracy and F1-score metrics. 
The results obtained from Table 12 show that the proposed approach 

indicates a significant difference compared with other methods on all 
datasets. 

The Friedman’s test was also applied to evaluate the performance of 
all compared methods. The p-values for this test in terms of accuracy and 

Fig. 2. The conditional probability heatmap matrix. The correlated features have been shown with different colors. Smaller values in each row indicate more 
correlated between corresponding features. 

Table 7 
The average accuracy (%) metric for different methods on different datasets.   

C4.5 Random 
forest 

OblRF-H 
(without 
FS) 

OblRF-H 
(with FS) 

The 
proposed 
method 

Breast Cancer 96.57 97.14 97.14 98.23 98.85 
Glass 66.04 75.47 70.26 71.04 71.70 
Heart 83.58 79.10 84.51 86.48 91.04 
Wine 97.73 93.18 97.32 98.62 99.36 
Segmentation 95.49 96.17 95.05 95.36 94.80 
German 75.20 76.80 75.15 79.31 82.80 
Ionosphere 93.18 94.32 94.16 95.58 95.45 
Soybean- 

small 
100.00 100.00 100.00 100.00 100.00 

Sonar 75.00 88.46 85.63 89.14 92.30 
Hill-valley 52.15 54.13 59.46 61.74 71.61 
Musk1 79.83 82.35 85.24 86.62 84.03 
Arrhythmia 66.37 71.45 71.08 72.40 72.66 
Isolet5 76.41 88.79 87.96 89.15 90.00  

Table 8 
The average F1-score (%) metric for different methods on different datasets.   

C4.5 Random 
forest 

OblRF-H 
(without 
FS) 

OblRF-H 
(with FS) 

The 
proposed 
method 

Breast Cancer 96.30 97.05 97.63 98.06 98.89 
Glass 55.56 65.80 66.14 67.21 64.78 
Heart 82.85 78.29 83.47 86.76 92.25 
Wine 98.09 93.74 96.35 96.64 99.46 
Segmentation 95.58 97.61 98.51 97.20 95.28 
German 70.79 69.39 74.20 73.41 77.91 
Ionosphere 92.84 93.12 93.62 95.00 95.72 
Soybean- 

small 
100.00 100.00 100.00 100.00 100.00 

Sonar 74.80 88.44 82.39 90.64 93.12 
Hill-valley 52.17 54.08 60.24 69.10 75.39 
Musk1 78.96 81.33 82.86 82.53 83.14 
Arrhythmia 39.87 40.01 38.24 39.79 40.10 
Isolet5 77.20 90.19 88.28 90.21 90.36  

Table 9 
P-value of Wilcoxon signed-rank test between the proposed approach and each 
other methods in terms of accuracy and F1-score.  

Method p-value (accuracy) p-value (F1-score) 

C4.5 0.00097 0.00146 
Random forest 0.02539 0.01611 
OblRF-H (without FS) 0.00244 0.02685 
OblRF-H (with FS) 0.03417 0.04248  
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F1-score metrics were equal to 4.01E-5 and 2.88E-05, respectively, 
indicating that the overall performance of the proposed method is 
significantly better than the others. Furthermore, it is interesting to 
investigate the performance of the proposed method on a real applica
tion. Thus, we compared our method with [47] for intrusion detection 
on NSL-KDD dataset [48]. This dataset is developed to address the 
limitations of KDD CUP 99 dataset. It contains 41 features, 149,470 
instances, and five classes (DoS, Probe, R2L, U2R, and Normal). Table 13 
shows the results of different feature selection methods for each of four 
attack classes. It should be noted that SVMs are used as the classifier. 

As indicated in Table 13, the proposed method outperforms the 
others in almost all attacks. 

In the rest of this subsection, we compare our proposed method with 
state-of-the-art feature selection methods. Tables 14–19 summarize the 
obtained results in terms of different performance metrics after ten in
dependent runs. The best results in each table are highlighted in 
boldface. 

The proposed method, As shown in Table 14, reported the best ac
curacies in eight datasets. GA-SVM obtained better accuracies on four 
datasets in comparison with the proposed method. Finally, WFACOFS 
and RSVM-SBS also had better results in Segmentation and Glass data
sets, respectively. It should be emphasized that high accuracy does not 
necessarily indicate the high efficiency of a feature selection method. 
For example, considering the hill-valley dataset, GA-SVM selects 92 
features from all 100 features, whilst the proposed method selects only 
24 ones. In the rest of this section, we will report the best number of 
selected features in each method. Table 15 summarizes the average 
precisions of different methods on different datasets. 

As reported in Table 15, our proposed approach outperformed the 

Table 10 
The best feature subsets and their performances.   

Random forest The proposed method  

Best features Accuracy Best features Accuracy 

Breast Cancer {3,4,6,7} 96.00 {2,4,7,9} 97.71 
Glass {1,2,3,4,6,7} 67.92 {1,3,4,5,6,8} 67.92 
Heart {8,10,12,13} 88.06 {2,3,12,13} 94.03 
Wine {7,10,12,13} 97.73 {1,10,12,13} 100.00 
Segmentation {2,10,11,12,16,17,19} 90.12 {1,2,10,12,16,18,19} 92.20 
German {1,3,4,5,8,9,10,11,12,13} 76.80 {1,2,3,4,5,9,16,17,19,20} 78.80 
Ionosphere {3,4,5,6,7,8,16,27} 87.50 {1,4,5,7,8,12,15,31} 92.05 
Soybean-small {21,22} 100.00 {21,22} 100.00 
Sonar {9, 10,11,12,13,51} 86.54 {1,10,11,12,37,48} 92.30 
Hill-valley S1* 52.15 S2* 60.73 
Musk1 S1* 73.95 S2* 73.95 
Arrhythmia S1* 68.14 S2* 69.91 
Isolet5 S1* 89.23 S2* 90.26  

* Those sets indicated by S1 and S2 have more than 15 members and are not shown. 

Table 11 
The average accuracy (Acc), F1-score (F1), and the number of selected features (SF) for different methods.   

IG-FS CS-FS RFE-FS The proposed method  

Acc F1 SF Acc F1 SF Acc F1 SF Acc F1 SF 

Breast Cancer 95.43 94.71 7.2 94.86 94.18 7.4 94.29 93.37 5.3 98.85 98.89 4.3 
Glass 60.38 54.43 5.3 54.72 50.99 4.7 62.26 57.76 8.6 71.70 64.78 6.5  

Heart 82.09 83.27 6.7 82.09 80.86 7.3 83.54 84.50 10.2 91.04 92.25 4.6 
Wine 88.64 89.95 7.2 97.73 97.97 6.4 90.91 91.83 7.8 99.36 99.46 4.3 
Segmentation 82.84 81.86 7.8 84.24 86.54 8.9 84.23 83.58 5.6 94.80 95.28 8.7 
German 72.40 65.57 9.2 74.40 65.59 9.1 75.60 70.60 16.4 82.80 77.91 14.8 
Ionosphere 81.82 81.03 15.6 87.50 86.67 19.4 88.64 88.35 28.1 95.45 95.72 12.0 
Soybean-small 100.00 100.00 12.3 100.00 100.00 13.2 100.00 100.00 6.5 100.00 100.00 3.1 
Sonar 76.92 76.48 28.1 71.15 71.30 22.6 78.85 78.65 52.4 92.30 93.12 13.7 
Hill-valley 60.07 65.79 52.4 52.84 56.08 43.2 50.83 33.70 79.3 71.61 75.39 33.4 
Musk1 72.63 75.52 90.6 70.59 70.56 75.1 82.35 82.16 95.1 84.03 83.14 34.4 
Arrhythmia 61.06 28.45 121.4 59.29 39.65 101.5 55.75 30.40 98.2 72.66 40.10 22.0 
Isolet5 84.12 80.24 305.1 79.45 80.64 276.8 87.18 85.42 241.4 90.00 90.36 141.3  

Table 12 
P-value of Wilcoxon signed-rank test between the proposed approach and each 
other methods in terms of accuracy and F1-score.  

Method p-value (accuracy) p-value (F1-score) 

IG-FS 0.0005 0.0005 
CS-FS 0.0005 0.0005 
RFE-FS 0.0005 0.0005  

Table 13 
The average accuracy (Acc) and F1-score (F1) for different FS methods on NSL-KDD dataset.   

DoS Probe R2L U2R  

Acc F1 Acc F1 Acc F1 Acc F1 

IG-FS 98.88 98.40 99.20 98.78 98.65 98.41 97.68 92.72 
CS-FS 97.31 97.12 97.31 96.52 93.63 96.39 90.34 91.45 
RFE-FS 98.76 98.42 98.75 98.72 98.45 98.68 99.12 99.01 
The proposed method 98.88 99.24 99.35 99.39 99.12 99.32 98.27 98.87  
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Table 14 
The average accuracy (%) metric for different methods on different datasets.   

All-features GA-SVM cGA-FS WFACOFS MOEDAFS RSVM-SBS The proposed Method 

Breast Cancer 70.29 96.57 94.85 97.71 96.00 96.58 98.85 
Glass 56.60 62.26 67.92 69.81 69.81 72.56 71.70 
Heart 82.09 88.06 85.07 83.58 89.55 83.75 91.04 
Wine 93.18 97.89 97.22 97.72 98.83 98.04 99.36 
Segmentation 93.07 93.58 87.69 95.32 94.28 91.76 94.80 
German 73.60 82.40 79.20 77.60 80.40 78.91 82.80 
Ionosphere 86.36 92.05 88.63 94.31 89.77 90.69 95.45 
Soybean-small 100.00 100.00 90.00 100.00 100.00 100.00 100.00 
Sonar 73.08 78.84 82.69 90.38 90.38 89.03 92.30 
Hill-valley 48.18 92.73 59.07 51.48 53.46 61.79 71.61 
Musk1 82.35 92.43 68.06 86.55 86.55 82.74 84.03 
Arrhythmia 51.32 74.33 61.94 60.17 61.06 63.97 72.66 
Isolet5 76.40 95.38 90.76 82.05 84.10 88.45 90.00  

Table 15 
The average precision (%) metric for different methods on different datasets.   

All-features GA-SVM cGA-FS WFACOFS MOEDAFS RSVM-SBS The proposed Method 

Breast Cancer 71.53 96.67 94.56 97.81 95.98 96.80 98.80 
Glass 43.53 63.30 54.19 61.42 59.59 66.73 68.75 
Heart 81.91 86.22 84.85 83.88 88.51 86.46 91.70 
Wine 93.89 97.87 97.43 98.14 98.43 97.52 99.86 
Segmentation 93.28 93.35 88.03 95.40 94.46 73.19 94.81 
German 76.26 72.89 70.80 70.29 69.23 71.37 77.24 
Ionosphere 82.38 89.45 77.27 93.73 85.61 90.07 94.29 
Soybean-small 100.00 100.00 88.12 100.00 100.00 100.00 100.00 
Sonar 76.67 80.00 82.68 90.29 90.74 91.61 92.15 
Hill-valley 48.13 92.79 56.25 52.72 54.43 63.71 70.43 
Musk1 82.44 92.10 68.43 86.50 87.00 87.11 83.75 
Arrhythmia 29.87 55.14 38.76 13.61 18.18 33.08 36.20 
Isolet5 67.96 95.82 89.73 81.75 83.83 80.57 90.07  

Table 16 
The average recall (%) metric for different methods on different datasets.   

All-features GA-SVM cGA-FS WFACOFS MOEDAFS RSVM-SBS The proposed Method 

Breast Cancer 68.88 96.31 94.24 96.80 94.38 95.35 98.80 
Glass 33.85 70.58 63.31 67.60 63.40 70.35 59.58 
Heart 84.10 89.95 83.88 84.18 90.05 89.06 90.95 
Wine 92.90 96.94 98.61 96.96 97.66 98.68 98.81 
Segmentation 93.93 93.43 88.45 95.76 94.89 81.50 95.90 
German 70.01 75.50 81.25 75.40 82.77 75.96 80.30 
Ionosphere 85.42 93.24 93.42 94.24 86.74 94.85 96.49 
Soybean-small 100.00 100.00 86.22 100.00 100.00 100.00 100.00 
Sonar 80.56 78.44 82.44 90.47 91.67 89.91 92.65 
Hill-valley 47.91 92.81 60.59 53.21 54.65 66.76 80.26 
Musk1 82.33 92.35 68.88 86.50 87.32 90.31 83.58 
Arrhythmia 24.12 54.27 40.08 16.16 38.77 43.34 46.78 
Isolet5 71.81 95.48 89.72 83.36 85.58 89.10 89.90  

Table 17 
The average F1-score (%) metric for different methods on different datasets.   

All-features GA-SVM cGA-FS WFACOFS MOEDAFS RSVM-SBS The proposed Method 

Breast Cancer 70.58 96.79 93.87 97.58 95.47 96.24 98.89 
Glass 36.48 66.42 56.91 64.32 60.84 67.58 64.78 
Heart 83.09 88.34 83.97 84.03 89.07 86.72 92.25 
Wine 92.83 97.82 96.67 97.04 98.65 98.29 99.46 
Segmentation 93.91 92.89 88.39 95.16 94.28 78.13 95.28 
German 73.26 73.97 75.58 72.59 75.21 73.39 77.91 
Ionosphere 83.13 90.43 84.15 93.21 86.73 93.05 95.72 
Soybean-small 100.00 100.00 87.08 100.00 100.00 100.00 100.00 
Sonar 79.28 79.93 83.28 91.10 91.92 91.47 93.12 
Hill-valley 47.37 93.02 58.71 53.33 54.91 65.57 75.39 
Musk1 81.85 91.69 68.12 85.97 86.79 88.15 83.14 
Arrhythmia 25.98 54.31 38.70 14.07 24.04 36.81 40.10 
Isolet5 70.21 96.02 90.10 82.92 85.07 84.99 90.36  
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other methods in eight datasets. However, GA-SVM showed the better 
results on four datasets as well as WFACOFS on Segmentation in com
parison with the proposed method. Table 16 reports the average recall of 
different methods on different datasets. 

As can be seen from Table 16, our proposed algorithm achieved the 
best recall on seven datasets. However, GA-SVM and MOEDAFS methods 
reported improved performance compared with our algorithm on five 
and two datasets, respectively. The F1-score results of different methods 
are represented in Table 17. 

Table 17 results that our proposed approach obtained the best results 
on eight datasets, whilst GA-SVM achieved better outcomes in terms of 
F1-score on four datasets, and RSVM-SBS showed improved perfor
mance on Glass dataset. 

For the next experiment, we investigated the number of features 
selected by each method on different datasets, comparing in Table 18 
the average and the best number of selected features of different 
methods in the final solution after ten runs. 

It can be seen from the data in Table 18 that the average number of 
selected features achieved by the proposed algorithm was less than that 
of the other methods on all datasets except for Ionosphere. Additionally, 
the proposed algorithm outperformed the other methods in term of the 
best number of selected features except for Ionosphere dataset. 

As discussed earlier, higher performance metrics which were sum
marized in Tables 14–18, does not guarantee higher efficiency in a 
feature selection method. In addition to the reported performance 
metrics, a good FS method should optimize the number of selected 
features. The reason is that minimizing the number of selected features 
increases the generalizability of the model and decreases its complexity. 
Thus, we provided a criterion which is introduced in [42], namely the 
product of accuracy (ACC) rate and the percentage of discarded features 
(PDF). Table 19 summarizes the obtained results for different methods in 
term of this new performance metric. 

The obtained results in Table 19 proved that the proposed approach 

increased the accuracy and simultaneously decreased the selected 
number of features. Our proposed approach achieved the best results on 
12 out of 13 datasets. 

To say more about the superiority of the proposed method, we 
ranked different methods based on each performance metric on all 
datasets, representing the number of best ranks achieved by each 
method in Table 20. 

From Table 20, it can be found that the proposed method reported 
more best ranks compared with other methods. To exemplify, it ach
ieved the best rank on eight datasets in terms of the accuracy metric. 
Additionally, for some metrics, the sum of the best ranks exceeds the 
total number of datasets, indicating more than one method achieves the 
best result on some datasets. It can be observed from Table 20 that the 
proposed method obtained promising results in terms of ACC × PDF. It 
also proves that the proposed method considered increasing the accu
racy and simultaneously decreasing the number of selected features. 

For the next experiment, Fig. 3 represents the average ranks of 
different with regard to different performance metrics. 

Fig. 3 illustrates that the proposed method reported lower average 
ranks in all terms of performance metrics. It is worth bearing in mind 
that the lower rank indicates better results. 

Once-again, to analyze the efficiency analysis of the experimental 
results obtained by different methods, Wilcoxon’s signed-rank test [45] 
and Friedman’s test [46] with a significance level of 0.05, were per
formed. Table 21 summarizes the Wilcoxon’s signed-rank test results 
regarding ACC × PDF metric. 

Based on the obtained results from Table 21, the proposed approach 
shows a significant difference from the compared methods on all 
datasets. 

The Friedman’s test was also applied to evaluate the performance of 
all compared methods concerning the ACC × PDF metric. This test 
having been performed, the p-value was equal to 1.38E-9, which in
dicates that the overall performance of the proposed method is 

Table 18 
The average and the best (in parentheses) number of selected features for different methods on different datasets.   

All-features GA-SVM cGA-FS WFACOFS MOEDAFS RSVM-SBS The proposed Method 

Breast Cancer 9 (9) 7.0 (5) 6.9 (6) 8.0 (7) 7.3 (6) 6.5 (6) 4.3 (4) 
Glass 9 (9) 7.5 (7) 8.0 (7) 6.6 (4) 6.5 (6) 6.8 (6) 6.5 (6) 
Heart 13 (13) 11.8 (11) 7.0 (6) 9.2 (8) 6.6 (5) 11.0 (10) 4.6 (4) 
Wine 13 (13) 11.5 (10) 8.0 (6) 7.1 (6) 9.7 (9) 10.3 (9) 4.3 (4) 
Segmentation 19 (19) 10.7 (9) 10.7 (7) 12.4 (9) 8.9 (7) 15.8 (14) 8.7 (8) 
German 24 (24) 17.9 (12) 17.1 (13) 16.9 (13) 18.2 (15) 18.9 (16) 14.8 (10) 
Ionosphere 34 (34) 26.3 (21) 12.7 (5) 10.8 (6) 16.0 (6) 18.5 (12) 12.0 (8) 
Soybean-small 35 (35) 17.2 (10) 5.5 (4) 16.8 (12) 15.5 (14) 16.3 (10) 3.1 (2) 
Sonar 60 (60) 54.3 (44) 42.0 (27) 39.1 (33) 19.3 (8) 30.7 (17) 13.7 (6) 
Hill-valley 100 (100) 68.1 (56) 39.7 (26) 56.9 (45) 65.3 (46) 63.4 (53) 33.4 (24) 
Musk1 167 (167) 143.2(122) 59.0 (47) 42.5 (29) 82.5 (71) 56.0 (41) 34.4 (22) 
Arrhythmia 279 (279) 188.9 (171) 120.9 (95) 44.7 (24) 134.9 (115) 87.2 (70) 22.0 (15) 
Isolet5 617 (617) 326.6 (273) 297.2 (247) 142.4 (97) 392.8 (327) 236.3 (181) 141.3 (94)  

Table 19 
The average ACC × PDF (%) metric for different methods on different datasets.   

All-features GA-SVM cGA-FS WFACOFS MOEDAFS RSVM-SBS The proposed Method 

Breast Cancer 0.00 32.19 26.87 16.28 25.06 29.50 53.26 
Glass 0.00 12.10 11.31 28.69 21.33 20.95 21.90 
Heart 0.00 10.83 42.53 28.28 49.59 16.10 53.22 
Wine 0.00 17.18 45.00 48.47 27.92 25.56 67.86 
Segmentation 0.00 45.06 46.84 41.63 54.82 19.80 55.13 
German 0.00 31.07 29.53 29.25 24.79 21.53 40.02 
Ionosphere 0.00 28.01 65.55 66.00 60.72 50.01 67.37 
Soybean-small 0.00 45.42 75.06 58.85 53.56 62.42 92.71 
Sonar 0.00 14.25 35.13 36.07 70.56 53.63 77.14 
Hill-valley 0.00 35.19 39.66 25.24 23.70 25.82 51.05 
Musk1 0.00 19.03 46.45 68.02 46.77 58.70 69.84 
Arrhythmia 0.00 26.38 37.96 52.75 33.71 45.94 67.84 
Isolet5 0.00 49.03 50.73 66.13 35.03 58.53 72.83  
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significantly better than the other methods. 
Finally, it is interesting to compare our proposed methos with a 

correlation-aware feature selection method. In [49], a correlation-aware 
feature selection method (CBFS) was proposed which further improves 
feature selection speed while preserving classification accuracy. The 
authors claimed that their method shortens computations compared to 
the pairwise feature selection method and produces classification errors 
that are not worse than those produced by existing methods. Thus, we 
decided to compare our method with this technique. Table 22 compares 
the best classification accuracy of this method with the proposed method 
testing on three datasets which were used in [49]. All datasets are 

available at the UCI repository of machine learning databases [44]. The 
mushroom dataset has 8124 samples with 22 features belonging to two 
classes. The waveform dataset contains 21 features while the waveform 
with noise dataset has additional 19 all-noise features. Both of them 
contain 5000 samples with three classes. The number of training sam
ples is denoted by |Vtrain|. 

As shown in Table 22, in two of datasets the proposed method reports 
better results. 

4.5. Guiding technique analysis 

A simple way to determine the number of selected features is to use a 
greedy approach. Thus, in each iteration, we randomly draw s and select 

Table 20 
The number of reported best results for different methods in terms of each performance metric on different datasets.   

All-features GA-SVM cGA-FS WFACOFS MOEDAFS RSVM-SBS The proposed Method 

Accuracy 1 5 0 2 1 2 8 
Precision 1 5 0 2 1 2 8 
Recall 1 6 0 1 3 1 7 
F1-score 1 5 0 1 2 2 8 
ACC × PDF 0 0 0 1 1 0 12 
# of Selected Features 0 0 0 1 2 0 13  

Fig. 3. The average ranks of different methods in terms of each performance metric on different datasets.  

Table 21 
P-value of Wilcoxon signed-rank test between 
the proposed approach and each other methods 
in terms of ACC × PDF.  

Method p-value 

All-features 0.0002 
GA-SVM 0.0002 
cGA-FS 0.0002 
WFACOFS 0.0017 
MOEDAFS 0.0002 
RSVM-SBS 0.0002  

Table 22 
The average accuracy (%) metric for different methods on different datasets.   

| 
Vtrain| 

CBFS with 
C4.5 

CBFS with 
MLP 

The proposed 
Method 

Mushroom 4000 99.60 88.60 90.26 
Waveform 3500 88.40 84.02 89.46 
Waveform with 

noise 
3500 89.27 83.63 90.80  
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the best s features according to the measure used in line 7 of the pseu
docode. However, with this technique, the number of selected features 
will not converge to an optimal value. Fig. 4 illustrates the average 
number of selected features for the winner after ten separate runs of the 
algorithm with 500 function evaluations for the Hill-valley dataset. 

As shown in Fig. 4, the number of selected features did not converge 
after 500 function evaluations. In the following, we introduce our 
guiding strategy technique that would solve this problem and can 
converge to a stable and good solution in the same number of function 
evaluation. 

As discussed in Section 3.5, our introduced guiding technique en
sures that the number of features for each individual follows the chi- 
square distribution with d degrees of freedom, where d is the number 
of winner’s features. This can increase the convergence speed of the al
gorithm due to the limitation on the number of features for each indi
vidual. It can also help the proposed method to select fewer features. 
Similarly, we repeat the experiment with 500 function evaluations. 
However, after 100 function evaluations, the number of selected fea
tures converged. Thus, Fig. 5 shows the average number of selected 
features for the winner after ten separate runs of the algorithm with 100 
function evaluations. We performed this experiment on the Hill-valley 
dataset with 100 features. Since the other datasets showed similar 
trends, reporting them was ignored. 

As shown in Fig. 5, the proposed method tends to select the minimum 
number of features almost at the beginning of the algorithm. 

4.6. Time complexity 

In this section, we discuss the time complexity of the proposed 
method. Based on our pseudocode of the proposed algorithm, the time 
complexity analysis of the proposed method should be studied in five 
steps. Generally, the time complexity of the entire evolution process in 
evolutionary-based FS methods mainly depends on the fitness function 
[50]. In the first step, we initialized our variables and data structures. 
Step 2 generates two individuals using our introduced probabilities. 
There are two main loops in this step corresponding to each individual. 
The main operation in this step is calculation of the conditional proba
bilities using Eqs. (2) and (3). Let C be the cost of one-time calculation of 
each probability. Thus, the time complexity of step 2 is O(max(sa, sb) ×

C × |X|), where X is equal to A if sa is greater than sb or equal to B, 
otherwise. It should be noted that |X| is the number of not-selected 
features. Since sa, sb, and |X| is less than or equal to n, where n is the 
number of features, the time complexity will be O(C × n2). In the next 
step, the fitness of each individual is calculated. The SVM classifier is 
used for this purpose. As mentioned before, the time complexity of the 
evolution process mainly depends on the calculation of the fitness 
function. Therefore, the computation time in this step is 
dataset-dependent. The fourth step updates the vector SV with size n and 
the matrix IM with size n × n. Hence, the time complexity of this step is O 
(n2). Finally, in the last step, the parameter d is updated. 

For the last experiment, we investigated the convergence speed of 
the proposed algorithm and compared it with other population-based 
optimization FS methods. Fig. 6 shows the number of function evalua
tions to achieve the best average accuracy in the evolution process. The 
results are reported after ten separate runs of the algorithm with 500 
function evaluations for the Heart dataset. It should be noted that the 
other datasets also had similar behavior and so we ignored reporting 
them. 

As shown in Fig. 6, the proposed method converged to a higher ac
curacy with fewer number of function evaluations. The proposed 
method reported the best answer in 73-th function evaluation, but GA- 
SVM, cGA-FS. 

As we know, there is a trade-off between computation speed and 
classification accuracy in each FS method. The main advantage of our 
method is that it considers interdependencies between features but it 
does not perform in a pairwise manner for selecting features. In pairwise 
feature selection strategy all of the features are evaluated in a pairwise 
manner. The procedure begins with an empty set of selected features. 
Then, features are added in pairs. In each selection step, the pair that 
maximizes a predefined criterion together with the already selected 
features is added. A pairwise selection strategy has higher time- 
complexity but it can take into account any possible in
terdependencies between features, which leads to higher classification 
accuracy [49]. Thus, this selection strategy has a quadratic complexity. 
However, in our proposed method, for each individual a and b, in each 
iteration, only one feature is selected based on our introduced proba
bilistic model (Eqs. (1)–(3)) using roulette wheel mechanism. The 
introduced probabilities were calculated using the goodness of selecting 

Fig. 4. The average number of selected features of the winner, determined by the greedy approach for the Hill-valley dataset.  
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each feature alone (using the vector SV) and the goodness of selecting 
each feature along with others (using the matrix IM). Thus, we do not 
perform pairwise selection. In fact, we compare each pair of the winner 
and the loser for updating the matrix IM. Thus, as presented in experi
mental results, the proposed method not only improves the classification 
accuracy, but also it converges to the optimum solution with fewer 
function evaluations. 

5. Conclusion and future works 

Feature selection is one of the critical preprocessing steps in each 
machine learning application. It tries to find the optimal subset of 
informative features and consequently remove irrelevant ones. The main 
advantages of FS are reducing the time complexity and the model 
building cost, preventing over-fitting, increasing the generalizability of 
the trained classifier, and increasing its accuracy. However, an FS task 
suffers from a large search space and correlated features that severely 
affects its performance. In recent years, there have been several studies 
in the literature as for each of these challenges. Among them, evolu
tionary algorithms have provided more promising results, dealing with 

the FS problem. In this paper, we proposed a correlation-aware FS 
approach based on the estimation of distribution algorithms (EDAs), 
which is categorized in population-based optimization methods. The 
EDA methods use an explicit probability distribution to generate new 
candidate solutions, and a sequence of probabilistic model updates is 
utilized to optimize the problem. The main contribution of our proposed 
method is to consider both the importance of each feature alone and the 
interaction between features. To do this, a conditional probability 
scheme that examines the joint probability distribution of selecting two 
features is considered. The other advantage of the proposed method is 
that it generates only two individuals in each iteration. However, the 
obtained results in the experiments justified that this does not result in 
weak search in the entire space. The generated individuals compete in 
each iteration and evolve during the algorithm to find the best solution. 
Finally, we proposed a guiding mechanism that ensures that the number 
of features for each individual does not exceed the value determined by 
the chi-square distribution. This can directly increase the convergence 
speed of the algorithm due to the limitation on the number of features 
for each individual. The experimental results on synthetic and real- 
world datasets and the statistical analysis proved that the proposed 

Fig. 5. The average number of selected features of the winner, determined by the chi-square distribution for the Hill-valley dataset.  

Fig. 6. The number of function evaluations to achieve the best average accuracies for the Heart dataset.  
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method was quite successful in both considering the correlated features 
and increasing the classification accuracy. It should be mentioned that 
our proposed method does not make any assumption about datasets, 
being able to deal with any feature selection for classification problems. 
For example, for a given imbalanced dataset, it is necessary to firstly 
balance it and then run our algorithm on the balanced dataset. More
over, since our proposed method is an evolutionary-based algorithm that 
uses only two individuals in each generation, it requires more time to 
converge for high-dimensional data. As future works, it is interesting to 
extend our method in order to deal with multi-objective problems, 
receiving the advantages of the proposed method in more real-world 
applications. Moreover, one limitation about the proposed method is 
dealing with high-dimensional data. This limitation of the proposed 
method stems from the n × n interaction matrix (IM), where n is the 
number of features and increasing n would result in increasing the time 
complexity as well as the space required to deal with it. Thus, it can be 
considered as a direction for future studies. Our proposed has not been 
as good as other methods in some datasets. We should try to improve its 
performance to produce better results on more applications and data
sets. Finally, although our method is originally developed in the case 
that we generate only two individuals in each iteration, it can be 
extended to all evolutionary-based FS methods as an intriguing future 
study. 
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