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A B S T R A C T

The current investigation deals with an analytical formulation and solution procedure for the thermal stability
characteristics of piezomagnetic nano-sensors and nano-actuators considering the flexomagnetic effects and
geometrical imperfection. Piezo-flexomagnetic nano-plate strips with the mid-plane initial rise are subjected
to external uniform, linear, and nonlinear temperature rise loading across the thickness. The nonlinear size-
dependent governing equations are derived within the framework of the first-order shear deformation plate
theory, nonlocal strain gradient theory and considering the nonlinear von- Kármán strains. The proposed
closed-form solutions and the obtained results are validated with the available data in the literature. The
calculated buckling and post-buckling temperatures of piezo-flexomagnetic nano-plate strips are shown to
be dependent on several factors including the scaling parameters, plate slenderness ratio, mid-plane initial
rise, different temperature distributions, and scalar magnetic potential. The presented closed-form solutions
and numerical results can serve as benchmarks for future analyses of piezo-flexomagnetic nano-sensors and
nano-actuators.
1. Introduction

Smart materials have various applications in material science, me-
chanical industries, aerospace, military, nanotechnology, and biotech-
nology. Piezoelectric, piezomagnetic, flexoelectric, and flexomagnetic
materials are the new types of smart materials that respond to external
stimuli. These materials are ideal and applicable materials for smart
magneto-electro-mechanical devices with a wide range of applications
such as energy harvesting and fluid delivery systems. For example, An-
gelou et al. (2021) proposed a lead-free piezoelectric actuator as an
insulin delivery micro-pump and Hu et al. (2022) to extend the op-
erational life of cardiac pacemaker proposed a piezoelectric energy
harvester design that can provide a power of 1 μW. They used a
commercial finite element software to simulate and characterize these
systems. By applying the uniform mechanical strain, the piezoelec-
tric/piezomagnetic material changes the mechanical energy into an
electric/magnetic field and vice-versa (Bahl et al., 2020; Karimiasl
et al., 2019; Maurya et al., 2020; Moradi and Behdinan, 2020, 2021).

The coupling between the strain gradient and the induced electric
field is known as the flexoelectric (FE) effect. Similarly, the flexomag-
netic (FM) effect is defined as the coupling between the non-uniform
mechanical strain and the induced magnetic field. The flexomagnetic
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effect can be divided into two categories: the direct flexomagnetic
(DFM) effect and the converse flexomagnetic (CFM) effect. Inducing the
magnetic field due to the strain gradient is defined as the DFM effect,
while the CFM effect is the property of flexomagnetic materials to
develop the mechanical strain in presence of the magnetic field gradient
(Eliseev et al., 2009, 2019; Basutkar et al., 2019; Zhang et al., 2019).

One of the new research topics in the field of micro/nano-
electromechanical systems (MEMs/NEMs) is the energy supply re-
quired by electronic devices such as portable components, medical
implants, and wireless sensors. The use of wasted energies and its
conversion into the required energy of these devices has received a
lot of attention (Moradi-Dastjerdi and Behdinan, 2021). FM effect is
not restricted to the crystalline symmetry, therefore this phenomenon
expands the choice of materials that can be used for nano-sensors and
nano-electromechanical actuators (Malikan et al., 2020).

Nano-scale sensors and actuators are the main part of advances in
nanotechnology that play a crucial role in many industrial and medical
devices. A lot of research is underway on the design and development of
more efficient nano-sensors and nano-actuators with different accuracy
(Wang et al., 2022; Moradi-Dastjerdi et al., 2019; Meschino et al., 2021;
Mir and Tahani, 2020). The role of the strain gradient is more crucial
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Nomenclature

(𝑁𝑥𝑥,𝑀𝑥𝑥, 𝑄𝑥, 𝑁𝑥𝑥𝑧) Stress resultants
(𝑢0, 𝑤0) Displacements of a point on the mid-plane

(z=0)
𝛼 Coefficient of thermal expansion
𝛽 Coefficient of hygroscopic (or moisture)

expansion
𝛥𝐶 Percent moisture change
𝛥𝑇 Temperature change
𝜂𝑖𝑗𝑘 Strain gradient components
𝑙 Strain gradient parameter
𝐇 Magnetic field vector
𝜇 = (𝑒0𝑎)2 Nonlocal parameter
𝜈 Poisson’s ratio
𝜙 Rotation of a transverse normal about the

𝑦-axis
𝜓 Scalar magnetic potential
𝜎𝑖𝑗 Stress components
𝜏𝑥𝑥𝑧 Higher-order stress
𝜀𝑖𝑗 Strain components
𝑎33 Components of magnetic permeability
𝐴𝑖𝑗 Extensional stiffness coefficients
𝐵𝑧 Transverse components of magnetic induc-

tion vector
𝐶55 Shear modulus
𝐷11 Bending stiffness coefficient
𝑑31 Coefficient of piezomagnetic
𝐸 Elasticity modulus
𝑓14 Coefficient of flexomagnetic
𝑔113113 Component of the strain gradient elasticity

tensor
ℎ Thickness of the plate strip
𝐾𝑠 Shear correction factor
𝐿 = 𝑎 Length of nano-plate strip along the 𝑥-axis
𝑛 Power index of temperature variation func-

tion
𝑁𝐶
𝑥𝑥,𝑀

𝐶
𝑥𝑥 Hygroscopic stress resultants

𝑁𝑇
𝑥𝑥,𝑀

𝑇
𝑥𝑥 Thermal stress resultants

𝑄𝑖𝑗 Coefficients of plane stress reduced stiffness
𝑢 Axial component of the displacement field
𝑤 Transverse component of the displacement

field
𝑤∗ Mid-plane initial rise

at the nanometer scale and especially in nano-structures with the
flexomagnetic effect (Nicolenco et al., 2021). The flexomagnetic effect
is closely related to strain gradient and magnetic field. Some research
works (Momeni-Khabisi and Tahani, 2022; Sidhardh and Ray, 2018;
Zhang et al., 2019) have confirmed that the flexomagnetic effect can
be more important at the nano-scale than at the macro-scale. In fact,
compared to the piezomagnetic effect, the macro-scale flexomagnetic
effect is usually relatively weak. Nevertheless, the flexomagnetic effect
gradually becomes remarkable as the scale decreases. On the other
hand, a nano-structure may be consciously or unconsciously exposed
to an external magnetic field, and this field will undoubtedly affect
its performance. Therefore, when examining magneto-mechanical cou-
pling at the nano-scale, it is necessary to consider the flexomagnetic
effect in order to avoid errors in the applications of nano-structures
2

and perform a more appropriate design, and its performance on the
mechanical behavior of nano-structures should be studied in different
conditions (Malikan and Eremeyev, 2022a; Zhang et al., 2022a,b).

Also, the effect of thermal expansion is more important in nano-
scale materials and the magnetization of the ferromagnetic material
will increase upon heating. Thermal buckling is the reason for the fail-
ure of many structures that are exposed to high-temperature differences
(Cai et al., 2020; Malikan et al., 2021).

Thermal buckling and post-buckling are of interest to many re-
searchers. Ebnali Samani and Tadi Beni (2018) presented the thermal
and mechanical pre-buckling of flexoelectric nanobeam based on the
Timoshenko beam model. They investigated the effect of some pa-
rameters such as the dimensionless length to thickness, length scale
parameter, and flexoelectric coefficient on the critical buckling load
and critical temperature. Barati and Zenkour (2019) investigated ther-
mal post-buckling analysis of piezoelectric nanobeam considering the
inverse flexoelectric and surface effects. The Euler–Bernoulli beam
theory with simply supported and clamped boundary conditions was
used. They assumed the mid-span initial rise as geometrical imper-
fection. Tocci Monaco et al. (2021) analyzed hygrothermal buckling
and vibration of simply supported cross- and angle-ply laminated com-
posite nano-plates. They used the second-order strain gradient theory
and Hamilton’s principle based on the classical plate theory (CPT).
Behdinan and Moradi-Dastjerdi (2022) studied the thermal buckling
of active sandwich plate made of porous polymeric core and lead-
free piezoelectric face sheets. They obtained the governing equations
by adopting a higher-order theory of plates and they solved these
equations by employing a mesh-free method.

There is little research on the FM effect and this field is still in
its infancy (e.g., Shi et al., 2021; Sidhardh and Ray, 2018; Zhang
et al., 2019, and references therein). Among them, Malikan et al.
(2021) performed research on the size-dependent thermal stability of
microbeams considering the piezomagneticity and converse flexomag-
neticity effects with three types of temperature distributions across the
thickness. To derive the governing differential equations, they used the
principle of virtual displacement, linear strains, and the second strain
gradient theory of elasticity. They presented closed-form relations for
the thermal buckling load in case of fully clamped and simply supported
boundary conditions. Malikan et al. (2021b) studied the linear thermal
buckling of functionally graded piezomagnetic Timoshenko micro- and
nanobeams considering the converse flexomagnetic properties. They
solved the size-dependent governing equations of equilibrium by the
Galerkin weighted residual method for clamped boundary conditions.
In their research, the effects of strain gradient and scaling parame-
ters were formulated by the nonlocal strain gradient (NSG) theory.
Recently, Momeni-Khabisi and Tahani (2022) investigated linear and
nonlinear buckling behaviors of piezo-flexomagnetic nano-plate strips
considering geometrical imperfection. Using the NSG theory and a vari-
ational method, they derived the size-dependent governing equations
and related boundary conditions. A closed-form solution was presented
and the effect of several parameters were studied. More recently, Ma-
likan and Eremeyev (2022b) proposed a more general relation for free
energy of a piezo-flexomagnetic structure. They used the differential
and integral forms of nonlocal elasticity theory to study the buckling
behavior of beams using a higher-order shear deformation theory.

Thermal buckling and post-buckling analysis of piezo-flexomagnetic
(PFM) nano-plate strips have not been done yet. Furthermore, in this
research, the first-order shear deformation plate theory (FSDPT), both
direct and converse flexomagnetic effects, hygrothermal environment,
and geometrical imperfection are considered simultaneously. To derive
the nonlinear size-dependent governing equations, the von- Kármán
strains, NSG theory, and principle of minimum total potential energy
are used. A parametric study is presented, and the thermal buckling
and post-buckling behavior of nano-sensors and nano-actuators are
characterized by investigating several parameters such as the scaling
parameters (nonlocal and length scale parameters), plate slenderness
ratio (the ratio of the length along the x-axis to the thickness), mid-
plane initial rise, different temperature distributions, and magnetic
potential. To the extent of the authors’ knowledge, there is no research

considering such conditions simultaneously.
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Fig. 1. Schematic of a piezo-flexomagnetic nano-plate strip under hygrothermal load and simply supported end conditions. (a) The DFM effect as a sensor, (b) the CFM effect as
an actuator.
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Table 1
Magneto-mechanical coefficients of material properties (Malikan et al., 2021).

CoFe2O4

𝐸 = 286 GPa, 𝜈 = 0.32
𝑑31 = 580.3 N/(A m), 𝑎33 = 157 × 10−6 N/A2

𝑓14 = 10−9 N/A, ℎ = 1 nm
𝛼 = 11.8 × 10−6 1/K

2. Modeling of the problem

Due to the magneto-elastic effect, when the ferromagnetic material
is subjected to mechanical stress, its internal deformation leads to
changes in magnetic permeability. By detecting these changes, me-
chanical stress can be measured. It is very important to measure the
forces acting on the components in MEMs/NEMs during assembly
because if the contact force is not reliably detected and controlled,
the small-scale components are easily damaged during manipulation
and assembly (Rasilo et al., 2019; Wei and Xu, 2015). Nano-structures
may be inevitably or accidentally affected by the temperature that it
may cause significant stresses and deformations. One of the important
problems that arise due to the increase in temperature is thermal
buckling. Without considering the effect of temperature, the design of
the structure will not be safe and complete (Malikan et al., 2021). In
this paper, we seek a relationship to obtain the critical temperature as
well as the thermal post-buckling behavior of the nano-plate strip.

2.1. Basic formulation

In this section, magneto-hygro-thermal responses of PFM nano-plate
strips are investigated utilizing the NSG theory. This model is illustrated
in Fig. 1 and the properties of materials are given in Table 1. Consider a
rectangular plate strip in the x-y plane that the width b along the y-axis
is very long compared to the length a along the x-axis. It is necessary
to mention that, as is stated in Reddy (2006), the plate strip is a case of
plates that can be treated as a one-dimensional structure, it is assumed
that one planar dimension of the plate is long and the other planar
dimension is relatively smaller, but it is considerably large compared to
the thickness. The displacements of such plate strips are only a function
of the smaller planar dimension. In case of beams, the width b is very
small compared to the length a.

The plate strip is simply-supported along the edges x = 0, a and
it is in a hygrothermal environment. The temperature and moisture
distribution through the thickness are defined as Eq. (31). It should
be noted that three uniform, linear and quadratic distributions are
considered for temperature in this paper. For the completeness of the
derived equations, the effect of moisture has also been applied but due
to the lack of data on the coefficient of moisture expansion of cobalt
ferrite in the literature, the effect of moisture in the numerical results
has not been considered in this paper. The mechanical and magnetic
boundary conditions are presented in Eq. (12).
3

Based on the first-order shear deformation plate theory, the compo-
nents of the displacement field are defined as:

𝑢 (𝑥, 𝑧) = 𝑢0 (𝑥) + 𝑧𝜙 (𝑥)

𝑤 (𝑥, 𝑧) = 𝑤0 (𝑥)
(1)

In the present study we also wish to investigate the effect of ge-
ometric non-linearity on the response quantities. Therefore, the von
Kármán-type of geometric non-linearity is taken into consideration in
the strain–displacement relations. Substituting Eqs. (1) in the appropri-
ate strain–displacement relations results in:

𝜀𝑥𝑥 = 𝜀0𝑥𝑥 + 𝑧𝜀
1
𝑥𝑥

𝛾𝑥𝑧 = 𝛾0𝑥𝑧
𝜀𝑦𝑦 = 𝜀𝑧𝑧 = 𝛾𝑥𝑦 = 𝛾𝑦𝑧 = 0

𝜂𝑥𝑥𝑧 =
d𝜙
d𝑥

𝑦𝑦𝑧 = 𝜂𝑥𝑦𝑧 = 0

(2)

here

0
𝑥𝑥 =

d𝑢0
d𝑥

+ 1
2

(

d𝑤0
d𝑥

)2

𝛾0𝑥𝑧 = 𝜙 +
d𝑤0
d𝑥

1
𝑥𝑥 =

d𝜙
d𝑥

(3)

The magnetic field vector 𝐇 is related to the scalar magnetic poten-
tial as below:

𝐇 = −∇𝜓 (4)

Considering the effects of the temperature and moisture, the con-
stitutive equations can be written as Reddy (2006), Shi et al. (2021),
Sidhardh and Ray (2018) and Wang and Li (2021):

𝜎𝑥𝑥 = 𝑄11
(

𝜀𝑥𝑥 − 𝛼𝛥𝑇 − 𝛽𝛥𝐶
)

+𝑄12
(

𝜀𝑦𝑦 − 𝛼𝛥𝑇 − 𝛽𝛥𝐶
)

− 𝑑31𝐻𝑧

𝜎𝑥𝑧 = 𝐶55𝛾𝑥𝑧
𝜏𝑥𝑥𝑧 = 𝑔113113𝜂𝑥𝑥𝑧 − 𝑓14𝐻𝑧

𝐵𝑧 = 𝑎33𝐻𝑧 + 𝑑31𝜀𝑥𝑥 + 𝑓14𝜂𝑥𝑥𝑧

(5)

where 𝑄𝑖𝑗 are the plane stress reduced stiffness coefficients, 𝛼 and 𝛽
are the coefficients of thermal and hygroscopic expansion, respectively.
The first variation of the free energy can be written as follows:

𝛿𝑈 = ∫
𝐴

ℎ∕2

∫
−ℎ∕2

(

𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝑥𝑧𝛿𝛾𝑥𝑧 + 𝜏𝑥𝑥𝑧𝛿𝜂𝑥𝑥𝑧 − 𝐵𝑧𝛿𝐻𝑧
)

d𝑧d𝐴 (6)

Combining Eqs. (2), (3), (4), and (6) and using the divergence
theorem, we obtain:

𝛿𝑈 = ∫
𝐴

[

−
d𝑁𝑥𝑥
d𝑥

𝛿𝑢0 −
d
d𝑥

(

𝑁𝑥𝑥
d𝑤0
d𝑥

)

𝛿𝑤0

−
d𝑀𝑥𝑥 𝛿𝜙 +𝑄𝑥𝛿𝜙 −

d𝑄𝑥 𝛿𝑤0 −
d𝑁𝑥𝑥𝑧 𝛿𝜙

]

d𝐴

d𝑥 d𝑥 d𝑥



European Journal of Mechanics / A Solids 97 (2023) 104773H. Momeni-Khabisi and M. Tahani

e

𝛿

Fig. 2. The variations of critical buckling temperature of simply supported AFG nanobeam vs. non-dimensional nonlocal parameter.
Fig. 3. Buckling and post-buckling temperatures vs. scalar magnetic potential at different nonlocal parameters for the CFM case. (a) Uniform temperature distribution (UTD), (b)
linear temperature distribution (LTD).
𝛿

𝛿

𝜓

− ∫
𝐴

ℎ∕2

∫
−ℎ∕2

𝜕𝐵𝑧
𝜕𝑧

𝛿𝜓d𝑧d𝐴 +
⎡

⎢

⎢

⎣

𝑏

∫
0

(

𝑁𝑥𝑥𝛿𝑢0 +𝑁𝑥𝑥
d𝑤0
d𝑥

𝛿𝑤0

+𝑀𝑥𝑥𝛿𝜙 +𝑄𝑥𝛿𝑤0 +𝑁𝑥𝑥𝑧𝛿𝜙
)

d𝑦
⎤

⎥

⎥

⎦

𝑥=𝑎

𝑥=0

+
⎡

⎢

⎢

⎣

∫
𝐴

𝐵𝑧𝛿𝜓d𝐴
⎤

⎥

⎥

⎦

𝑧=ℎ∕2

𝑧=−ℎ∕2

(7)

By applying the principle of minimum total potential energy, the
quilibrium equations are obtained as:

𝑢 ∶
d𝑁𝑥𝑥 = 0 (8)
4

0 d𝑥
𝛿𝑤0 ∶
d
d𝑥

(

𝑁𝑥𝑥
d𝑤0
d𝑥

)

+
d𝑄𝑥
d𝑥

= 0 (9)

𝛿𝜙 ∶
d𝑀𝑥𝑥
d𝑥

+
d𝑁𝑥𝑥𝑧
d𝑥

−𝑄𝑥 = 0 (10)

𝛿𝜓 ∶
𝜕𝐵𝑧
𝜕𝑧

= 0 (11)

The boundary conditions involve the specification of

𝛿𝑢0 = 0 or 𝑁𝑥𝑥 = 0 𝑎𝑡 𝑥 = 0, 𝑎

𝑤0 = 0 or 𝑁𝑥𝑥
d𝑤0
d𝑥

+𝑄𝑥 = 0 𝑎𝑡 𝑥 = 0, 𝑎

𝜙 = 0 or 𝑀𝑥𝑥 +𝑁𝑥𝑥𝑧 = 0 𝑎𝑡 𝑥 = 0, 𝑎

= 𝛹 or 𝐵 = 0 𝑎𝑡 𝑧 = ±ℎ

(12)
1 𝑧 2
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𝑄

(

𝑁

𝑀

𝑄

w

𝑄

𝐴

𝐷

𝑁

𝑔

−

𝐾

where the stress resultants are defined as:

(

𝑁𝑥𝑥,𝑀𝑥𝑥
)

=

ℎ∕2

∫
−ℎ∕2

𝜎𝑥𝑥 (1, 𝑧) d𝑧

𝑥 = 𝐾𝑠

ℎ∕2

∫
−ℎ∕2

𝜎𝑥𝑧d𝑧, 𝑁𝑥𝑥𝑧 =

ℎ∕2

∫
−ℎ∕2

𝜏𝑥𝑥𝑧d𝑧

(13)

2.2. Flexomagnetic sensors

Fig. 1(a) shows the DFM effect as a sensor, in which mechanical
stress (here thermal stress) leads to the change of magnetic properties
and as a result, creation of a magnetic field. Using Eqs. (11) and (12),
we conclude that:

𝐵𝑧 = 0 throughout the body (14)

Using Eqs. (2)–(5) and (14) one can get:

𝜓 (𝑥, 𝑧) =
𝑑31
𝑎33

[

d𝑢0
d𝑥

+ 1
2

(

d𝑤0
d𝑥

)2
+
𝑓14
𝑑31

d𝜙
d𝑥

]

𝑧 +
𝑑31
𝑎33

d𝜙
d𝑥

𝑧2

2
+ 𝐶0 (15)

𝐻𝑧 = −
𝜕𝜓
𝜕𝑧

= −
𝑑31
𝑎33

[

d𝑢0
d𝑥

+ 1
2

(

d𝑤0
d𝑥

)2
+ 𝑧

d𝜙
d𝑥

]

−
𝑓14
𝑎33

d𝜙
d𝑥

(16)

Therefore, the higher-order and classical stresses are determined as
follows:

𝜎𝑥𝑥 =

(

𝑄11 +
𝑑231
𝑎33

)[

d𝑢0
d𝑥

+ 1
2

(

d𝑤0
d𝑥

)2
]

+

(

𝑄11 +
𝑑231
𝑎33

)

𝑧
d𝜙
d𝑥

−
(

𝑄11 +𝑄12
)

(𝛼𝛥𝑇 + 𝛽𝛥𝐶) +
𝑓14𝑑31
𝑎33

d𝜙
d𝑥

(17)

𝜎𝑥𝑧 = 𝐶55

(

d𝑤0
d𝑥

+ 𝜙
)

(18)

𝜏𝑥𝑥𝑧 =

(

𝑔113113 +
𝑓 2
14
𝑎33

)

d𝜙
d𝑥

+
𝑓14𝑑31
𝑎33

[

d𝑢0
d𝑥

+ 1
2

(

d𝑤0
d𝑥

)2
+ 𝑧

d𝜙
d𝑥

]

(19)

Considering the mid-plane initial rise 𝑤∗ and using Eqs. (8), (12),
13), and (17)–(19) the stress resultants can be obtained as:

𝑥𝑥 = �̂�𝑥𝑥 =
𝐴11𝑎33 + ℎ𝑑231

𝑎33
1
2𝑎

𝑎

∫
0

[

( d𝑤
d𝑥

)2
−
(

d𝑤∗

d𝑥

)2
]

d𝑥

− 1
𝑎

𝑎

∫
0

(

𝑁𝑇
𝑥𝑥 +𝑁

𝐶
𝑥𝑥
)

d𝑥 (20)

𝑥𝑥 =

(

𝐷11 +
ℎ3

12
𝑑231
𝑎33

)

d𝜙
d𝑥

−
(

𝑀𝑇
𝑥𝑥 +𝑀

𝐶
𝑥𝑥
)

(21)

𝑁𝑥𝑥𝑧 = �̄�
d𝜙
d𝑥

+
ℎ𝑓14𝑑31
𝑎33

1
2𝑎

𝑎

∫
0

[

( d𝑤
d𝑥

)2
−
(

d𝑤∗

d𝑥

)2
]

d𝑥

+
ℎ𝑓14𝑑31

𝐴11𝑎33 + ℎ𝑑231

⎡

⎢

⎢

⎣

(

𝑁𝑇
𝑥𝑥 +𝑁

𝐶
𝑥𝑥
)

− 1
𝑎

𝑎

∫
0

(

𝑁𝑇
𝑥𝑥 +𝑁

𝐶
𝑥𝑥
)

d𝑥
⎤

⎥

⎥

⎦

(22)

𝑥 = 𝐾𝑠𝐴55

(

d𝑤
d𝑥

− d𝑤∗

d𝑥
+ 𝜙

)

(23)

here

11 =
𝐸

1 − 𝜈2
, 𝑄12 =

𝐸𝜈
1 − 𝜈2

(24)

11 =

ℎ∕2

∫
−ℎ∕2

𝑄11d𝑧 = 𝑄11ℎ, 𝐴55 =

ℎ∕2

∫
−ℎ∕2

𝐶55d𝑧 = 𝐶55ℎ,

11 =

ℎ∕2

∫ 𝑄11𝑧
2d𝑧 =

𝑄11ℎ3

12
, 𝑔113113 =

29𝑄11(1 − 𝜈)𝑙2

30
(25)
5

−ℎ∕2
𝑇
𝑥𝑥 =

ℎ∕2

∫
−ℎ∕2

(

𝑄11 +𝑄12
)

𝛼𝛥𝑇 d𝑧, 𝑀𝑇
𝑥𝑥 =

ℎ∕2

∫
−ℎ∕2

(

𝑄11 +𝑄12
)

𝛼𝛥𝑇 𝑧d𝑧,

𝑁𝐶
𝑥𝑥 =

ℎ∕2

∫
−ℎ∕2

(

𝑄11 +𝑄12
)

𝛽𝛥𝐶d𝑧, 𝑀𝐶
𝑥𝑥 =

ℎ∕2

∫
−ℎ∕2

(

𝑄11 +𝑄12
)

𝛽𝛥𝐶𝑧d𝑧 (26)

̄ = �̂�113113 +
ℎ𝑓 2

14𝐴11

𝐴11𝑎33 + ℎ𝑑231
, �̂�113113 =

ℎ∕2

∫
−ℎ∕2

𝑔113113d𝑧 = 𝑔113113ℎ (27)

Using the NSG theory and combining Eqs. (8)–(10), and (20), the
governing differential equations of PFM nano-plate strips considering
the size-dependency, direct FM effect, mid-plane initial rise, and shear
deformation are obtained as:

𝐾𝑠𝐴55

(

d2𝑤
d𝑥2

− d2𝑤∗

d𝑥2
+

d𝜙
d𝑥

)

− 𝑙2𝐾𝑠𝐴55

(

d4𝑤
d𝑥4

− d4𝑤∗

d𝑥4
+

d3𝜙
d𝑥3

)

+
(

d2𝑤
d𝑥2

− 𝜇 d
4𝑤
d𝑥4

)

×

⎧

⎪

⎨

⎪

⎩

𝐴11𝑎33 + ℎ𝑑231
𝑎33

1
2𝑎

𝑎

∫
0

[

(d𝑤
d𝑥

)2
−
(

d𝑤∗

d𝑥

)2
]

d𝑥

−1
𝑎

𝑎

∫
0

(

𝑁𝑇
𝑥𝑥 +𝑁

𝐶
𝑥𝑥
)

d𝑥

⎫

⎪

⎬

⎪

⎭

= 0 (28)

(

d𝑀𝑇
𝑥𝑥

d𝑥
+

d𝑀𝐶
𝑥𝑥

d𝑥

)

+ �̃�
d2𝜙
d𝑥2

−𝐾𝑠𝐴55

(

d𝑤
d𝑥

− d𝑤∗

d𝑥
+ 𝜙

)

− 𝑙2
[

−
d3𝑀𝑇

𝑥𝑥

d𝑥3
−

d3𝑀𝐶
𝑥𝑥

d𝑥3
+ �̃�

d4𝜙
d𝑥4

−𝐾𝑠𝐴55

(

d3𝑤
d𝑥3

− d3𝑤∗

d𝑥3
+

d2𝜙
d𝑥2

)

]

= 0

(29)

where

�̃� = 𝐷11 +
ℎ3

12
𝑑231
𝑎33

+ �̄� (30)

Assuming the temperature and moisture distributions through the
thickness as below:

𝛥𝑇 (𝑧) =
(

𝑧 + ℎ∕2
ℎ

)𝑛
(

𝑇 − 𝑇0
)

, −ℎ∕2 ≤ 𝑧 ≤ ℎ∕2, 0 ≤ 𝑛 ≤ ∞

𝛥𝐶 (𝑧) =
(

𝑧 + ℎ∕2
ℎ

)𝑛
(

𝐶 − 𝐶0
)

, −ℎ∕2 ≤ 𝑧 ≤ ℎ∕2, 0 ≤ 𝑛 ≤ ∞
(31)

and substituting Eq. (31) into Eq. (26) one can write the hygrothermal
resultants as follows:
𝑁𝑇
𝑥𝑥 = 𝐴𝑇

(

𝑇 − 𝑇0
)

, 𝑀𝑇
𝑥𝑥 = 𝐷𝑇

(

𝑇 − 𝑇0
)

𝑁𝐶
𝑥𝑥 = 𝐴𝐶

(

𝐶 − 𝐶0
)

, 𝑀𝐶
𝑥𝑥 = 𝐷𝐶

(

𝐶 − 𝐶0
) (32)

where 𝑇 − 𝑇0 and 𝐶 − 𝐶0 are temperature and moisture rise from the
reference temperature and moisture 𝑇0 and 𝐶0 at which there are no
hygrothermal strains and

𝐴𝑇 =
𝑄11𝛼 (1 + 𝜈)ℎ

1 + 𝑛
, 𝐴𝐶 =

𝑄11𝛽 (1 + 𝜈)ℎ
1 + 𝑛

𝐷𝑇 =
𝑄11𝛼 (1 + 𝜈)ℎ2𝑛
2 (1 + 𝑛) (2 + 𝑛)

, 𝐷𝐶 =
𝑄11𝛽 (1 + 𝜈)ℎ2𝑛
2 (1 + 𝑛) (2 + 𝑛)

(33)

Therefore, Eqs. (28) and (29) are simplified to

𝑠𝐴55

[

d2𝑤
d𝑥2

− d2𝑤∗

d𝑥2
+

d𝜙
d𝑥

− 𝑙2
(

d4𝑤
d𝑥4

− d4𝑤∗

d𝑥4
+

d3𝜙
d𝑥3

)]

+

⎧

⎪

⎨

⎪

𝐴11𝑎33 + ℎ𝑑231
𝑎33

1
2𝑎

𝑎

∫

[

( d𝑤
d𝑥

)2
−
(

d𝑤∗

d𝑥

)2
]

d𝑥 −𝑁𝑇
𝑥𝑥 −𝑁

𝐶
𝑥𝑥

⎫

⎪

⎬

⎪

⎩

0
⎭
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𝐷

t
o

𝜓

𝐻

𝑀

𝑄

𝑁

𝐷

w
𝜆
b

4

s

m
E
t

𝑇

×
(

d2𝑤
d𝑥2

− 𝜇 d
4𝑤
d𝑥4

)

= 0 (34)

̃
(

d2𝜙
d𝑥2

− 𝑙2
d4𝜙
d𝑥4

)

−𝐾𝑠𝐴55

[

d𝑤
d𝑥

− d𝑤∗

d𝑥
+ 𝜙 − 𝑙2

×
(

d3𝑤
d𝑥3

− d3𝑤∗

d𝑥3
+

d2𝜙
d𝑥2

)]

= 0 (35)

2.3. Flexomagnetic actuators

Fig. 1(b) shows the CFM effect as an actuator, in which the effect
of the external magnetic field causes mechanical strain. The transverse
magnetic field is constant through the thickness (see Eq. (11)). In case
of CFM effect, the boundary conditions are expressed as (see Eq. (12)):

𝜓 (𝑥, 𝑧 = ℎ∕2) = 𝛹1, 𝜓 (𝑥, 𝑧 = −ℎ∕2) = 0 (36)

Using Eqs. (2)–(5), (11), and (36) the scalar magnetic potential and
he magnetic field vector through the thickness of nano-plate strips are
btained as:

(𝑥, 𝑧) =
𝑑31
2𝑎33

(

𝑧2 − ℎ2

4

)

d𝜙
d𝑥

+
𝛹1
ℎ

(

𝑧 + ℎ
2

)

𝑧 = −𝑧
𝑑31
𝑎33

d𝜙
d𝑥

−
𝛹1
ℎ

(37)

Considering the mid-plane initial rise, the stress resultants are de-
termined as follows:

𝑁𝑥𝑥 = �̂�𝑥𝑥 = −1
𝑎

𝑎

∫
0

(

𝑁𝑇
𝑥𝑥 +𝑁

𝐶
𝑥𝑥
)

d𝑥

+
𝐴11
2𝑎

𝑎

∫
0

[

( d𝑤
d𝑥

)2
−
(

d𝑤∗

d𝑥

)2
]

d𝑥 + 𝑑31𝛹1

𝑥𝑥 = −
(

𝑀𝑇
𝑥𝑥 +𝑀

𝐶
𝑥𝑥
)

+

(

𝐷11 +
ℎ3

12
𝑑231
𝑎33

)

d𝜙
d𝑥

(38)

𝑥 = 𝐾𝑠𝐴55

(

d𝑤
d𝑥

− d𝑤∗

d𝑥
+ 𝜙

)

𝑥𝑥𝑧 = �̂�113113
d𝜙
d𝑥

+ 𝑓14𝛹1

where 𝐴11, 𝐴55, 𝐷11, �̂�113113, 𝑁𝑇
𝑥𝑥, 𝑁

𝐶
𝑥𝑥,𝑀

𝑇
𝑥𝑥, and 𝑀𝐶

𝑥𝑥 are defined in Eqs.
(25)–(27).

After some mathematical operations similar to Section 2.2, the
governing equations in case of the CFM effect are obtained as:

𝐾𝑠𝐴55

(

d2𝑤
d𝑥2

− d2𝑤∗

d𝑥2
+

d𝜙
d𝑥

)

− 𝑙2𝐾𝑠𝐴55

(

d4𝑤
d𝑥4

− d4𝑤∗

d𝑥4
+

d3𝜙
d𝑥3

)

+
(

d2𝑤
d𝑥2

− 𝜇 d
4𝑤
d𝑥4

)

×

⎧

⎪

⎨

⎪

⎩

𝐴11
2𝑎

𝑎

∫
0

[

( d𝑤
d𝑥

)2
−
(

d𝑤∗

d𝑥

)2
]

d𝑥

−1
𝑎

𝑎

∫
0

(

𝑁𝑇
𝑥𝑥 +𝑁

𝐶
𝑥𝑥
)

d𝑥 + 𝑑31𝛹1

⎫

⎪

⎬

⎪

⎭

= 0

(39)

−

(

d𝑀𝑇
𝑥𝑥

d𝑥
+

d𝑀𝐶
𝑥𝑥

d𝑥

)

+ �̃�
d2𝜙
d𝑥2

−𝐾𝑠𝐴55

(

d𝑤
d𝑥

− d𝑤∗

d𝑥
+ 𝜙

)

− 𝑙2
[

−
d3𝑀𝑇

𝑥𝑥

d𝑥3
−

d3𝑀𝐶
𝑥𝑥

d𝑥3
+ �̃�

d4𝜙
d𝑥4

−𝐾𝑠𝐴55

(

d3𝑤
d𝑥3

− d3𝑤∗

d𝑥3
+

d2𝜙
d𝑥2

)]

= 0

(40)

where

�̃� = 𝐷11 +
ℎ3 𝑑

2
31 + �̂�113113 (41)
6

12 𝑎33
Combining Eqs. (39) and (40) with Eq. (31) one can simplify these
equations as follows:

𝐾𝑠𝐴55

[

d2𝑤
d𝑥2

− d2𝑤∗

d𝑥2
+

d𝜙
d𝑥

− 𝑙2
(

d4𝑤
d𝑥4

− d4𝑤∗

d𝑥4
+

d3𝜙
d𝑥3

)]

+
(

d2𝑤
d𝑥2

− 𝜇 d
4𝑤
d𝑥4

)

×

⎧

⎪

⎨

⎪

⎩

𝐴11
2𝑎

𝑎

∫
0

[

( d𝑤
d𝑥

)2
−
(

d𝑤∗

d𝑥

)2
]

d𝑥 −𝑁𝑇
𝑥𝑥 −𝑁

𝐶
𝑥𝑥 + 𝑑31𝛹1

⎫

⎪

⎬

⎪

⎭

= 0 (42)

̃
(

d2𝜙
d𝑥2

− 𝑙2
d4𝜙
d𝑥4

)

−𝐾𝑠𝐴55

[

d𝑤
d𝑥

− d𝑤∗

d𝑥
+ 𝜙 − 𝑙2

×
(

d3𝑤
d𝑥3

− d3𝑤∗

d𝑥3
+

d2𝜙
d𝑥2

)]

= 0 (43)

3. Solution procedure

The closed-form solution of the governing equations in case of direct
and converse flexomagnetic effects is obtained by using the Navier
method. To this aim, the following functions are considered:

𝑤 (𝑥) =
∞
∑

𝑚=1
𝑊 sin

(𝑚𝜋𝑥
𝑎

)

, 𝑤∗ (𝑥) = 𝑊 ∗ sin
(𝜋𝑥
𝑎

)

, 𝜙 (𝑥)

=
∞
∑

𝑚=1
�̃� cos

(𝑚𝜋𝑥
𝑎

)

(44)

It is worth mentioning that the mid-plane initial rise is considered
as a half-sine wave. Upon substitution of Eq. (44) into Eqs. (35) and
(43) one can obtain:

�̃� = −
𝐾𝑠𝐴55

𝑚𝜋
𝑎

(

𝑊 −𝑊 ∗
)

�̂�
(

𝑚𝜋
𝑎

)2
+𝐾𝑠𝐴55

(45)

By Combining Eqs. (45), (34), and (42) the thermal post-buckling
formula is obtained as:

𝑇 = 1
𝐴𝑇

[

�̂�𝛼𝑚2𝜆𝑙𝑚
𝛬𝜆𝜇𝑚

𝑊 −𝑊 ∗

𝑊
+ 𝐴𝛼𝑚2

(

𝑊 2 −𝑊 ∗2
)

+𝑁𝑀 −𝑁𝐶
𝑥𝑥

]

(46)

here 𝛬 = 1 + �̂�𝛼𝑚2∕
(

𝐾𝑠𝐴55
)

, 𝛼𝑚 = 𝑚𝜋∕𝑎, 𝜆𝑙𝑚 = 1 + 𝑙2𝛼𝑚2, and
𝜇𝑚 = 1 + 𝜇𝛼𝑚2 and the numerical results are calculated for the first
uckling mode (m=1).

In case of the DFM effect we have:

�̂� = �̃�, 𝐴 =
𝐴11𝑎33 + ℎ𝑑231

4𝑎33
, 𝑁𝑀 = 0 (47)

and the above parameters in case of the CFM effect are defined as:

�̂� = �̃�, 𝐴 =
𝐴11
4
, 𝑁𝑀 = 𝑑31𝛹1 (48)

Note that, for classical plate theory, 𝛬 = 1.

. Validation

In this section, the accuracy of the proposed solution is validated by
everal methods.

In case of PFM thin microbeams without geometrical imperfection,
oisture effects, and nonlocal parameter, the critical temperature of
q. (46) can be reduced to that derived by Malikan et al. (2021) for
he CFM case:

= 1
𝐴𝑇

(

�̂�𝛼𝑚
2𝜆𝑙𝑚 +𝑁𝑀

)

= 𝑁𝑀𝑎𝑔𝐿4 +𝐷𝐿2𝜋2𝑚2 +𝐷𝑙2𝜋4𝑚4

𝛽𝐿4
(49)

Numerical results based on presented closed-form solution are tab-
ulated in Table 2. It should be noted that this comparison is prepared
for critical buckling load of a simply supported nanobeam for which

6
the material properties 𝐸 = 30 × 10 psi, 𝜈 = 0.3 are used. Fig. 2 shows
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n

Fig. 4. Non-dimensional buckling (𝑊 ∕ℎ = 0) and post-buckling (𝑊 ∕ℎ = 0.5) temperatures vs. slenderness ratio for the DFM case (𝑒0𝑎 = ℎ, 𝑙 = ℎ,𝑊 ∗ = 0).
(
𝑛
(
t
v
t
i
i
b
s
t
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Table 2
Non-dimensional critical buckling loads (𝑁 𝑐𝑟 = 𝑁 × (𝐿2∕𝐸𝐼)) of simply-supported
anobeams.
𝐿∕ℎ 𝜇 Present Reddy (2007)

EBTa TBTb EBT TBT

100 0 9.8696 9.8671 9.8696 9.8671
0.5 9.4055 9.4031 9.4055 9.4031
1 8.9830 8.9807 8.9830 8.9807
1.5 8.5969 8.5947 8.5969 8.5947
2 8.2426 8.2405 8.2426 8.2405

20 0 9.8696 9.8067 9.8696 9.8067
0.5 9.4055 9.3455 9.4055 9.3455
1 8.9830 8.9258 8.9830 8.9258
1.5 8.5969 8.5421 8.5969 8.5421
2 8.2426 8.1900 8.2426 8.1900

10 0 9.8696 9.6227 9.8696 9.6227
0.5 9.4055 9.1701 9.4055 9.1701
1 8.9830 8.7583 8.9830 8.7583
1.5 8.5969 8.3818 8.5969 8.3818
2 8.2426 8.0364 8.2426 8.0364

aEuler–Bernoulli beam theory.
bTimoshenko beam theory.

a comparison between the present study and Mirjavadi et al. (2017)
for critical temperature change of simply supported axially functionally
graded (AFG) nanobeam. All comparisons show very good agreements.
It is also worth noting that Reddy (2007) used an analytical method
and Mirjavadi et al. (2017) used the generalized differential quadrature
method to obtain their results.

5. Numerical results and discussion

After validation of the obtained results from the present study
with the existing data in the open literature, the effects of differ-
ent parameters such as scaling parameters, plate slenderness ratio
7

(length to thickness ratio), mid-plane initial rise, different temperature
distributions, and magnetic potential will be explored in detail.

Fig. 3, (𝐿∕ℎ = 10, 𝑙∕ℎ = 1, 𝑤∗ = 0), illustrates the effect of
magnetic potential on the thermal buckling and post-buckling behavior
of piezomagnetic (PM) nano-plate strips considering the converse flex-
omagnetic effect. Also, the effect of nonlocality is studied. It is shown
that the local model overpredicts the buckling and post-buckling tem-
peratures, and one can see that by increasing the nonlocal parameter,
the buckling and post-buckling temperatures decrease, which means
the nonlocality causes the stiffness-softening. Increasing the magnetic
potential increases the buckling and post-buckling temperatures. Also,
the buckling and post-buckling temperatures in the uniform thermal
environment are smaller than in the linear one.

Figs. 4 and 5 demonstrate the effect of temperature distributions
on the buckling and post-buckling temperatures with changing of the
slenderness ratio when 𝑒0𝑎 = 𝑙 = ℎ,𝑊 ∗ = 0, 𝛹1 = 1 mA for DFM and
CFM cases, respectively. The buckling (𝑊 ∕ℎ = 0) and post-buckling
𝑊 ∕ℎ = 0.5) temperatures of uniform temperature distribution (UTD,
= 0) are lower than those of the linear temperature distribution

LTD, 𝑛 = 1). This is obtained due to the fact that in case of UTD,
emperature variation through thickness is identical, while temperature
aries along with thickness in LTD, therefore, as thickness increases,
he increase in buckling and post-buckling temperature loads in LTD
s higher than that in UTD. The slenderness ratio plays a crucial role
n the designing of sensors and actuators. From these figures, it can
e deduced that the greater the slenderness ratio reduces the thermal
tability of the nano-sensors and nano-actuators. Also, the effect of
emperature distribution is more sensible at lower slenderness ratios
or both buckling and post-buckling temperatures. In another word, the
ffect of temperature distribution vanishes at larger slenderness ratios.
hus, it can be concluded that the effect of temperature distribution is
egligible for thinner PFM nano-plate strips.

Fig. 6(a) shows non-dimensional temperature loads for buckling and
ost-buckling in different non-dimensional nonlocal parameters and
imensionless amplitudes when 𝑙 = ℎ,𝐿∕ℎ = 40,𝑊 ∗ = 0, LTD. It is
seen that increment of dimensionless amplitude increases the buckling
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Fig. 5. Non-dimensional buckling (𝑊 ∕ℎ = 0) and post-buckling (𝑊 ∕ℎ = 0.5) temperatures vs. slenderness ratio for the CFM case (𝑒0𝑎 = ℎ, 𝑙 = ℎ,𝑊 ∗ = 0, 𝛹1 = 1 mA).
Fig. 6. Non-dimensional buckling and post-buckling temperatures vs. non-dimensional nonlocal parameter (𝑙 = ℎ,𝐿∕ℎ = 40,𝑊 ∗ = 0). (a) Different dimensionless amplitude (LTD),
(b) different temperature distributions.
and post-buckling temperatures. In addition, the greater the nonlo-
cal parameter reduces the thermal stability of the PFM nano-sensors
and nano-actuators. Fig. 6(b) shows non-dimensional critical temper-
ature in different non-dimensional nonlocal parameters and power
indices of temperature variation function (𝑛) when 𝑙 = ℎ,𝐿∕ℎ =
40,𝑊 ∗ = 0,𝑊 = 0. It is shown that the thermal stability reduces as the
non-dimensional nonlocal parameter increases. Also, the effect of tem-
perature distribution is more sensible at lower nonlocal parameters for
critical temperatures. The critical temperature of uniform temperature
distribution is the lowest and the nonlinear temperature distribution
(𝑛 = 2) is the highest curve.

The effect of geometrical imperfection in different dimensionless
amplitudes on thermal post-buckling loads of PFM nano-actuators (CFM
effect) is plotted in Fig. 7 when 𝑒 𝑎 = 𝑙 = ℎ, 𝛹 = 1 mA, 𝐿∕ℎ =
8

0 1
50. As shown, in case of perfect configuration, the PFM nano-plate
strip is first critically buckled. Then, the increment of dimensionless
amplitude increases thermal stability. In the case of imperfect con-
figuration, the buckling temperature is zero at the starting point and
there is no buckling strength before the initial state of the PFM nano-
plate strip. After that, the greater dimensionless amplitudes increase
the thermal stability. Also, the effect of geometrical imperfection is
more considerable at lower dimensionless amplitudes and vanishes at
larger amplitudes. The post-buckling temperature loads of imperfect
configurations are lower than the perfect configuration.

To study temperature distribution on critical buckling tempera-
ture of PFM nano-sensors (DFM effect), this parameter is illustrated
for different values of strain gradient parameter in Fig. 8 (𝑒0𝑎 =
ℎ,𝐿∕ℎ = 10,𝑊 ∗ = 0,𝑊 = 0). It is shown that critical buckling
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Fig. 7. Non-dimensional thermal post-buckling loads of PFM nano-actuators (CFM effect) vs. dimensionless amplitude in different geometrical imperfections.
Fig. 8. Non-dimensional critical buckling temperature of PFM nano-sensors (DFM effect) vs. dimensionless strain gradient parameter in different temperature distributions.
temperature increases as 𝑛 is increased. Also, higher values of the strain
gradient parameter increase the thermal stability of the PFM nano-
9

sensors.
The effect of shear deformation on thermal buckling load is plot-
ted in Fig. 9. As expected, the critical temperature of thinner PFM

nano-plate strips is identical between the classical and first-order shear
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Fig. 9. Effect of shear deformation on dimensionless thermal buckling load of PFM nano-plate strips.
Fig. 10. The critical temperature of the PFM nano-actuators with respect to the slenderness ratio. (a) Different nonlocal parameters, (b) different strain gradient parameters.
deformation plate theories. The difference between the two theories
becomes more by increasing the thickness.

Fig. 10 represents the critical temperature of the PFM nano-
actuators with respect to the slenderness ratio in different nonlocal
and strain gradient parameters. The results are obtained based on the
CPT and FSDPT when 𝛹1 = 1 mA,𝑊 ∗ = 0,𝑊 = 0, and UTD. It is ob-
erved that the length scale parameters affect the critical temperature,
specially for short nano-plate strips. Increasing the nonlocal parameter
ecreases the thermal stability while the strain gradient parameter has
he opposite effect. In addition, a comparison of the results obtained
y the CPT and FSDPT shows that buckling temperatures predicted by
he CPT are higher than ones obtained based on the FSDPT for short
ano-actuators. Note that the above results converge as the slenderness
atio is increased.
10
6. Conclusions

Thermal buckling and post-buckling analysis of geometrically im-
perfect piezomagnetic nano-plate strips considering direct and converse
flexomagnetic effects were investigated based on the nonlocal strain
gradient theory. Considering the first-order shear deformation plate
theory, the governing differential equations, and related boundary
conditions were derived using the principle of minimum total potential
energy. Afterward, the Navier method was used to obtain the closed-
form solution of the problem. Finally, some numerical results were
presented and the effect of several parameters on the thermal stability
of nano-sensors and nano-actuators was investigated. By controlling
these parameters, it is possible to control the performance of the PFM
nano-structure and at the same time prevent its buckling. The authors
hope that the obtained results may serve as benchmarks for future
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analyses of PFM nano-structures, and may be used by scientists in
designing and preventing thermal instability in such nano-structures.
Numerical results showed that:

- The magnetic potential has a significant effect on the thermal
stability.

- Nonlocality and the strain gradient cause the stiffness-softening
and the stiffness-hardening, respectively.

- The highest thermal stability is related to quadratic temperature
distribution and the lowest is related to the uniform temperature
distribution.

- The effect of the mid-plane initial rise is insignificant in larger
dimensionless amplitudes.

- The results obtained by the CPT and FSDPT converge as the
nano-plate strip becomes thinner. This implicitly confirms the
correctness of the relationships obtained.

- The slenderness ratio plays a crucial role in the designing of
PFM nano-structures. The greater the slenderness ratio reduces
the thermal stability.
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