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Abstract

Let G be a locally compact abelian group, ¢ be a topological isomorphism on G,

and L be a uniform lattice in G. We provide a development of the LI(G /o (L))
function-valued product on L?(G) called (¢ (L), p)-bracket product, where 1 < p <

oco. Among other things, we study ¢ (L)-factorable operators and we prove Riesz
representation type Theorem for L?(G).

Keywords (¢ (L), p)-bracket product - Locally compact abelian group -
¢ (L)-orthogonality - ¢ (L)-factorable operator - Riesz representation theorem

Mathematics Subject Classification 43A15 - 43A70

1 Introduction

In this paper, we aim to study the (¢ (L), p)-bracket product on a locally compact
abelian group (LCA group, for short) G, via a topological isomorphism ¢ on G with
respect to a uniform lattice L in G. The bracket product on space L>(R") has been
studied by several authors, see for example [3] and the references therein. Ron and
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Shen in [10] extended bracket products for the shift invariant subspaces of L*(R™).
They defined the bracket product of f, g € L>(R") by:

[f gl = ) fxr+a)gk+a).

ae2n 7l

Then, [ f, g]is an element of L' (T") and we have ||[ f, SNy = ”f”i%R")’ for
f € L*(R"). Cassaza and Lammers [1] improved the bracket product by employing a
shift parameter. More precisely, they defined the so-called bracket product as a-inner

product by:

(f.8)a ()= f(t—na)g(t—na); f,geL*R),aecR"

nez

They have shown that the relevant a-inner product has a Bessel’s inequality, orthogonal
sequence and Riesz Representation Theorem for L*(R"). Kamyabi Gol and Raisi
Tousi [7] extended this notion to a LC A-group with respect to a uniform lattice via a
topological isomorphism ¢ on G. They defined the bracket product [ f, g]4, associated
with ¢ through:

[f,8lp(h) =) fxp(k™Ngxp k=N, [, g € LXG),

keL

where L is a uniform lattice in G. It is easy to check that [f, g]y in LI(G/¢ (L)).
They also defined the norm .| called g-normon L2(G) by || fllg = Lf. £1)/>. (f €

L%(G)). They studied the modulation and translation [., .]4 and the usual inner prod-
uct of L2(G). Some of the basic properties of [., .]¢ (such as, the Cauchy—Schwarz
identity, the polarization identity, etc.) are also discussed in [7]. The main aim of
this paper is to extend the bracket product notion to L?(G), for 1 < p < oo. In
Sect. 2, we first investigate the elementary properties of [., .]4, ,. In particular, we
prove Holder inequality and Triangle inequality. We study the modulation and trans-
lation for this bracket product operators which provide some facilities to accurately
study this bracket product. Section 3 is devoted to the ¢ (L)-factorable operators and
its consequences. We use this notion to provide the Riesz Representation Theorem for
the pair (L?(G), L' (G/¢(L))).

2 Preliminary Results

Let G be a locally compact abelian group equipped with the Haar measure dx, and
let ¢ : G — G be a topological isomorphism. For 1 < p < 00, let Ly be the left
translation operator on L”(G) defined by Ly f(x) = (f o dH(X)(f € LP(G), x €
G). Note that by the uniqueness of Haar measure, there exists a positive number o (¢),
such that [; Ly f (x)d(x) = 0 () [ f(x)d(x) for all f € L'(G). In this case, the
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map o is a homomorphism on the group of all isomorphisms on G; see [6]. Let H be
a closed subgroup of G with the Haar measure dh. Let G/H be the quotient group
with Haar measure dx. It is known that dx, d&, dx are related to each others under the
following identity, which is known as Weil’s type Formula:

/ f(x)dx =/ / f(xh)dhdx, f € L'(G). (2.1
G G/HJH

This formula shows that for f € LY(G), the integral f y S (xh)dh exists almost
everywhere in x and defines an integrable function on G/H, such that the integral
formula holds. In fact, the formula (2.1) should be understood as a one-sided version
of Foubini’s Theorem for product spaces; see [3].

We recall that the Fourier transform™: L1(G) — Co(f}\), f— f, is defined
by f(é) = fG F(x)E(x)dx for & € G, the dual group of G. It is well known that if
f e Li’(G)(l < p < 2), then fe Lq(a), where g and p are conjugate exponents,
and || Flly < 11 /11, (see [4]).

Throughout this article, we always assume that G is a second countable LCA group.
In this case, we always have a uniform lattice in G; see [9]. Suppose that L is a uniform
lattice in G, and ¢ : G — G is a topological isomorphism. It is well known that
G/¢(L)isaLCA group and it is topologically isomorphic with G /L (for more details,
see also [6]).

Let f,g € LP(G),1 < p < oo, and ¢ be the conjugate exponent to p. Then,
fgp_1 € LI(G), and hence by Weil’s formula, we get:

/ D oIfe  xp(ky)ldi = / > 1feP T gk )ldi
G/¢(L) kel G/¢(L) ¢(k)€¢(L)

:/ | g7 () | da
G
1/p 1/q
s(/ L FCo 1P dx) (/ g7 0o | dx)
G G

<Iflplg” g

Thus, for almost all x € G/¢(L), the series ) ", feP N (x¢p (k1)) converges.
Therefore, each function g € L”(G) induces a bounded linear map:

Ty : LP(G) — L'"(G/$(L)),
o Te(H) =11 8lpp

with [[Tgll = liglly ™. where [f, glp.p(5) = Yoy f87~ (k™).
Note that 'y (f) = [f, glg, p is ¢ (L)-periodic and we call [ f, gy, p the (¢ (L), p)-
bracket product of f, g € LP(G).
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Consequently, one may define the (¢ (L), p)-norm as follows:

{ I-llg.p : LP(G) —> LP(G /¢ (L)),
= 1 flgp = @il £ Y2,

which is anisometry, ||| fll4,pllp = | f Il p- Indeed, by Weil’s Formula for f € L”(G),
1 < p < oo we have:

1 f g pll2 = /G o, W10
=/ Fui( f DA
G/¢(L)
=/ 0 F 11 S g pGodi
G/¢p(L)

= / DSTOIF NI e kT)di
G 4 (tyep (L)

_ / Y F 17 G
G/ 4 kyeg (L)

=/ | f 17 (x)dx
G
=1 £I5.

Now, in the following two examples, we show that our definitions extend the pre-
vious ones mentioned earlier.

Example 2.1 Consider G = R, L = Z in the above definition. Fix a € R™. Then,
¢ : R — R, given by ¢(x) = ax is a topological isomorphism and the bounded
linear map I'y : LP(R) — L'([0,a)), defines by Co()x) = [f, glp,p(x) =
Yoner f ¢”~1(x — na) is the a-pointwise inner product of f and g introduced by
Casazza and Lammers in [1] for p = 2. Moreover, if ¢ is the identity function on R,
p = 2, then the (¢, p)-bracket product is exactly one defined by Ron and Shen [10].

Example2.2 Let G = R" x 7Z" x T" x Z,, for n € N, where Z, is the finite abelian
group {6, 1,2, .., m} of residues module n and L = Z" x Z" x {1} x Z,, a uniform
lattice in G. Let A be an invertible n x n real matrix and fix [/ € Z". Define¢ : G — G
by ¢(x,m,t, p) = (Ax,l+m,t, p),foreveryx e R",m € Z",t € T", p € Z,. For
f,g € LP(G), the (¢ (L), p)-bracket product is defined by:

Te(F)(x) = [ 8lpp(x)
= > e N Ax 4 mtp)—plk.n 1. q)

keZ" ,.neZ" ,qeZ,

= Z feP Y Ax —k,l+m—n,t—1,p—q).
keZ" ,neZ ,qeZy
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In the following proposition, we explain some properties of I'.

Proposition 2.3 Let f,g € LP(G) for 1 < p < oo and ¢ € C. Then, the following

properties hold:
@) To(f +h) =Tg(f)+Tg(h)

(ii) Fg(cf) = Crg(f)

(iii) Teg(f) = cP~'Tg(f)

(iv) ch(cf) = Cprg(f)~
Proof The proof is obvious. O
It is worth to note that the ¢-norm satisfies the properties of norm. Indeed, for all
x e G/p(L),c € Cand f,g € LP(G), the equality |[|| fllg,pl, = Il fll, implies
that if || fll¢,, = O, then f =0 a.e.. Also I'icr (| ¢f ) =l ¢ |” T'ip( f D, ie.,

lcfllg,p =l ¢ | Il fllg,p- For triangular inequality:

If+glg.p = 1 fllg.p + 81l p

we have:

If + gllg, p(8) = (T pig(| £+ 8 DENYP
= f+gllf+gllg,ENY?

1/p
= <Z | f+ell f+elr! (x¢<k—1)>)

kel

1/p
= (Z | f+el? (xas(k“)))

kel
=\f+zgllirw
< W flliry + lIgllir Ly

kel kel
=1 £ 11 f Nep GNP+ ([ g 1,18 g, pGEN'P
= Cp( £ DENYP + (Dig (| g DEN?
=11 £llp.pG0) + 11gllg.p ().

1/p
= <Z | f 1P <x¢(k—1))) +OQ_ 1 f+glP ot Hn'/P

The following proposition demonstrates the duality property of (¢ (L), p)-bracket

product.

Proposition2.4 For f,g € L?(G) and 1 < p < oo. Then:

/ Pe(HG)dE =< f,gP7! > .
G/ (L)

(2.2)
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Proof By Weil’s Formula:

/ Fo(f)(D)di = / LF. glg.p ()it
G/¢p(L) G/¢p(L)

_ / (f.g" ) (x)dx
G

= (f, g~ D).

Note that if p = 2, then we get:

/ [f, &lp.p(D)dx = (f, ) 12(G)s
G/¢(L)

which has already appeared in [3].
For the Holder inequality, we need the following Lemmas.

Lemma2.5 Let f,g € LP(G) for 1 < p < oo, where q is the conjugate exponent to
p. Then:

[f. 8le.p = Lg"™ ", P Npq-

Proof For any x € G/¢ (L), we have:

[f.8lp.p(B) =D fe@ ' (xp(k™"))

keL

— Zgp;lf(p_l)(qil)(.x(b(kil))

kel
=g, [P pq ().

m}

At this point, for f € L?(G), we define the ¢ (L)-pointwise normalization of f as
follows:

oy [1TFG /1. p () 11 £l p D) 0.
N¢<L><f><x)—{ o T e o

Lemma 2.6 With the above notations, and non-zeros f, g € L?(G), (1 < p,q < o),
we have:

1
(i) Te(Npr) () = (m)rm )

where || fllg,p # 0.
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1 1
s (i) I N, = r ,
(i) TNy, 0) No) () (||f||¢,p> (”g”(,;;1> g1 (Lf D
s Jor|lfllg.p #0. ligllg.p # O

167

o

o

e In particular, T'g)(| f 1) = 0if and only if:

169 LNy ) (N (f) = 0.

G
]
]
S
(=W}
-
o
=
+—
=
<

wo (i) For f # 0 a.e., we have:
v Uy Ng) () = 1.

w2 (iv) For f # 0, we have, ||N¢(L)(f)||ip(6) =| G/¢p(L) |< oo, (| E | denotes the
173 Haar measure of the Borel set E C G ).

7 (V) Noy(No) () = Ny ()

76 Proof Proof of (i) is clear. For (ii), we have:

177 T (00 No) ()G = [Ngw) (), N¢(L)(g)] ()

[Ifl Igl} :
(X)
||f||¢p Igllg.p 1y,

1 .
‘( 1 ) A
170/ \ 187 )

w1 Now, using (ii), the proofs of (iii) and (iv) are obvious. For (v):

178

1

@
S

182 Ny ) (Ng(2) (1)) @) = | Npry(H)X) | /INgLy (g, p )

s = | Ngwy(f)(®) |

164 =1L/ g, p0)

185 P N¢>(L)(f)()'c)~

186 O

w7 Proposition 2.7 (Holder’s inequality) Let f, g € LP(G) for 1 < p,q < oo where g
188 IS the conjugate exponent to p. Then:

LLf glop 11 £ lppll 877 lpgs (2.3)

0o
SO
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Proof Put g?~! = 4, then € L7(G). Now, we have:

Iy 11, (O =Ty (¥4~ DO
=0y LIy @)
=Y 1YY k).

keL

If either || f llg,p=0or || ¥ |l,4= O, then the inequality holds trivially. The same
holds when either || f |lg,p= 00 or || ¥ [l,4= 00, the result is trivial. Moreover, it is
easy to see that if:

I T (L DI S llgpll ¥ llgg

holds for a particular f, ¥, then it also holds for all scaler multiples of f and . It
is, therefore, it would suffice to prove that (2.3) holds when || f [l¢.p (X) =l ¥ ll¢.q
(x) = 1, where 1 denotes the constant function of G /¢ (L) onto C. To this end, by [5,
Lemma 6.1], we have:

| Fad@ N 1Y) 1< 1/p | fPaxop@ D)) 141/q | i xed™h) |,
LAY @Y < Up | PN 1 +1/g 1 v (xg™h) |I;
SIFIY o)) <1/p (Z NIV (x¢(11>)>

leL leL

+1/q (Z vy (x¢(l‘>)) .

leL

Thus:

YA L@@ I < 1/l £ 1S N p@ + /gl v 119 11g.4 ()

leL
=1/p | flly, ®+1/g Iy, ®
=l S llg,p G 1Y llg.q (X).

Now, put ¢ = g”~!. We have:

AL g g p LUl pll €77 lgg -

General case, if || f]l¢,p 7= 1 and || gllg,p 7 1, then using Lemma 2.6, part (ii) can
be written as:

e L L ra .
8L s U len ™ 1glly )

lgllg.p
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Indeed, by Lemma 2.5, we have [glly , = Ilg”~! ||Z>{5. Hence:

-1 —
lelly, = 11" llp.q- (24)

It is worthwhile to note that using (2.4), we have:

—1
01T lpp 1< fllgpl g Ny, -

Definition 2.8 For y € G, we denote the modulation operator on L”(G) by M,,
which is defined by M,, f(x) = y(x) f(x) for all f € L?(G).

In the next proposition, some properties of the Fourier transform of the (¢ (L), p)-
bracket product are established.

Proposition 2.9 Suppose f,g € LV (G) and y € H(L)H (= Gm)), where ¢ (L)*
is the annihilator of ¢ (L) in G. Then:
) TeMy f)=Tnu | ((f)

y p—1

(@) (@)= (f M 2877 = (Myoif. gP), and

(i) (Ce(N y2) = (FMyl,lg)A(Vz) =< M,'f, My g"~! >

Proof The proof of (i) is clear. For (ii), since y(¢(k~')) = 1 for all k € L, we have:

TN @) = . 8ly., )
- / [f. glo.p o)y~ )i
G/$(L)

= f Yo feP ek )y T gk h)di
GO WD) g yep (L)

= / S g )M, 8P (e (kT ))di
G WD) g yep(L)

= / fM,-1g7 ! (x)dx
G
=< f,My_lgl’_1 > (x).
Part (iii) is a direct consequence of (ii) and its proof. O

Example 2.10 Let f,g € LP(R"), the modulation operator on LP(R™) defined by
M, f(x) = ¥ f(x), where x € R” and a € R”. Consider Z" as a uniform lattice

@ Springer

'é: Journal: 41980 Article No.: 0537 [ | TYPESET [__|DISK [_]LE [__] CP Disp.:2021/2/4 Pages: 19 Layout: Small-Ex




G
]
]
S
(=W}
-
o
=
+—
=
<

243

244

245

246

247

248
249

250

251

252

253

254

N
Gy
-\l

257

N
GG
ety

260

261

262

263

264

265

266

267

268

269

270

2

N

1

2

N
N

2

~N
)

Bulletin of the Iranian Mathematical Society

in R". Then:

TN @) =11 8lp.p )
- f Lf. glo.p (D)2 di
[0,a]"

=/ D feP TN —abe Y dr
[0

al" jezn
— [l; fg”*](x)e*Z”iV(x)dx

= (f, M,1gP71).

Corollary 2.11 If Ty (f) € L'(G/$(L)) and T4(f) = 0, then Ty(f) = 0 a.e. with
respect to the Haar measure on G /¢ (L).

Now, we are going to consider translation operators for (¢ (L), p)-bracket product.
Note that, since G is LCA group, then the left and right translations coincide . For
y € G, the translation operator on L' (G /¢ (L)) is defined by:

TyTo(f)(F) = To(f)(y7La).

One can easily check:

Iy Lo (f) = Tryg(Ty ). 2.5

Indeed:

T,Io f(X) =Tyl f, glg, p(X)
=[f, glppy ')
=Y Ty f(xpk " NTyg" xp (k™))
keL

= [Ty f. Tygly, p(x)

= Ip,o(Ty /(D).
In the next proposition, we have some properties concerning the translation operator
Ty.

Proposition2.12 Let y € G and T, be the translation operator on LY (G/¢(L)).
Then:

W) Sossw TeTyNEAE =[50 T e(HEE,

() Te(Tyf) =Ty(@1,_ (),

i) 175715, = Ty 12, and

(V) (Ty(Tg(HINNE) = (N EET (),  forE e p(L)*.
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s Proof For (i), let x € G/¢(L). Then, by the Weil’s Formula, we have:

= [ / P (Ty () di = f (T, f+ glg.p(E)di

8 G/¢(L) G/¢(L)

5 -1

56 276 :/GTyf.gp (x)dx

=

= - = /G FO g (x)dx
278 :/Gf(x)gpil(yx)dx
=/Gf(x)Ty71gp71(x)dx
280 Z/G/d)(L)[f,Tlg](ﬁ’p()e)dfC
- /G o T D@

23 Part (i1) and (iii) are obvious by (2.5). For & € ¢(L)J-, we get:

(Ty(Tg(HINE) = (Tyl £, glg. p)" &)
_ / TyLf . glop (e~ (D)di

G/¢(L)
_ / LF. glop (v 0)E (B

G/¢(L)
— ') / LF. glop (D&~ (D)di

G/¢(L)

=[f.8ls , &7
3 =T (N EE ™.
201 Therefore, part (iv) is proved. O

22 At this point, we denote the set of all ¢ (L)-periodic functions in L>°(G) by By (G),
2w 1.e., Boo(G) = {h € L*(G); h(x¢p(k)) = h(x), for all k € L}. It is easy to show
24 that Boo(G) is a closed subspace of L°°(G). Moreover, L?(G) is a Banach By (G)-
25 module.

6 Proposition 2.13 Let f, g € LP(G), 1 < p,q < 0o, and q is conjugate exponents of
w7 p. Then, for all h € Boo(G), we have:

08 (1) Fg(fh) = h(rg(f))y
w (i) Thg(f) = hP~ 1Ty ().
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In particular, if h(x) # O a.e., then Ty (f) = 0ifand only if Uy (fh) = Fh (f) =

0.

1
p—1 g
Proof For (i), let h € Bso(G) :

e (fR) ) = [£h, glp,p ()
=) fhe" xp )

keL

=Y fpk N’ xp k" Nh(xp k™))

keL

=Y fe" (k)R

keL
= hlf, glg,p(x)
= h(Te (/) ().

Also for proof of (ii), we have:

Thg (f)E) = [f, hglp, p(¥)
=Y fhe)"  (xp k")

keL

=Y kNP (k)P (xp (k1))

keL

= > feP xR ()

kel
=hP7Uf, gl p(X)
= hP N (T (F)G).

m}

Definition 2.14 Let f € L”(G),g € L4(G) where 1/p+1/qg = land1 < p, q < oco.
For E C L?(G), the ¢ (L)-orthogonal complement of E is defined as:

Er ={g € LY(G); Ty=1(f) =0 ae. forall feLP(G)).

In the next proposition, the relation between the ¢ (L)-orthogonal complement of E
in L?(G) and its orthogonal complement in L7(G) is investigated.
Proposition 2.15 For E € L?(G), we have EX¢-» = Nyep_(Gy(hE)o-».

Proof Let g € E+¢». Then, for h € Bx(G) and f € E by Propositions (2.13) and
(2.4), we have:

< hf, gp~! >=/

G/¢p(L)

ot (hf)(0)dst = / BT ot () = 0;
G/¢(L)
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hence, g € Npep.,(G)(hE)*#r. Now, for g € Npep. c)(hE)L, f € Eandn € N,
define h,, = ngq(f), when | ng—l(f) |< n, and h,, = 0 otherwise. Then, h, €
Boo (G). Therefore, we have:

0= Ty ot (N |
= [ (6 i
G/e(L)

- / | BE R (i) | dik
G/¢(L)

_ / o 17 (D)di.
G/¢(L)

Therefore, | h, | (x) = 0. Hence, Leq-1(f) =0 ae., thatis, g € Etor. m|

3 ¢(L)-Factorable Operators

Let G be an LCA group and E be a subgroup of G or G /¢ (L), in which we suppose
that L be a uniform lattice in G, and ¢ : G —> G is a topological isomorphism. In
this section, ¢ (L)-factorable operators are defined and some of their properties are
investigated. Moreover, the relation between ¢ (L)-factorable operators and (¢ (L), p)-
bracket product is shown. Finally, the Riesz Representation Theorem for L” (G) with
the (¢ (L), p)-bracket product is proven.

Definition 3.1 Anoperator U : LP(G) —> L"(E)that1 < r, p < coiscalled ¢ (L)-
factorable if U (hf) = hU (f), forall f € LP(G) and all ¢ (L)-periodic h € L*°(G),
where E is a subgroup of G or G/¢(L).

In the following, some properties of the ¢ (L)-factorable operators are examine.

Lemma3.2 LetUy, Us : LP(G) —> LY (G /¢ (L)) betwo ¢ (L)-factorable operators.
Then, Uy = U if and only if:

/ (/) ()di = / Ur(f) (@),
G/¢p(L) G/p(L)

for every f € LP(G).

Proof The necessary partis obvious. For the converse, by [4, theorem 4.33], itis enough
to show that Uy (f) = Ua(f) forall f € LP(G). Let& € (G/¢(L)) = ¢(L)* and
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2 f € LP(G), since & as a function in L°>°(G) is ¢ (L)-periodic, we obtain:

TN = f UL (DEDE
s G/¢(L)
o
Z .- - / UI(E (D
S G/¢(L)
= e = [ wenu
2 G/o(L)
_ / U (f) (D)8 () di
G/¢(L)
# = Ua(f)(§).

;9 Hence, the Fourier coefficients for Uy (f) and U, ( f) are the same for all f € L?(G)
0 and, therefore, Uy = U>. O

s Lemma3.3 Leth € Boo(G) and f € LP(G) where 1 < p < oo. Then,
[ coas= [ paco 171G

G G/p(L)
33 Proof Using Weil’s Formula, we have:

/Glhf |7 (x)dx =/G Do A& 17 flxp ) |7 di

L) g yep (L)
- / R P Y | fag ) 1P di
G/o() ¢ ()ep(L)
- / LRGP 1 F1, (di,
. G/o(L)
s in which & € Boo(G) and f € L?(G). O

% Note that, if » € L%°(G) and f € LP(G), then | hf |Pe L'(G).

s Proposition 3.4 Let U be a ¢ (L)-factorable linear operator from LP (G) to L (G /¢ (L)),
sn 1 < p < o0. Then, U is bounded if and only if there is a constant B > 0 (B = |U||),
w2 so that for every f € LP(G), we have:

73 | UNHE) [< Bl fllg.p(X),  for a.ex eG/p(L).
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Proof Leth € Bo(G) and f € L?(G). By Lemma 3.3:

/ |G 1P U @) |de=/ | UG P di
G/p(L) G/¢(L)
- ||U(hf)||{p(c/¢(L))

< ||U||"/G Lhf 1P (x)dx

= IIUII”/ WACIRLA VA FANEoTiES
G/p(L)

It follows immediately that | U (f)(x) [P < ||U||1’||f||£’p()2), a.e.forx € G/¢p(L).
Conversely, let f € LP(G), we have:

||U(f)||£,p = /(;/¢>(L) | U(F)() |P dx
< BP| 17 ()di
/G/¢(L> &
=BP/ TG
Grew | 0P
= B?| fII5.

Therefore, the proof is completed. O

Proposition 3.5 IfU : L?(G) — L?(G) (1 < p < o0) is a ¢ (L)-factorable linear
operator, then U is bounded if and only if there is a constant B > 0 (B = ||U]||), so
that for every f € LP(G), we have:

U g, p = Bl fllg,p-
Proof For h € B5(G) and f € LP(G), by Proposition 3.4, we get:
/ | ARG 1P 11U (g pdx = / [RGY 1P Tyypy | U | (Ddi
G/p(L) ’ G/¢(L)

= IUGAHIE | Gdi
/G/¢<L> op

IUGHEIp )
WUIPAL I p gy @)

IA

= uUnPf PIENLA T TARENES
G/p(L) '

It follows that ||U(f)||§p(G) < ||U||P||f||(’;,p a.e. with respect to G /¢ (L). o

Theorems 3.6 and 3.8 are of the main theorems in this section which are Riesz repre-
sentation type theorem for the (¢ (L), p)-bracket product in L?(G).
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Theorem 3.6 An operator U : LP(G) —> LY(G/$(L)) is a bounded ¢(L)-
factorable if and only if there exists g € L7(G), such that U(f) = T g4-1(f) for
all f € LP(G). Moreover, U]l = |glly-

Proof Let U : LP(G) —> L'(G/¢(L))(where for I < p < oo) be a bounded
¢ (L)-factorable operator. Define the linear functional ¥ : L?(G) — Cby W (f) =
fG/¢(L) U(f)(x)dx. The isometric isomorphism property (LP(G))* = L9(G) for

(p # oo) implies that there exist g € L9(G), such that W (f) = fG feg(x)dx for all
f € LP(G). Thus:

/ U E)dE = (f)
G/p(L)

= / fg(x)dx
G

- / [go1 (f)()di
G/p(L)

By 3.4), U(f) = Tg-1(f), forall f € LP(G).
Moreover, for any f € L?(G):

NIUD 16 r¢y) = ITqa-1 (D16 /01
< Iflpliglly-
Therefore, |U]| < |lglly. Now, letting f =] g7 |; hence:
U g4 Dlip =/ U g " D) | di
G/¢p(L)
:f | Tig-1y(1 €77 D) | dik
G/¢(L)
:[ L g 1 1&g Mlp,p () | dik
G/¢p(L)
=/ [gl|gllpqx)|dx
G/¢p(L)
= gl , (hdx
/G/¢(L) $a
= [|gllf.
Thus:
_ -1
lgld = 1Uq 2" Dllp < 1UINIgNE.
e, lIgllg = IIUII
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For the converse, according of g € L9(G), U is bounded. For every ¢ (L)-periodic
h e L*®(G)and f € L?(G):

Uhf) = Tyg1 (hf) = h(Tyq 1 (f)) = hU(f).
Therefore, the proof is complete. O

It is worth mentioning that Theorem3.6 for p = 2 gives the Riesz representation
theorem expressed in [5, theorem 5.25].

Corollary 3.7 Let f, g € LP(G) (1 < p < 00). Then, I'y(f) is ¢ (L)-factorable.
Proof The proof yields just using Proposition2.13 and Theorem3.6. O
We say f € LP(G) is ¢ (L)-bounded if there exists M > 0, such that || f|ly,, < M.

Theorem 3.8 A linear operator U : LP(G) — LP(G/¢p(L)) (1 < p < o0)
is a bounded ¢ (L)-factorable if and only if there exists ¢(L)-bounded g €
LU(G), such that U(f) = Te-1(f) for all f € LP(G). Moreover, |U| =
esssupieG/pw)8llg, p(X).

Proof Thatis, Ube abounded ¢ (L)-factorable operator from L” (G) —> LP(G /¢ (L)).
Since G /¢ (L) is compact, L”(G/¢(L)) < L'(G/#(L)), and so, by Theorem 3.6,
there exists g € L9(G), such that U(f) = ng—l(f) for all f € L?(G). Letting
f = g9~ and using Proposition 3.4, we get:

| Ter1(€” ) 1= 187715,
=1U( g DI
< U Ig* llg.p-
Hence, ||g"_1 lg.p < IIUIl or ligllg,q < IIU]l. For the converse, let g be a ¢(L)-
bounded and U (f) = Loq-1(f) for some ¢ (L)-bounded, so g € LY(G). Then, by

Corollary 3.7, U is ¢ (L)-factorable. Now, by the assumption, g is ¢(L)-bounded and
by Theorem3.6, we have:

sy = /G/¢ | Cep-1(f) |7 (1)dx
P

< 1A% llgllh  (x)dx
/<G/¢(L>> opioTea

< esssupicc oL llgll’ / 15, G)di
A
= esssup)eeG/qs(L)||g||£,,,||f||§,
where x € G/¢(L). Thus, ||U] is bounded.

Now, by letting f = g7~ !, we get |U| = esssupiec /) llgllp, p(x). This com-
pletes the proof. O
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Theorem3.9 For1 < p < oo, let U : LP(G) —> L49(G), (where L9(G) is dual of
L?(G)), be a bounded ¢ (L)-factorable operator and U* be its adjoint. Then, U* is
¢ (L)-factorable. Moreover, for f € LP(G) and g € L1(G), we have:

Loq-1(U(f)) = Tu=(g)(f)-

Proof For f € LP(G), g € L9(G), and h € Boo(G), We have:

(U ), 77 = (g, U(F7D)
= (g.BU¢rP)
=(g. vr D)
(U (o), hf77T)
= {nu@. 7771},

Therefore, U* is ¢ (L)-factorable. Now, we have:

[ rewimiod = (v
G/p(L)
- {Frusg)
= Ly (g (f)(X)dx.
G/p(L)
Therefore, Lemma 3.2 completes the proof. O
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