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Abstract1

Let G be a locally compact abelian group, φ be a topological isomorphism on G,2

and L be a uniform lattice in G. We provide a development of the L1(G/φ(L)) 13

function-valued product on L p(G) called (φ(L), p)-bracket product, where 1 < p <4

∞. Among other things, we study φ(L)-factorable operators and we prove Riesz5

representation type Theorem for L p(G).6

Keywords (φ(L), p)-bracket product · Locally compact abelian group ·7

φ(L)-orthogonality · φ(L)-factorable operator · Riesz representation theorem8

Mathematics Subject Classification 43A15 · 43A709

1 Introduction10

In this paper, we aim to study the (φ(L), p)-bracket product on a locally compact11

abelian group (LCA group, for short) G, via a topological isomorphism φ on G with12

respect to a uniform lattice L in G. The bracket product on space L2(Rn) has been13

studied by several authors, see for example [3] and the references therein. Ron and14
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Shen in [10] extended bracket products for the shift invariant subspaces of L2(Rn).15

They defined the bracket product of f , g ∈ L2(Rn) by:16

[ f , g](x) =
∑

α∈2πZn

f (x + α)g(x + α).17

Then, [ f , g] is an element of L1(Tn) and we have ‖[ f , f ]‖L1(Tn) = ‖ f ‖2
L2(Rn)

, for18

f ∈ L2(Rn). Cassaza and Lammers [1] improved the bracket product by employing a19

shift parameter. More precisely, they defined the so-called bracket product as a-inner20

product by:21

〈 f , g〉a (t) =
∑

n∈Z

f (t − na)g(t − na); f , g ∈ L2(R), a ∈ R
+.22

They have shown that the relevant a-inner product has a Bessel’s inequality, orthogonal23

sequence and Riesz Representation Theorem for L2(Rn). Kamyabi Gol and Raisi24

Tousi [7] extended this notion to a LC A-group with respect to a uniform lattice via a25

topological isomorphism φ on G. They defined the bracket product [ f , g]φ , associated26

with φ through:27

[ f , g]φ(ẋ) =
∑

k∈L

f (xφ(k−1))g(xφ(k−1)), f , g ∈ L2(G),28

where L is a uniform lattice in G. It is easy to check that [ f , g]φ in L1(G/φ(L)).29

They also defined the norm ‖.‖φ called φ-norm on L2(G) by ‖ f ‖φ = [ f , f ]
1/2
φ , ( f ∈30

L2(G)). They studied the modulation and translation [., .]φ and the usual inner prod-31

uct of L2(G). Some of the basic properties of [., .]φ (such as, the Cauchy–Schwarz32

identity, the polarization identity, etc.) are also discussed in [7]. The main aim of33

this paper is to extend the bracket product notion to L p(G), for 1 < p < ∞. In34

Sect. 2, we first investigate the elementary properties of [., .]φ,p. In particular, we35

prove Hölder inequality and Triangle inequality. We study the modulation and trans-36

lation for this bracket product operators which provide some facilities to accurately37

study this bracket product. Section 3 is devoted to the φ(L)-factorable operators and38

its consequences. We use this notion to provide the Riesz Representation Theorem for39

the pair (L p(G), L1(G/φ(L))).40

2 Preliminary Results41

Let G be a locally compact abelian group equipped with the Haar measure dx , and42

let φ : G → G be a topological isomorphism. For 1 < p < ∞„ let Lφ be the left43

translation operator on L p(G) defined by Lφ f (x) = ( f ◦ φ−1)(x)( f ∈ L p(G), x ∈44

G). Note that by the uniqueness of Haar measure, there exists a positive number σ(φ),45

such that
∫

G
Lφ f (x)d(x) = σ(φ)

∫
G

f (x)d(x) for all f ∈ L1(G). In this case, the46
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map σ is a homomorphism on the group of all isomorphisms on G; see [6]. Let H be47

a closed subgroup of G with the Haar measure dh. Let G/H be the quotient group48

with Haar measure dẋ . It is known that dx, dh, dẋ are related to each others under the49

following identity, which is known as Weil’s type Formula:50

∫

G

f (x)dx =

∫

G/H

∫

H

f (xh)dhdẋ, f ∈ L1(G). (2.1)51

52

This formula shows that for f ∈ L1(G), the integral
∫

H
f (xh)dh exists almost53

everywhere in x and defines an integrable function on G/H , such that the integral54

formula holds. In fact, the formula (2.1) should be understood as a one-sided version55

of Foubini’s Theorem for product spaces; see [3].56

We recall that the Fourier transform̂: L1(G) −→ C0(Ĝ), f 	−→ f̂ , is defined57

by f̂ (ξ) =
∫

G
f (x)ξ(x)dx for ξ ∈ Ĝ, the dual group of G. It is well known that if58

f ∈ L p(G)(1 ≤ p ≤ 2), then f̂ ∈ Lq(Ĝ), where q and p are conjugate exponents,59

and ‖ f̂ ‖q ≤ ‖ f ‖p (see [4]).60

Throughout this article, we always assume that G is a second countable LCA group.61

In this case, we always have a uniform lattice in G; see [9]. Suppose that L is a uniform62

lattice in G, and φ : G −→ G is a topological isomorphism. It is well known that63

G/φ(L) is a LCA group and it is topologically isomorphic with G/L (for more details,64

see also [6]).65

Let f , g ∈ L p(G), 1 < p < ∞, and q be the conjugate exponent to p. Then,66

f g p−1 ∈ L1(G), and hence by Weil’s formula, we get:67

∫

G/φ(L)

∑

k∈L

| f g p−1(xφ(k−1))|dẋ =

∫

G/φ(L)

∑

φ(k)∈φ(L)

| f g p−1(xφ(k−1))|dẋ68

=

∫

G

| f g p−1(x) | dx69

≤

(∫

G

| f (x) |p dx

)1/p (∫

G

| g p−1(x) |q dx

)1/q

70

≤ ‖ f ‖p‖g p−1‖q .7172

Thus, for almost all ẋ ∈ G/φ(L), the series
∑

k∈L f g p−1(xφ(k−1)) converges.73

Therefore, each function g ∈ L p(G) induces a bounded linear map:74

Ŵg : L p(G) −→ L1(G/φ(L)),75

f 	→ Ŵg( f ) = [ f , g]φ,p76

with ‖Ŵg‖ = ‖g‖
p−1
p , where [ f , g]φ,p(ẋ) =

∑
k∈L f g p−1(xφ(k−1)).77

Note that Ŵg( f ) = [ f , g]φ,p is φ(L)-periodic and we call [ f , g]φ,p the (φ(L), p)-78

bracket product of f , g ∈ L p(G).79
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Consequently, one may define the (φ(L), p)-norm as follows:80

{
‖.‖φ,p : L p(G) −→ L p(G/φ(L)),

f 	→ ‖ f ‖φ,p = (Ŵ| f |(| f |))1/p,
81

which is an isometry, ‖‖ f ‖φ,p‖p = ‖ f ‖p. Indeed, by Weil’s Formula for f ∈ L p(G),82

1 < p < ∞ we have:83

‖‖ f ‖φ,p‖
p
p =

∫

G/φ(L)

‖ f ‖
p
φ,p(ẋ)dẋ84

=

∫

G/φ(L)

Ŵ| f |(| f |)(ẋ)dẋ85

=

∫

G/φ(L)

[| f |, | f |]φ,p(ẋ)dẋ86

=

∫

G/φ(L)

∑

φ(k)∈φ(L)

| f || f |p−1 (xφ(k−1))dẋ87

=

∫

G/φ(L)

∑

φ(k)∈φ(L)

| f |p (xφ(k−1))dẋ88

=

∫

G

| f |p (x)dx89

= ‖ f ‖
p
p.90

91

Now, in the following two examples, we show that our definitions extend the pre-92

vious ones mentioned earlier.93

Example 2.1 Consider G = R , L = Z in the above definition. Fix a ∈ R+. Then,94

φ : R −→ R, given by φ(x) = ax is a topological isomorphism and the bounded95

linear map Ŵg : L p(R) −→ L1([0, a]), defines by Ŵg( f )(x) = [ f , g]φ,p(x) =96 ∑
n∈Z

f g p−1(x − na) is the a-pointwise inner product of f and g introduced by97

Casazza and Lammers in [1] for p = 2. Moreover, if φ is the identity function on R ,98

p = 2, then the (φ, p)-bracket product is exactly one defined by Ron and Shen [10].99

Example 2.2 Let G = Rn × Zn × Tn × Zn , for n ∈ N, where Zn is the finite abelian100

group {0, 1, 2, ..., n − 1} of residues module n and L = Zn ×Zn ×{1}× Zn a uniform101

lattice in G. Let A be an invertible n×n real matrix and fix l ∈ Zn . Define φ : G −→ G102

by φ(x, m, t, p) = (Ax, l + m, t, p), for every x ∈ Rn, m ∈ Zn, t ∈ Tn, p ∈ Zn . For103

f , g ∈ L p(G), the (φ(L), p)-bracket product is defined by:104

Ŵg( f )(x) = [ f , g]φ,p(x)105

=
∑

k∈Zn ,n∈Zn ,q∈Zn

f g p−1((Ax, l + m, t, p) − φ(k, n, 1, q))106

=
∑

k∈Zn ,n∈Zn ,q∈Zn

f g p−1(Ax − k, l + m − n, t − 1, p − q).107

108
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In the following proposition, we explain some properties of Ŵg.109

Proposition 2.3 Let f , g ∈ L p(G) for 1 < p < ∞ and c ∈ C. Then, the following110

properties hold:111

(i) Ŵg( f + h) = Ŵg( f ) + Ŵg(h)112

(ii) Ŵg(c f ) = cŴg( f )113

(iii) Ŵcg( f ) = cp−1Ŵg( f )114

(iv) Ŵcg(c f ) = cpŴg( f ).115

Proof The proof is obvious. ⊓⊔116

It is worth to note that the φ-norm satisfies the properties of norm. Indeed, for all117

ẋ ∈ G/φ(L), c ∈ C and f , g ∈ L p(G), the equality ‖‖ f ‖φ,p‖p = ‖ f ‖p implies118

that if ‖ f ‖φ,p = 0, then f = 0 a.e.. Also Ŵ|c f |(| c f |) =| c |p Ŵ| f |(| f |), i.e.,119

‖c f ‖φ,p =| c | ‖ f ‖φ,p. For triangular inequality:120

‖ f + g‖φ,p ≤ ‖ f ‖φ,p + ‖g‖φ,p,121

we have:122

‖ f + g‖φ,p(ẋ) = (Ŵ| f +g|(| f + g |)(ẋ))1/p
123

= ([| f + g |, | f + g |]φ,p(ẋ))1/p
124

=

(∑

k∈L

| f + g || f + g |p−1 (xφ(k−1))

)1/p

125

=

(∑

k∈L

| f + g |p (xφ(k−1))

)1/p

126

= ‖ f + g‖l p(L)127

≤ ‖ f ‖l p(L) + ‖g‖l p(L)128

=

(∑

k∈L

| f |p (xφ(k−1))

)1/p

+ (
∑

k∈L

| f + g |p (xφ(k−1)))1/p
129

= ([| f |, | f |]φ,p(ẋ))1/p + ([| g |, | g |]φ,p(ẋ))1/p
130

= (Ŵ| f |(| f |)(ẋ))1/p + (Ŵ|g|(| g |)(ẋ))1/p
131

= ‖ f ‖φ,p(ẋ) + ‖g‖φ,p(ẋ).132
133

The following proposition demonstrates the duality property of (φ(L), p)-bracket134

product.135

Proposition 2.4 For f , g ∈ L p(G) and 1 < p < ∞. Then:136

∫

G/φ(L)

Ŵg( f )(ẋ)dẋ =< f , g p−1 > . (2.2)137

138
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Proof By Weil’s Formula:139

∫

G/φ(L)

Ŵg( f )(ẋ)dẋ =

∫

G/φ(L)

[ f , g]φ,p(ẋ)dẋ140

=

∫

G

( f .g p−1)(x)dx141

= 〈 f , g p−1〉.142
143

⊓⊔144

Note that if p = 2, then we get:145

∫

G/φ(L)

[ f , g]φ,p(ẋ)dẋ = 〈 f , g〉L2(G),146

which has already appeared in [3].147

For the Hölder inequality, we need the following Lemmas.148

Lemma 2.5 Let f , g ∈ L p(G) for 1 < p < ∞, where q is the conjugate exponent to149

p. Then:150

[ f , g]φ,p = [g p−1, f p−1]φ,q .151

Proof For any ẋ ∈ G/φ(L), we have:152

[ f , g]φ,p(ẋ) =
∑

k∈L

f g p−1(xφ(k−1))153

=
∑

k∈L

g p−1 f (p−1)(q−1)(xφ(k−1))154

= [g p−1, f p−1]φ,q(ẋ).155
156

⊓⊔157

At this point, for f ∈ L p(G), we define the φ(L)-pointwise normalization of f as158

follows:159

Nφ(L)(f)(ẋ) =

{
| f (ẋ) | /‖ f ‖φ,p(ẋ) ‖ f ‖φ,p(ẋ) = 0,

0 ‖ f ‖φ,p(ẋ) = 0.
160

Lemma 2.6 With the above notations, and non-zeros f , g ∈ L p(G), (1 < p, q < ∞),161

we have:162

(i) Ŵg(Nφ(L)( f )) =
( 1

‖ f ‖φ,p

)
Ŵg(| f |),163

where ‖ f ‖φ,p = 0.164

123

Journal: 41980 Article No.: 0537 TYPESET DISK LE CP Disp.:2021/2/4 Pages: 19 Layout: Small-Ex

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Bulletin of the Iranian Mathematical Society

(ii) ŴNφ(L)(g)(Nφ(L)( f )) =

(
1

‖ f ‖φ,p

)(
1

‖g‖
p−1
φ,p

)
Ŵ|g|(| f |),165

for ‖ f ‖φ,p = 0, ‖g‖φ,p = 0.166

167

In particular, Ŵ|g|(| f |) = 0 if and only if:168

ŴNφ(L)(g)(Nφ(L)( f )) = 0.169

(iii) For f = 0 a.e., we have:170

ŴNφ(L)( f )(Nφ(L)( f )) = 1.171

(iv) For f = 0, we have, ‖Nφ(L)( f )‖
p

L p(G)
=| G/φ(L) |< ∞, ( | E | denotes the172

Haar measure of the Borel set E ⊆ G ).173

174

(v) Nφ(L)

(
Nφ(L)( f )

)
= Nφ(L)( f ).175

Proof Proof of (i) is clear. For (ii), we have:176

ŴNφ(L)(g)(Nφ(L)( f ))(ẋ) =
[
Nφ(L)( f ), Nφ(L)(g)

]
φ,p

(ẋ)177

=

[
| f |

‖ f ‖φ,p

,
| g |

‖g‖φ,p

]

φ,p

(ẋ)178

=

(
1

‖ f ‖φ,p(ẋ)

) (
1

‖g‖
p−1
φ,p (ẋ)

)
[| f |, | g |]φ,p(ẋ)179

=

(
1

‖ f ‖φ,p

) (
1

‖g‖
p−1
φ,p

)
Ŵ|g|(| f |)(ẋ).180

Now, using (ii), the proofs of (iii) and (iv) are obvious. For (v):181

Nφ(L)

(
Nφ(L)( f )

)
(ẋ) = | Nφ(L)( f )(x) | /‖Nφ(L)( f )‖φ,p(ẋ)182

= | Nφ(L)( f )(ẋ) |183

= | f (ẋ) | /‖ f ‖φ,p(ẋ)184

= Nφ(L)( f )(ẋ).185

⊓⊔186

Proposition 2.7 (Hölder’s inequality) Let f , g ∈ L p(G) for 1 < p, q < ∞ where q187

is the conjugate exponent to p. Then:188

| [ f , g]φ,p |≤‖ f ‖φ,p‖ g p−1 ‖φ,q , (2.3)189
190
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Proof Put g p−1 = ψ , then ψ ∈ Lq(G). Now, we have:191

‖ ψ ‖
q
φ,q (ẋ) = Ŵ|ψq−1|(| ψq−1 |)(ẋ)192

= [| ψq−1 |, | ψq−1 |]φ,p(ẋ)193

=
∑

k∈L

| ψq−1 || ψ | (xφ(k−1)).194

195

If either ‖ f ‖φ,p= 0 or ‖ ψ ‖φ,q= 0, then the inequality holds trivially. The same196

holds when either ‖ f ‖φ,p= ∞ or ‖ ψ ‖φ,q= ∞, the result is trivial. Moreover, it is197

easy to see that if:198

| Ŵ|ψ |(| f |) |≤‖ f ‖φ,p‖ ψ ‖φ,q199

holds for a particular f , ψ , then it also holds for all scaler multiples of f and ψ . It200

is, therefore, it would suffice to prove that (2.3) holds when ‖ f ‖φ,p (ẋ) =‖ ψ ‖φ,q201

(ẋ) = 1, where 1 denotes the constant function of G/φ(L) onto C. To this end, by [5,202

Lemma 6.1], we have:203

| f (xφ(l−1)) || ψ(xφ(l−1)) |≤ 1/p | f p(xφ(l−1)) | +1/q | ψq(xφ(l−1)) |,204

| f || ψ | (xφ(l−1)) ≤ 1/p | f f p−1(xφ(l−1)) | +1/q | ψq−1ψ(xφ(l−1)) |;205

∑

l∈L

| f || ψ | (xφ(l−1)) ≤ 1/p

(∑

l∈L

| f || f p−1 | (xφ(l−1))

)
206

+1/q

(∑

l∈L

| ψq−1 || ψ | (xφ(l−1))

)
.207

Thus:208

|
∑

l∈L

| f || ψ | (xφ(l−1)) | ≤ 1/p[| f |, | f |]φ,p(ẋ) + 1/q[| ψ |, | ψ |]φ,q(ẋ)209

= 1/p ‖ f ‖
p
φ,p (ẋ) + 1/q ‖ ψ ‖

q
φ,q (ẋ)210

=‖ f ‖φ,p (ẋ) ‖ ψ ‖φ,q (ẋ).211
212

Now, put ψ = g p−1. We have:213

| [| f |, | g |]φ,p | ≤ ‖ f ‖φ,p‖ g p−1 ‖φ,q .214

General case, if ‖ f ‖φ,p = 1 and ‖g‖φ,p = 1, then using Lemma 2.6, part (ii) can215

be written as:216

Ŵ | g |

‖g‖φ,p

(
| f |

‖ f ‖φ,p

) = (
1

‖ f ‖φ,p

)(
1

‖g‖
p−1
φ,p

)Ŵ|g|(| f |).217
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Indeed, by Lemma 2.5, we have ‖g‖φ,p = ‖g p−1‖
q/p
φ,q . Hence:218

‖g‖
p−1
φ,p = ‖g p−1‖φ,q . (2.4)219

220

⊓⊔221

It is worthwhile to note that using (2.4), we have:222

| [| f |, | g |]φ,p |≤‖ f ‖φ,p‖ g ‖
p−1
φ,p .223

Definition 2.8 For γ ∈ Ĝ, we denote the modulation operator on L p(G) by Mγ ,224

which is defined by Mγ f (x) = γ (x) f (x) for all f ∈ L p(G).225

In the next proposition, some properties of the Fourier transform of the (φ(L), p)-226

bracket product are established.227

Proposition 2.9 Suppose f , g ∈ L p(G) and γ ∈ φ(L)⊥(∼= Ĝ/φ(L)), where φ(L)⊥228

is the annihilator of φ(L) in Ĝ. Then:229

(i) Ŵg(Mγ f ) = ŴM
γ

1
p−1

g( f )230

(ii) (Ŵg( f ))∧(γ ) = 〈 f , M
γ

−1
p−1

g p−1〉 = 〈Mγ −1 f , g p−1〉, and231

(iii) (Ŵg( f ))∧(γ1γ2) = (ŴM
γ
−1
1

g)
∧(γ2) =< M−1

γ2
f , Mγ1 g p−1 >.232

Proof The proof of (i) is clear. For (ii), since γ (φ(k−1)) = 1 for all k ∈ L , we have:233

(Ŵg( f ))∧(γ ) = [̂ f , g]φ,p(γ )234

=

∫

G/φ(L)

[ f , g]φ,p(ẋ)γ −1(ẋ)dẋ235

=

∫

G/φ(L)

∑

φ(k)∈φ(L)

f g p−1(xφ(k−1))γ −1(xφ(k−1))dẋ236

=

∫

G/φ(L)

∑

φ(k)∈φ(L)

f (xφ(k−1))Mγ −1 g p−1(xφ(k−1))dẋ237

=

∫

G

f Mγ −1 g p−1(x)dx238

= < f , Mγ −1 g p−1 > (x).239

Part (iii) is a direct consequence of (ii) and its proof. ⊓⊔240

Example 2.10 Let f , g ∈ L p(Rn), the modulation operator on L p(Rn) defined by241

Ma f (x) = e2π iax f (x), where x ∈ Rn and a ∈ R̂n . Consider Zn as a uniform lattice242
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in Rn . Then:243

(Ŵg( f ))∧(γ ) = [̂ f , g]φ,p(γ )244

=

∫

[0,a]n

[ f , g]φ,p(t)e
−2π iγ t dt245

=

∫

[0,a]n

∑

l∈Zn

f g p−1(t − al)e−2π iγ t dt246

=

∫

Rn

f g p−1(x)e−2π iγ (x)dx247

= 〈 f , Mγ −1 g p−1〉.248
249

Corollary 2.11 If Ŵg( f ) ∈ L1(G/φ(L)) and Ŵ̂g( f ) = 0, then Ŵg( f ) = 0 a.e. with250

respect to the Haar measure on G/φ(L).251

Now, we are going to consider translation operators for (φ(L), p)-bracket product.252

Note that, since G is LCA group, then the left and right translations coincide . For253

y ∈ G, the translation operator on L1(G/φ(L)) is defined by:254

TyŴg( f )(ẋ) = Ŵg( f )(y−1 ẋ).255
256

One can easily check:257

TyŴg( f ) = ŴTy g(Ty f ). (2.5)258
259

Indeed:260

TyŴg f (ẋ) = Ty[ f , g]φ,p(ẋ)261

= [ f , g]φ,p(y−1 ẋ)262

=
∑

k∈L

Ty f (xφ(k−1))Ty g p−1(xφ(k−1))263

= [Ty f , Ty g]φ,p(ẋ)264

= ŴTy g(Ty f )(ẋ).265

In the next proposition, we have some properties concerning the translation operator266

Ty .267

Proposition 2.12 Let y ∈ G and Ty be the translation operator on L1(G/φ(L)).268

Then:269

(i)
∫

G/φ(L)
Ŵg(Ty f )(ẋ)dẋ =

∫
G/φ(L)

ŴT
y−1 g( f )(ẋ)dẋ,270

(ii) Ŵg(Ty f ) = Ty(ŴT
y−1 g( f )),271

(iii) ‖Ty f ‖
p
φ,p = Ty‖ f ‖

p
φ,p and272

(iv) (Ty(Ŵg( f )))∧(ξ) = (Ŵg( f ))∧(ξ)ξ−1(y), f or ξ ∈ φ(L)⊥.273
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Proof For (i), let ẋ ∈ G/φ(L). Then, by the Weil’s Formula, we have:274

∫

G/φ(L)

Ŵg(Ty f )(ẋ)dẋ =

∫

G/φ(L)

[Ty f , g]φ,p(ẋ)dẋ275

=

∫

G

Ty f .g p−1(x)dx276

=

∫

G

f (y−1x)g p−1(x)dx277

=

∫

G

f (x)g p−1(yx)dx278

=

∫

G

f (x)Ty−1 g p−1(x)dx279

=

∫

G/φ(L)

[ f , Ty−1 g]φ,p(ẋ)dẋ280

=

∫

G/φ(L)

ŴT
y−1 g( f )(ẋ)dẋ .281

282

Part (ii) and (iii) are obvious by (2.5). For ξ ∈ φ(L)⊥, we get:283

(Ty(Ŵg( f )))∧(ξ) = (Ty[ f , g]φ,p)
∧(ξ)284

=

∫

G/φ(L)

Ty[ f , g]φ,p(ẋ)ξ−1(ẋ)dẋ285

=

∫

G/φ(L)

[ f , g]φ,p(y−1 ẋ)ξ−1(ẋ)dẋ286

= ξ−1(y)

∫

G/φ(L)

[ f , g]φ,p(ẋ)ξ−1(ẋ)dẋ287

= [̂ f , g]φ,p(ξ)ξ−1(y−1)288

= (Ŵg( f ))∧(ξ)ξ−1(y−1).289
290

Therefore, part (iv) is proved. ⊓⊔291

At this point, we denote the set of all φ(L)-periodic functions in L∞(G) by B∞(G),292

i.e., B∞(G) = {h ∈ L∞(G); h(xφ(k)) = h(x), f or all k ∈ L}. It is easy to show293

that B∞(G) is a closed subspace of L∞(G). Moreover, L p(G) is a Banach B∞(G)-294

module.295

Proposition 2.13 Let f , g ∈ L p(G), 1 < p, q < ∞, and q is conjugate exponents of296

p. Then, for all h ∈ B∞(G), we have:297

(i) Ŵg( f h) = h(Ŵg( f )),298

(ii) Ŵhg( f ) = h p−1(Ŵg( f )).299

123

Journal: 41980 Article No.: 0537 TYPESET DISK LE CP Disp.:2021/2/4 Pages: 19 Layout: Small-Ex

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Bulletin of the Iranian Mathematical Society

In particular, if h(ẋ) = 0 a.e., then Ŵg( f ) = 0 if and only if Ŵg( f h) = Ŵ
h

1
p−1 g

( f ) =300

0.301

Proof For (i), let h ∈ B∞(G) :302

Ŵg( f h)(ẋ) = [ f h, g]φ,p(ẋ)303

=
∑

k∈L

f hg p−1(xφ(k−1))304

=
∑

k∈L

f (xφ(k−1))g p−1(xφ(k−1))h(xφ(k−1))305

=
∑

k∈L

f g p−1(xφ(k−1))h(ẋ)306

= h[ f , g]φ,p(ẋ)307

= h(Ŵg( f ))(ẋ).308

Also for proof of (ii), we have:309

Ŵhg( f )(ẋ) = [ f , hg]φ,p(ẋ)310

=
∑

k∈L

f (hg)p−1(xφ(k−1))311

=
∑

k∈L

f (xφ(k−1))h p−1(xφ(k−1))g p−1(xφ(k−1))312

=
∑

k∈L

f g p−1(xφ(k−1))h p−1(ẋ)313

= h p−1[ f , g]φ,p(ẋ)314

= h p−1(Ŵg( f ))(ẋ).315

⊓⊔316

Definition 2.14 Let f ∈ L p(G), g ∈ Lq(G)where 1/p+1/q = 1 and 1 < p, q < ∞.317

For E ⊆ L p(G), the φ(L)-orthogonal complement of E is defined as:318

E⊥φ,p = {g ∈ Lq(G);Ŵgq−1( f ) = 0 a.e. f or all f ∈ L p(G)}.319

In the next proposition, the relation between the φ(L)-orthogonal complement of E320

in L p(G) and its orthogonal complement in Lq(G) is investigated.321

Proposition 2.15 For E ⊆ L p(G), we have E⊥φ,p = ∩h∈B∞(G)(hE)⊥φ,p .322

Proof Let g ∈ E⊥φ,p . Then, for h ∈ B∞(G) and f ∈ E by Propositions (2.13) and323

(2.4), we have:324

< h f , g p−1 >=

∫

G/φ(L)

Ŵgq−1(h f )(ẋ)dẋ =

∫

G/φ(L)

h(ẋ)Ŵgq−1( f )(ẋ)dẋ = 0;325
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hence, g ∈ ∩h∈B∞(G)(hE)⊥φ,p . Now, for g ∈ ∩h∈B∞(G)(hE)⊥, f ∈ E and n ∈ N,326

define hn = Ŵgq−1( f ), when | Ŵgq−1( f ) |≤ n, and hn = 0 otherwise. Then, hn ∈327

B∞(G). Therefore, we have:328

0 = | Ŵhn g p−1( f )(ẋ) |329

=

∫

G/φ(L)

| h
p−1
n (ẋ)Ŵgq−1( f )(ẋ) | dẋ330

=

∫

G/φ(L)

| h
p−1
n (ẋ)hn(ẋ) | dẋ331

=

∫

G/φ(L)

| hn |p (ẋ)dẋ .332

333

Therefore, | hn | (ẋ) = 0. Hence, Ŵgq−1( f ) = 0 a.e., that is, g ∈ E⊥φ,p . ⊓⊔334

3 �(L)-Factorable Operators335

Let G be an LCA group and E be a subgroup of G or G/φ(L), in which we suppose336

that L be a uniform lattice in G, and φ : G −→ G is a topological isomorphism. In337

this section, φ(L)-factorable operators are defined and some of their properties are338

investigated. Moreover, the relation between φ(L)-factorable operators and (φ(L), p)-339

bracket product is shown. Finally, the Riesz Representation Theorem for L p(G) with340

the (φ(L), p)-bracket product is proven.341

Definition 3.1 An operator U : L p(G) −→ Lr (E) that 1 ≤ r , p ≤ ∞ is called φ(L)-342

factorable if U (h f ) = hU ( f ), for all f ∈ L p(G) and all φ(L)-periodic h ∈ L∞(G),343

where E is a subgroup of G or G/φ(L).344

In the following, some properties of the φ(L)-factorable operators are examine.345

Lemma 3.2 Let U1, U2 : L p(G) −→ L1(G/φ(L)) be two φ(L)-factorable operators.346

Then, U1 = U2 if and only if:347

∫

G/φ(L)

U1( f )(ẋ)dẋ =

∫

G/φ(L)

U2( f )(ẋ)dẋ,348

for every f ∈ L p(G).349

Proof The necessary part is obvious. For the converse, by [4, theorem 4.33], it is enough350

to show that Û1( f ) = Û2( f ) for all f ∈ L p(G). Let ξ ∈ (Ĝ/φ(L)) = φ(L)⊥ and351
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f ∈ L p(G), since ξ as a function in L∞(G) is φ(L)-periodic, we obtain:352

Û1( f )(ξ) =

∫

G/φ(L)

U1( f )(ẋ)ξ(ẋ)dẋ353

=

∫

G/φ(L)

U1(ξ f )(ẋ)dẋ354

=

∫

G/φ(L)

U2(ξ f )(ẋ)dẋ355

=

∫

G/φ(L)

U2( f )(ẋ)ξ(ẋ)dẋ356

= Û2( f )(ξ).357
358

Hence, the Fourier coefficients for U1( f ) and U2( f ) are the same for all f ∈ L p(G)359

and, therefore, U1 = U2. ⊓⊔360

Lemma 3.3 Let h ∈ B∞(G) and f ∈ L p(G) where 1 < p < ∞. Then,361

∫

G

| h f |p (x)dx =

∫

G/φ(L)

| h(ẋ) |p ‖ f ‖
p
φ,p(ẋ)dẋ .362

Proof Using Weil’s Formula, we have:363

∫

G

| h f |p (x)dx =

∫

G/φ(L)

∑

φ(k)∈φ(L)

| h(xφ(k−1)) |p f (xφ(k−1)) |p dẋ364

=

∫

G/φ(L)

| h(x) |p
∑

φ(k)∈φ(L)

| f (xφ(k−1)) |p dẋ365

=

∫

G/φ(L)

| h(ẋ) |p ‖ f ‖
p
φ,p(ẋ)dẋ,366

367

in which h ∈ B∞(G) and f ∈ L p(G). ⊓⊔368

Note that, if h ∈ L∞(G) and f ∈ L p(G), then | h f |p∈ L1(G).369

Proposition 3.4 LetU be aφ(L)-factorable linear operator from L p(G) to L p(G/φ(L)),370

1 < p < ∞. Then, U is bounded if and only if there is a constant B > 0 (B = ‖U‖),371

so that for every f ∈ L p(G), we have:372

| U ( f )(ẋ) |≤ B‖ f ‖φ,p(ẋ), f or a.e.ẋ ∈ G/φ(L).373
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Proof Let h ∈ B∞(G) and f ∈ L p(G). By Lemma 3.3:374

∫

G/φ(L)

| h(ẋ) |p| U ( f )(ẋ) |p dẋ =

∫

G/φ(L)

| U (h f )(ẋ) |p dẋ375

= ‖U (h f )‖
p

L p(G/φ(L))
376

≤ ‖U‖p

∫

G

| h f |p (x)dx377

= ‖U‖p

∫

G/φ(L)

| h(ẋ) |p ‖ f ‖
p
φ,p(ẋ)dẋ .378

It follows immediately that | U ( f )(ẋ) |p≤ ‖U‖p‖ f ‖
p
φ,p(ẋ), a.e. for ẋ ∈ G/φ(L).379

Conversely, let f ∈ L p(G), we have:380

‖U ( f )‖
p
φ,p =

∫

G/φ(L)

| U ( f )(ẋ) |p dẋ381

≤

∫

G/φ(L)

B p‖ f ‖
p
φ,p(ẋ)dẋ382

= B p

∫

G/φ(L)

‖ f ‖
p
φ,p(ẋ)dẋ383

= B p‖ f ‖
p
p.384

385

Therefore, the proof is completed. ⊓⊔386

Proposition 3.5 If U : L p(G) −→ L p(G) ( 1 < p < ∞) is a φ(L)-factorable linear387

operator, then U is bounded if and only if there is a constant B > 0 (B = ‖U‖), so388

that for every f ∈ L p(G), we have:389

‖U ( f )‖φ,p ≤ B‖ f ‖φ,p.390

Proof For h ∈ B∞(G) and f ∈ L p(G), by Proposition 3.4, we get:391

∫

G/φ(L)
| h(ẋ) |p ‖U ( f )(ẋ)‖

p
φ,p(ẋ)dẋ =

∫

G/φ(L)
| h(ẋ) |p Ŵ|U ( f )| | U ( f ) | (ẋ)dẋ392

=

∫

G/φ(L)
‖U (h f )‖

p
φ,p(ẋ)dẋ393

= ‖U (h f )(x)‖
p
L p(G)

394

≤ ‖U‖p‖h f ‖
p
L p(G)

(x)395

= ‖U‖p

∫

G/φ(L)
| h(ẋ) |p ‖ f ‖

p
φ,p(ẋ)dẋ .396

It follows that ‖U ( f )‖
p

L p(G)
≤ ‖U‖p‖ f ‖

p
φ,p a.e. with respect to G/φ(L). ⊓⊔397

Theorems 3.6 and 3.8 are of the main theorems in this section which are Riesz repre-398

sentation type theorem for the (φ(L), p)-bracket product in L p(G).399
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Theorem 3.6 An operator U : L p(G) −→ L1(G/φ(L)) is a bounded φ(L)-400

factorable if and only if there exists g ∈ Lq(G), such that U ( f ) = Ŵgq−1( f ) for401

all f ∈ L p(G). Moreover, ‖U‖ = ‖g‖q .402

Proof Let U : L p(G) −→ L1(G/φ(L))(where for 1 < p < ∞) be a bounded403

φ(L)-factorable operator. Define the linear functional 
 : L p(G) −→ C by 
( f ) =404 ∫
G/φ(L)

U ( f )(ẋ)dẋ . The isometric isomorphism property
(
L p(G)

)∗ ∼= Lq(G) for405

(p = ∞) implies that there exist g ∈ Lq(G), such that 
( f ) =
∫

G
f g(x)dx for all406

f ∈ L p(G). Thus:407

∫

G/φ(L)

U ( f )(ẋ)dẋ = 
( f )408

=

∫

G

f g(x)dx409

=

∫

G/φ(L)

Ŵgq−1( f )(ẋ)dẋ .410

By (3.4), U ( f ) = Ŵgq−1( f ), for all f ∈ L p(G).411

Moreover, for any f ∈ L p(G):412

‖U ( f )‖L1(G/φ(L)) = ‖Ŵgq−1( f )‖L1(G/φ(L))413

≤ ‖ f ‖p‖g‖q .414

Therefore, ‖U‖ ≤ ‖g‖q . Now, letting f =| gq−1 |; hence:415

‖U (| gq−1 |)‖L1 =

∫

G/φ(L)

| U (| gq−1 |)(ẋ) | dẋ416

=

∫

G/φ(L)

| Ŵ|gq−1|(| gq−1 |)(ẋ) | dẋ417

=

∫

G/φ(L)

| [| gq−1 |, | gq−1 |]φ,p(ẋ) | dẋ418

=

∫

G/φ(L)

| [| g |, | g |]φ,q(ẋ) | dẋ419

=

∫

G/φ(L)

‖g‖
q
φ,q(ẋ)dẋ420

= ‖g‖
q
q .421

Thus:422

‖g‖
q
q = ‖U (| gq−1 |)‖L1 ≤ ‖U‖‖g‖

q−1
q ,423

i.e., ‖g‖q ≤ ‖U‖.424
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For the converse, according of g ∈ Lq(G), U is bounded. For every φ(L)-periodic425

h ∈ L∞(G) and f ∈ L p(G):426

U (h f ) = Ŵgq−1(h f ) = h(Ŵgq−1( f )) = hU ( f ).427

Therefore, the proof is complete. ⊓⊔428

It is worth mentioning that Theorem3.6 for p = 2 gives the Riesz representation429

theorem expressed in [5, theorem 5.25].430

Corollary 3.7 Let f , g ∈ L p(G) (1 < p < ∞). Then, Ŵg( f ) is φ(L)-factorable.431

Proof The proof yields just using Proposition2.13 and Theorem3.6. ⊓⊔432

We say f ∈ L p(G) is φ(L)-bounded if there exists M > 0, such that ‖ f ‖φ,p ≤ M .433

Theorem 3.8 A linear operator U : L p(G) −→ L p(G/φ(L)) (1 < p < ∞)434

is a bounded φ(L)-factorable if and only if there exists φ(L)-bounded g ∈435

Lq(G), such that U ( f ) = Ŵgq−1( f ) for all f ∈ L p(G). Moreover, ‖U‖ =436

esssupẋ∈G/φ(L)‖g‖φ,p(ẋ).437

Proof That is, U be a boundedφ(L)-factorable operator from L p(G) −→ L p(G/φ(L)).438

Since G/φ(L) is compact, L p(G/φ(L)) ⊆ L1(G/φ(L)), and so, by Theorem 3.6,439

there exists g ∈ Lq(G), such that U ( f ) = Ŵgq−1( f ) for all f ∈ L p(G). Letting440

f = gq−1 and using Proposition 3.4, we get:441

| Ŵg p−1(g p−1) | = ‖gq−1‖
p
φ,p442

=| U (| gq−1 |) |443

≤ ‖U‖‖gq−1‖φ,p.444
445

Hence, ‖gq−1‖φ,p ≤ ‖U‖ or ‖g‖φ,q ≤ ‖U‖. For the converse, let g be a φ(L)-446

bounded and U ( f ) = Ŵgq−1( f ) for some φ(L)-bounded, so g ∈ Lq(G). Then, by447

Corollary 3.7, U is φ(L)-factorable. Now, by the assumption, g is φ(L)-bounded and448

by Theorem3.6, we have:449

‖U f ‖
p
p =

∫

G/φ,p

| Ŵg p−1( f ) |p (ẋ)dẋ450

≤

∫

(G/φ(L))

‖ f ‖
p
φ,p‖g‖

p
φ,q(ẋ)dẋ451

≤ esssupẋ∈G/φ(L)‖g‖
p
φ,p

∫

G/φ(L)

‖ f ‖
p
φ,p(ẋ)dẋ452

= esssupẋ∈G/φ(L)‖g‖
p
φ,p‖ f ‖

p
p,453

where ẋ ∈ G/φ(L). Thus, ‖U‖ is bounded.454

Now, by letting f = gq−1 , we get ‖U‖ = esssupẋ∈G/φ(L)‖g‖φ,p(ẋ). This com-455

pletes the proof. ⊓⊔456

123

Journal: 41980 Article No.: 0537 TYPESET DISK LE CP Disp.:2021/2/4 Pages: 19 Layout: Small-Ex

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Bulletin of the Iranian Mathematical Society

Theorem 3.9 For 1 < p < ∞, let U : L p(G) −→ Lq(G), (where Lq(G) is dual of457

L p(G)), be a bounded φ(L)-factorable operator and U∗ be its adjoint. Then, U∗ is458

φ(L)-factorable. Moreover, for f ∈ L p(G) and g ∈ Lq(G), we have:459

Ŵgq−1(U ( f )) = ŴU∗(g)( f ).460

Proof For f ∈ L p(G), g ∈ Lq(G), and h ∈ B∞(G), we have:461

〈
U∗(hg), f p−1)

〉
=

〈
hg, U ( f p−1)

〉
462

=
〈
g, hU ( f p−1)

〉
463

=
〈
g, U (h f p−1)

〉
464

=
〈
U∗(g), h f p−1

〉
465

=
〈
hU∗(g), f p−1

〉
.466

467

Therefore, U∗ is φ(L)-factorable. Now, we have:468

∫

G/φ(L)

Ŵgq−1(U ( f ))(ẋ)dẋ =
〈
U ( f ), gq−1

〉
469

=
〈

f , U∗(gq−1)
〉

470

=

∫

G/φ(L)

ŴU∗(g)( f )(ẋ)dẋ .471

472

Therefore, Lemma 3.2 completes the proof. ⊓⊔473
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