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A B S T R A C T   

Despite tremendous achievements in the field of targeted cancer therapy, chemotherapy is still the main treat
ment option, which is challenged by acquired drug resistance. Various microRNAs are involved in developing 
drug-resistant cells. miR-21 is one of the first identified miRNAs involved in this process. Here, we conducted a 
literature review to categorize different mechanisms employed by miR-21 to drive drug resistance. miR-21 
targets various genes involved in many pathways that can justify chemoresistance. It alters cancer cell meta
bolism and facilitates adaptation to the new environment. It also enhances drug detoxification in cancerous cells 
and increases genomic instability. We also summarized various strategies applied for the inhibition of miR-21 in 
order to reverse cancer drug resistance. These strategies include the delivery of antagomiRs, miRZip knockdown 
vectors, inhibitory small molecules, CRISPR-Cas9 technology, catalytic nucleic acids, artificial DNA and RNA 
sponges, and nanostructures like mesoporous silica nanoparticles, dendrimers, and exosomes. Furthermore, 
current challenges and limitations in targeting miR-21 are discussed in this article. Although huge progress has 
been made in the downregulation of miR-21 in drug-resistant cancer cells, there are still many challenges to be 
resolved. More research is still required to find the best strategy and timeline for the downregulation of miR-21 
and also the most feasible approach for the delivery of this system into the tumor cells. In conclusion, down
regulation of miR-21 would be a promising strategy to reverse chemoresistance, but still, more studies are 
required to clarify the aforementioned issues.   

1. Introduction 

Cancer accounts for the second leading cause of death in the United 
States and it is proposed that 42% of men and 38% of women will be 
diagnosed with a type of cancer throughout their lives (Medarova et al., 
2020; Siegel et al., 2020). Despite huge progress in the field of targeted 
cancer therapy, chemotherapy is still the main approach for cancer 
treatment. One of the major obstacles in chemotherapy is acquired drug 
resistance, which according to the literature, up to 90% of deaths among 
cancer patients happen due to this problem (Bukowski et al., 2020). 
Chemotherapy resistance is the innate or acquired ability of cancer cells 
to avoid the harmful effects of chemotherapeutic agents through various 
mechanisms (Alfarouk et al., 2015). While multiple genes implicated in 
drug resistance have been identified, additional genes involved in this 
process should still be discovered to unravel the underlying mechanisms 

of this phenomenon. Major mechanisms involved in drug resistance 
include an increase in drug efflux, a decrease in drug uptake, adjustment 
of drug metabolism, cell death inhibition, alteration of cell metabolism, 
modification of DNA repair systems, increased genomic instability and 
elevated tumor heterogeneity, employing cancer stem cells as the source 
of tumor-initiating cells, and remodeling of the tumor microenviron
ment to facilitate the migration of cancer cells (Bukowski et al., 2020; 
Phi et al., 2018). Studies have reflected that various epigenetic alter
ations, including DNA methylation, histone modifications, and different 
expression patterns of microRNAs (miRNAs), are also involved in che
moresistance (Zahan et al., 2020). 

miRNAs are a group of short non-protein-coding RNAs and up to 
now, approximately 2600 mature miRNAs have been recognized to be 
encoded by the human genome (Plotnikova et al., 2019). For the first 
time in 2002, the relationships between microRNAs and cancer were 

* Corresponding author. Ferdowsi University of Mashhad, Azadi Square, Mashhad, Khorasan Razavi Province, 9177948974, Iran. 
E-mail address: matin@um.ac.ir (M.M. Matin).  

Contents lists available at ScienceDirect 

European Journal of Pharmacology 

journal homepage: www.elsevier.com/locate/ejphar 

https://doi.org/10.1016/j.ejphar.2022.175233 
Received 1 April 2022; Received in revised form 9 August 2022; Accepted 22 August 2022   

mailto:matin@um.ac.ir
www.sciencedirect.com/science/journal/00142999
https://www.elsevier.com/locate/ejphar
https://doi.org/10.1016/j.ejphar.2022.175233
https://doi.org/10.1016/j.ejphar.2022.175233
https://doi.org/10.1016/j.ejphar.2022.175233
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejphar.2022.175233&domain=pdf


European Journal of Pharmacology 932 (2022) 175233

2

identified (Calin et al., 2002). MicroRNAs can act as both oncogenes and 
tumor suppressor genes (Pfeffer et al., 2015) and both upregulation and 
downregulation of these RNAs have been reported among various types 
of cancers (Ali Syeda et al., 2020). The mechanisms causing the dereg
ulation of miRNAs among cancer patients are not well understood, but 
both epimutations and mutations can cause this phenomenon (Ali Syeda 
et al., 2020). It is shown that miRNAs can target approximately 30% of 
human genes, and 50% of these genes are tumor-associated or are 
located in fragile loci, which shows they are somehow involved in tumor 
development and chemoresistance (Bukowski et al., 2020). Several 
mechanisms have been proposed to justify the contribution of miRNAs 
to chemotherapeutic drug resistance. They can affect cell cycle path
ways and also apoptosis via downregulation of pro-apoptotic genes and 
upregulation of anti-apoptotic genes. These RNAs can improve the DNA 
repair system in cancer cells and protect them against mutagenesis of 
anti-cancer drugs, so they can help the cells to evade apoptosis in 
response to a high rate of DNA damage. MicroRNAs are also involved in 
upregulating autophagy genes, which can facilitate the ingestion and 
degradation of chemotherapeutic agents (Huang et al., 2020b). More
over, they can alter cancer cell drug metabolism, which alleviates the 
toxicity of the drugs (Si et al., 2019). In this study, we focus on miR-21, 
one of the first identified microRNAs that is involved in both oncogen
esis and chemoresistance (Harrandah et al., 2018a). 

2. The physiological function of miR-21 

MicroRNA-21 is an evolutionary conserved RNA among a great 
number of vertebrates (Feng and Tsao, 2016). The function of this RNA 
begins at the earliest stage of life. During development, miR-21 has 
higher expression throughout the transition of the zygote to the 
eight-cell stage (Mondou et al., 2012; Salilew-Wondim et al., 2020) and 
it is also important for embryo implantation and pregnancy preserva
tion. It is assumed as one of the active pregnancy markers, which are 
expressed only among viable embryos (Reza et al., 2019). miR-21 is 
expressed in a wide range of human tissues and it is also involved in 
various important cell functions, including proliferation, growth, 
migration, differentiation, apoptosis, etc. miR-21 knockout mice show a 
higher rate of apoptosis and a lower rate of proliferation and tumori
genesis (Ma et al., 2011). It is also important for the appropriate function 
and homeostasis of hematopoietic stem cells, tooth development, and 
osseous tissue (Hu et al., 2021; Schwarze et al., 2021; Smieszek et al., 
2020). miR-21 contributes to the migration and differentiation of 
endothelial cells and it is also involved in angiogenesis (Krzywińska 
et al., 2020). In the heart, miR-21 has cell type-specific functions. 
Although it can increase hypertrophy and fibrosis of fibroblasts, it can 
prevent hypertrophy and apoptosis of cardiomyocytes (Kura et al., 
2020). It was shown that during inflammation, telocytes enhance 
angiogenesis through miR-21-3p (Zhou et al., 2019). Furthermore, 
studies on animal models, demonstrated that miR-21 is important for 
gametogenesis. For instance, miR-21 is among RNAs that are upregu
lated during the development of porcine oocytes (Salilew-Wondim et al., 
2020); and a study on bovine samples also demonstrated that miR-21 
can prevent apoptosis of cumulus cells (Salilew-Wondim et al., 2020). 
In addition, this RNA is also involved in the survival and proliferation of 
male spermatogonial cells (Reza et al., 2019). 

3. Contribution of miR-21 to development of drug resistance 

miR-21 is involved in all carcinogenesis phases including initiation, 
promotion, progression, and metastasis (Bautista-Sánchez et al., 2020). 
One of the crucial factors for cancer initiation is genomic instability that 
can be generated through telomere dysfunction and deficient DNA 
repair systems (Ferguson et al., 2015). Studies have shown that miR-21 
can affect both of these systems. Cancer stem cells (CSCs) are also 
involved in cancer initiation and miR-21 is one of the major upregulated 
miRNAs in these cells (Harrandah et al., 2018b). Studies have shown 

that upregulated miR-21 in CSCs is involved in the process of reactive 
oxygen species (ROS) production in these cells. miR-21 can induce ROS 
production through the MAPK signaling pathway and downregulation of 
SOD2, SOD3, and SPRY2 (Lin, 2019). SOD2 and SOD3 encode superoxide 
dismutases and can protect cells against oxidative damage (Kim et al., 
2014), and SPRY2 acts as a tumor suppressor gene and can trigger cancer 
cell apoptosis via PTEN activation and RAS-RAF-ERK inhibition (Feng 
et al., 2012). In total, several mechanisms are imposed for supporting 
the function of miR-21 in these cancer progenitor cells: miR-21 might 
release growth factors, which enhance stem cells; it might contribute to 
self-renewal of stem cells or it could induce dedifferentiation of adult 
cells to progenitor cells to maintain the supply of progenitor cell pop
ulation (Sekar et al., 2016). miR-21 is also involved in cancer progres
sion and metastasis. It can ensure metastasis by facilitating 
epithelial-mesenchymal transition (EMT) in various types of cancers. 

miR-21 is also involved in the development of resistance to chemo
therapeutic agents through various strategies, which is the focus of this 
review and will be discussed in this section. 

3.1. Increase in drug efflux 

Experiments on renal cell carcinoma have shown that silencing miR- 
21, downregulates the expression of ABCC3-6 in RCC10 (a human renal 
cancer cell line), ABCC2-6 in 786-O (a human renal adenocarcinoma cell 
line) and ABCC3 and ABCC5 in ACHN (a human renal adenocarcinoma 
cell line) (Gaudelot et al., 2017). In cancer cells, ABC transporters act as 
drug exporters, and upregulation of these proteins reduces the concen
tration of chemotherapeutic agents within the cells and as a result, 
protects them against the cytotoxicity of the drugs (Muriithi et al., 
2020). A study on colon cancer showed that miR-21 can inhibit PCD4 
and, since PCD4 no longer can downregulate ABCC5, a high level of 
ABCC5 leads to fluorouracil-resistance in colon cancer cells (Wu et al., 
2015a). Additionally, investigating miR-21 knockdown in a human lung 
cancer cell line indicated decreased expression of MDR1, demonstrating 
that miR-21 upregulates MDR1, which results in cisplatin-resistance 
(Dong et al., 2015b). 

3.2. Decrease of drug uptake 

miR-21 can reduce cellular drug uptake and prevent the accumula
tion of chemotherapeutic agents within the cells. It was shown that the 
downregulation of miR-21 in doxorubicin-resistant human hepatocel
lular carcinoma cells could reduce chemoresistance through escalating 
chemotherapy drug uptake (Wang et al., 2018). Experiments on renal 
cell carcinoma have indicated that silencing miR-21 upregulates the 
expression of some transporters including SLC22A1, SLC22A2, and 
SLC31A1 (Gaudelot et al., 2017). SLC22A1 and SLC22A2 are both cation 
transporters, which can accumulate chemotherapeutic drugs within 
cancerous cells and, as a result, they can enhance cellular sensitivity to 
platinum-based drugs, including cisplatin, oxaliplatin, and picoplatin (Li 
and Shu, 2014; Samodelov et al., 2020). Furthermore, SLC31A1 is also 
important for the uptake of platinum drugs such as cisplatin and car
boplatin by cancer cells (Cheng et al., 2020). 

3.3. Adjustment of drug metabolism 

Glutathione S-transferases (GSTs) are one group of enzymes involved 
in drug detoxification and high expression of these enzymes is associated 
with multi-drug resistance (Mansoori et al., 2017; Singh and Reindl, 
2021). They can directly detoxify anti-cancer drugs or indirectly 
modulate the MAPK pathway, which is important in several cellular 
functions such as proliferation and apoptosis (Mansoori et al., 2017). 
Depending on cell type and stimulus, the MAPK pathway can act as 
either an activator or an inhibitor of apoptosis (Yue and López, 2020). 
Experiments on a human lung cancer cell line (A549/DDP) showed that 
downregulation of miR-21 reduces the expression level of GSTs (Dong 
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et al., 2015b). In addition, human UDP-glucuronosyltransferase (UGT) 
enzymes are also involved in cancer drug inactivation via glucur
onidation (Allain et al., 2020). Studies have shown that miR-21-3p can 

regulate the expression level of UGT1As in LS180 (a human colon 
adenocarcinoma cell line) and human hepatocytes (Gomes et al., 2019; 
Meng et al., 2021). 

Fig. 1. The contribution of miR-21 in the develop
ment of chemotherapy resistance. ABCC2, ATP Bind
ing Cassette Subfamily C Member 2; ABCC3, ATP 
Binding Cassette Subfamily C Member 3; ABCC4, ATP 
Binding Cassette Subfamily C Member 4; ABCC5, ATP 
Binding Cassette Subfamily C Member 5; ABCC6, ATP 
Binding Cassette Subfamily C Member 6; MDR1, 
Multidrug Resistance Protein 1; SLC22A1, Solute 
Carrier Family 22 Member 1; SLC22A2, Solute Carrier 
Family 22 Member 2; SLC31A1, Solute Carrier Family 
31 Member 1; TIMP3, Tissue Inhibitor of Metal
loproteinases 3; SPRY1, Sprouty RTK Signaling 
Antagonist 1; SPRY2, Sprouty RTK Signaling Antag
onist 2; PDCD4, Programmed Cell Death 4; THRB, 
Thyroid Hormone Receptor Beta; PELI1, Pellino E3 
Ubiquitin Protein Ligase 1; FASL, FAS Ligand; TP63, 
Tumor Protein P63; FOXO1, Forkhead Box O1; 
FBXO11, F-Box Protein 11; APAF1, Apoptotic Pepti
dase Activating Factor 1; ANP32A, Acidic Nuclear 
Phosphoprotein 32 Family Member A; TIPE2, Tumor 
Necrosis Factor, Alpha-Induced Protein 8-Like Protein 
2; PPARA, Peroxisome Proliferator Activated Recep
tor Alpha; BMPR2, Bone Morphogenetic Protein Re
ceptor Type 2; BCL2, B-Cell Lymphoma 2; PTEN, 
Phosphatase and Tensin Homolog; NHEJ, Non- 
homologous end joining; HRR, Homologous recom
bination repair; MMR, DNA mismatch repair; NF-κB, 
Nuclear factor kappa-light-chain-enhancer of acti
vated B cells; CAF, Cancer-associated fibroblast; ECM, 
Extracellular matrix.   
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3.4. Alteration of cell metabolism 

Most cancer cells harbor some metabolic characteristics, that enable 
them to survive in the tumor microenvironment and evade chemother
apeutic agents. miR-21 is involved in multiple mechanisms that lead to 
the metabolic plasticity of cancer cells (Desbats et al., 2020). For 
instance, an investigation on non-small-cell lung carcinoma (NSCLC) 
proved that miR-21 promotes glycolysis and lactate production and re
duces the level of oxidative phosphorylation and oxygen consumption 
(Dai et al., 2017a); and in cancer-associated fibroblasts, it increases 
glucose uptake and production of lactic acid (Chen et al., 2018b). 
Furthermore, in lung cancer, miR-21 induces the expression of CD36, a 
fatty acid receptor that acts as a translocase and affects the lipid meta
bolism of cancer cells (Azizi et al., 2021). In addition, in gastric cancer, 
high levels of miR-21 reduce pyruvate dehydrogenase A1, which couples 
glycolysis with the tricarboxylic acid cycle and is important for cancer 
cell metabolism switch (Liu et al., 2018b). 

3.5. Cell death inhibition 

miR-21 exerts anti-apoptotic effects via targeting genes involved in 
apoptosis (Song et al., 2017), a summary of which is shown in Fig. 1 
(Buscaglia and Li, 2011; Melnik, 2015a). Downregulation of miR-21 in 
gastric cancer cells could restore apoptosis of malignant cells (Gu et al., 
2018). Furthermore, miR-21 was involved in developing 
cisplatin-resistant cells in NSCLC patients via targeting PTEN, which 
resulted in the inhibition of apoptosis (Papadaki et al., 2020). miR-21 
could also inhibit TP53, one of the important tumor suppressor genes 
that is involved in DNA damage response and induces cell cycle arrest 
and apoptosis (Papagiannakopoulos et al., 2008). 

3.6. Modification of DNA repair systems 

In 2017, Hu et al. showed that miR-21 could enhance the repair of 
double-strand breaks through both non-homologous end joining (NHEJ) 
and homologous recombinational repair (HRR) pathways and as a 
result, it is involved in the radioresistance of cancer cells (Hu et al., 
2017). Moreover, in colorectal cancer, miR-21 was involved in devel
oping fluorouracil-resistant cells through the reduction of MSH2 and 
MSH6 genes, which contribute to the mismatch repair system, and as a 
result, G2/M arrest does not happen, and apoptosis would be inhibited 
(Melnik, 2015a; Natarajan, 2016; Svrcek et al., 2013). 

3.7. Tumor heterogeneity and genomic instability 

According to previously described mechanisms, miR-21 can enhance 
genomic instability, which subsequently increases the risk of mutations. 
If mutations happen in chemotherapy target genes, the risk of drug 
resistance will rise (Báez-Vega et al., 2016; Melnik, 2015b). 

3.8. Cancer stem cells 

Cancer stem cells are clinically important, as they are resistant to 
various chemotherapeutic agents. In fact, miR-21 is the most reported 
miRNA in the regulation of colon CSCs. In colon cancer and hepatocel
lular carcinoma, miR-21 contributed to the regulation of stemness via 
affecting TGFBR2 and JAG1, respectively (Sekar et al., 2016; Yoshida 
et al., 2021). Several mechanisms of action have been proposed for the 
contribution of miR-21 in the enrichment of CSCs. This RNA can act both 
on stem cells and non-progenitor cells. In non-progenitor cells, miR-21 
can either trigger dedifferentiation or reinforce the expression of 
growth factors and subsequently, strengthen the stem cell population 
and can enhance CSC self-renewal (Sekar et al., 2016). 

3.9. Tumor microenvironment 

In the tumor microenvironment, microvesicles and exosomes play an 
important role in intercellular communications and, especially the de
livery of miRNAs between different cell types. For example, 
microvesicle-mediated delivery of miR-21 from cancer cells to macro
phages leads to activation of the NF-κB pathway and also the production 
of inflammatory cytokines like IL-6 which subsequently enhances the 
chance of metastasis (Pan et al., 2020). Other studies have shown that in 
gastric cancer, the transfer of macrophage-derived exosomal miR-21 to 
cancer cells leads to regulation of the PTEN/PI3K/AKT signaling 
pathway and, as a result, it decreases the effects of cisplatin on these 
cancerous cells (Shen et al., 2014; Zheng et al., 2017). 

Cancer-associated fibroblasts (CAFs) are spindle-like stromal cells 
located in the tumor microenvironment. Based on origin and surface 
markers, they are heterogenous, and based on tumor type, they have 
different mechanisms of action in inducing drug resistance (Zhao et al., 
2021a). For instance, in NSCLC, CAFs are involved in drug resistance 
through enhancing metabolic reprogramming, extracellular matrix 
remodeling, and maintenance of CSC stemness (Chen et al., 2021). CAFs 
can secrete chemokines and cytokines like IL-6 in gastrointestinal can
cers, which results in a poor response to chemotherapy among patients. 
They can produce growth factors involved in cell-cell communications. 
CAFs can also produce exosomes, which contain long non-coding RNAs 
involved in drug resistance (Ham et al., 2021). In ovarian cancer, 
CAF-derived exosomal miR-21 was involved in paclitaxel resistance by 
targeting APAF1 (Yang et al., 2017a). Altogether, studies have shown 
that miR-21 plays an important regulatory function in the activation of 
CAFs; for instance, in pancreatic ductal adenocarcinoma, miR-21 
contributed to the development of drug resistance via triggering CAFs 
(Zhang et al., 2018); and in lung fibroblasts, upregulation of miR-21 led 
to the production of CAF markers including periostin, podoplanin, 
α-smooth muscle actin, and also calumenin (Kunita et al., 2018), which 
are associated with cell migration, metastasis, and chemotherapy 
resistance (Yang et al., 2021). 

Aberrant extracellular matrix (ECM) remodeling in the tumor 
microenvironment is another important factor involved in drug resis
tance (Brown et al., 2019; Skhinas and Cox, 2018). The components of 
ECM contribute to CSC survival and maintenance of the cancer niche 
(Brown et al., 2019). For instance, studies on breast and ovarian cancers 
showed that binding of CSCs to hyaluronic acid, which is a major 
component of ECM, would increase the expression level of 
stemness-related transcription factors and also MDR1 gene, which both 
could exacerbate chemoresistance (Nallanthighal et al., 2019). 

The involvement of miR-21 in chemotherapeutic drug resistance via 
different mechanisms is summarized in Fig. 1. 

In general, among different types of cancers, miR-21 is involved in 
chemotherapeutic resistance via altering the expression of various genes, 
as summarized in Table 1. Moreover, both isoforms of miR-21 can affect 
genes that are targeted by various chemotherapy drugs. These genes are 
shown in Fig. 2. 

4. Strategies for downregulation of miR-21 

Since miR-21 is one of the most common oncogenic microRNAs with 
upregulation in almost all cancer types, scientists have developed 
various strategies for downregulation of this RNA. Here, we focus on 
studies that showed downregulation of miR-21 could enhance the 
chemotherapeutic effects of cancer drugs in vitro or in vivo. 

4.1. Use of AntagomiRs (anti-sense oligonucleotides) 

AntagomiRs are synthetic antisense RNA oligonucleotides, that 
inhibit the binding of microRNAs to their mRNA targets. For optimizing 
the in vivo function of an anti-miR, several chemical modifications could 
be performed on its sugar, nucleobase, and also internucleobase 
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interactions (Stenvang et al., 2012a, 2012b). In a cisplatin-resistant 
ovarian cancer cell line (A2780), co-delivery of anti-miR-21 and 
cisplatin using a polyethylene glycosylated nanoparticle with an 
aptamer as a targeting molecule could increase the mortality rate of 
cancer cells (Vandghanooni et al., 2018). Moreover, the application of 
anti-miR-21 and 5-fluorouracil via targeted exosomes could effectively 
overcome drug resistance in colon cancer cells both in vitro and in vivo 
(Liang et al., 2020). 

4.2. miRZip knockdown vectors 

Engineered lentiviral and adeno-associated viral (AAV) vectors have 
been successfully used for the expression of antisense RNA against miR- 
21 (miRZip-21) (Bhere et al., 2020). miRZip hairpins were designed 
asymmetrically for preferentially producing antisense RNA comple
mentary to the microRNA (Huang et al., 2013). Huang et al. applied 
lentiviral vectors expressing miRZip-21 on radioresistant esophageal 
squamous cancer cells (TE-1), which could increase the radiosensitivity 
of these cells (Huang et al., 2013). In 2020, Bhere et al. applied lentiviral 
and AAV vectors expressing miRZip-21 and at the same time AAV-miR-7 

Table 1 
Contribution of miR-21 tochemotherapy resistance via affecting various genes.  

Cancer type Drug resistance related to miR-21 Genes that their expression is affected by miR-21 

Breast cancer Trastuzumab (Gong et al., 2011), paclitaxel (Zhao et al., 2015), doxorubicin ( 
Hong et al., 2013), 4-hydroxytamoxifen, topotecan (Arghiani and Matin, 
2021), and fulvestrant (Yu et al., 2016b) 

PTEN (Hong et al., 2013), PDCD4 (Hong et al., 2013; Huang et al., 2020a;  
Najjary et al., 2020), TIMP3 (Najjary et al., 2020), FOXO3A (Liu et al., 
2015b), ANKRD46 (Yan et al., 2011), TGFB1 (Dai et al., 2017b), TPM1 (Zhu 
et al., 2007), BCL2 (Jahanafrooz et al., 2017), FASLG (Kuang and Nie, 2016), 
RHOB (Kuang and Nie, 2016), SERPINB5 (Kuang and Nie, 2016), RECK ( 
Kuang and Nie, 2016), RTN4 (Bautista-Sánchez et al., 2020), LZTFL1 (Wang 
et al., 2019), and STAT3 (Zhang et al., 2016) 

Myeloma Bortezomib, dexamethasone, doxorubicin (Wang et al., 2011), and melphalan ( 
Leone et al., 2013) 

PIAS3 (Xiong et al., 2012), PTEN (Leone et al., 2013), AKT (Leone et al., 
2013), STAT3 (Xiong et al., 2012), RANKL (Leone et al., 2013), OPG (Leone 
et al., 2013), NF-κB (Xiong et al., 2012), and RHOB (Wang et al., 2011) 

Leukemia Daunorubicin (Vandewalle et al., 2021), doxorubicin (Li et al., 2022), imatinib 
(Zhang et al., 2021), and cytarabine (Vandewalle et al., 2021) 

PTEN (Wang et al., 2015a), PDCD4 (Vandewalle et al., 2021), BTG2 ( 
Vandewalle et al., 2021), TPM1 (Labib et al., 2017), AKT (Li et al., 2018), 
ZAP70 (Carabia et al., 2017), MAPK (Carabia et al., 2017), and STAT3 ( 
Carabia et al., 2017) 

Melanoma Doxorubicin (Melnik, 2015b) TIMP3 (Wang et al., 2020), PTEN (Saldanha et al., 2016), PDCD4 (Yang 
et al., 2011), FBXO11 (Yang et al., 2015), and TP53 (Varrone and Caputo, 
2020) 

Glioblastoma and 
glioma 

Teniposide (Li et al., 2009), paclitaxel (Ren et al., 2010), fluorouracil (Moore 
and Zhang, 2010), sunitinib (Costa et al., 2013), temozolomide (Shi et al., 
2010b), cisplatin (Sun et al., 2021), and carmustine (Wang et al., 2017) 

LRRFIP1 (Li et al., 2009), BCL2 (Moore and Zhang, 2010), SPRY2 (Kwak 
et al., 2011), MSH2 (Maachani et al., 2016), PDCD4 (Maachani et al., 2016), 
PTEN (Masoudi et al., 2018), IGFBP3 (Yang et al., 2014), RECK (Gabriely 
et al., 2008), TIMP3 (Gabriely et al., 2008), and FASL (Shang et al., 2015) 

Gastrointestinal 
cancer 

Cisplatin (Gu et al., 2020), doxorubicin (Chen et al., 2018a), trastuzumab (Eto 
et al., 2014), paclitaxel (Jin et al., 2015), and fluorouracil (Deng et al., 2014) 

PTEN (Chen et al., 2018a), TIMP3 (Chen et al., 2018a), CCL20 (Vicinus et al., 
2013), ITGB4 (Ferraro et al., 2014), TET1 (Ma et al., 2018b), MSH2 (Deng 
et al., 2014), PDCD4 (Ferraro et al., 2014), RASA1 (Gong et al., 2015), 
SPRY2 (Feng et al., 2012), STAT3 (Tse et al., 2022), SMAD6 (Xu et al., 2016), 
SMAD7 (Jiang et al., 2018; Xu et al., 2016), and RECK (Zhang et al., 2008) 

Hepatic cancer Sorafenib (He et al., 2015), Fluorouracil (Tomimaru et al., 2010), cisplatin ( 
Chen et al., 2019b), and doxorubicin (Xia et al., 2020) 

FASLG (Chen et al., 2019b), PTEN (He et al., 2015; Xia et al., 2020), AKT (He 
et al., 2015), PDCD4 (El Gedawy et al., 2017), SOCS6 (Li et al., 2015), RECK 
(Zhang et al., 2020), TIMP3 (Hu et al., 2016), and NAV3 (Wang et al., 
2015b) 

Pancreatic cancer Gemcitabine (Dong et al., 2011) and fluorouracil (Wei et al., 2016) BCL2 (Dong et al., 2011), PTEN (Wei et al., 2016), and PDCD4 (Wei et al., 
2016) 

Lung cancer Gefitinib (Jing et al., 2018), platinum-based drugs like cytarabine and cisplatin 
(Markou et al., 2016; Xu et al., 2014a) 

BCL2 (Xu et al., 2014b), PDCD4 (Jiang et al., 2017), PKR (Lasithiotaki et al., 
2017), PTEN (Xu et al., 2014b), ERK (Huang et al., 2021), EGFR (Seike et al., 
2009), SMAD7 (Li and Wu, 2018), CASP8 (Jiang et al., 2017), TGFB1 (Yan 
et al., 2018), and RECK (Xu et al., 2014b) 

Prostate cancer Docetaxel (Shi et al., 2010a), and doxorubicin (Zhao et al., 2021b) PDCD4 (Dong et al., 2015a), BMPR2 (Qin et al., 2009), TGFB1 (Mishra et al., 
2014), PTEN (Yang et al., 2017b), RECK (Reis et al., 2012), and TPM1 (Zhu 
et al., 2007) 

Lymphoma CHOP chemotherapy combination: cyclophosphamide, hydroxydaunorubicin, 
oncovin, and prednisone (Bai et al., 2013) 

PTEN (Song et al., 2017) and FOXO1 (Go et al., 2015) 

Neuroblastoma Cisplatin (Chen et al., 2012) PTEN (Chen et al., 2012) and BCL2 (Chen et al., 2012) 
Cervical cancer Cisplatin (Masadah et al., 2021; Wen et al., 2017) PTEN (Wen et al., 2017), PDCD4 (Wen et al., 2017), LATS1 (Liu et al., 

2015a), and GAS5 (Wen et al., 2017) 
Bladder Doxorubicin (Lei et al., 2015) PTEN (Lei et al., 2015), SERPINB5 (Zhang et al., 2015), and VEGFC (Zhang 

et al., 2015) 
Ovarian cancer Cisplatin and paclitaxel (Echevarría-Vargas et al., 2014; Xie et al., 2013) PDCD4 (Echevarría-Vargas et al., 2014) 

PTEN, Phosphatase and Tensin Homolog; PDCD4, Programmed Cell Death 4; TIMP3, Tissue Inhibitor of Metalloproteinases 3; ANKRD46, Ankyrin Repeat Domain 46; 
TGFB1, Transforming Growth Factor Beta 1; TPM1, Tropomyosin 1; BCL2, B-Cell Lymphoma 2; FASLG, FAS Ligand; RHOB, RAS Homolog Family Member B; SERPINB5, 
Serpin Family B Member 5; RECK, Reversion Inducing Cysteine Rich Protein With Kazal Motifs; RTN4, Reticulon 4; LZTFL1, leucine zipper transcription factor like 1; 
STAT3, signal transducer and activator of transcription 3; PIAS3, protein inhibitor of activated STAT 3; AKT, AKT serine/threonine kinase 1; RANKL, Receptor 
Activator of Nuclear Factor Kappa-B Ligand; OPG, Osteoclastogenesis Inhibitory Factor; NF-κB, Nuclear Factor Kappa-B; BTG2, BTG anti-proliferation factor 2; ZAP70, 
Zeta Chain of T Cell Receptor Associated Protein Kinase 70; MAPK, Mitogen-Activated Protein Kinase 1; FBXO11, F-Box Only Protein 11; TP53, Tumor Protein P53; 
LRRFIP1, LRR Binding FLII Interacting Protein 1; SPRY2, Sprouty RTK Signaling Antagonist 2; MSH2, MutS Homolog 2; IGFBP3, insulin like growth factor binding 
protein 3; FASL, FAS Ligand; CCL20, C–C Motif Chemokine Ligand 20; ITGB4, Integrin Subunit Beta 4; TET1, Ten-eleven Translocation 1; RASA1, RAS p21 protein 
activator 1; SMAD6, Suppressor of Mothers Against Decapentaplegic 6; SMAD7, Suppressor of Mothers Against Decapentaplegic 7; SOCS6, Suppressor of Cytokine 
Signaling 6; NAV3, Neuron Navigator 3; PKR, Protein Kinase, Interferon-Inducible Double Stranded RNA; BMPR2, Bone Morphogenetic Protein Receptor Type 2; 
CHOP, Cyclophosphamide, Hydroxydaunorubicin, Oncovin, and Prednisone; FOXO1, forkhead box O1; Large Tumor Suppressor Kinase 1; GAS5, Growth Arrest 
Specific 5; SERPINB5, serpin family B member 5; VEGFC, Vascular Endothelial Growth Factor C. 
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to downregulate miR-21 and upregulate miR-7, respectively, in a broad 
spectrum of cancer cells. They showed an increased apoptosis rate and 
reduced cell proliferation, invasion, and migration in vitro, and the 
therapeutic effects were also significant in vivo (Bhere et al., 2020). 

4.3. Application of small molecules 

Scientists have found several small molecules that can modify the 
activity of miRNAs (Fan et al., 2019). By applying functional assays and 
screening small molecule libraries, these modifiers could be identified 
(Connelly and Deiters, 2014). For the first time in 2008, Gumireddy 
et al. applied a luciferase-based cellular assay and identified the first 
small molecule that acts as a miR-21 inhibitor (diazobenzene) (Gumir
eddy et al., 2008). Other small molecules with inhibitory effects on 
miR-21 include streptomycin, 6-hydroxy-DL-DOPA, AC1MMYR2, 3, 
3′diindolylmethane (DIM) and ALWPPNLHAWVP (Nikulin et al., 2020; 
Wen et al., 2015). 

In 2018, Naro et al. investigated 1,2,4-oxadiazole miR-21 inhibitor 
37 on a chemoresistant renal cell carcinoma cell line (A498). This type of 
cancer is generally resistant to topotectan, which is a chemotherapeutic 
agent. The results indicated a more than 11-fold increase in drug po
tency in comparison to the solo application of topotecan (Naro et al., 
2018). Furthermore, in 2020, scientists used a natural substance, which 
can be found in some vegetables and acts as a miR-21 antagonist (DIM). 
They cultured organoids from metastatic breast cancer patients, and 
tested the effects of DIM alongside the combined treatment of cyclo
phosphamide and methotrexate. They confirmed that miR-21-5p was 
suppressed and subsequently, the susceptibility of cancer cells to com
bined treatment had risen significantly (Nikulin et al., 2020). 

4.4. CRISPR-Cas9 technology 

Since the introduction of the CRISPR-Cas9 system, this genome- 
editing tool was primarily applied to protein-coding genes, but as it 
progressed, the knockout of non-coding genes was also feasible. In 2015, 
Ho et al. produced various human cell lines encompassing knockout 
miR-21 via the homologous recombination-mediated method of the 
CRISPR-Cas9 system (Ho et al., 2015). In 2017, scientists designed 
lentiviral CRISPR/Cas9 vectors to induce mutations in pre-miR-21 se
quences in ovarian cancer cell lines (SKOV3 and OVCAR3). Their 
experiment resulted in the upregulation of an epithelial cell marker 
(E-cadherin) and downregulation of mesenchymal markers (Vimentin 
and SNAI2). The change in the pattern of expression of these markers 

reflected a reduction in epithelial-mesenchymal transition. They also 
observed a significant reduction in migration, proliferation, and inva
sion, and also an enhancement in paclitaxel response (Huo et al., 2017). 

Up to now, with the application of CRISPR-Cas9 system, two studies 
have suggested that miR-21 knockout could improve the sensitivity of 
cancer cells to chemotherapeutic agents through inhibition of the PI3K/ 
AKT signaling pathway. In the first study, application of lentiviral 
CRISPR-Cas9 system on a nasopharyngeal carcinoma cell line (CNE2) 
resulted in a lower rate of migration and invasion and also induction of 
apoptosis through inhibition of the PI3K/AKT/mTOR signaling 
pathway. In the second experiment, miR-21 was knocked out in an 
imatinib-resistant human leukemia cell line (563/G01). In the latest 
study, activation of PI3/AKT signaling and cell proliferation were 
inhibited and the expression level of BCR-ABL was also reduced and as a 
result, cancer cells showed increased imatinib sensitivity (Zhang et al., 
2021). 

4.5. Catalytic nucleic acids 

Catalytic nucleic acids including hammerhead ribozymes and DNA
zymes are generally used for messenger RNA inhibition, but in 2016, 
Belter et al. reported their application for effective inhibition of miR-21 
in glioma cells (T98G) (Belter et al., 2016). Then, Larcher et al. intro
duced RNV541, a novel DNAzyme which was coalesced with a trans
ferring receptor targeting aptamer for targeted inhibition of miR-21 in 
glioma cells (U87MG) and also in a breast cancer cell line 
(MDA-MB-231) with 90% and 50% efficiency, respectively (Larcher 
et al., 2019). One of the advancements in this field was achieved by Liu 
et al. in 2021. They designed a photo-controlled DNAzyme with the 
ability to target endogenous miR-21. In their study, applying MnO2 
nanosheets for the protection of DNAzymes from enzymatic digestion 
could enhance the efficiency of miR-21 inhibition (Liu et al., 2021b). 

4.6. Artificial RNA and DNA sponges 

MicroRNA sponges are synthetic circular RNAs consisting of 
repeated miRNA antisense sequences that provide multiple miR binding 
sites and could absorb the target miRNAs like a sponge. Since binding 
sites are complementary to the seed sequence, they can inhibit multiple 
members of miRNAs in a seed family (Ebert and Sharp, 2010; Kluiver 
et al., 2012; Rossbach, 2019). In 2018, the first application of miR-21 
sponge in gastric cancer cells was reported and could successfully sup
press cancer cell proliferation (Liu et al., 2018a). Geo et al. applied 

Fig. 2. miR-21 targets genes which are also targeted 
by chemotherapy drugs. This figure is obtained by a 
comparison between a gene list from the CancerDR 
database and target genes of each isoform from 
DIANA-TarBase v8 (Karagkouni et al., 2018; Kumar 
et al., 2013). BCL2, B-cell Lymphoma 2; HSP90B1, 
Heat Shock Protein 90 Beta Family Member 1; RXRA, 
Retinoid X Receptor Alpha; HDAC1, Histone Deace
tylase 1; PRKCE, Protein Kinase C Epsilon; IGF1R, 
Insulin Like Growth Factor 1 Receptor; PLK1, Polo 
Like Kinase 1; CTNNB1, Catenin Beta 1; HDAC2, 
Histone Deacetylase 2; ROCK2, Rho Associated 
Coiled-Coil Containing Protein Kinase 2; WEE1, 
WEE1 G2 Checkpoint Kinase; MDM2, Mouse Double 
Minute 2 Homolog; PTK2, Protein Tyrosine Kinase 2; 
TBK1, TANK Binding Kinase 1; PPM1D, Protein 
Phosphatase, Mg2+/Mn2+ Dependent 1D; PARP1, 
Poly(ADP-Ribose) Polymerase 1; ABL2, 
Abelson-Related Gene Protein; MCL1, Myeloid Cell 
Leukemia 1; SMO, Smoothened, Frizzled Class Re

ceptor; AURKA, Aurora Kinase A; MTOR, Mammalian Target of Rapamycin; CTNNB1, Catenin Beta 1; PTPN11, Protein Tyrosine Phosphatase Non-Receptor Type 11; 
CDK6, Cyclin Dependent Kinase 6; FGFR3, Fibroblast Growth Factor Receptor 3; KDR, Kinase Insert Domain Receptor; HSP90AA1, Heat Shock Protein 90 Alpha 
Family Class A Member 1; PDGFRA, Platelet Derived Growth Factor Receptor Alpha; CCR5, C–C Motif Chemokine Receptor 5.   
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cationic polymers (poly-L-lysine (PLL) and polyethylenimine (PEI)) for 
transfecting a DNA plasmid encoding miR-21 sponge into MCF-7 cells 
that could sensitize cancer cells to doxorubicin and cisplatin (Lin et al., 
2018a). Furthermore, Zhang et al. produced DNA nanosponges with 
MUC1 aptamer, antisense miR-21, and doxorubicin binding sites. Their 
construct showed a cell-type specific effect and it could synergistically 
enhance the cytotoxicity of doxorubicin on MCF-7 cancerous cells, while 
it had less effects on normal cells due to the application of MUC1 
aptamer for targeted delivery of the sponge to the cancerous cells (Zhang 
et al., 2019). 

4.7. Nanostructures 

The advent of nanotechnology has provided a great platform in the 
field of targeted drug delivery, combinational therapy, and microRNA- 
delivery systems (Fu et al., 2019; Iranpour et al., 2021). Here, we 
describe the application of various types of these nanostructures. 

4.7.1. Liposomes 
Liposomes are the first approved nano-vehicles used in cancer 

treatment. These nanoparticles are biodegradable, biocompatible, and 
non-toxic phospholipid bilayers with both non-polar and aqueous cav
ities that enable them to load both hydrophobic and hydrophilic drugs. 
Surface modifications such as polyethylene glycol (PEG) can decrease 
blood clearance and enhance their circulation time. Moreover, conju
gation with bio-materials including antibodies, glucose, folic acid, and 
aptamers can be applied in targeted drug delivery of liposomes. There 
are also theranostic liposomes with imaging agents that can be used to 
improve therapeutic applications. The majority of miR-21 delivery 
studies by liposomes have been designed based on lipoplexes that are 
cationic liposomes suitable for cytoplasmic delivery of particles with a 
negative charge such as DNA or RNA (Zhang et al., 2012). Costa et al. 
applied lipoplex for downregulation of miR-21 in glioblastoma cells and 
examined the efficacy of an antiangiogenic drug (sunitinib). The lipid 
composition of lipoplex was a combination of di-octadecyl-amido- 
glycyl-spermine (DOGS), dioleoylphosphatidylethanolamine (DOPE), 
and anti-miR-21 oligonucleotide that was labeled with a fluorescent dye. 
This method could enhance the cytotoxicity of sunitinib and reduced 
tumor cell proliferation (Costa et al., 2013). 

4.7.2. Mesoporous silica nanoparticles (MSNs) 
MSNs are biocompatible porous structures with thermal stability and 

desirable surface features for performing various modifications. Since 
the introduction of MSNs in 1992, great interest has been attracted to the 
application of these particles in the field of drug delivery and also 
miRNA delivery (Fu et al., 2019; Iranpour et al., 2021; Jafari et al., 
2019). Hu et al. modified the surface of MSNs with PEI and conjugated 
the particles with hyaluronic acid as a targeting molecule for down
regulation of miR-21, and could enhance the therapeutic effects of 
resveratrol on two human gastric cancer cell lines, including BGC823 
and SGC-7901. Resveratrol is a non-chemotherapeutic substance with an 
anticancer effect widely used in Chinese medicine. This method could 
significantly increase the anti-cancer efficacy of resveratrol on both 
cancer cell lines (Hu et al., 2019). In 2016, MSNs were coated with 
cell-penetrating poly (disulfide)s and DEVD-AAN and loaded with Ant21 
(a chemically modified ASO for downregulation of miR-21) to down
regulate miR-21 in HeLa cells, and Ant21 was encapsulated by gefitinib, 
dasatinib, and olaparib. This technique resulted in rapid cellular uptake 
and successful combinational therapy and provided a new approach for 
detecting real-time drug release (Yu et al., 2016a). Khatami et al. coated 
MSNs with chitosan, a non-toxic linear polysaccharide, and AS1411 
aptamer as a targeting molecule against nucleolin, which is a protein 
highly expressed in several types of cancers. They investigated the ef
fects of the nanoparticle on three nucleolin-expressing cancer cell lines 
(C26; mouse colorectal cancer, 4T1; mouse breast cancer, and MCF-7) 
and a nucleolin-negative cell line (CHO; Chinese hamster ovary). 

Their experiment showed enhanced drug cytotoxicity on 
nucleolin-positive cells, while no toxic effects were observed in 
nucleolin-negative cells, which illustrated the successful targeted de
livery of the nanoparticle (Khatami et al., 2021). 

4.7.3. Dendrimers 
Dendrimers are biodegradable macromolecules with a central core 

and lots of branches that provide binding capacity for oligonucleotides 
and drug molecules (Liu et al., 2021a; Sato and Anzai, 2013). Several 
dendrimers with potential for drug delivery include poly (amidoamine) 
(PAMAM) dendrimers, poly(propyleneimine) (PPI) dendrimers, 
Frechet-type dendrimers, peptide dendrimers, glycodendrimers, hybrid 
dendrimers, polyester dendrimers, poly-L-lysine (PLL) dendrimers, and 
carbosilane dendrimers (Santos et al., 2019). 

Various innovations and modifications have been introduced to 
enhance the effectiveness of dendrimers in the downregulation of miR- 
21. Wang et al. applied modified nano-graphene oxide with poly
ethylene glycol and low molecular weight PAMAM dendrimer for in vitro 
and in vivo experiments on NSCLC cells, and for monitoring the delivery, 
they applied a luciferase reporter. Although they did not use any ther
apeutic agents, they got higher transfection efficiency, lower cytotox
icity, and stronger inhibition of cell migration and metastasis in 
comparison to bare dendrimer (Wang et al., 2016). In another study on 
pancreatic cancer, which is known for the low permeability of cancerous 
tissue to chemotherapeutic agents, an ultrasound-targeted microbubble 
destruction (UTMD)-promoted delivery system was designated as a 
strategy for increasing cell permeability and drug uptake. They applied 
dendrimer-entrapped gold nanoparticles (AuDENPs) for the co-delivery 
of gemcitabine and the miR-21 inhibitor. Their study resulted in a sig
nificant reduction of tumor volume and enhanced blood perfusion of 
pancreatic tumors in vivo (Lin et al., 2018b). In 2020, the same group 
developed core-shell tecto dendrimers (CSTDs) which function similar to 
high-generation PAMAM dendrimers and consisted of G5 PAMAM 
dendrimers as the core, surrounded by 4.2 G3 dendrimers. This strategy 
was applied for the co-delivery of doxorubicin and miR-21i to 
MDA-MB-231 cells (a human breast cancer cell line) and resulted in a 
significantly enhanced therapeutic efficacy of doxorubicin (Song et al., 
2020). 

4.7.4. Exosomes 
Exosomes are small membrane-bound particles with several advan

tages that make them fascinating delivery vehicles. They can be loaded 
with abundant portions of nucleic acids, including miRNAs and 
lncRNAs. Exosomes are also non-immunogenic particles, owing to the 
fact that they can be derived from the host’s own membranes (Lim and 
Kim, 2019). In 2019, Monfared et al. applied engineered exosomes with 
miR-21 sponge to glioma cell lines and also in a glioblastoma rat model. 
They showed a significant reduction in proliferation, and increased 
apoptotic rate in vitro, and the volume of tumors in the rat model of 
glioblastoma decreased significantly, which reflects successful penetra
tion of exosomes through the blood-brain barrier (Monfared et al., 
2019). Liang et al. applied engineered exosomes for targeted co-delivery 
of 5-fluorouracil and a miR-21 inhibitor oligonucleotide to a 
fluorouracil-resistant colon cancer cell line (HCT 116 5FR). Previous 
studies have shown that in colon cancer, miR-21 can cause 5-FU-resist
ance via downregulation of hMSH2 (Liang et al., 2020). They applied the 
expression of HER2-LAMP2 fusion protein on the surface of the exo
somes for targeted delivery of the particles. In a co-delivery experiment, 
higher efficiency of fluorouracil was observed both in vitro and in vivo 
(Liang et al., 2020). 

4.7.5. DNA nanocages 
These particles are cage-like structures with a size range of 10–100 

nm, and they have great potential for application in targeted delivery 
studies (Chandrasekaran and Levchenko, 2016). In 2021, Raniolo et al. 
applied an octahedral DNA nanocage for the co-delivery of doxorubicin 
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and miR-21 inhibitor to cervical cancer cells (HeLa) and ovarian cancer 
cells (IGROV1). From the assembly of eight oligonucleotides, twelve 
double-stranded B-DNA helices would be produced, and in total, each 
nanocage provided four binding sites for miR-21. Since in both cell lines 
the expression of folate receptor is high, they used folic acid as the 
targeting molecule. This method could reduce the expression of miR-21 
up to 80% after two days of treatment, decrease cancer cell proliferation 
and migration, and enhance cancer cell death (Raniolo et al., 2021). 

4.7.6. Graphene oxide-based nanocomplexes 
Graphene oxide sheets could be modified with biocompatible poly

mers and used in drug delivery and also RNA delivery (Wu et al., 2015b). 
PPG, a graphene oxide-based nanocomplex, was used to reverse drug 
resistance in MCF-7 breast cancer cells. It consisted of PEI/poly (sodium 
4-styrenesulfonate) (PSS)/graphene oxide (GO) and could deliver the 
molecules through caveola and clathrin-mediated endocytosis. By 
physical mixing of doxorubicin with the nanocomplex and loading 
anti-miR-21 through electrical absorption, the nanocomplex was pro
duced. This method could enhance doxorubicin accumulation within 
cells and effectively reverse cancer cell drug resistance (Zhi et al., 2013). 

4.7.7. High-density lipoprotein-mimicking nanoparticles (HMNs) 
HMNs are biocompatible and biodegradable nanocarriers that could 

be used in drug delivery (Ma et al., 2018a). Rui et al. used HMNs as a 
carrier for co-delivery of miR-21 inhibitor and prodrug of doxorubicin in 
MCF-7/ADR cells (a doxorubicin-resistant breast cancer cell line). They 
coupled prodrug with a nuclear localizing sequence (NLS) to make a 
cationic complex settle inside the cavity of HMNs that harbored 
anti-miR-21 molecules with the negative charge on their surface and 
coated the particle with anionic lipids and APOA1 protein. Delivery of 
the drug was performed through an HDL-receptor-mediated pathway 
and enhanced intracellular accumulation of doxorubicin, and also 
effectively suppressed miR-21 in cancer cells (Rui et al., 2017). 

4.7.8. Polymeric nanoparticles 
Polymeric nanoparticles could be in the size range of 10–1000 nm 

with various polymer compositions (Zielińska et al., 2020). In 2015, 
PLGA-b-PEG polymer was applied for simultaneous downregulation of 
two miRNAs involved in chemotherapy resistance of triple-negative 
breast cancer cells (MDA-MB-231), i.e. miR-21 and miR-10b. For tar
geting molecule, uPA peptide was applied to lead the nanoparticle to 
cancer cells expressing urokinase plasminogen activator receptor. 
Although no chemotherapy was applied in this study, a considerable 
therapeutic effect was observed in a very low dose of anti-miR molecules 
that indicated a potential for combining this strategy with chemother
apeutic agents (Devulapally et al., 2015). 

4.7.9. Gold nanocages 
Gold nanocages are among the fascinating nanoparticles that are also 

compatible with application in photothermal therapy (Chen et al., 
2010). In 2018, scientists combined chemotherapy, miRNA therapy, and 
photothermal therapy by applying gold nanocages to 
doxorubicin-resistant hepatocellular carcinoma cells (HepG2/ADR). 
They used AuNCs, which are gold nanocages with the ability to perform 
photothermal conversion under near-infrared light irradiation, for their 
study (Wang et al., 2018). Another group, working on hepatocellular 
carcinoma, conjugated the PEI-modified PEGylated particles with hy
aluronic acid as a targeting molecule and added doxorubicin to the 
culture medium. This strategy led to enhanced intracellular doxorubicin 
accumulation within cancer cells and significantly increased sensitivity 
of the cells to the drug (Yan et al., 2019). 

5. Potential challenges and limitations of targeting miR-21 

Although miR-21 is over-expressed in most cancer cells, it is also 
expressed in a wide range of normal human tissues and is involved in 

various important cell functions, including proliferation, growth, 
migration, differentiation, apoptosis, etc (Feng and Tsao, 2016). Since it 
has physiological functions in normal cells, for inhibiting miR-21, sci
entists should consider that disturbance of this RNA in normal tissues 
can cause unpredicted health problems. Therefore, one of the most 
important challenges is to select the best-targeted strategy for knocking 
down or knocking out miR-21, in order to reduce the adverse side 
effects. 

Since miR-21 targets many known and unknown genes in both 
normal and cancer tissues, and inhibition of this RNA can cause unde
sirable and unpredictable consequences, a comprehensive study of miR- 
21 target genes among various tissues and cell types is essential. miR-21 
is an evolutionary conserved RNA and in some cellular stress conditions 
such as cardiovascular and neurological disorders, upregulation of this 
RNA acts as a protective mechanism for the tissue (Bai and Bian, 2022; 
Chen et al., 2019a). According to the protective role of miR-21, it is not 
clear if long-term inhibition of this miR could be beneficial. Moreover, it 
is not obvious whether miR-21 knockdown or knockout would be the 
most appropriate approach to fight against cancer. On the other hand, it 
is still ambiguous whether long-term inhibition of miR-21 could trigger 
another compensatory alternative pathway that may cause resistance to 
miR-21 inhibitor. Another major obstacle is that, until now, no study has 
investigated the proper timing of miR-21 inhibition, and it is not still 
clear at which stage of cancer is the efficiency of miR-21 inhibition the 
highest. So further studies are required to address these questions and 
move this strategy closer to the clinic. 

6. Perspectives and conclusions 

MicroRNA-21 is one of the most common upregulated oncomiRs in 
almost all types of cancers. It contributes to all oncogenic stages and also 
the development of drug resistance through various mechanisms, 
including decrease of drug uptake, increase in drug efflux, adjustment of 
drug metabolism, alteration of cell metabolism, inhibition of apoptosis, 
modification of DNA repair systems, tumor heterogeneity and genomic 
instability, fortification of cancer stem cells, and modifying tumor 
microenvironment. Regardless of cancer types, in all studies down
regulation of miR-21, led to improvements in anti-cancer response, and 
in studies in which a combination of a miR-21 inhibitor and chemo
therapeutic agents were investigated, the combinational therapy was 
more successful than monotherapy with miR-21 inhibitor or the drug, 
moreover, modulation of miR-21 along with tissue-specific microRNAs 
could also enhance therapeutic efficacy. 

Although huge progress has been achieved in the downregulation of 
miR-21 in cancer cells, there are still many challenges to be resolved. 
More research is required to find the best strategy for downregulation of 
miR-21 and also the most feasible approach for delivery of this system 
into the tumor cells, especially in vivo. Until now, no clinical trials have 
been defined for the manipulation of miR-21 to reverse chemotherapy 
resistance. It is obvious that miR-21 is involved in many pathways and 
targets many genes, which are not all discovered yet, and it is important 
for the physiological function of the cells, but still, it is not clear whether 
complete knockout of miR-21 is safe for normal cells, or what is the long- 
term effect of miR-21 knockout on cancer cells. Furthermore, it is not 
clear for which stage of cancer and in which type of tumors, the 
knockout or knockdown method would be the correct option. Further 
research is required to find the missing pieces of this puzzle and hope
fully, make use of this knowledge in the clinic to reduce drug resistance 
in cancer patients. 
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