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Abstract. This article describes the computational aspects of stochastic parabolic

differential equations driven by additive noise. A fully discrete approximation of

the stochastic problem is provided based on piecewise linear finite elements for the

spacial discretization and the implicit Euler method for the temporal discretization.

The computational aspects of the method are illustrated with a numerical test.

1. Introduction

Stochastic partial differential equations (SPDEs) are widely used models in applied

sciences, engineering, and finance. Hence, the design of efficient computational meth-

ods for such problems is of great importance. In particular, the convergence analysis

of numerical methods for approximating the solution of SPDEs is one of the most

recently developed areas [1, 2, 3]. The aim of this work is to illustrate numerically

the convergence properties of finite element method combined with implicit Euler

method for a class parabolic semilinear SPDE, of the form

du(t) + Au(t)dt = F (u(t))dt+ σ(t)dWQ(t), u(0) = u0(1.1)

in a real separable Hilbert space H with inner product (·, ·) and norm ∥ · ∥ = (·, ·)
1
2 .

Here, A is assumed to be a linear, self adjoint, positive definite, not necessarily
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bounded operator with compact inverse. Moreover, F : H → H is a smooth nonlin-

earity and σ : [0, T ]×H → H is a deterministic mapping. {WQ(t)}t≥0 is considered to

be a Q-Wiener process defined on a filtered probability space (Ω,F ,P, {Ft}t≥0). The

following assumptions are standard in the literature on the numerical approximation

of stochastic PDEs [4, 5]. Let {ei}i∈N be a complete orthonormal basis of the Hilbert

space H and the covariance operator Q be the linear, bounded, self adjoint operator

on H such that Qv =
∑∞

i=1 qi⟨v, ei⟩ei, where {qi}i∈N is a sequence of non-negative

real numbers. We assume {WQ(t)}t≥0 is a Q- Wiener process defined as follows:

WQ(t) =
∞∑
i=1

√
qiβi(t)ei,(1.2)

where {βi}i∈N is a family of independent standard real valued Wiener processes. We

assume that the nonlinear operator F in (1.1) is globally Lipschitz continuous. We

also assume that the deterministic function σ : [0, T ]×H → H satisfies

∥A
β−1
2 σ(t)∥L0

2
≤ C, β ∈ [0, 1].(1.3)

In this work, we are concerned with full discrete approximation of stochastic problem

(1.1) based on the finite element spatial discretization combined with linear implicit

Euler method for the temporal discretization. Let ∆t = T
N

denote the time step size

and ti = i∆t, i = 1, 2, . . . , N . The full discrete method is defined by

un+1
h = En

h,∆tu
n
h +∆tEn

h,∆tPhF (un
h) + En

h,∆tPhσ(t)∆W n
Q,(1.4)

for n = 1, . . . , N , where En
h,∆t := (1 + ∆tAh)

−1, with the initial condition u0
h = Phu0.

In (1.4), —the Wiener increments are denoted by ∆W n
Q = WQ((n+1)∆t)−WQ(n∆t).

Theorem 1.1. [5] Let u(t) be the solution of (1.1) and let un
h be given by (1.4). Then,

under the given assumptions, it holds that

∥u(tn)− un
h∥L2(Ω;H) ≤ C

(
hβ +∆t

β
2

)
,(1.5)

where C is a constant independent of h and ∆t.

2. Numerical test

In this subsection, we present a numerical test to illustrate the convergence analysis.

We consider the following stochastic problem

∂u

∂t
(x, t) =

∂2u

∂t2
(x, t) + f(x, t) = Ẇ(2.1)

u(x, 0) = 10x2(1− x)2, x ∈ [0, 1],

u(0, t) = u(1, t) = 0, t ∈ [0, 1].

where

f(x, t) = 15etx2(1− x)2 − 10et(2− 12x+ 12x2).
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we use a piecewise linear finite element method for the spatial discretization and an

implicit Euler method for the temporal discretization. Let un
h be the approximate

solution of u(t) in finite element space Sh at tn = n∆t. The implicit Euler method is

to find un
h ∈ Sh such that, for all ϕ ∈ Sh,(un+1

h − un
h

∆t
, ϕ

)
+ (Ahu

n
h, ϕ) =

( 1

∆t
Ph

(
WQ(tn)−WQ(tn−1)

)
, ϕ

)
(2.2)

=
1

∆t

∞∑
i=1

√
qi
(
βi(tn)− βi(tn−1)

)
(ei, ϕ),(2.3)

where 1
∆t

(
βi(tn)− βi(tn−1)

)
= N (0, 1). We choose two types of covariance operators,

Q = I and the other operator, Qe1 = 0 and Qei = 1
i log i2

ei for i ≥ 2. In Figure

1, we plot one realization of the stochastic problem (2.1) for he two types of the

covariance operators. We also plot in Figure 2 the corresponding profiles at times

Figure 1. Samples of realization of SPDE (2.1) (left Q = I, Tr(Q) < ∞)
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Figure 2. Solution profile at different times (left Q = I, Tr(Q) < ∞)

t = 0.25, 0.5, 0.75 and final time T = 1. In Figure 3, we present the convergence

curves for the strong error for the covariance operator Q = I. At first, we demonstrate

the convergence rates for the temporal discretization. To do this, we compute the



4 M. AREZOOMANDAN AND A. R. SOHEILI

reference solution with the small timstep ∆tref = 2−11 and href = 2−7. We perform

our numerical simulation with different time step sizes ∆tref = 2−i, i = 3, . . . , 9

and present the mean square errors in Figure 3 (left). As expected, we observe the

convergence rate of order 1
4
, this is consistent with the strong convergence estimates of

Theorem 1.1. Next, we turn to spatial error approximation. To this aim, we compute

the reference solution using fixed small href = 2−10 and ∆tref = 2−6. We plot in

Figure 3 (right) the mean square errors due to the spatial discretization using the

step sizes h = 2−i, i = 2, . . . , 8.
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Figure 3. Error versus time stepsize (left) and space stepsize (right)
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