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Abstract— This paper presents some novel types of fast 

convergence robust controllers for Caputo derivative based 

fractional-order nonlinear systems with model uncertainties and 

external disturbances. First, a new fractional-order model is 

derived from the original system based on the block 

transformation strategy. In the second step, two different 

nonlinear sliding manifolds are proposed to reach a short time 

convergence. Subsequently, appropriate nonlinear sliding mode 

control laws are developed to assure the robustness and fast 

converging behaviors. The stability of both controllers is 

achieved by the fractional-order stability theorems. Finally, 

comprehensive numerical simulations are carried out to indicate 

the effectiveness of the suggested robust fractional-order 

controllers. 
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I.  INTRODUCTION 

     Fractional calculus idea was established in the 17th century 

which discusses about non-integer integrations and 

derivatives. The basic ideas in this field are generalizations of 

the common ideas in integer calculus. The fractional calculus 

has been taken into account as an exclusive theoretical subject 

with no practical applications for nearly 300 years [1]. 

Nowadays, researchers have been interested in the application 

of fractional calculus in various branches of science such as 

thermal systems modelling [2], electromechanical systems [3] 

and biological systems [4]. Designing fractional-order 

controllers is one of these interesting applications. 

     Sliding mode control is a famous nonlinear technique 

which presents high precision and robust behaviour against 

model uncertainties and external disturbances [5]. In the 

conventional sliding mode control, an arbitrary linear 

manifold is considered as a sliding surface and a control law is 

planned in such a way that the system state trajectories reach 

this manifold. In last three decades, this technique is employed 

for different integer-order systems e.g. robot manipulators [6], 

DC-DC boost converters [7], electrical motors [8], and so on. 

Also nowadays the sliding mode control is applied for 

governing the fractional-order systems especially for chaotic 

systems [9-12]. However, the main drawback of sliding mode 

scheme is that the closed-loop system errors cannot reach zero 

in a finite time, while accomplishing finite time convergence 

is more worthwhile in practice. In recent years, a new control 

strategy called nonlinear or terminal sliding-mode control is 

proposed to reach a faster convergence with high precision 

tracking. This technique utilizes a nonlinear sliding manifold 

instead of the linear one. Successively, various application 

examples of nonlinear sliding mode control have been 

developed for integer-order systems in literature [13-18]. 

Some of these works are focused on overcoming the 

singularity problem [17-18]. Unfortunately, most of nonlinear 

sliding mode controllers are developed only for second-order 

systems [19]. Besides, majority of mentioned works are 

designed for integer-order systems and a few works does exist 

for fractional-order ones [20-21].  

     Inspired by the above discussions, enlarging the application 

of nonlinear sliding mode controllers on fractional-order 

systems seems more significant. In this paper, two new 

fractional-order nonlinear sliding mode controllers are 

combined with block transformation technique for fast 

governing the Caputo derivative based systems. Initially, the 

block transformation technique is applied to arrange the 

system dynamics in new coordinates, and then the sliding 

mode controllers are designed. Both methods employ a 

nonlinear integral manifold (a sign function for the first 

controller and a fractional power for the second one). The fast 

convergence behaviour is obtained using the proposed 

nonlinear sliding surfaces and the block transformation 

technique constant coefficients. Also, employing the block 

transformation technique makes the suggested controllers 

versatile for higher-order applications. The influences of 

model uncertainties and external disturbances are fully taken 

into account. Also asymptotic stability of the closed-loop 

system is proofed using fractional-order nonlinear stability 

theorems. 

The rest of this paper is organized as follows: Some 
fractional calculus preliminaries are presented in Section II. In 



 

 

 

Section III, a Caputo derivative based uncertain fractional-
order system dynamics and their block transformations are 
expressed. Designing two new nonlinear sliding mode 
controllers are developed in Section IV. In Sections V, the 
efficiency of proposed controllers is highlighted through two 
numerical simulations. Finally, this paper terminates with some 
conclusions in Section VI. 

II. FRACTIONAL CALCULUS 

    The main definitions, properties and theorems of applied 

fractional calculus are expressed in this section. 

Definition 1 [22]: The fractional integration of function )(tf  

with respect to t  can be given as follows: 
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where )(  is the Gamma function. 

Definition 2 [22]: The  -th order Caputo fractional 

derivative of ( ],0[)( tCtf m ) function )(tf  can be described 

by 
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where  mm  1 , Nm . 

Definition 3 [22]: The Riemann-Liouville (RL) fractional 

derivative of  -th order of function )(tf  is defined as 

follows: 
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where  mm  1 , Nm . 

Property 1 [22]: If ),0[)(  mCtf , mm  1  and 

Nm , then 

(a)  )()(,0,0 tftfDD ttC 
 holds for 1m . 

(b)
 

)()(,0,0 tftfDD ttRL 
.  

Property 2 [22]: If ],0[)( 1 TCts  for some 0T , 

)2,1()1,0(  ii  and
  

]1,0(21  , then 

)()()( 211221
,0,0,0,0,0 tsDtsDDtsDD tCtCtCtCtC

 
                     (4) 

Theorem 1 [23-24]: Let 0x  be an equilibrium point for the 

non-autonomous fractional order system 

))(,()(,0 txtftxD tC                                                              (5) 

where ))(,( txtf  satisfies the Lipschitz condition with 

Lipschitz constant  0l  and )1,0( . Assume that there 

exists a Lyapunov function ))(,( txtV  satisfying  

xtxtVx
a

21 ))(,(                                                       (6) 

)())(,( 3 txtxtV
dt

d
                                                        (7) 

where 1 , 2 , 3  and a  are positive constants. Then the 

equilibrium point of the system (5) is asymptotic stable. 

III. SYSTEM DESCRIPTION AND BLOCK TRANSFORMATION 

In this section, a canonical fractional-order system dynamic 
model and its block transformation is presented.  

Consider a class of Caputo derivative based fractional-order 

dynamical system with model uncertainty and external 

disturbance as follows:  
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where )1,0(  is the order of system, T
nxxxX ],,,[ 21   is 

the state vector of the system, ),( tXf  is a known nonlinear 

function of X  and t , ),( tXf  describes the model 

uncertainty term which is unknown, and )(tu  is the system 

control input.  

Assumption 1: The uncertainty term ),( tXf  is assumed to 

be bounded as  

 

ftC tXfD   ),(1
,0                                                             (9) 

where f  is a given and positive constant. 

Assumption 2: The external disturbance )(td  is supposed to 

be bounded by 

 

dtC tdD   )(1
,0                                                                  (10) 

where d  is a known and positive constant. 

Step 1: Let’s define first new variable as follows: 

 

)()()( 111 txtxtz d                                                             (11) 

where )(1 tx d  is the first state desired signal. By taking DC  

derivative from both sides of (11) and using (8), we can get 

 

)()()()()( 22111 txtxtxDtxDtzD ddCCC                (12) 

To stabilize equation (12) dynamic, the first virtual control 

input can be selected as  

 

)()()()( 21122 tztzbtxtx d                                              (13) 

where 1b  is a positive constant. Hence the closed-loop 

dynamic will be as 

 

)()()( 2111 tztzbtzDC                                                   (14) 

Step 2: From (13) the new variable )(2 tz  can be obtained as 

 

)()()()( 11222 tzbtxtxtz d                                              (15) 

In this stage, by taking 
DC  derivative from (15) along the 

equations (8) and (14), results in 

 

),()()()( 212332 zzgtxtxtzD dC                                  (16) 



 

 

 

where ))()(())()((),( 21111111212 tztzbbtzbzgDzzg C    

 and 0)( 11 zg .  

Choosing the second virtual control input )(3 tz  as 

 

)()(),()()( 32221233 tztzbzzgtxtx d                           (17) 

results the following dynamic 

 

)()()( 3222 tztzbtzDC                                                 (18) 

where 2b  is a positive constant.  

Step 3: From (17) the new variable )(3 tz  can be attained as 

 

)(),()()()( 22212333 tzbzzgtxtxtz d                          (19) 

By applying the derivative DC  on (19) and using the 

equations (1), (14) and (18), one can get  

 

),,()()()( 3213443 zzzgtxtxtzD dC                             (20) 

where )((())(),((),,( 1111222113213 tzbbbtzbzzgDzzzg C    

))()(())()(())( 32223222 tztzbbtztzbtz  .  

Selecting the third virtual control input )(4 tz  in the form of  

 

)()(),,()()( 433321344 tztzbzzzgtxtx d                      (21) 

yields the following dynamic 

 

)()()( 4333 tztzbtzDC                                                  (22) 

This procedure can be proceed for the variables 154 ,...,, nzzz .  

At the last step, after calculating DC  derivative of )(tzn , the 

original system (1) can be represented in the new coordinates (

nzzz ,...,, 21 ) as 
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where ),...,,( 21 nn zzzg  is a linear function of the transformed  

variables, and is calculable by the following recursive 

equation: 
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Remark 3: For the system (23) that is constrained to 

0)( tzn  by a control law, the system dynamics reduce to 
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it is evident that the above linear system is stable and ensures 

that 0)(lim 


tzi
t

, Also the convergence rate of states 

121 ,...,, nzzz  is adjustable by the coefficients 

121  nbbb  . 

From the equations (13), (17) and the reduced model (25), zero 

convergence of the transformed states ( 0)( tzi ) yields the 

original system states convergence to the desired values (

)()( txtx idi  ). 

IV. NONLINEAR SLIDING MODE CONTROLLER DESIGN 

In this section, two novel nonlinear sliding surfaces are 
suggested, and proper control laws are designed to provide the 
closed-loop system stability and fast convergence. 

Sign Integral Nonlinear Sliding Mode: For the transformed 

system (23), let define the sign integral terminal sliding 

surface as follows:  

 

))(sgn()(

))(sgn()()(

1
1

0
1

tzDtz

dztzts

nn

t

nn



 



                                          (26) 

where 1 . Taking DC  derivative from the previous equation 

yields 

 

))(sgn()()( 1
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                        (27) 

Employing the Caputo derivative definition )(tsDC
  

)(1)1( tsDD  , results in  
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By substituting the transformed system dynamics (23) in (28), 

one can get 
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Theorem 2: Consider the transformed fractional-order system 

(23), choosing the robust block controller as 
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will result the system trajectories convergence to the sliding 

surface )(ts  in a short time. Where 1  is a positive constant. 

Proof: Choosing the Lyapunov candidate in the form of 

)()( tstV   and evaluating its time derivative, results   

 

)())(sgn()( tststV                                                                (31) 

From Property 2, one can obtain  
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Using (29), we have 
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Applying the control law (30), yields 
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Using )()())(sgn( tststs  , one can get 

 

)()( 1 tstV                                                                      (35) 

Hence, the states of the system will converge to 0)( ts  

asymptotically. 

To show that the sliding motion transpires in a short time, the 

reaching time can be calculated in the following form 
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 reacht  is tuneable by declaring a proper value for 1 . 

Fractional Integral Nonlinear Sliding Mode: Consider the 

second nonlinear sliding manifold as follows: 
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where 02  , p  and q  are both positive odd integers which 

should satisfy pq .  

Applying DC  derivative on the previous equation, results in 
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Now, by applying the Caputo derivative definition, one can 

get 
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Theorem 3: Consider the transformed fractional-order system 

(23), if the system controlled by the robust block control law 

(42), the system states will converge to the sliding surface 𝑠(𝑡) 
in a short time.  
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where  𝜂2 is a positive constant. 

Proof: By defining the Lyapunov function as )()( tstV   and 

evaluating its time derivative and using (41), one can write  
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Inserting the second control law (42) in (43), results in 
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Hence we can get 

 

)()( 2 tstV                                                                      (45) 

which guarantees the system states asymptotically 

convergence to 0)( ts .  

For
 

0)( ts , the dynamic of )(tzn  can be expressed in the 

following form   
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Taking time derivative from the above equation, gives us 
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The solution of (52) for the convergence time reacht  is given 
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which shows that the sliding motion occurs in a finite time, 

and this time is tuneable by choosing proper parameters ( 2  

and pq ).  

Remark 5: In order to have a smooth control signal and hold 

the continuously differentiable condition (
1C ), the function 

)sgn(  in the sliding surface (26) and control laws (30), (42) 

can be modified in the following forms: )()())(sgn( tststs   
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where 0,   and should be enough small. 

Remark 6: It is worthwhile to notify that the actual state ix  is 

a function of transformed state iz  and the other states 



 

 

 

121 ,...,, izzz , then only fast convergence of iz  will not result 

ix  convergence, and the other transformed states are related in 

this process. Therefore, performance of actual states (

nxxx ,...,, 21 ) should be checked instead of the transformed 

states ( nzzz ,...,, 21 ) in the controller parameters tuning ( i , ib , 

 ,   , pq ). 

V. SIMULATION RESULTS 

 In this section, a numerical example is presented to show 
the usefulness and efficiency of the suggested nonlinear sliding 
mode controllers. Numerical simulations are performed using 
MATLAB toolbox called Ninteger [25]. The performances of 
proposed controllers are tested on the fractional-order Arneodo 
system in this section. The dynamic equations of the uncertain 
system are presented as: 
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The initial conditions and uncertainty term are selected as 

2)0(1 x , 5.1)0(2 x , 3)0(3 x  and )(),( tdtXf   

)sin(15.0)cos(1.0 3 txt  . The similar parameters of both 

controllers are declared as: ,4,98.0 21     21 

4,2,5.1 21  bb . Besides, the distinctive value parameters 

considered as:  01.0   for (26)-(30), and 02.0 , 

51pq  for (39)-(42).  

     The system state trajectories (𝑥1 , 𝑥2 , 𝑥3 ), control signal, 

states of block transformation (𝑧1, 𝑧2, 𝑧3) and sliding surface 

are shown in Figure 1. The right hand sides figures are belong 

to the controller with sign integral sliding manifold (26), and 

the responses of controller with fractional integral sliding 

manifold (39) are depicted in the left hand side. Figure 1, 

confirms that the system states, sliding manifold and 

transformed states are converged to zero in a short time. By 

comparing the Figures 1(a)-(e) with (c)-(g), it can be seen that 

the convergence speed of the actual and transformed states is 

different which testifies the idea of Remark 6.  
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Figure 1: Responses of system state trajectories ( 1x , 2x , 3x ), control 

signal, block transformation states ( 1z , 2z , 3z ) and sliding surface. a-b-c-

d: The control law (30) with sign integral sliding manifold (26). e-f-g-h: The 

control law (42) with fractional integral sliding manifold (39). 

VI. SIMULATION RESULTS 

In this paper, the problem of designing fast converging 
controllers for a Caputo derivative based nonlinear fractional-
order uncertain system is investigated. We proposed two novel 
types of nonlinear sliding surfaces in order to have a fast zero 
convergence. Hence, two new nonlinear fractional-order 
sliding mode controllers are suggested. The asymptotic 
stability of the proposed control schemes is proved using the 
fractional-order stability theorems. Computer simulations 
reveal the performance of introduced control strategies in a 
short time convergence for the fractional-order Arneodo 
system with model uncertainties and external disturbances. 
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