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A B S T R A C T   

Recently, entropy was proposed as a simple input into glass science and engineering, which has an interesting 
relationship with the glass properties containing glass transition temperature (Tg), melting point, and concen-
tration of non-bridging oxygens (NBOs). In the current study, molecular dynamics (MD) simulation as the 
powerful method was used to approve the recently observed relations. In this regard, various silicate-based 
compositions containing 25, 30, and 35 mol% of alkaline earth oxides were simulated. The Tg, bond length, 
and the concentration of NBOs were evaluated using MD simulation results, including volume-temperature 
curves and radial distribution functions (RDF) results. According to the results, Tg values of the simulated 
glass were reduced up to 400 K by increasing the amounts of additives up to 35 mol%. The distance between Si 
and O species as the glass former basis increased from 1.580, 1.591, 1.608, and 1.615 Å to 1.590, 1.596, 1.616, 
and 1.621 Å, in the SsiO2-MgO, SiO2-SrO, SiO2-CaO, SiO2-SrO, and SiO2-BaO systems, respectively. Besides, as 
found from the results, increasing the concentration of additives increases the mobility of Si-O paired atoms. 
Accordingly, the glass disorderliness or entropy of the systems increases with adding glass modifiers. Also, the 
concentration of NBOs in the mentioned systems was 35.9–56.3, 36.8–57.5, 26.1–43.9, and 18.2–29.7%. The 
results of NBOs confirm that the glass disordering increases by increasing amounts of additives. In summary, 
using MD simulation of silicate glass containing alkaline earth oxides, the relation between entropy as a theo-
retically calculated property and glass characteristics such as Tg is successfully approved.   

1. Introduction 

Systematic and atomistic studies of materials are among the utmost 
issues in evaluating, designing, and improving materials [1–3]. For 
example, configurational entropy (Sconf), SConf = -R

∑x
i=1xilnxi, or a 

parameter to measure disorder in a thermodynamic system, is one of the 
essential microscopic variables of materials [4]. Transition from 
macroscopic to the microscopic world is challenging due to the different 
scales of time and place [5]. The microscopic world contains a huge sea 
of data, concepts, and information [6]. Molecular dynamics (MD) 
simulation has evolved into a modern method that sheds light on the 
atomistic points of view in various materials, from simple to biological 
ones [7–9]. MD could contribute to investigating deeply relationships 
between the structure and the function of materials that are usually 
unattainable from experimental techniques containing X-ray/neutron 
diffraction, infrared (IR), Raman, X-ray scattering (XAS), and nuclear 
magnetic resonance (NMR) spectroscopies [10,11]. 

Recently, configurational entropy was introduced as a microscopic 

parameter for evaluating and developing glass materials, i.e., the non- 
equilibrium and non-crystalline solid products can exhibit the amount 
of glass transition temperature (Tg) [12]. In addition, it is contributed to 
drawing correct relation between the entropy, chemical composition, 
and other properties of glass. Fortunately, MD simulation is applied to 
approve the contributions between these parameters; it can provide an 
excellent opportunity to understand the relationship between glass 
properties and compositions [7,13,14]. Using MD results, structural and 
dynamical properties of glass containing structure, Tg, and bond length 
have been studied [15–17]. As reported in [18,19], a distribution of 
bonds should be studied to find the symmetry change containing 
translation-rotation symmetry and topological disorder. Furthermore, 
adding additives to a glass network changes the atom distributions and 
disorders [20]. In this scenario, MD enables the direct determination of 
the structure-composition relationship with the possibility of identifying 
new structures of glass materials. 

Recently, it was shown that Tg, melting point, and the concentration 
of non-bridging oxygens (NBOs) have a clear relationship with Sconf 

* Corresponding authors. 
E-mail addresses: Moosavibaigi@um.ac.ir (F. Moosavi), Vahdati@um.ac.ir (J. Vahdati Khaki).  

Contents lists available at ScienceDirect 

Materials Today Communications 

journal homepage: www.elsevier.com/locate/mtcomm 

https://doi.org/10.1016/j.mtcomm.2022.104340 
Received 31 July 2022; Received in revised form 24 August 2022; Accepted 28 August 2022   

mailto:Moosavibaigi@um.ac.ir
mailto:Vahdati@um.ac.ir
www.sciencedirect.com/science/journal/23524928
https://www.elsevier.com/locate/mtcomm
https://doi.org/10.1016/j.mtcomm.2022.104340
https://doi.org/10.1016/j.mtcomm.2022.104340
https://doi.org/10.1016/j.mtcomm.2022.104340
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mtcomm.2022.104340&domain=pdf


Materials Today Communications 33 (2022) 104340

2

[12]. Now the question is if the combination of MD simulation and the 
result of Sconf may demonstrate an exact relation between glass prop-
erties and its entropy to answer the question; it’s explored by simulating 
four silicate-based glass, including various (1-x) SiO2-xMO, where M is 
alkaline earth ions (Mg2+, Ca2+, Sr2+, and Ba2+ with x = 0.25, 0.30, and 
35). The estimated Tg values of the simulated glasses were compared 
with the experimental ones considering the entropy concept. The effect 
of additives on the concentration of NBOs, atomic distribution, Si-O, and 
M-O distances was investigated. The correlation between the properties 
and structure of glass was then discussed, considering the entropy 
concept. The results of this study could open new windows to re-
searchers in the fields of glass. 

2. Computational details 

The designed silicate-based glass compositions containing various 
amounts (25, 30, and 35 mol%) of alkaline earth oxides (MgO, CaO, SrO, 
and BaO), which were studied, are listed in Table 1. The density of each 
glass was calculated using the Priven technique [21–23]. According to 
the calculated density values, about 2000 atoms were randomly entered 
the cubic cell with an edge of 28.8–31.98 Å according to the target 
system using Materials studio software (Accelrys Software Inc., San 
Diego, CA, USA). 

The combination of long-range coulomb potential and short-range 
interaction in the Buckingham form was used (Eq. 1) [21]. 

Uij(r) =
qiqi

4πε0r
+ Aijexp

(
r

ρij

)

−
Cij

r6 (1)  

where qi and qj are the atom charges and Aij, ρij, and Cij are the Buck-
ingham potential parameters. ε0 and r are the dielectric constant of 
vacuum and interatomic distance, respectively. The Buckingham inter-
atomic potential parameters are presented in Table 2 [24–26]. In addi-
tion, the intra-tetrahedral O-Si-O angles were controlled using 
three-body screened harmonic potential (Eq. 2): 

U
(
θijk

)
=

1
2

Kijk(θijk-θijk, 0)
2exp(-[

rij

ρ +
rjk

ρ ]) (2)  

where Kijk is the force constant and θijk,0 is the reference angle of the i-j- 
k triplet. The mentioned parameters of three-body potential are pre-
sented in Table 2. 

The MD simulations were performed using DL_POLY_2.18 [27]. Ac-
cording to the Verlet algorithm, the cutoff distance equal to 12 Å with a 
time step of 1 fs was used for short-range interactions. The Ewald 
summation method with a relative precision of 10− 6 was used to 
calculate the long-range Columbic interactions. To control the temper-
ature and pressure of simulations, the Nosé -Hoover thermostat and the 
Andersen barostat were used, respectively. For glass simulations, 

initially, the system’s energy reached the minimum at 0 K and then the 
configurations were relaxed at 300 K for 60 ps in the NPT ensemble. The 
systems were melted at 4000 K for 100 ps in the NPT ensemble to ensure 
a suitable melting of samples. Then the melted systems were cooled at a 
rate of 10 K/ps to 300 K. The systems were furthermore equilibrated for 
5 ns using the NPT ensemble. Finally, the production runs were per-
formed for 5 ns, in the microcanonical ensemble (NVE) and the struc-
tural analysis was carried out on all configurations extracted from the 
NVE trajectory. The schematic representation of the used protocol is 
shown in Fig. 1. The ball-and-stick model of the extracted glasses from 
the molecular dynamics runs shown in Fig. 2. 

The Tg of the systems was estimated using Volume-temperature 
curves as suggested in [16]. Besides, the experimental Tg ranges of the 
glass were adapted from the Sci-glass database. 

Eq. 3 was used to investigate the Si-O and M-O (M = MgO, CaO, SrO, 
and BaO) pair distribution correlation from radial distribution function 
(RDF) analysis [28–30]. 

g(r) =
ρlocal

ρ =
dN(r)/Vdr

ρ (3)  

where g (r) is RDF or the ratio of the local density (ρlocal) to the bulk 
density (ρ), N is the number of atoms, and V is the total system volumes. 

Table 1 
The glass composition details for simulating the different silicate-based systems 
containing 25, 30, and 35 mol% additives (MgO, CaO, SrO, and BaO).  

Composition Number of species in 
the simulation cells 

Total number of species Cell size (Å) 

SiO2 Additive 

75SiO2-25MgO  464  230  1852  28.80 
70SiO2-30MgO  442  283  1892  29.01 
65SiO2-35MgO  411  330  1893  29.12 
75SiO2-25CaO  512  183  1902  29.77 
70SiO2-30CaO  484  222  1896  29.89 
65SiO2-35CaO  452  261  1878  29.96 
75SiO2-25SrO  565  109  1913  30.76 
70SiO2-30SrO  548  136  1916  31.16 
65SiO2-35SrO  518  162  1878  31.35 
75SiO2-25BaO  591  77  1927  31.22 
70SiO2-30BaO  554  93  1848  31.28 
65SiO2-35BaO  550  116  1882  31.98  

Table 2 
The interatomic potential parameters [24–26].  

Potential forms and parameters  

Buckingham Aijexp
( r

ρij

)

−
Cij

r6 

Pair atoms Aij (eV) ρij (Å) Cij (eV. Å6) 

Si-O 13702.905 0.193817 54.681 
O-O 2029.2204 0.343645 192.58 
Mg-O 1279.69 0.2997 0.00 
Ca-O 7747.1834 0.252623 93.109 
Sr-O 14566.637 0.245015 81.773 
Ba-O 1214.4 0.3522 0.00  

Three-body potential U
(
θijk

)
=

1
2
Kijk(θijk − θijk, 0)

2exp( − [
rij

ρ +

rjk

ρ ])

Kijk (eV. Rad¡2) θijk, 0 (deg) ρ (Å) 
O-Si-O 100 109.47 1.0  

Fig. 1. The schematic of the used MD protocol to obtain the glass structures.  
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3. Results and discussion 

3.1. The relation between Tg and entropy of the simulated glasses 

In the previously published study, an indirect linear relation between 
Tg and entropy was observed (Fig. 3) [12]. It was found that the slope of 

Tg versus Sconf changes from one glass to another and its slopes directly 
correlate with alkali cation sizes as SiO2-BaO < SiO2-SrO < SiO2-MgO 
< SiO2-CaO. According to the list trend, it can be stated that when the 
entropy increases, Tg decreases (a linear relation between Tg and Sconf 
with a negative slope). 

Fig. 4 shows the volume-temperature curves of the simulated glass 
systems. Tg of the systems was estimated considering the slope changes 
of the curves, and the obtained data are represented in Table 3. Besides, 
the adapted experimental ranges of Tg from the SciGlass database and 
the calculated entropy values of these systems are represented in 
Table 3. 

According to the data, the calculated Tg of the systems changes in the 
range of 2956–3486 K. Increasing the mol fraction of MgO, CaO, SrO, 
and BaO additives from 0.25 to 0.35 decreases the Tg from 3285, 3347, 
3126, and 3486–3087, 3126, 2956, and 3389 K, respectively. The 
decreasing trend of Tg with increasing mol fraction of alkaline earth 
oxides is also observed in the adapted experimental data of the SciGlass 
database. A significant difference between the calculated and experi-
mental values of Tg is related to obtaining a semi-infinite solid from the 
simulations, as reported in [31]. As can be seen in Table 3, the calculated 
entropy of systems containing 25, 30, and 35 mol% additives are 0.56 R, 
0.61 R, and 0.64 R, respectively. According to the data, Fig. 3, and 
reference [12], it can be concluded that the linear dependence of Tg with 
Sconf is characteristic of silicate-based glasses containing alkaline earth 
oxides. 

3.2. The relation between entropy and glass structure 

Adding additives to the glass structure could change the bond length 
and leads to lattice distortion in the glass due to the anti-polarization 
effect of ions [32,33]. As a result, a change in structural disordering 
and entropy of glass is expected. The RDF of Si-O and M-O are shown in  
Figs. 5 and 6, respectively. According to these figures, a short-range 
order glass with a modified random network (MRN) model was ob-
tained that is in accordance with Greaves et al. study [34]. 

The obtained data from the RDF graphs containing positions, bond 
length, full width at half maximum (FWHM), and the intensity of the 

Fig. 2. The ball-and-stick model of the glasses containing 25 mol% of additives.  

Fig. 3. The linear relation with a negative slope between entropy and Tg in the silicate-based glasses containing alkaline earth oxides. 
Reproduced with permission from [12]. 
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first RDF peaks was calculated and presented in Table 4. According to 
this table, the distance between Si and O (rSi-O) increases with increasing 
the amounts of additives. In the silicate system containing 25–35 mol% 
of MgO, CaO, SrO, and BaO, the bond length of Si-O changes in the range 
of 1.580–1.590, 1.591–1.596, 1.608–1.616, and 1.615–1.621 Å, 
respectively. Obviously, the bond length values of the elements with 
greater ionic radius are longer (Ba2+ > Sr2+ > Ca2+ > Mg2+). Increasing 
the bond length leads to decreasing the bond strength. In other words, 
adding the alkaline oxides to the glass decreases the bond strength and 
increases the structural disordering or entropy of systems. 

In contrast, rM-O of the systems mentioned above decreases with 
increasing the amounts of additive up to 35 mol% from 2.490, 2.491, 

2.505, and 2.519–2.482, 2.484, 2.496, and 2.508 Å. Accordingly, the 
bond strength of glass modifiers increases with increasing their con-
centrations. As can be found, changing the bond length of atoms of glass 
former (here Si-O) is overcome other atoms’ roles (here M-O) in the glass 
disordering. In the concept of entropy, Sconf of a system with one species 
is zero. The Sconf reaches to highest (0.69 R) in a binary system that has 
similar amounts (50− 50) of species. Accordingly, the bond length/ 
strength of the glass former (here SiO2) primarily could affect entropy. 

As shown in the RDF graphs, the intensity of Si-O correlation de-
creases with increasing the amounts of MgO, CaO, SrO, and BaO, in the 
range of 25–35 mol% from 17.66, 16.98, 15.86, 14.62–15.11, 14.76, 
14.13, and 14.01, respectively. The FWHM of the mentioned samples 

Fig. 4. Volume-temperature curves of the studied systems.  
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increases. This observation exhibits that increasing the amounts of glass 
modifiers (here, alkaline earth oxides) could increase the mobility of the 
atoms, and increase the glass disordering, i.e., increase the Sconf. As can 
be seen, the RDF intensity of M-O increases with increasing the con-
centration of additives. While its FWHM experiences a reduction. 
Accordingly, the mobility of metal oxides decreases with increasing the 
concentration of additives. As discussed, the increasing mobility of Si-O 
glass former overcomes the decreasing mobility of MO in this situation. 

3.3. The relation of entropy and non-bridging oxygen 

All oxygens are bridging in the pristine glass, SiO2. As mentioned in 
the previous sections, adding species to glass leads to changing the bond 

length as well as strength. In fact, adding the components to the glass 
structure leads to the formation of non-bridging oxygens (NBOs) [35, 
36]. Previously, Du et al. showed that the concentration of NBOs in 
silicate-glass increases by adding alkali oxides (Li2O, Na2O, K2O) [35]. 
They found that the trend of NBOs concentration in different systems is 
SiO2-Li2O < SiO2-Na2O < SiO2-K2O (Fig. 7A). Also, similar trends were 
found in the slope of entropy-Tg curves of these samples, as reported by 
Mollaei et al. [12]. In the current study, the concentration of NBOs of the 
silicate glass containing alkaline earth oxides was calculated and pre-
sented in Table 4. According to the data, the concentration of NBOs in 
the silicate glass containing 25–35 mol% of MgO, CaO, SrO, and BaO are 
in the range of 35.9–56.3, 36.8–57.5, 26.1–43.9, and 18.2–29.7. 
Accordingly, the trend for increasing the concentration of NBOs is 
SiO2-BaO < SiO2-SrO < SiO2-MgO < SiO2-CaO (Fig. 7B). Similar trends 
were also observed for the entropy-Tg slope of these samples (Fig. 3). 

When glass modifiers (e.g., alkali and alkaline earth oxides) are 
introduced to the glass structure, the glass network is partly destroyed, 
and NBOs are formed [36]. Also, the ions of modifiers (e.g., Mg2+and 
Ca2+) trap around the NBOs [37]. The mixing of glass modifiers with 
glass formers also results in the enhancement of ionic conductivity and 
transport properties due to the mixed anion effect [37]. All changes in 
the glass network at the effect of modifier additives are mainly related to 
changing the binding energy of glass formers with cations [37]. In 
summary, adding a glass modifier to the glass network leads to structural 
disordering or increasing the entropy of glass. 

Table 3 
The Tg (calculated and experimental) and the Sconf (calculated) of the systems.  

Glass Composition Tg (Calculated) (K) Tg (Exp) (K) Sconf (Calculated) 

75SiO2-25MgO  3285 1063–1103 0.56 R 
70SiO2-30MgO  3156 983–1015 0.61 R 
65SiO2-35MgO  3087 917–933 0.64 R 
75SiO2-25CaO  3347 1043–1093 0.56 R 
70SiO2-30CaO  3242 1023–1045 0.61 R 
65SiO2-35CaO  3126 983–1008 0.64 R 
75SiO2-25SrO  3126 1046–1075 0.56 R 
70SiO2-30SrO  3119 1005–1035 0.61 R 
65SiO2-35SrO  2956 988–1003 0.64 R 
75SiO2-25BaO  3486 1043–1088 0.56 R 
70SiO2-30BaO  3422 1003–1038 0.61 R 
65SiO2-35BaO  3389 1000–1057 0.64 R  

Fig. 5. RDF results of Si-O in different systems.  
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4. Conclusions 

The current study successfully approved configurational entropy 
relation with glass structure and alkaline earth oxides composition. 
Different silicate-based systems containing various amounts (25, 30, and 
35 mol%) of alkaline earth oxides (MO = MgO, CaO, SrO, and BaO) were 
initially simulated. Then, the Tg, bond length, and concentration of 
NBOs were calculated using MD simulation. The results demonstrate 
that adding and increasing the concentration of alkaline earth oxides 
could decrease Tg, increase bond length, and improve the mobility of Si- 
O. In addition, the concentration of NBOs increases with adding alkaline 

earth oxides as well as increasing the concentration of additives. All of 
the mentioned parameters lead to the disordering of the glass structure 
and show an enhancement in the configurational entropy of systems. In 
conclusion, the explored relations between the configurational entropy, 
composition, structure, and properties of glass structures are approved 
in the current study. The authors hope that the proposed input, 
configurational entropy, is used in designing new glass materials with 
improved properties such as more acceptable biological performance. 

Fig. 6. RDF results of M-O (M = Mg, Ca, Sr, and Ba) in different systems.  

Table 4 
The obtained peak position, peak intensity, FWHM, and bond length of different systems.  

Glass Composition rSi-O (Å) rM-O (Å) Peak intensity FWHM of peak NBOs (%) 

Si-O M-O Si-O M-O 

75SiO2-25MgO  1.580  2.490  17.66  3.03  0.25468  0.31602  35.9 
70SiO2-30MgO  1.586  2.487  16.29  3.08  0.25574  0.31012  49.6 
65SiO2-35MgO  1.590  2.482  15.11  3.19  0.26748  0.30589  56.3 
75SiO2-25CaO  1.591  2.491  16.98  2.39  0.25987  0.33356  36.8 
70SiO2-30CaO  1.593  2.488  15.24  2.43  0.26123  0.34178  49.3 
65SiO2-35CaO  1.596  2.484  14.76  2.89  0.26856  0.34899  57.5 
75SiO2-25SrO  1.608  2.505  15.86  2.55  0.26085  0.37807  26.1 
70SiO2-30SrO  1.611  2.500  15.05  2.44  0.26743  0.37974  33.1 
65SiO2-35SrO  1.616  2.496  14.13  2.39  0.27198  0.36216  43.9 
75SiO2-25BaO  1.615  2.519  14.62  2.16  0.27005  0.39757  18.2 
70SiO2-30BaO  1.617  2.517  14.23  2.31  0.27462  0.39612  22.6 
65SiO2-35BaO  1.621  2.508  14.01  2.36  0.27891  0.38746  29.7  
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