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Abstract
This work proposes Artemia cysts as a dynamic and efficient biosorbent for the elimination of lead ion contaminants which 
can continuously produce new and multifold cysts as a sorbent in every cycle. Cyst of Artemia is composed of multiple lay-
ers covered with a porous surface and numerous functional groups that are capable of vigorous encapsulation of lead ions. 
Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive spectrometry and X-ray diffraction 
analyses were used to assess surface properties of the cyst. The most vital parameters in evaluating adsorption rate such as pH, 
contact time, initial concentration of lead ions and selectivity for uptake of the lead ions in the presence of high concentration 
of  Ca2+/Mg2+/Na+/Cd2+/Co2+/Cu2+/Mn2+/Ni2+ proved that rapid and robust biosorption occurred during these selectivity 
experiments. The most astounding result to appear from the data was that batch experiment showed the maximum uptake of 
94.40% at pH 5.8 in less than 1 min with 50 mg  L−1 of initial concentration of lead ions. Equilibrium biosorption well fitted 
by Langmuir isotherm. The negative value of change in Gibbs free energy (ΔG) indicated the spontaneous adsorption of 
lead ion on the biosorbent. The enthalpy change indicated that an exothermic reaction was occurring during the biosorption 
process in which the ΔH was -28.74 kJ  mol−1. The results confirmed the efficient, simple and straight forward performance 
of Artemia cysts in purifying contaminated water from lead ions.

Editorial responsibility: Binbin Huang.

 * H. Ahmadzadeh 
 h.ahmadzadeh@um.ac.ir

1 Department of Chemistry, Faculty of Science, Ferdowsi 
University of Mashhad, 9177948974 Mashhad, Iran

2 Department of Chemistry, Payame Noor University, 
19395-4697 Tehran, Iran

http://orcid.org/0000-0002-8361-4512
http://orcid.org/0000-0002-5898-7149
http://crossmark.crossref.org/dialog/?doi=10.1007/s13762-021-03844-8&domain=pdf


 International Journal of Environmental Science and Technology

1 3

Graphical abstract

0 20 40 60 80 100

0

20

40

60

80

100

Pb
2+

 u
pt

ak
e%

time (min)

0 1 2 3 4 5
0

50

100

P
b2+

 u
pt

ak
e%

time (min)

Artemia cysts

Artemia

Keywords Artemia cyst · Biosorption · Lead ions · Heavy metal ions, Langmuir isotherm, Freundlich isotherm

Introduction

Water being an existential element that sustains life on earth 
undoubtedly gives rise to the crucially of dealing with its 
contamination. Even trace amounts of heavy metal contami-
nating water impose a detrimental threat to human health 
(Bolisetty et al. 2019; Liang et al. 2019). Health experts in 
various regions of the world have reported illnesses such 
as nervous system failure, encephalopathy, skin faintness 
and lung cancer that were attributed to polluted water with 
trace amounts of arsenic (Sarode et al. 2019). Lead ions are 
among the most toxic and non-biodegradable heavy metals 
after arsenic found in water and waste water (Sarode et al. 
2019). The main sources of lead pollution are manufacturing 
of batteries, industrial fuel, petroleum and plating industries 
resulting in irreversible affliction on living things. World 
Health Organization (WHO) in their 2019 report on lead 
poisoning through drinking water iterated that it can result 
in metabolic disorders, anemia, kidney failure, brain stroke, 
liver failure and cancer among other illnesses (Awual and 
Hasan 2019; WHO 2019; Kushwaha et al. 2020; Yılmaz 
et al. 2020).

Elimination of lead ions from water is being executed 
using various methods such as chemical precipitation, 

coagulation, reverse osmosis, ion exchange and adsorp-
tion (Rao et al. 2007; Huang et al. 2011; Bowman et al. 
2018; Vieira et al. 2018; Chen et al. 2019). Among these 
approaches, adsorption technique is considered to be the 
most efficient, owing it to its simple design, low-cost and 
eco-friendliness compared to other formal approaches 
(Cashin et al. 2018; Chatterjee et al. 2018; Li et al. 2018; 
Hannachi and Hafidh 2020). In spite of these advantages, 
scholarly research has been dedicated to developing these 
methods into cheaper and greener approaches, which has 
shifted their focus toward the investigation of natural 
adsorbents. Various biomaterials, such as waste of saffron 
flower (Khoshsang and Ghaffarinejad 2018), cucumber 
peel (Basu et al. 2017), egg shell (Meski et al. 2010), fruit 
peels (Mallampati et al. 2015; Turkmen Koc et al. 2020), 
cabbage waste (Hossain et al. 2014) and Taro (Saha et al. 
2017), have been examined as sorbents to remove heavy 
metal ions. The functional groups on the surface of some 
adsorbents are a significant parameter that can contrib-
ute in eliminating heavy metal ions (Xu and Wang 2017; 
Wang and Zhuang 2017). Some studies based on proteins 
and their derivatives have been reported to use them as an 
excellent sorbent. Amino acids exist on proteins and their 
hybrid adsorbents constitute immense amounts of amide 
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bonds and carboxyl functional groups which can uptake 
heavy metal ions from wastewater (Koley et al. 2016a, b; 
Zhang et al. 2020).

In parallel with proteins, chitin and chitosan have been 
introduced as effective metal biosorbents from wastewa-
ter due to their amino and hydroxyl functional groups and 
unique properties such as biodegradability, high biosorption 
capacity, non-toxicity and efficient performance in aqueous 
solutions (Luo et al. 2015; Zhang et al. 2016; Sellaoui et al. 
2017; Tolesa et al. 2019; Zia et al. 2020). These sorbents 
with free electron lone pairs on -NH2 and -OH functional 
groups can cross-link with heavy metal ions via chelation 
or ion-exchange mechanisms depending on their pH level. 
However, during the treatment process of wastewater, most 
biosorbents would be saturated with high salt ion concentra-
tions, resulting in loss of chemical stability. Hence, research-
ers are persistently investigating the potential of adsorbents 
with sufficient capacity for intended ion adsorption in the 
presence of other competitive ions. Most of the materials 
that have substantial capacity for ion adsorption do not 
accomplish effective performance owing to the powerful 
competing affinity of ions. As is known, the general cati-
ons including  Na+,  Ca2+ and  Mg2+at high concentration are 
present in aqua environment of Artemia cyst and natural 
wastewaters. Thus, they influence lead ion biosorption.

Artemia (brine shrimp) are used as live food in fish culti-
vation and aquaculture. These species usually live in hyper-
saline lakes or oceans that are located in regions such as 
Europe, China, Japan, Iran and USA (Sorgeloos et al. 2001; 
Bergami et al. 2016; Le et al. 2019). Approximately 18,000 
tons of Artemia have been used for fish feeding or annual 
cultivation demands all over the world(Brown 2012). Lar-
vae emerge from Artemia cysts (A.C.) and would be col-
lected for bait and discarded cyst shells would be disposed 
as wastes.

Several studies have been performed to use Artemia in 
ecotoxicology studies. Accordingly, cysts-based assays are 
cost effective, simple and suitable in routine experiments. 
A number of advantages can be considered including short-
term nauplii hatchability, long-term mortality, high flex-
ibility to hard environmental conditions, high fecundity and 
reproductive ability. At the same time, several disadvantages 
about its sensitivity toward a wide range of substances have 
been also presented (Libralato 2014; Kos et al. 2016).

Furthermore, Artemia cyst contains calcium, phosphor 
compounds, chitin, chitosan and 17 types of amino acids 
(Sugumar and Munuswamy 2006), whereby these structures 
are capable of seizing heavy metal ions through available 
amides and carboxyl groups. Additionally, chorion layer of 
cysts demonstrates satisfactory biocompatibility and eco-
friendly properties amid harsh conditions. For instance, it 
indicates high adaptability with broad ranges of temperature 
and salinity, UV emission and oxygen-lacking environments 

with protection of encysted embryos (Clegg et al. 1994; 
Wang et al. 2015; Song et al. 2022). Interestingly, the outer 
cuticular membrane of the cyst also illustrates inimitable 
heterogeneous three-dimensional structure of pores with 
micro-, medium- and macro-porous morphology in the 
range of micrometer to nanometer size which are suitable 
for the elimination of metal ions (Wang et al. 2018). More 
importantly, this layer acts as a filter and protects embryos 
from the penetration of molecules larger than carbon dioxide 
(MacRae 2016). This specification is considered a remark-
able feature in eradicating heavy metals without damaging 
the embryos.

As mentioned earlier, the superior chemical stability of 
Artemia cysts in discordant conditions is regarded as an out-
standing attribute of this species (Wang et al. 2010). The car-
boxyl and amide functional groups with three dimensional 
pore structures in cysts layer can strongly bind with heavy 
metal ions. In the same research, Wang et al., 2018 executed 
a progressive method and applied detached Artemia cyst 
shells and poured them into aqua solution which resulted in 
the elimination of lead ions (Wang et al. 2018).

On the contrary, the current research uses a singular stage 
of immediate release of the cysts directly into the polluted 
solution for the removal of toxic lead ions through an inces-
sant sorption system of heavy metal contaminants. In par-
ticular specially, no report had previously seen to use Arte-
mia cysts for contaminated water. Therefore, it is necessary 
to know this knowledge about biocompatible sorbent.

Depending upon water temperature, pH, salinity, etc., 
cysts will hatch in approximately 18–36 h and the nauplii 
are born. After hatching Artemia, the egg shells that uptake 
lead ions are floated and separated from nauplii. Normally, 
in the natural conditions it takes 3 to 6 weeks for brine 
shrimp to mature. Under optimal conditions, adult Artemia 
live for several months, and reproduce 50 to 200 eggs every 
3–4 days. The surrounding shell protects embryo from the 
polluted elements. When conditions improve, the embryo 
resumes development, and the life cycle continues. So, auto-
matically the cysts as sorbents will produce in regular time 
even with the entry of new contamination into the environ-
ment. Actually, this research suggests a novel, continuous 
system to use cysts for cleaning the contaminated waters that 
is able to uptake contaminated lead ions without extra cost. 
Also, cyst shells are waste with no economic value.

The introduction of this novel method integrates merits 
of simplicity, time optimization and affordability in addi-
tion to the reusability, good biodegradability, low cost, high 
efficiency and the possibility of metal recovery. The biosorb-
ent was characterized using scanning electron microscopy 
(SEM), energy-dispersive spectrometry (EDS) and X-ray 
diffraction (XRD) and FT-IR techniques. Moreover, vari-
ous effective influencers on biosorption were evaluated. 
Finally, the isotherms and thermodynamics parameter were 
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calculated. The date of this research was carried out in the 
Ferdowsi University in Mashhad, Iran (2019).

Materials and methods

Materials

Pb  (NO3)2 and  HNO3 from Merck (Darmstadt, Germany), 
Ca  (NO3)2 from BDH Laboratory Supplies (Poole, UK), Mg 
 (NO3)2 and NaOH from Riedel-de-Haen (Seelze, Germany) 
and Artemia cysts (A.C.) from Guar kavirarya (Tehran, Iran) 
were purchased. For the preparation of solutions, deionized 
(DI) water was used. All chemicals and reagents utilized in 
the experiment were of analytical grade and were applied 
without any alternative purification.

Instruments

The concentration of Pb ions in the solution was determined 
with an atomic absorption spectrophotometer (Analytik Jena 
AG, 07,745 Jena, Germany). The surface morphology of 
the Artemia cyst before and after lead uptake was obtained 
using scanning electron microscopy (SEM) (TESCAN-
XMU, Czech Republic) with an energy-dispersive X-ray 
spectrometer EDS analysis. The crystalline structure of the 
cyst before and after sorption of lead ions was recorded by 
X-ray diffraction (XRD) (Bruker D8, USA) advanced dif-
fractometer with Cu Kα radiation. A Fourier transform 
infrared (FT-IR) spectrometry (Thermo Nicolet Avatar 370, 
Pittsfield, USA) was used to characterize the chemical struc-
ture of the biosorbent samples. Inductively coupled plasma 
optical emission spectroscopy (ICP‐OES) analysis was used 
to selectivity study.

Treatment of the Artemia cysts

The A.C. were cleaned conducting the following steps. First, 
the A.C. (10 g) were added into a 300-mL water–ethanol 
mixture (50 w/w %) and stirred for 5 h to remove the salt and 
other residues. This procedure was repeated for 2 − 3 times. 
Then, A.C. were filtered and washed with deionized water. 
Finally, A.C. were heated and dried at 45 °C for 8 h and kept 
in a desiccator at room temperature.

Batch biosorption

For batch sorption experiments, 50.0 mg of A.C. was intro-
duced into an Erlenmeyer flask containing 50 mL solu-
tion with 50 mg  L−1 lead (II) ions. The pH of solution was 
adjusted by adding a small amount of diluted  HNO3 or 
NaOH to the original lead (II) solution, and then, the pH was 
measured using a pH meter (Martini Instruments, Mi 150, 

Romania). The aforementioned glass flasks were transferred 
to an incubator shaker (FaraAzma 911,201, Iran) under a 
constant shaking speed of 150 rpm for 2 h at 25 °C and then 
the sorbent was filtered. The lead ion species distribution 
was calculated using Visual Minteq software with the initial 
Pb (II) concentration of 50  mgL−1.

The competing experiments were performed by adding 
 Na+, Mg 2+ and  Ca2+ions at different concentrations to the 
initial 50  mgL−1 Pb (II) at 25 °C, with 50.0 mg sorbent at 
pH = 5.8 ± . The contents of each flask were transferred to 
an incubator shaker for 2 h of shaking to reach sorption 
equilibrium. Finally, the residual lead concentrations were 
calculated using the flame atomic absorption spectropho-
tometer (FAAS).

Isotherms and thermodynamics of A.C. biosorption

In order to confirm the sorption mechanism, the rate of Pb 
(II) sorption process on A.C. was performed. For this pur-
pose, 0.5 g of A.C. was added into a 500 mL solution con-
taining 50 mg  L−1 of lead ions. Mechanical stirring was used 
to attain full mixing, and 0.5 mL of the solution was sampled 
at a specific time. The sample concentrations and sampling 
time were reported to calculate sorption rates.

Sorption isotherms were determined to evaluate the maxi-
mum sorption capacity. Briefly, 50.0 mg of treated A.C. was 
introduced into series flasks containing 50 mL of solution 
with different concentrations of lead (II) ions (40, 60, 80, 
100, 150, 200 and 300 mg  L−1) while the pH of the solu-
tion at equilibrium was adjusted to 5.8 ± 0.2. These flasks 
were transferred to an incubator shaker for 2 h of shaking. 
Subsequently, the lead ions were determined and the maxi-
mum sorption capacity calculated by the classic Langmuir 
or Freundlich models. Finally, thermodynamic parameters 
were calculated at various temperatures.

Equilibrium experiments and data evaluation

For all batch biosorption experiments, the removal efficiency 
(E) and adsorption capacity  qe (mg  g−1) of Pb (II) on A.C. at 
equilibrium in the aqueous solution were calculated accord-
ing to the following equation:

where C0 (mg  L−1) and Ce (mg  L−1) represent the initial 
and equilibrium concentrations of lead ions, respectively; 
V (L) is the volume (lead ions solution); and W (g) is the 
mass of A.C.In the current study, the effect of some essential 
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parameters such as initial pH, shaking time and concentra-
tion of Pb ions was optimized. All experiments were per-
formed in triplicates.

Results and discussion

Characterization of the Artemia cyst

Before and after biosorption, A.C. were characterized by 
FT-IR analysis, SEM, EDS and XRD. FT-IR pattern of the 
samples before and after lead ions adsorption was recorded 
to identify the possible functional groups of A.C. (Fig. 1). 
The broad peak at ~ 3377  cm−1 was assigned to hydrogen-
bonding of O − H and –N–H (Zhang et al. 2017). The weaker 
peaks at ~ 2958 and 2927  cm−1 were assigned to the C–Hn 
stretching groups (Yang 2007). The peaks at 1399   cm−1 
and ~ 1451  cm−1 were corresponding to the C − OH stretch-
ing and bending vibration group, respectively (Fan et al. 
2013). A sharp peak appearing in the region 1653  cm−1 can 
be attributed to the C = O stretch bending (Gupta and Ras-
togi 2008). The peak at ~ 1240  cm−1 and the strong peak 
at∼1542  cm−1 may indicate the presence of amide I (C − N, 
N − H) and amide II groups, respectively (Van De Velde 
and Kiekens 2004; Wang et al. 2018). In summary, these 
results represent the chitin and amino acids components on 
shell structure.

In this sample, shifting of the OH vibration band to an 
upper value and increasing in its intensity were observed 
which is due to the OH groups that bonded with lead ions. In 
addition, peaks at 2927, 2851 and 1542  cm−1 were observed 
to have shifted to 2925, 2855 and 1537  cm−1, respectively. 
On the other hand, the large band had shifted 5 wavenumbers 
for amide II component (1537  cm−1) and the peak intensity 
increased. These significant shifts might be attributed to the 

formation of a strong bond between the –NH group and lead 
ion.

SEM images of A.C. are presented in Fig. 2a–f. As dem-
onstrated in Fig. 2a, the size of spherical cysts is about 
150–250 μm. Remarkably, Fig. 2b, 2c show the chorion layer 
and outer cuticular membrane of cyst with 3D hierarchical 
morphology structure while size ranges of pores are wide-
spread. The pore size distribution of A.C. shows the wide 
distribution from 100 to 1000 nm.

The macro-pore size and pore volume of sorbent was 
adopted to capturing heavy metal ions from contaminated 
water (Awual 2015; Kubra et al. 2021).

Figure 2d, e is shown the A.C. after uptake of lead ions. 
After biosorption process, the pores have been covered and 
they are not visible as presented in Fig. 2f). These changes 
demonstrate the capturing of lead ions by several functional 
groups (carboxyl and amides) that have been expanded on 
the surface of cysts. Concurrently, the EDS results before 
and after the lead ions uptake confirm these observations 
(Fig. 3a, b). The sharp peak corresponds to lead ions and it 
affirms the high uptake of these ions on Artemia cyst sur-
face. Furthermore, it indicates that the essential elements 
such as C, O, P and K integrate with chitin components and 
amino acids in cyst shell.

XRD pattern of A.C. before and after lead (II) uptake is 
shown in Fig. 3c. The noisy pattern and broad peak of cysts 
suggest an amorphous structure or an alternative conclu-
sion that can be drawn is that the degree of crystallinity 
is low. The characteristic peaks at 2θ values of 8.66 and 
20.26 are, respectively, corresponding to (0 2 0) and (1 1 
0) diffraction planes of cyst chitin (Zhou et al. 2005a; Liu 
et al. 2020). After lead uptake, the new distinct peaks at 2θ 
values of 25.76 and 30.21 are observed adsorption of lead 
ions in samples (Zhou et al. 2005b). The characterization 
result suggests the high affinity Pb ions. Next, the affecting 
biosorption parameters were further elucidated.

Optimization of experimental parameters

Effects of pH on Pb(II) uptake

According to the previous studies, the biosorption process 
is highly pH dependent that influences on metal chemistry 
and binding functional groups (Awual et al. 2020b). Hence, 
in this research, the effect of pH (ranging from 2.0 to 7.0 
chosen based on the alpha distribution functions of lean ions 
species shown in Fig. 4b) on lead ions uptake was investi-
gated to provide an extensive insight on the sorption pro-
cess. As apparent in Fig. 4a adsorption procedure of lead 
ions onto A.C. is divided to several stages. For pH < 2.5 
(low adsorption phase), uptake efficiency of lead ions dimin-
ishes as a consequence of protonating of functional groups 
such as amides/carboxyl component on the surface of cysts 
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Fig. 1  FT-IR spectra of the A.C. after and before Pb ions uptake
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which lead to deactivation of metal adsorption sites. The 
sharp stage (pH = 3 − 5.5) was exhibited by increasing pH 
and slope of the graph enhances to reach the maximum sorp-
tion capacity stage. In the next stage (pH = 5.5–6), graph 
slope is almost constant which is due to saturation of all the 
sorption sites during previous stages. Accordingly, pH = 5.8 
was considered as the optimum condition pH value in all the 
experiments to avoid any hydroxide precipitation.

Moreover, lead hydroxide, Pb(OH)2, precipitated in the 
high pH levels (pH ≥ 7). Nature of lead ion, aqua solution 
condition and nature of cysts are essential factors which 
affect biosorption of lead ions.

The distribution of lead ion species is demonstrated in 
Fig. 4b based on the alpha distribution functions and step-
wise formations constants of each species. As shown in this 
figure, the dominant form of lead ions at selective pH range 
was mainly Pb(II) with a trace level of Pb(OH)+ but more 
than 90% biosorption of Pb(II) occurred and precipitation 
was not observed at optimum pH. It is possible that due to 
the presence of trace amounts of other lead ion species such 
as Pb(OH)+ which is distinct from Pb(II) ion in the complex 
formation constant, Pb(II) uptake is slightly reduced. More 
significantly, at pH < 2 unsaturation of sorbent occurred in 
acidic solution.

Biosorption selectivity

Selectivity is argued as one of the essential parameters for 
successful adsorbent process. Most of the materials that have 

large capacities for ions adsorption do not accomplish effec-
tive performance owing to powerful competing affinity of 
different ions for the same adsorbent, i.e., A.C. As estab-
lished in earlier studies, the general cations including  Na+, 
 Ca2+ and  Mg2+ at high concentrations are present in natural 
aqua environment of Artemia cysts.

Thus, they influence lead biosorption selectivity. In this 
study, to assess the effective possible competing ions on 
biosorption efficiency, the competing cations were examined 
in the presence of lead ions at optimum experiment condi-
tion (pH: 5.8, 0.5 g  L−1 sorbent at 25 °C) and the results are 
given in Fig. 5a–c. As the results suggest, lead ions uptake 
decreased in the presence of  Mg2+ and  Ca2+ particularly 
when the  Ca2+ was applied while A.C. still acted as a favora-
ble sorbent for Pb(II) even at 100 times comparative cations 
addition.

Functional groups are playing an essential key for ion 
selectivity study (Awual 2019a; Awual et al. 2020a). This 
selective behavior of cysts could be ascribed by the exist-
ence of high number of functional groups such as amides 
and carboxyl on the surface and 3D structure of cyst with 
various pore sizes that are not easily saturated. Whereas, in 
the presence of  Na+, after a little decrease, Pb ions uptake 
increased over the initial Pb uptake without interference. It 
has been suggested that biosorption is naturally non-elec-
trostatic (Liu et al. 2013). Furthermore, the presence of salt 
ions may decrease the negative charge density of the double 
layer, and therefore, higher the lead ion biosorption (Liu 
et al. 2013). Additionally, selectivity coefficient has been 

100 2 2

a b c

100 2 2

d e f

Fig. 2  SEM images before uptake of lead ions for (a) cyst of Artemia; (b) chorion layer and outer cuticular membrane of cyst; (c) pore structures 
of the inner porous of cysts; and SEM images after uptake lead ions for (d, e) cyst of Artemia; (f) pore structure of the inner porous of cysts
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investigated using microalgae in aqueous solution and the 
results suggest that:  Na+ <  H+  <  Cd2+ <  Pb2+. The higher 
affinity for lead ions might be justified based on the hard and 
soft acid–base theory (Hackbarth et al. 2013). This signifies 
a key result since the cysts of Artemia hatch in high con-
centration of salt and makes the application of this method 
operational.

The selectivity distribution ratio, Kd  (mLg−1), was 
defined to quantify the biosorption selectivity with Eq. 3 
(Wan et al. 2016) and the results are shown in Table 1.

As disclosed in Table 1, the large  Kd values for A.C. 
samples verify their excellent selectivity and preferential 
biosorption performances.

Also, several divers metal ions presented in wastewater 
samples that influence heavy metal ions uptake. Therefore, 
interfering mixed metal ions such as  Cd2+,  Mn2+,  Co2+, 
 Cu2+,  Ca2+,  Ni2+ and  Mg2+ on lead ion biosorption by A.C. 
were investigated and the results are depicted in Fig. 5d. 
The data demonstrated the presence of mixed metal ions 
with a faintly lower biosorption when compared to single 
ion biosorption. The biosorption percentage was 73.5%. In 
this experiment, the foreign metal ion concentrations were 
20-fold higher than that of the  Pb2+ concentration in the 
sample solution.

Effect of initial lead ions concentration

To determine the role of initial lead (II) ions concentra-
tion on the uptake efficacy, diverse concentrations of lead 
ions ranging from 20 to 300  mgL−1were studied (Fig. 5e). 
As demonstrated, the Pb(II) uptake increased and then 
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gradually decreased. Maximum Pb (II) uptake of the A.C. 
was observed to be 92% when the initial lead concentration 
was 60  mgL−1. Furthermore, after 60  mgL−1 initial con-
centration of lead ions, lead uptake percentage decreases 
which may be due to saturation of adsorption sites on the 

A.C. In order to test the effect of lead toxicity on A.C. hatch-
ing, cysts were exposed to 60 mg  L−1 of lead ions under 
hatching condition. Interestingly, it was observed that nauplii 
were hatched in this condition. Additional data are given in 
Online Resource (ESM_1.mp4). This experiment confirms 
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Fig. 5  Biosorption selectivity evaluation (a − c) for the effects of Mg, 
Ca and Na ions on lead ions uptake by A.C., respectively. (Pb(II) 
concentration 50  mg  L−1) (d) competing cations effect for Pb (II) 
biosorption (Pb(II) concentration 1  mg  L−1, competing ion concen-

tration was 20.0 mg  L−1) and (e) effect of initial Pb ions concentra-
tion on uptake by A.C. ( optimum conditions: 0.5  g  L−1 sorbent, 
pH = 5.8 ± 0.2, T = 25 °C, volume = 50 mL.)
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our conclusion that hatching might be safe under contami-
nated environment.

Additionally, sensitivity was calculated by series of lead 
ion concentrations which were used for plotting curve. 
Correlation coefficients  (R2) and sensitivity were obtained 
0.9979 and 0.0105, respectively, for y = 0.018x + 0.007.

Lead ions rate and isotherms

Biosorption rate was conducted to determine the biosorp-
tion process (Fig. 6a). An acutely rapid lead ion uptake 
was found in less than one minute with approximately 95% 
uptake efficiency which lasted until the end of 100 min. This 

extreme biosorption can be credited to the pore morphology 
and functional groups in cysts. Similarly, in a recent work, 
ion uptake by cyst shells occurred in approximately 2 min 
(Wang et al. 2018). However, more time was used in all 
experiments to ensure lead ion biosorption.

The macroscale pores can execute fast lead ions adsorp-
tion while the meso-/micro-pore scale can support more sur-
face area and active sites for biosorption. Some studies show 
adsorption rate that is regarded as one of the disadvantages 
for the process (Meena et al. 2005; Soares et al. 2016). For 
instance, in a study by Hua, M. et al. the adsorption pro-
cess improved through nanocomposite fabrication results in 
modification of the porous polystyrene (Hua et al. 2013).

Table 1  Kd (mL  g−1) Values of 
lead ions biosorption onto A.C. 
in the presence of competing 
ions at different levels

Competing ions 
(M)

Kd(mL  g−1) at different ratios of M/Pb(II)

2 10 20 40 60 100

Na+ 6825.95 3990.02 4417.71 7034.71 7855.83 4941.07
Ca2+ 5209.64 5936.74 4735.92 5632.18 2933.91 2387.53
Mg2+ 7528.06 7813.68 4699.31 4690.87 4762.36 3382.12
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Fig. 6  (a) Biosorption rate at different time intervals (conditions: 
0.5 g  L−1 sorbent, initial lead(II) concentration of 50 mg  L−1 at 25 °C, 
volume: 500 mL, pH = 5.8 ± 0.2). (b) Biosorption isotherm, (c) Lang-

muir isotherm and (d) Freundlich isotherm (condition: 0.5 g  L−1 sorb-
ent, 25 °C, pH = 5.8 ± 0.2)
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As illustrated in the results, A.C. represent high capac-
ity for lead uptake. In this study, A.C. can uptake Pb ions 
through functional groups especially amine and this pro-
cess is distinct.

The adsorption isotherm is a pivotal parameter in 
designing the adsorption process and evaluation of the 
adsorbent performance. Two major adsorption isotherm 
models applied mostly in water treatment are Freundlich 
and Langmuir. Langmuir isotherm is the most widely used 
in adsorption studies. Monolayer coverage on the biosorb-
ent, constant adsorption energy, homogeneous adsorption 
sites and no interaction between the adsorbed molecules 
or ions are major assumptions of Langmuir isotherm. This 
model is expressed in Eq. (4) (Li et al. 2011; Guo and 
Wang 2019).

where Ce is the equilibrium concentration of lead ions in 
solution  (mgL−1), qe is the adsorbed value of lead ions at 
equilibrium concentration (mg  g−1), qm is the maximum 
adsorption capacity on adsorbent (mg  g−1), and Kl is the 
Langmuir constant that is related to the adsorption energy 
(L  mg−1) (Malik et al. 2018).

Another parameter that can be defined using the Lang-
muir equation is the separation factor, which is represented 
by Rl and is defined according to the following Eq. (5):

where Kl(Lmg−1) and C
0
(mgL−1) are Langmuir isotherm 

constant and initial lead ions concentration, respectively.
The values of Rl indicate the type of equilibrium reaction 

for the adsorption process. If the value of Rl is zero, the 
adsorption is the non-equilibrium reaction type, and if it is 
(0 < Rl < 1), ( Rl = 1) or Rl > 1), the adsorption type is optimal, 
linear and undesirable, respectively. Therefore, the Lang-
muir isotherm can explain the maximum capacities and the 
surface properties of the adsorbent (Wang and Guo 2020). 
The Freundlich isotherm is considered to model multilayer 
adsorption and heterogeneous process on adsorbent. It can 
be described as Eq. 6:

where kf  (mg  g−1) and n are the Freundlich constants, indi-
cating the biosorption capacity and the biosorption intensity 
in the solution, respectively.

The isotherm study of lead ion biosorption was performed 
and is shown in Fig. 6b. The data were further fitted to Lang-
muir and Freundlich models to select the best model. Maxi-
mum lead ion capacity was observed 79.75 mg  g−1.

(4)
Ce

qe
=

1

qmKl

+
Ce

qm

(5)Rl =
1

1 + KlC0

(6)Logqe = Logkf +
1

n
LogCe

Figure 6c, d exhibits the maximum lead ion uptake capac-
ity by applying Langmuir and Freundlich models. The 
detailed equation and constant values are given in Table 2. 
The data shown in Table 2 fitted well in Langmuir adsorp-
tion isotherm.

It indicates that the biosorption has occurred at homoge-
neous sites in surface of cysts and the rate limiting step is 
diffusion. In addition, a value of Rl between 0 and 1 for all 
concentrations at 25 °C specifies the favorable adsorption 
(Table 3).

Effect of temperature on biosorption

Thermodynamic parameters of the biosorption process such 
as Gibbs free energy (ΔGº), enthalpy (ΔHº) and entropy 
(ΔSº) have been calculated to determine the effect of tem-
perature on lead ions uptake at 298, 313 and 333 K. These 
parameters can be calculated by the following equation:

where  Ke is the biosorption equilibrium constant (mL  g−1), 
R is the universal gas constant (8.314 J  mol−1  K−1), and T is 
the absolute temperature (K). The Gibbs free energy change 
values for the biosorption of lead ions are negative, indicat-
ing that the biosorption process by A.C. is feasible and spon-
taneous. The low values of ΔGº with increase in temperature 
indicate not efficient biosorption at higher temperature.

Furthermore, the Van’t Hoff equation shown in Eq. 7, 
enthalpy (ΔHº) and entropy (ΔSº) were calculated from 
the plot of ln  Kd versus 1/T. The thermodynamic param-
eters are recorded in Table 4. As revealed in this table, the 
enthalpy and entropy values were negative. The negative 
value of enthalpy indicates that the biosorption is exo-
thermic in nature and the negative value of entropy cor-
roborates the decreased randomness at the cyst egg–solu-
tion interface during the lead ion uptake. The maximum 

(7)ΔG◦

= −RT ln
(

Ke

)

(8)lnKe =

(

ΔS◦

R

)

−

(

ΔH◦

RT

)

(9)Ke =
qe

Ce

Table 2  Constants and parameters of adsorption isotherms for the 
lead adsorption

Model Parameter R2

Freundlich Kf (mg  g−1) = 1.583 0.7522
n = 1.142596

Langmuir qm (mg  g−1) = 45.45 0.959
K
l
(Lmg−1) = 0.068
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uptake of lead ions was observed at 298 K. Thus, the 
biosorption of lead ions on the cyst of Artemia decreased 
by increasing the temperature due to the exothermic 
process.

Various sorbents for lead ions uptake reported in lit-
erature are summarized in Table 5. This table shows fast 
lead ion uptake by A.C. In addition to natural biosorbents, 
there are many studies reported in the literature regarding 
the toxic diverse metal ions removal based on the com-
posite ensemble materials. The advantages including high 
selectivity and sensitively, efficiency of lead ion adsorp-
tion from aqueous solution and other parameters are sum-
marized in Table 5. Chemical composites require efforts 
to synthesize and impose high cost to metal ion removals 
despite the fact the efficiency of removal is some cases 
might higher that biosorbents (Awual 2019b; Awual et al. 
2019, 2020a).

Conclusion

In summary, we propose to apply Artemia cyst as a robust 
lead ions biosorbent that provides rapid and effectual Pb ions 
uptake. Special 3D morphology pore structure and func-
tional groups in surface of Artemia cysts can make them 
preeminent biosorbents. Artemia cysts surface was char-
acterized by FT-IR, SEM, EDS and XRD and the results 
showed successful lead ions uptake. Batch biosorption 
occurred in one minute with 94.40% uptake efficiency. The 
maximum biosorption capacity was 79.75  mgg−1 at the opti-
mum pH = 5.8 at 25 °C with 0.5 g  L−1 sorbent. Moreover, 
Artemia cysts revealed impressive selectivity and applicabil-
ity in the presence of common available ions in their natural 
environment  (Ca2+, Mg 2+ and  Na+) at elevated levels. The 
ICP result also showed 73.5% lead ion uptake in common 
heavy metal ions in wastewater. Finally, the biosorption 
data best fitted with the Langmuir isotherm and thermo-
dynamic parameter showed this processes exothermic and 
spontaneous.

Results of this study consequentially lead to the recom-
mendation new concept of using Artemia cyst with astound-
ing uptake of lead ions as a green approach comprising of 
a biocompatible sorbent that evades the utilization of any 
chemical components that inevitably cause irreversible dam-
age to the natural ecosystem. More importantly, given that 
A.C. are living organisms, which are characterized as adsor-
bents of high endurance in addition to their cost-effective-
ness in comparison with the existing methods. The authors 

Table 3  Rl values by A.C. for 
the lead adsorption at different 
initial concentrations

C0
(mg L

−1
)

20 40 60 80 100 150 200 300

Rl 0.423 0.268 0.196 0.155 0.128 0.089 0.068 0.046

Table 4  Thermodynamic parameters for the biosorption of lead ions 
on A.C

T (K) ΔG° (kJ  mol−1) ΔH° (kJ  mol−1) ΔS° 
(J  mol−1  K−1)

298 −3.24 −28.74 -86.133
313 −1.46
333 −0.22

Table 5  Comparison of lead ion 
adsorption/ biosorption with 
various materials

a Adsorption
b Biosorption
c Selective
d Not reported

Sorbent qm (mg  g−1) Time (min) pH Selectivity Method References

Conjugate material (CM) 196.35 50 6 Sc ASa Awual (2019b)
Mesoporous silica and con-

jugate material (MCM)
179.82 60 5.20 S AS Awual et al. (2019)

Mesoporous silica monolith 176.66 50 5.50 S AS Awual et al. (2020a)
Eggshell-rich composite 23.3 180 5 NRd BSb Soares et al. (2016)
Cucumber peel 133.60 60 5 NR BS Basu et al. (2017)
Saffron flower waste 45.6 9 6 NR BS Khoshsang and 

Ghaffarinejad 
(2018)

Artemia cyst 79.75 1 5.8 S BS This study
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of this research hope to have opened a gate toward continuity 
of sorption systems of contaminants in aqueous solutions 
and little by little envision a healthier environment for the 
livelihood and survival of these organisms. Further studies 
need to be carried out in order to shorten the adsorption 
time and increasing the efficiency as well as the selectivity 
of the process.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13762- 021- 03844-8.
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