Here are the proofs of your article.

- You can submit your corrections online, via e-mail or by fax.
- For online submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers.
- You can also insert your corrections in the proof PDF and email the annotated PDF.
- For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page.
- Remember to note the journal title, article number, and your name when sending your response via e-mail or fax.
- Check the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown.
- Check the questions that may have arisen during copy editing and insert your answers/ corrections.
- Check that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the Edited manuscript.
- The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct.
- Please do not make changes that involve only matters of style. We have generally introduced forms that follow the journal's style.
Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.
- If we do not receive your corrections within 48 hours, we will send you a reminder.
- Your article will be published Online First approximately one week after receipt of your corrected proofs. This is the official first publication citable with the DOI. Further changes are, therefore, not possible.
- The printed version will follow in a forthcoming issue.

Please note

After online publication, subscribers (personal/institutional) to this journal will have access to the complete article via the DOI using the URL: http://dx.doi.org/[DOI].
If you would like to know when your article has been published online, take advantage of our free alert service. For registration and further information go to: http://www.link.springer.com.

Due to the electronic nature of the procedure, the manuscript and the original figures will only be returned to you on special request. When you return your corrections, please inform us if you would like to have these documents returned.

Metadata of the article that will be visualized in OnlineFirst

ArticleTitle	$\phi(L)$-Factorable Operators on $L^{P}(G)$ for a Locally Compact Abelian Group
Article Sub-Title	
Article CopyRight	Iranian Mathematical Society (This will be the copyright line in the final PDF)
Journal Name	Bulletin of the Iranian Mathematical Society
Corresponding Author	Family Name Gol
	Particle
	Given Name R. A. Kamyabi
	Suffix
	Division
	Organization Department of Mathematics Ferdowsi University of Mashhad Center of Excellence in Analysis on Algebraic Structures (CEAAS)
	Address P. O. Box 1159-91775, Mashhad, Iran
	Phone
	Fax
	Email kamyabi@um.ac.ir
	URL
	ORCID http://orcid.org/0000-0003-0137-3653
Author	Family Name Afrapoli
	Particle
	Given Name F. Roohi
	Suffix
	Division Department of Mathematics
	Organization Ferdowsi University of Mashhad
	Address Mashhad, Iran
	Phone
	Fax
	Email fatemeroohiafrapoli@gmail.com
	URL
	ORCID
Author	Family Name Esmaeelzadeh
	Particle
	Given Name F.
	Suffix
	Division Department of Mathematics
	Organization Bojnourd Branch, Islamic Azad University
	Address Bojnourd, Iran
	Phone
	Fax
	Email esmaeelzadeh@bojnourdiau.ac.ir

URL
ORCID

Schedule	Received	28 October 2019
	Revised	4 January 2021
	Accepted	19 January 2021
Abstract	Let G be a locally compact abelian group, ϕ be a topological isomorphism on G, and L be a uniform lattice in G. We provide a development of the $L^{1}(G / \phi(L))$ function-valued product on $L^{p}(G)$ called $(\phi(L), p)$ bracket product, where $1<p<\infty$. Among other things, we study $\phi(L)$-factorable operators and we prove Riesz representation type Theorem for $L^{p}(G)$.	
Keywords (separated by '-')	($\phi(L)</$ Keyword $><$ Keyword $>p$)-bracket product - Locally compact abelian group - $\phi(L)$ orthogonality - $\phi(L)$-factorable - Riesz representation theorem	
Mathematics Subject Classification (separated by '-')	43A15-43A70	
Footnote Information	Communicated by G. H. Esslamzadeh.	

ORIGINAL PAPER

$\phi(L)$-Factorable Operators on $L^{P}(G)$ for a Locally Compact Abelian Group

Received: 28 October 2019 / Revised: 4 January 2021 / Accepted: 19 January 2021 © Iranian Mathematical Society 2021

Abstract

Let G be a locally compact abelian group, ϕ be a topological isomorphism on G, and L be a uniform lattice in G. We provide a development of the $L^{1}(G / \phi(L))$ function-valued product on $L^{p}(G)$ called $(\phi(L), p)$-bracket product, where $1<p<$ ∞. Among other things, we study $\phi(L)$-factorable operators and we prove Riesz representation type Theorem for $L^{p}(G)$.

Keywords $(\phi(L), p)$-bracket product \cdot Locally compact abelian group • $\phi(L)$-orthogonality $\cdot \phi(L)$-factorable operator \cdot Riesz representation theorem

Mathematics Subject Classification 43A15 • 43A70

1 Introduction

In this paper, we aim to study the $(\phi(L), p)$-bracket product on a locally compact abelian group (LCA group, for short) G, via a topological isomorphism ϕ on G with respect to a uniform lattice L in G. The bracket product on space $L^{2}\left(\mathbb{R}^{n}\right)$ has been studied by several authors, see for example [3] and the references therein. Ron and

Communicated by G. H. Esslamzadeh.

[^0]Shen in [10] extended bracket products for the shift invariant subspaces of $L^{2}\left(\mathbb{R}^{n}\right)$. They defined the bracket product of $f, g \in L^{2}\left(\mathbb{R}^{n}\right)$ by:

$$
[f, g](x)=\sum_{\alpha \in 2 \pi \mathbb{Z}^{n}} f(x+\alpha) \overline{g(x+\alpha)} .
$$

Then, $[f, g]$ is an element of $L^{1}\left(\mathbb{T}^{n}\right)$ and we have $\|[f, f]\|_{L^{1}\left(\mathbb{T}^{n}\right)}=\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}$, for $f \in L^{2}\left(\mathbb{R}^{n}\right)$. Cassaza and Lammers [1] improved the bracket product by employing a shift parameter. More precisely, they defined the so-called bracket product as a-inner product by:

$$
\langle f, g\rangle_{a}(t)=\sum_{n \in \mathbb{Z}} f(t-n a) \overline{g(t-n a)} ; \quad f, g \in L^{2}(\mathbb{R}), a \in \mathbb{R}^{+}
$$

They have shown that the relevant a-inner product has a Bessel's inequality, orthogonal sequence and Riesz Representation Theorem for $L^{2}\left(\mathbb{R}^{n}\right)$. Kamyabi Gol and Raisi Tousi [7] extended this notion to a $L C A$-group with respect to a uniform lattice via a topological isomorphism ϕ on G. They defined the bracket product $[f, g]_{\phi}$, associated with ϕ through:

$$
[f, g]_{\phi}(\dot{x})=\sum_{k \in L} f\left(x \phi\left(k^{-1}\right)\right) \overline{g\left(x \phi\left(k^{-1}\right)\right)}, \quad f, g \in L^{2}(G)
$$

where L is a uniform lattice in G. It is easy to check that $[f, g]_{\phi}$ in $L^{1}(G / \phi(L))$. They also defined the norm $\|\cdot\|_{\phi}$ called ϕ-norm on $L^{2}(G)$ by $\|f\|_{\phi}=[f, f]_{\phi}^{1 / 2},(f \in$ $\left.L^{2}(G)\right)$. They studied the modulation and translation $[., .]_{\phi}$ and the usual inner product of $L^{2}(G)$. Some of the basic properties of $[., .]_{\phi}$ (such as, the Cauchy-Schwarz identity, the polarization identity, etc.) are also discussed in [7]. The main aim of this paper is to extend the bracket product notion to $L^{p}(G)$, for $1<p<\infty$. In Sect. 2, we first investigate the elementary properties of $[., .]_{\phi, p}$. In particular, we prove Hölder inequality and Triangle inequality. We study the modulation and translation for this bracket product operators which provide some facilities to accurately study this bracket product. Section 3 is devoted to the $\phi(L)$-factorable operators and its consequences. We use this notion to provide the Riesz Representation Theorem for the pair $\left(L^{p}(G), L^{1}(G / \phi(L))\right)$.

2 Preliminary Results

Let G be a locally compact abelian group equipped with the Haar measure $\mathrm{d} x$, and let $\phi: G \rightarrow G$ be a topological isomorphism. For $1<p<\infty$,, let L_{ϕ} be the left translation operator on $L^{p}(G)$ defined by $L_{\phi} f(x)=\left(f \circ \phi^{-1}\right)(x)\left(f \in L^{p}(G), x \in\right.$ $G)$. Note that by the uniqueness of Haar measure, there exists a positive number $\sigma(\phi)$, such that $\int_{G} L_{\phi} f(x) d(x)=\sigma(\phi) \int_{G} f(x) d(x)$ for all $f \in L^{1}(G)$. In this case, the
map σ is a homomorphism on the group of all isomorphisms on G; see [6]. Let H be a closed subgroup of G with the Haar measure $d h$. Let G / H be the quotient group with Haar measure $d \dot{x}$. It is known that $\mathrm{d} x, \mathrm{~d} h, \mathrm{~d} \dot{x}$ are related to each others under the following identity, which is known as Weil's type Formula:

$$
\begin{equation*}
\int_{G} f(x) \mathrm{d} x=\int_{G / H} \int_{H} f(x h) \mathrm{d} h \mathrm{~d} \dot{x}, f \in L^{1}(G) . \tag{2.1}
\end{equation*}
$$

This formula shows that for $f \in L^{1}(G)$, the integral $\int_{H} f(x h) d h$ exists almost everywhere in x and defines an integrable function on G / H, such that the integral formula holds. In fact, the formula (2.1) should be understood as a one-sided version of Foubini's Theorem for product spaces; see [3].

We recall that the Fourier transform $\widehat{:} L^{1}(G) \longrightarrow C_{0}(\widehat{G}), f \longmapsto \widehat{f}$, is defined by $\widehat{f}(\xi)=\int_{G} f(x) \overline{\xi(x)} \mathrm{d} x$ for $\xi \in \widehat{G}$, the dual group of G. It is well known that if $f \in L^{p}(G)(1 \leq p \leq 2)$, then $\widehat{f} \in L^{q}(\widehat{G})$, where q and p are conjugate exponents, and $\|\widehat{f}\|_{q} \leq\|f\|_{p}$ (see [4]).

Throughout this article, we always assume that G is a second countable LCA group. In this case, we always have a uniform lattice in G; see [9]. Suppose that L is a uniform lattice in G, and $\phi: G \longrightarrow G$ is a topological isomorphism. It is well known that $G / \phi(L)$ is a LCA group and it is topologically isomorphic with G / L (for more details, see also [6]).

Let $f, g \in L^{p}(G), 1<p<\infty$, and q be the conjugate exponent to p. Then, $f g^{p-1} \in L^{1}(G)$, and hence by Weil's formula, we get:
$\int_{G / \phi(L)} \sum_{k \in L}\left|f g^{p-1}\left(x \phi\left(k^{-1}\right)\right)\right| \mathrm{d} \dot{x}=\int_{G / \phi(L)} \sum_{\phi(k) \in \phi(L)}\left|f g^{p-1}\left(x \phi\left(k^{-1}\right)\right)\right| \mathrm{d} \dot{x}$

$$
=\int_{G}\left|f g^{p-1}(x)\right| \mathrm{d} x
$$

$$
\leq\left(\int_{G}|f(x)|^{p} \mathrm{~d} x\right)^{1 / p}\left(\int_{G}\left|g^{p-1}(x)\right|^{q} \mathrm{~d} x\right)^{1 / q}
$$

$$
\leq\|f\|_{p}\left\|g^{p-1}\right\|_{q}
$$

Thus, for almost all $\dot{x} \in G / \phi(L)$, the series $\sum_{k \in L} f g^{p-1}\left(x \phi\left(k^{-1}\right)\right)$ converges.
Therefore, each function $g \in L^{p}(G)$ induces a bounded linear map:

$$
\begin{gathered}
\Gamma_{g}: L^{p}(G) \longrightarrow L^{1}(G / \phi(L)), \\
f \mapsto \Gamma_{g}(f)=[f, g]_{\phi, p}
\end{gathered}
$$

with $\left\|\Gamma_{g}\right\|=\|g\|_{p}^{p-1}$, where $[f, g]_{\phi, p}(\dot{x})=\sum_{k \in L} f g^{p-1}\left(x \phi\left(k^{-1}\right)\right)$.
Note that $\Gamma_{g}(f)=[f, g]_{\phi, p}$ is $\phi(L)$-periodic and we call $[f, g]_{\phi, p}$ the $(\phi(L), p)$ bracket product of $f, g \in L^{p}(G)$.

Consequently, one may define the $(\phi(L), p)$-norm as follows:

$$
\left\{\begin{array}{c}
\|\cdot\|_{\phi, p}: L^{p}(G) \longrightarrow L^{p}(G / \phi(L)), \\
\quad f \mapsto\|f\|_{\phi, p}=\left(\Gamma_{|f|}(|f|)\right)^{1 / p},
\end{array}\right.
$$

which is an isometry, $\left\|\|f\|_{\phi, p}\right\|_{p}=\|f\|_{p}$. Indeed, by Weil's Formula for $f \in L^{p}(G)$, $1<p<\infty$ we have:

$$
\begin{aligned}
\left\|\|f\|_{\phi, p}\right\|_{p}^{p} & =\int_{G / \phi(L)}\|f\|_{\phi, p}^{p}(\dot{x}) \mathrm{d} \dot{x} \\
& =\int_{G / \phi(L)} \Gamma_{|f|}(|f|)(\dot{x}) \mathrm{d} \dot{x} \\
& =\int_{G / \phi(L)}[|f|,|f|]_{\phi, p}(\dot{x}) \mathrm{d} \dot{x} \\
& =\int_{G / \phi(L)} \sum_{\phi(k) \in \phi(L)}|f \| f|^{p-1}\left(x \phi\left(k^{-1}\right)\right) \mathrm{d} \dot{x} \\
& =\int_{G / \phi(L)} \sum_{\phi(k) \in \phi(L)}|f|^{p}\left(x \phi\left(k^{-1}\right)\right) \mathrm{d} \dot{x} \\
& =\int_{G}|f|^{p}(x) \mathrm{d} x \\
& =\|f\|_{p}^{p} .
\end{aligned}
$$

Now, in the following two examples, we show that our definitions extend the previous ones mentioned earlier.

Example 2.1 Consider $G=\mathbb{R}, L=\mathbb{Z}$ in the above definition. Fix $a \in \mathbb{R}^{+}$. Then, $\phi: \mathbb{R} \longrightarrow \mathbb{R}$, given by $\phi(x)=a x$ is a topological isomorphism and the bounded linear map $\Gamma_{g}: L^{p}(\mathbb{R}) \longrightarrow L^{1}([0, a])$, defines by $\Gamma_{g}(f)(x)=[f, g]_{\phi, p}(x)=$ $\sum_{n \in \mathbb{Z}} f g^{p-1}(x-n a)$ is the a-pointwise inner product of f and g introduced by Casazza and Lammers in [1] for $p=2$. Moreover, if ϕ is the identity function on \mathbb{R}, $p=2$, then the (ϕ, p)-bracket product is exactly one defined by Ron and Shen [10].

Example 2.2 Let $G=\mathbb{R}^{n} \times \mathbb{Z}^{n} \times \mathbb{T}^{n} \times Z_{n}$, for $n \in \mathbb{N}$, where Z_{n} is the finite abelian group $\{\overline{\overline{0}}, \overline{1}, \overline{2}, \ldots, \overline{n-1}\}$ of residues module n and $L=\mathbb{Z}^{n} \times \mathbb{Z}^{n} \times\{1\} \times Z_{n}$ a uniform lattice in G. Let A be an invertible $n \times n$ real matrix and fix $l \in \mathbb{Z}^{n}$. Define $\phi: G \longrightarrow G$ by $\phi(x, m, t, p)=(A x, l+m, t, p)$, for every $x \in \mathbb{R}^{n}, m \in \mathbb{Z}^{n}, t \in \mathbb{T}^{n}, p \in Z_{n}$. For $f, g \in L^{p}(G)$, the $(\phi(L), p)$-bracket product is defined by:

$$
\begin{aligned}
\Gamma_{g}(f)(x) & =[f, g]_{\phi, p}(x) \\
& =\sum_{k \in \mathbb{Z}^{n}, n \in \mathbb{Z}^{n}, q \in Z_{n}} f g^{p-1}((A x, l+m, t, p)-\phi(k, n, 1, q)) \\
& =\sum_{k \in \mathbb{Z}^{n}, n \in \mathbb{Z}^{n}, q \in Z_{n}} f g^{p-1}(A x-k, l+m-n, t-1, p-q) .
\end{aligned}
$$

Springer

In the following proposition, we explain some properties of Γ_{g}.
Proposition 2.3 Let $f, g \in L^{p}(G)$ for $1<p<\infty$ and $c \in \mathbb{C}$. Then, the following properties hold:
(i) $\Gamma_{g}(f+h)=\Gamma_{g}(f)+\Gamma_{g}(h)$
(ii) $\Gamma_{g}(c f)=c \Gamma_{g}(f)$
(iii) $\Gamma_{c g}(f)=c^{p-1} \Gamma_{g}(f)$
(iv) $\Gamma_{c g}(c f)=c^{p} \Gamma_{g}(f)$.

Proof The proof is obvious.
It is worth to note that the ϕ-norm satisfies the properties of norm. Indeed, for all $\dot{x} \in G / \phi(L), c \in \mathbb{C}$ and $f, g \in L^{p}(G)$, the equality $\left\|\|f\|_{\phi, p}\right\|_{p}=\|f\|_{p}$ implies that if $\|f\|_{\phi, p}=0$, then $f=0$ a.e.. Also $\Gamma_{|c f|}(|c f|)=|c|^{p} \Gamma_{|f|}(|f|)$, i.e., $\|c f\|_{\phi, p}=|c|\|f\|_{\phi, p}$. For triangular inequality:

$$
\|f+g\|_{\phi, p} \leq\|f\|_{\phi, p}+\|g\|_{\phi, p},
$$

we have:

$$
\begin{aligned}
\|f+g\|_{\phi, p}(\dot{x}) & =\left(\Gamma_{|f+g|}(|f+g|)(\dot{x})\right)^{1 / p} \\
& \left.=\left([|f+g|,|f+g|]_{\phi, p}(\dot{x})\right)^{1 / p}\right) \\
& =\left(\sum_{k \in L}|f+g \| f+g|^{p-1}\left(x \phi\left(k^{-1}\right)\right)\right)^{1 / p} \\
& =\left(\sum_{k \in L}|f+g|^{p}\left(x \phi\left(k^{-1}\right)\right)\right)^{1 / p} \\
& =\|f+g\|_{l^{p}(L)} \\
& \leq\|f\|_{l^{p}(L)}+\|g\|_{l p(L)} \\
& =\left(\sum_{k \in L}|f|^{p}\left(x \phi\left(k^{-1}\right)\right)\right)^{1 / p}+\left(\sum_{k \in L}|f+g|^{p}\left(x \phi\left(k^{-1}\right)\right)\right)^{1 / p} \\
& =\left([|f|,|f|]_{\phi, p}(\dot{x})\right)^{1 / p}+\left([|g|,|g|]_{\phi, p}(\dot{x})\right)^{1 / p} \\
& =\left(\Gamma_{|f|}(|f|)(\dot{x})\right)^{1 / p}+\left(\Gamma_{|g|}(|g|)(\dot{x})\right)^{1 / p} \\
& =\|f\|_{\phi, p}(\dot{x})+\|g\|_{\phi, p}(\dot{x}) .
\end{aligned}
$$

The following proposition demonstrates the duality property of $(\phi(L), p)$-bracket product.

Proposition 2.4 For $f, g \in L^{p}(G)$ and $1<p<\infty$. Then:

$$
\begin{equation*}
\int_{G / \phi(L)} \Gamma_{g}(f)(\dot{x}) \mathrm{d} \dot{x}=<f, \overline{g^{p-1}}>. \tag{2.2}
\end{equation*}
$$

Proof By Weil's Formula:

$$
\begin{aligned}
\int_{G / \phi(L)} \Gamma_{g}(f)(\dot{x}) \mathrm{d} \dot{x} & =\int_{G / \phi(L)}[f, g]_{\phi, p}(\dot{x}) \mathrm{d} \dot{x} \\
& =\int_{G}\left(f \cdot g^{p-1}\right)(x) \mathrm{d} x \\
& =\left\langle f, \overline{g^{p-1}}\right\rangle .
\end{aligned}
$$

Note that if $p=2$, then we get:

$$
\int_{G / \phi(L)}[f, g]_{\phi, p}(\dot{x}) \mathrm{d} \dot{x}=\langle f, \bar{g}\rangle_{L^{2}(G)},
$$

which has already appeared in [3].
For the Hölder inequality, we need the following Lemmas.
Lemma 2.5 Let $f, g \in L^{p}(G)$ for $1<p<\infty$, where q is the conjugate exponent to p. Then:

$$
[f, g]_{\phi, p}=\left[g^{p-1}, f^{p-1}\right]_{\phi, q}
$$

Proof For any $\dot{x} \in G / \phi(L)$, we have:

$$
\begin{aligned}
{[f, g]_{\phi, p}(\dot{x}) } & =\sum_{k \in L} f g^{p-1}\left(x \phi\left(k^{-1}\right)\right) \\
& =\sum_{k \in L} g^{p-1} f^{(p-1)(q-1)}\left(x \phi\left(k^{-1}\right)\right) \\
& =\left[g^{p-1}, f^{p-1}\right]_{\phi, q}(\dot{x})
\end{aligned}
$$

At this point, for $f \in L^{p}(G)$, we define the $\phi(L)$-pointwise normalization of f as follows:

$$
\mathrm{N}_{\phi(L)}(\mathrm{f})(\dot{x})=\left\{\begin{array}{cl}
|f(\dot{x})| /\|f\|_{\phi, p}(\dot{x}) & \|f\|_{\phi, p}(\dot{x}) \neq 0 \\
0 & \|f\|_{\phi, p}(\dot{x})=0
\end{array}\right.
$$

Lemma 2.6 With the above notations, and non-zeros $f, g \in L^{p}(G),(1<p, q<\infty)$, we have:
(i) $\Gamma_{g}\left(N_{\phi(L)}(f)\right)=\left(\frac{1}{\|f\|_{\phi, p}}\right) \Gamma_{g}(|f|)$,
where $\|f\|_{\phi, p} \neq 0$.

Springer

Journal: 41980 Article No.: 0537\square TYPESET \square DISK \square LE
(ii) $\Gamma_{N_{\phi(L)}(g)}\left(N_{\phi(L)}(f)\right)=\left(\frac{1}{\|f\|_{\phi, p}}\right)\left(\frac{1}{\|g\|_{\phi, p}^{p-1}}\right) \Gamma_{|g|}(|f|)$, for $\|f\|_{\phi, p} \neq 0,\|g\|_{\phi, p} \neq 0$.

In particular, $\Gamma_{|g|}(|f|)=0$ if and only if:

$$
\Gamma_{N_{\phi(L)}(g)}\left(N_{\phi(L)}(f)\right)=0
$$

(iii) For $f \neq 0$ a.e., we have:

$$
\Gamma_{N_{\phi(L)}(f)}\left(N_{\phi(L)}(f)\right)=1
$$

(iv) For $f \neq 0$, we have, $\left\|N_{\phi(L)}(f)\right\|_{L^{p}(G)}^{p}=|G / \phi(L)|<\infty,(|E|$ denotes the Haar measure of the Borel set $E \subseteq G$).
(v) $N_{\phi(L)}\left(N_{\phi(L)}(f)\right)=N_{\phi(L)}(f)$.

Proof Proof of (i) is clear. For (ii), we have:

$$
\begin{aligned}
\Gamma_{N_{\phi(L)}(g)}\left(N_{\phi(L)}(f)\right)(\dot{x}) & =\left[N_{\phi(L)}(f), N_{\phi(L)}(g)\right]_{\phi, p}(\dot{x}) \\
& =\left[\frac{|f|}{\|f\|_{\phi, p}}, \frac{|g|}{\|g\|_{\phi, p}}\right]_{\phi, p}(\dot{x}) \\
& =\left(\frac{1}{\|f\|_{\phi, p}(\dot{x})}\right)\left(\frac{1}{\|g\|_{\phi, p}^{p-1}(\dot{x})}\right)[|f|,|g|]_{\phi, p}(\dot{x}) \\
& =\left(\frac{1}{\|f\|_{\phi, p}}\right)\left(\frac{1}{\|g\|_{\phi, p}^{p-1}}\right) \Gamma_{|g|}(|f|)(\dot{x}) .
\end{aligned}
$$

Now, using (ii), the proofs of (iii) and (iv) are obvious. For (v):

$$
\begin{aligned}
N_{\phi(L)}\left(N_{\phi(L)}(f)\right)(\dot{x}) & =\left|N_{\phi(L)}(f)(x)\right| /\left\|N_{\phi(L)}(f)\right\|_{\phi, p}(\dot{x}) \\
& =\left|N_{\phi(L)}(f)(\dot{x})\right| \\
& =|f(\dot{x})| /\|f\|_{\phi, p}(\dot{x}) \\
& =N_{\phi(L)}(f)(\dot{x}) .
\end{aligned}
$$

Proposition 2.7 (Hölder's inequality) Let $f, g \in L^{p}(G)$ for $1<p, q<\infty$ where q is the conjugate exponent to p. Then:

$$
\begin{equation*}
\left|[f, g]_{\phi, p}\right| \leq\|f\|_{\phi, p}\left\|g^{p-1}\right\|_{\phi, q}, \tag{2.3}
\end{equation*}
$$

Proof Put $g^{p-1}=\psi$, then $\psi \in L^{q}(G)$. Now, we have:

$$
\begin{aligned}
\|\psi\|_{\phi, q}^{q}(\dot{x}) & =\Gamma_{\left|\psi^{q-1}\right|}\left(\left|\psi^{q-1}\right|\right)(\dot{x}) \\
& =\left[\left|\psi^{q-1}\right|,\left|\psi^{q-1}\right|\right]_{\phi, p}(\dot{x}) \\
& =\sum_{k \in L}\left|\psi^{q-1}\right||\psi|\left(x \phi\left(k^{-1}\right)\right) .
\end{aligned}
$$

If either $\|f\|_{\phi, p}=0$ or $\|\psi\|_{\phi, q}=0$, then the inequality holds trivially. The same holds when either $\|f\|_{\phi, p}=\infty$ or $\|\psi\|_{\phi, q}=\infty$, the result is trivial. Moreover, it is easy to see that if:

$$
\left|\Gamma_{|\psi|}(|f|)\right| \leq\|f\|_{\phi, p}\|\psi\|_{\phi, q}
$$

holds for a particular f, ψ, then it also holds for all scaler multiples of f and ψ. It is, therefore, it would suffice to prove that (2.3) holds when $\|f\|_{\phi, p}(\dot{x})=\|\psi\|_{\phi, q}$ $(\dot{x})=1$, where 1 denotes the constant function of $G / \phi(L)$ onto \mathbb{C}. To this end, by [5, Lemma 6.1], we have:

$$
\begin{aligned}
& \left|f\left(x \phi\left(l^{-1}\right)\right) \| \psi\left(x \phi\left(l^{-1}\right)\right)\right| \leq 1 / p\left|f^{p}\left(x \phi\left(l^{-1}\right)\right)\right|+1 / q\left|\psi^{q}\left(x \phi\left(l^{-1}\right)\right)\right|, \\
& |f \| \psi|\left(x \phi\left(l^{-1}\right)\right) \leq 1 / p\left|f f^{p-1}\left(x \phi\left(l^{-1}\right)\right)\right|+1 / q\left|\psi^{q-1} \psi\left(x \phi\left(l^{-1}\right)\right)\right| ; \\
& \sum_{l \in L}|f \| \psi|\left(x \phi\left(l^{-1}\right)\right) \leq 1 / p\left(\sum_{l \in L}\left|f \|\left|f^{p-1}\right|\left(x \phi\left(l^{-1}\right)\right)\right)\right. \\
& +1 / q\left(\sum_{l \in L}\left|\psi^{q-1} \| \psi\right|\left(x \phi\left(l^{-1}\right)\right)\right) .
\end{aligned}
$$

Thus:

$$
\begin{aligned}
\left|\sum_{l \in L}\right| f \| \psi\left|\left(x \phi\left(l^{-1}\right)\right)\right| & \leq 1 / p[|f|,|f|]_{\phi, p}(\dot{x})+1 / q[|\psi|,|\psi|]_{\phi, q}(\dot{x}) \\
& =1 / p\|f\|_{\phi, p}^{p}(\dot{x})+1 / q\|\psi\|_{\phi, q}^{q}(\dot{x}) \\
& =\|f\|_{\phi, p}(\dot{x})\|\psi\|_{\phi, q}(\dot{x})
\end{aligned}
$$

Now, put $\psi=g^{p-1}$. We have:

$$
\left|\left[|f \lambda,|g|]_{\phi, p} \mid \leq\|f\|_{\phi, p}\left\|g^{p-1}\right\|_{\phi, q} .\right.\right.
$$

General case, if $\|f\|_{\phi, p} \neq 1$ and $\|g\|_{\phi, p} \neq 1$, then using Lemma 2.6, part (ii) can be written as:

$$
\Gamma \frac{|g|}{\|g\|_{\phi, p}}\left(\frac{|f|}{\|f\|_{\phi, p}}\right)=\left(\frac{1}{\|f\|_{\phi, p}}\right)\left(\frac{1}{\|g\|_{\phi, p}^{p-1}}\right) \Gamma_{|g|}(|f|) .
$$

Springer

Indeed, by Lemma 2.5, we have $\|g\|_{\phi, p}=\left\|g^{p-1}\right\|_{\phi, q}^{q / p}$. Hence:

$$
\begin{equation*}
\|g\|_{\phi, p}^{p-1}=\left\|g^{p-1}\right\|_{\phi, q} . \tag{2.4}
\end{equation*}
$$

It is worthwhile to note that using (2.4), we have:

$$
\left|[|f|,|g|]_{\phi, p}\right| \leq\|f\|_{\phi, p}\|g\|_{\phi, p}^{p-1}
$$

Definition 2.8 For $\gamma \in \hat{G}$, we denote the modulation operator on $L^{p}(G)$ by M_{γ}, which is defined by $M_{\gamma} f(x)=\gamma(x) f(x)$ for all $f \in L^{p}(G)$.

In the next proposition, some properties of the Fourier transform of the $(\phi(L), p)$ bracket product are established.

Proposition 2.9 Suppose $f, g \in L^{p}(G)$ and $\gamma \in \phi(L)^{\perp}(\cong \widehat{G / \phi(L)})$, where $\phi(L)^{\perp}$ is the annihilator of $\phi(L)$ in \widehat{G}. Then:
(i) $\Gamma_{g}\left(M_{\gamma} f\right)=\Gamma_{M^{\frac{1}{p-1}}} g(f)$
(ii) $\left(\Gamma_{g}(f)\right)^{\wedge}(\gamma)=\left\langle f, \overline{M_{\gamma^{\frac{-1}{p-1}}} g^{p-1}}\right\rangle=\left\langle M_{\gamma^{-1}} f, \overline{g^{p-1}}\right\rangle$, and
(iii) $\quad\left(\Gamma_{g}(f)\right)^{\wedge}\left(\gamma_{1} \gamma_{2}\right)=\left(\Gamma_{M_{\gamma_{1}^{-1}} g}\right)^{\wedge}\left(\gamma_{2}\right)=<M_{\gamma_{2}}^{-1} f, \overline{M_{\gamma_{1}} g^{p-1}}>$.

Proof The proof of (i) is clear. For (ii), since $\gamma\left(\phi\left(k^{-1}\right)\right)=1$ for all $k \in L$, we have:

$$
\begin{aligned}
\left(\Gamma_{g}(f)\right)^{\wedge}(\gamma) & =\widehat{[f, g]}_{\phi, p}(\gamma) \\
& =\int_{G / \phi(L)}[f, g]_{\phi, p}(\dot{x}) \gamma^{-1}(\dot{x}) \mathrm{d} \dot{x} \\
& =\int_{G / \phi(L)} \sum_{\phi(k) \in \phi(L)} f g^{p-1}\left(x \phi\left(k^{-1}\right)\right) \gamma^{-1}\left(x \phi\left(k^{-1}\right)\right) \mathrm{d} \dot{x} \\
& =\int_{G / \phi(L)} \sum_{\phi(k) \in \phi(L)} f\left(x \phi\left(k^{-1}\right)\right) M_{\gamma^{-1}} g^{p-1}\left(x \phi\left(k^{-1}\right)\right) \mathrm{d} \dot{x} \\
& =\int_{G} f M_{\gamma^{-1}} g^{p-1}(x) \mathrm{d} x \\
& =<f, \overline{M_{\gamma^{-1}} g^{p-1}}>(x) .
\end{aligned}
$$

Part (iii) is a direct consequence of (ii) and its proof.
Example 2.10 Let $f, g \in L^{p}\left(\mathbb{R}^{n}\right)$, the modulation operator on $L^{p}\left(\mathbb{R}^{n}\right)$ defined by $M_{a} f(x)=e^{2 \pi i a x} f(x)$, where $x \in \mathbb{R}^{n}$ and $a \in \widehat{\mathbb{R}^{n}}$. Consider \mathbb{Z}^{n} as a uniform lattice
in \mathbb{R}^{n}. Then:

$$
\begin{aligned}
\left(\Gamma_{g}(f)\right)^{\wedge}(\gamma) & =\widehat{[f, g}^{p, p}(\gamma) \\
& =\int_{[0, a]^{n}}[f, g]_{\phi, p}(t) e^{-2 \pi i \gamma t} \mathrm{~d} t \\
& =\int_{[0, a]^{n}} \sum_{l \in \mathbb{Z}^{n}} f g^{p-1}(t-a l) e^{-2 \pi i \gamma t} \mathrm{~d} t \\
& =\int_{\mathbb{R}^{n}} f g^{p-1}(x) e^{-2 \pi i \gamma(x)} \mathrm{d} x \\
& =\left\langle f, \overline{M_{\gamma^{-1}} g^{p-1}}\right\rangle .
\end{aligned}
$$

Corollary 2.11 If $\Gamma_{g}(f) \in L^{1}(G / \phi(L))$ and $\widehat{\Gamma_{g}(f)}=0$, then $\Gamma_{g}(f)=0$ a.e. with respect to the Haar measure on $G / \phi(L)$.

Now, we are going to consider translation operators for $(\phi(L), p)$-bracket product. Note that, since G is LCA group, then the left and right translations coincide. For $y \in G$, the translation operator on $L^{1}(G / \phi(L))$ is defined by:

$$
T_{y} \Gamma_{g}(f)(\dot{x})=\Gamma_{g}(f)\left(y^{-1} \dot{x}\right)
$$

One can easily check:

$$
\begin{equation*}
T_{y} \Gamma_{g}(f)=\Gamma_{T_{y} g}\left(T_{y} f\right) \tag{2.5}
\end{equation*}
$$

Indeed:

$$
\begin{aligned}
T_{y} \Gamma_{g} f(\dot{x}) & =T_{y}[f, g]_{\phi, p}(\dot{x}) \\
& =[f, g]_{\phi, p}\left(y^{-1} \dot{x}\right) \\
& =\sum_{k \in L} T_{y} f\left(x \phi\left(k^{-1}\right)\right) T_{y} g^{p-1}\left(x \phi\left(k^{-1}\right)\right) \\
& =\left[T_{y} f, T_{y} g\right]_{\phi, p}(\dot{x}) \\
& =\Gamma_{T_{y} g}\left(T_{y} f\right)(\dot{x}) .
\end{aligned}
$$

In the next proposition, we have some properties concerning the translation operator T_{y}.
Proposition 2.12 Let $y \in G$ and T_{y} be the translation operator on $L^{1}(G / \phi(L))$. Then:
(i) $\int_{G / \phi(L)} \Gamma_{g}\left(T_{y} f\right)(\dot{x}) \mathrm{d} \dot{x}=\int_{G / \phi(L)} \Gamma_{T_{y}-1} g(f)(\dot{x}) \mathrm{d} \dot{x}$,
(ii) $\Gamma_{g}\left(T_{y} f\right)=T_{y}\left(\Gamma_{T_{y-1} g}(f)\right)$,
(iii) $\left\|T_{y} f\right\|_{\phi, p}^{p}=T_{y}\|f\|_{\phi, p}^{p}$ and
(iv) $\left(T_{y}\left(\Gamma_{g}(f)\right)\right)^{\wedge}(\xi)=\left(\Gamma_{g}(f)\right)^{\wedge}(\xi) \xi^{-1}(y), \quad$ for $\xi \in \phi(L)^{\perp}$.

Springer

Journal: $\mathbf{4 1 9 8 0}$ Article No.: 0537 \qquad TYPESET \square DISK \square LE \square CP Disp.:2021/2/4 Pages: 19 Layout: Small-Ex

Proof For (i), let $\dot{x} \in G / \phi(L)$. Then, by the Weil's Formula, we have:

$$
\begin{aligned}
\int_{G / \phi(L)} \Gamma_{g}\left(T_{y} f\right)(\dot{x}) \mathrm{d} \dot{x} & =\int_{G / \phi(L)}\left[T_{y} f, g\right]_{\phi, p}(\dot{x}) \mathrm{d} \dot{x} \\
& =\int_{G} T_{y} f \cdot g^{p-1}(x) \mathrm{d} x \\
& =\int_{G} f\left(y^{-1} x\right) g^{p-1}(x) \mathrm{d} x \\
& =\int_{G} f(x) g^{p-1}(y x) \mathrm{d} x \\
& =\int_{G} f(x) T_{y^{-1}} g^{p-1}(x) \mathrm{d} x \\
& =\int_{G / \phi(L)}\left[f, T_{y^{-1}} g\right]_{\phi, p}(\dot{x}) \mathrm{d} \dot{x} \\
& =\int_{G / \phi(L)} \Gamma_{y_{y}-1}(f)(\dot{x}) \mathrm{d} \dot{x} .
\end{aligned}
$$

Part (ii) and (iii) are obvious by (2.5). For $\xi \in \phi(L)^{\perp}$, we get:

$$
\begin{aligned}
\left(T_{y}\left(\Gamma_{g}(f)\right)\right)^{\wedge}(\xi) & =\left(T_{y}[f, g]_{\phi, p}\right)^{\wedge}(\xi) \\
& =\int_{G / \phi(L)} T_{y}[f, g]_{\phi, p}(\dot{x}) \xi^{-1}(\dot{x}) \mathrm{d} \dot{x} \\
& =\int_{G / \phi(L)}[f, g]_{\phi, p}\left(y^{-1} \dot{x}\right) \xi^{-1}(\dot{x}) \mathrm{d} \dot{x} \\
& =\xi^{-1}(y) \int_{G / \phi(L)}[f, g]_{\phi, p}(\dot{x}) \xi^{-1}(\dot{x}) \mathrm{d} \dot{x} \\
& =\widehat{[f, g}_{\phi, p}(\xi) \xi^{-1}\left(y^{-1}\right) \\
& =\left(\Gamma_{g}(f)\right)^{\wedge}(\xi) \xi^{-1}\left(y^{-1}\right) .
\end{aligned}
$$

Therefore, part (iv) is proved.
At this point, we denote the set of all $\phi(L)$-periodic functions in $L^{\infty}(G)$ by $B_{\infty}(G)$, i.e., $B_{\infty}(G)=\left\{h \in L^{\infty}(G) ; h(x \phi(k))=h(x)\right.$, for all $\left.k \in L\right\}$. It is easy to show that $B_{\infty}(G)$ is a closed subspace of $L^{\infty}(G)$. Moreover, $L^{p}(G)$ is a Banach $B_{\infty}(G)$ module.

Proposition 2.13 Let $f, g \in L^{p}(G), 1<p, q<\infty$, and q is conjugate exponents of p. Then, for all $h \in B_{\infty}(G)$, we have:
(i) $\Gamma_{g}(f h)=h\left(\Gamma_{g}(f)\right)$,
(ii) $\Gamma_{h g}(f)=h^{p-1}\left(\Gamma_{g}(f)\right)$.

In particular, if $h(\dot{x}) \neq 0$ a.e., then $\Gamma_{g}(f)=0$ if and only if $\Gamma_{g}(f h)=\Gamma_{h^{\frac{1}{p-1}}{ }_{g}}(f)=$ 0.

Proof For (i), let $h \in B_{\infty}(G)$:

$$
\begin{aligned}
\Gamma_{g}(f h)(\dot{x}) & =[f h, g]_{\phi, p}(\dot{x}) \\
& =\sum_{k \in L} f h g^{p-1}\left(x \phi\left(k^{-1}\right)\right) \\
& =\sum_{k \in L} f\left(x \phi\left(k^{-1}\right)\right) g^{p-1}\left(x \phi\left(k^{-1}\right)\right) h\left(x \phi\left(k^{-1}\right)\right) \\
& =\sum_{k \in L} f g^{p-1}\left(x \phi\left(k^{-1}\right)\right) h(\dot{x}) \\
& =h[f, g]_{\phi, p}(\dot{x}) \\
& =h\left(\Gamma_{g}(f)\right)(\dot{x}) .
\end{aligned}
$$

Also for proof of (ii), we have:

$$
\begin{aligned}
\Gamma_{h g}(f)(\dot{x}) & =[f, h g]_{\phi, p}(\dot{x}) \\
& =\sum_{k \in L} f(h g)^{p-1}\left(x \phi\left(k^{-1}\right)\right) \\
& =\sum_{k \in L} f\left(x \phi\left(k^{-1}\right)\right) h^{p-1}\left(x \phi\left(k^{-1}\right)\right) g^{p-1}\left(x \phi\left(k^{-1}\right)\right) \\
& =\sum_{k \in L} f g^{p-1}\left(x \phi\left(k^{-1}\right)\right) h^{p-1}(\dot{x}) \\
& =h^{p-1}[f, g]_{\phi, p}(\dot{x}) \\
& =h^{p-1}\left(\Gamma_{g}(f)\right)(\dot{x}) .
\end{aligned}
$$

Definition 2.14 Let $f \in L^{p}(G), g \in L^{q}(G)$ where $1 / p+1 / q=1$ and $1<p, q<\infty$. For $E \subseteq L^{p}(G)$, the $\phi(L)$-orthogonal complement of E is defined as:

$$
E^{\perp_{\phi, p}}=\left\{g \in L^{q}(G) ; \Gamma_{g^{q-1}}(f)=0 \text { a.e. for all } f \in L^{p}(G)\right\}
$$

In the next proposition, the relation between the $\phi(L)$-orthogonal complement of E in $L^{p}(G)$ and its orthogonal complement in $L^{q}(G)$ is investigated.
Proposition 2.15 For $E \subseteq L^{p}(G)$, we have $E^{\perp_{\phi, p}}=\cap_{h \in B_{\infty}(G)}(h E)^{\perp_{\phi, p}}$.
Proof Let $g \in E^{\perp_{\phi, p}}$. Then, for $h \in B_{\infty}(G)$ and $f \in E$ by Propositions (2.13) and (2.4), we have:

$$
<h f, \overline{g^{p-1}}>=\int_{G / \phi(L)} \Gamma_{g^{q-1}}(h f)(\dot{x}) \mathrm{d} \dot{x}=\int_{G / \phi(L)} h(\dot{x}) \Gamma_{g^{q-1}}(f)(\dot{x}) \mathrm{d} \dot{x}=0
$$

Springer

Journal: $\mathbf{4 1 9 8 0}$ Article No.: 0537 \qquad \square TYPESET \square DISK \square LE \square \square CP Disp.:2021/2/4 Pages: 19 Layout: Small-Ex
hence, $g \in \cap_{h \in B_{\infty}(G)}(h E)^{\perp_{\phi, p}}$. Now, for $g \in \cap_{h \in B_{\infty}(G)}(h E)^{\perp}, f \in E$ and $n \in \mathbb{N}$, define $h_{n}=\Gamma_{g^{q-1}}(f)$, when $\left|\Gamma_{g^{q-1}}(f)\right| \leq n$, and $h_{n}=0$ otherwise. Then, $h_{n} \in$ $B_{\infty}(G)$. Therefore, we have:

$$
\begin{aligned}
0 & =\left|\Gamma_{h_{n} g^{p-1}}(f)(\dot{x})\right| \\
& =\int_{G / \phi(L)}\left|h_{n}^{p-1}(\dot{x}) \Gamma_{g^{q-1}}(f)(\dot{x})\right| \mathrm{d} \dot{x} \\
& =\int_{G / \phi(L)}\left|h_{n}^{p-1}(\dot{x}) h_{n}(\dot{x})\right| d \dot{x} \\
& =\int_{G / \phi(L)}\left|h_{n}\right|^{p}(\dot{x}) \mathrm{d} \dot{x}
\end{aligned}
$$

Therefore, $\left|h_{n}\right|(\dot{x})=0$. Hence, $\Gamma_{g^{q-1}}(f)=0$ a.e., that is, $g \in E^{\perp_{\phi, p}}$.

$3 \boldsymbol{\phi}(L)$-Factorable Operators

Let G be an LCA group and E be a subgroup of G or $G / \phi(L)$, in which we suppose that L be a uniform lattice in G, and $\phi: G \longrightarrow G$ is a topological isomorphism. In this section, $\phi(L)$-factorable operators are defined and some of their properties are investigated. Moreover, the relation between $\phi(L)$-factorable operators and $(\phi(L), p)$ bracket product is shown. Finally, the Riesz Representation Theorem for $L^{p}(G)$ with the $(\phi(L), p)$-bracket product is proven.

Definition 3.1 An operator $U: L^{p}(G) \longrightarrow L^{r}(E)$ that $1 \leq r, p \leq \infty$ is called $\phi(L)$ factorable if $U(h f)=h U(f)$, for all $f \in L^{p}(G)$ and all $\phi(L)$-periodic $h \in L^{\infty}(G)$, where E is a subgroup of G or $G / \phi(L)$.

In the following, some properties of the $\phi(L)$-factorable operators are examine.

Lemma 3.2 Let $U_{1}, U_{2}: L^{p}(G) \longrightarrow L^{1}(G / \phi(L))$ be two $\phi(L)$-factorable operators. Then, $U_{1}=U_{2}$ if and only if:

$$
\int_{G / \phi(L)} U_{1}(f)(\dot{x}) \mathrm{d} \dot{x}=\int_{G / \phi(L)} U_{2}(f)(\dot{x}) \mathrm{d} \dot{x},
$$

for every $f \in L^{p}(G)$.

Proof The necessary part is obvious. For the converse, by [4, theorem 4.33], it is enough to show that $\widehat{U_{1}(f)}=\widehat{U_{2}(f)}$ for all $f \in L^{p}(G)$. Let $\xi \in(\widehat{G / \phi(L)})=\phi(L)^{\perp}$ and
$f \in L^{p}(G)$, since ξ as a function in $L^{\infty}(G)$ is $\phi(L)$-periodic, we obtain:

$$
\begin{aligned}
\widehat{U_{1}(f)}(\xi) & =\int_{G / \phi(L)} U_{1}(f)(\dot{x}) \xi(\dot{x}) \mathrm{d} \dot{x} \\
& =\int_{G / \phi(L)} U_{1}(\xi f)(\dot{x}) \mathrm{d} \dot{x} \\
& =\int_{G / \phi(L)} U_{2}(\xi f)(\dot{x}) \mathrm{d} \dot{x} \\
& =\int_{G / \phi(L)} U_{2}(f)(\dot{x}) \xi(\dot{x}) \mathrm{d} \dot{x} \\
& =\widehat{U_{2}(f)}(\xi) .
\end{aligned}
$$

Hence, the Fourier coefficients for $U_{1}(f)$ and $U_{2}(f)$ are the same for all $f \in L^{p}(G)$ and, therefore, $U_{1}=U_{2}$.

Lemma 3.3 Let $h \in B_{\infty}(G)$ and $f \in L^{p}(G)$ where $1<p<\infty$. Then,

$$
\int_{G}|h f|^{p}(x) \mathrm{d} x=\int_{G / \phi(L)}|h(\dot{x})|^{p}\|f\|_{\phi, p}^{p}(\dot{x}) \mathrm{d} \dot{x} .
$$

Proof Using Weil's Formula, we have:

$$
\begin{aligned}
\int_{G}|h f|^{p}(x) \mathrm{d} x & =\left.\int_{G / \phi(L)} \sum_{\phi(k) \in \phi(L)}\left|h\left(x \phi\left(k^{-1}\right)\right)\right|^{p} f\left(x \phi\left(k^{-1}\right)\right)\right|^{p} \mathrm{~d} \dot{x} \\
& =\int_{G / \phi(L)}|h(x)|^{p} \sum_{\phi(k) \in \phi(L)}\left|f\left(x \phi\left(k^{-1}\right)\right)\right|^{p} \mathrm{~d} \dot{x} \\
& =\int_{G / \phi(L)}|h(\dot{x})|^{p}\|f\|_{\phi, p}^{p}(\dot{x}) \mathrm{d} \dot{x},
\end{aligned}
$$

in which $h \in B_{\infty}(G)$ and $f \in L^{p}(G)$.
Note that, if $h \in L^{\infty}(G)$ and $f \in L^{p}(G)$, then $|h f|^{p} \in L^{1}(G)$.
Proposition 3.4 Let U be a $\phi(L)$-factorable linear operatorfrom $L^{p}(G)$ to $L^{p}(G / \phi(L))$, $1<p<\infty$. Then, U is bounded if and only if there is a constant $B>0(B=\|U\|)$, so that for every $f \in L^{p}(G)$, we have:

$$
|U(f)(\dot{x})| \leq B\|f\|_{\phi, p}(\dot{x}), \quad \text { for } \quad \text { a.e. } \dot{x} \in G / \phi(L) .
$$

Springer

Proof Let $h \in B_{\infty}(G)$ and $f \in L^{p}(G)$. By Lemma 3.3:

$$
\begin{aligned}
\int_{G / \phi(L)}|h(\dot{x})|^{p}|U(f)(\dot{x})|^{p} \mathrm{~d} \dot{x} & =\int_{G / \phi(L)}|U(h f)(\dot{x})|^{p} \mathrm{~d} \dot{x} \\
& =\|U(h f)\|_{L^{p}(G / \phi(L))}^{p} \\
& \leq\|U\|^{p} \int_{G}|h f|^{p}(x) \mathrm{d} x \\
& =\|U\|^{p} \int_{G / \phi(L)}|h(\dot{x})|^{p}\|f\|_{\phi, p}^{p}(\dot{x}) \mathrm{d} \dot{x}
\end{aligned}
$$

It follows immediately that $|U(f)(\dot{x})|^{p} \leq\|U\|^{p}\|f\|_{\phi, p}^{p}(\dot{x})$, a.e. for $\dot{x} \in G / \phi(L)$. Conversely, let $f \in L^{p}(G)$, we have:

$$
\begin{aligned}
\|U(f)\|_{\phi, p}^{p} & =\int_{G / \phi(L)}|U(f)(\dot{x})|^{p} \mathrm{~d} \dot{x} \\
& \leq \int_{G / \phi(L)} B^{p}\|f\|_{\phi, p}^{p}(\dot{x}) \mathrm{d} \dot{x} \mid \\
& =B^{p} \int_{G / \phi(L)}\|f\|_{\phi, p}^{p}(\dot{x}) \mathrm{d} \dot{x} \\
& =B^{p}\|f\|_{p}^{p} .
\end{aligned}
$$

Therefore, the proof is completed.
Proposition 3.5 If $U: L^{p}(G) \longrightarrow L^{p}(G)(1<p<\infty)$ is a $\phi(L)$-factorable linear operator, then U is bounded if and only if there is a constant $B>0(B=\|U\|)$, so that for every $f \in L^{p}(G)$, we have:

$$
\|U(f)\|_{\phi, p} \leq B\|f\|_{\phi, p} .
$$

Proof For $h \in B_{\infty}(G)$ and $f \in L^{p}(G)$, by Proposition 3.4, we get:

$$
\begin{aligned}
\int_{G / \phi(L)}|h(\dot{x})|^{p}\|U(f)(\dot{x})\|_{\phi, p}^{p}(\dot{x}) \mathrm{d} \dot{x} & =\int_{G / \phi(L)}|h(\dot{x})|^{p} \Gamma_{|U(f)|}|U(f)|(\dot{x}) \mathrm{d} \dot{x} \\
& =\int_{G / \phi(L)}\|U(h f)\|_{\phi, p}^{p}(\dot{x}) \mathrm{d} \dot{x} \\
& =\|U(h f)(x)\|_{L^{p}(G)}^{p} \\
& \leq\|U\|^{p}\|h f\|_{L^{p}(G)}^{p}(x) \\
& =\|U\|^{p} \int_{G / \phi(L)}|h(\dot{x})|^{p}\|f\|_{\phi, p}^{p}(\dot{x}) \mathrm{d} \dot{x} .
\end{aligned}
$$

It follows that $\|U(f)\|_{L^{p}(G)}^{p} \leq\|U\|^{p}\|f\|_{\phi, p}^{p}$ a.e. with respect to $G / \phi(L)$.
Theorems 3.6 and 3.8 are of the main theorems in this section which are Riesz representation type theorem for the $(\phi(L), p)$-bracket product in $L^{p}(G)$.

Theorem 3.6 An operator $U: L^{p}(G) \longrightarrow L^{1}(G / \phi(L))$ is a bounded $\phi(L)$ factorable if and only if there exists $g \in L^{q}(G)$, such that $U(f)=\Gamma_{g^{q-1}}(f)$ for all $f \in L^{p}(G)$. Moreover, $\|U\|=\|g\|_{q}$.

Proof Let $U: L^{p}(G) \longrightarrow L^{1}(G / \phi(L))($ where for $1<p<\infty)$ be a bounded $\phi(L)$-factorable operator. Define the linear functional $\Psi: L^{p}(G) \longrightarrow \mathbb{C}$ by $\Psi(f)=$ $\int_{G / \phi(L)} U(f)(\dot{x}) \mathrm{d} \dot{x}$. The isometric isomorphism property $\left(L^{p}(G)\right)^{*} \cong L^{q}(G)$ for $(p \neq \infty)$ implies that there exist $g \in L^{q}(G)$, such that $\Psi(f)=\int_{G} f g(x) \mathrm{d} x$ for all $f \in L^{p}(G)$. Thus:

$$
\begin{aligned}
\int_{G / \phi(L)} U(f)(\dot{x}) \mathrm{d} \dot{x} & =\Psi(f) \\
& =\int_{G} f g(x) \mathrm{d} x \\
& =\int_{G / \phi(L)} \Gamma_{g^{q-1}}(f)(\dot{x}) \mathrm{d} \dot{x}
\end{aligned}
$$

By (3.4), $U(f)=\Gamma_{g^{q-1}}(f)$, for all $f \in L^{p}(G)$.
Moreover, for any $f \in L^{p}(G)$:

$$
\begin{aligned}
\|U(f)\|_{L^{1}(G / \phi(L))} & =\left\|\Gamma_{g^{q-1}}(f)\right\|_{L^{1}(G / \phi(L))} \\
& \leq\|f\|_{p}\|g\|_{q} .
\end{aligned}
$$

Therefore, $\|U\| \leq\|g\|_{q}$. Now, letting $f=\left|g^{q-1}\right|$; hence:

$$
\begin{aligned}
\left\|U\left(\left|g^{q-1}\right|\right)\right\|_{L^{1}} & =\int_{G / \phi(L)}\left|U\left(\left|g^{q-1}\right|\right)(\dot{x})\right| \mathrm{d} \dot{x} \\
& =\int_{G / \phi(L)}\left|\Gamma_{\left|g^{q-1}\right|}\left(\left|g^{q-1}\right|\right)(\dot{x})\right| \mathrm{d} \dot{x} \\
& =\int_{G / \phi(L)}\left|\left[\left|g^{q-1}\right|,\left|g^{q-1}\right|\right]_{\phi, p}(\dot{x})\right| \mathrm{d} \dot{x} \\
& =\int_{G / \phi(L)}\left|[|g|,|g|]_{\phi, q}(\dot{x})\right| \mathrm{d} \dot{x} \\
& =\int_{G / \phi(L)}\|g\|_{\phi, q}^{q}(\dot{x}) \mathrm{d} \dot{x} \\
& =\|g\|_{q}^{q} .
\end{aligned}
$$

Thus:

$$
\|g\|_{q}^{q}=\left\|U\left(\left|g^{q-1}\right|\right)\right\|_{L^{1}} \leq\|U\|\|g\|_{q}^{q-1},
$$

i.e., $\|g\|_{q} \leq\|U\|$.

Springer

Journal: $\mathbf{4 1 9 8 0}$ Article No.: 0537\square TYPESET \square DISK \square \square LE \square CP Disp.:2021/2/4 Pages: 19 Layout: Small-Ex

For the converse, according of $g \in L^{q}(G), U$ is bounded. For every $\phi(L)$-periodic $h \in L^{\infty}(G)$ and $f \in L^{p}(G):$

$$
U(h f)=\Gamma_{g^{q-1}}(h f)=h\left(\Gamma_{g^{q-1}}(f)\right)=h U(f) .
$$

Therefore, the proof is complete.
It is worth mentioning that Theorem3.6 for $\mathrm{p}=2$ gives the Riesz representation theorem expressed in [5, theorem 5.25].

Corollary 3.7 Let $f, g \in L^{p}(G)(1<p<\infty)$. Then, $\Gamma_{g}(f)$ is $\phi(L)$-factorable.
Proof The proof yields just using Proposition2.13 and Theorem3.6.
We say $f \in L^{p}(G)$ is $\phi(L)$-bounded if there exists $M>0$, such that $\|f\|_{\phi, p} \leq M$.
Theorem 3.8 A linear operator $U: L^{p}(G) \longrightarrow L^{p}(G / \phi(L))(1<p<\infty)$ is a bounded $\phi(L)$-factorable if and only if there exists $\phi(L)$-bounded $g \in$ $L^{q}(G)$, such that $U(f)=\Gamma_{g^{q-1}}(f)$ for all $f \in L^{p}(G)$. Moreover, $\|U\|=$ $\operatorname{esssup}_{\dot{x} \in G / \phi(L)}\|g\|_{\phi, p}(\dot{x})$.

Proof That is, U be a bounded $\phi(L)$-factorable operator from $L^{p}(G) \longrightarrow L^{p}(G / \phi(L))$. Since $G / \phi(L)$ is compact, $L^{p}(G / \phi(L)) \subseteq L^{1}(G / \phi(L))$, and so, by Theorem 3.6, there exists $g \in L^{q}(G)$, such that $U(f)=\Gamma_{g^{q-1}}(f)$ for all $f \in L^{p}(G)$. Letting $f=g^{q-1}$ and using Proposition 3.4, we get:

$$
\begin{aligned}
\left|\Gamma_{g^{p-1}}\left(g^{p-1}\right)\right| & =\left\|g^{q-1}\right\|_{\phi, p}^{p} \\
& =\left|U\left(\left|g^{q-1}\right|\right)\right| \\
& \leq\|U\|\left\|g^{q-1}\right\|_{\phi, p} .
\end{aligned}
$$

Hence, $\left\|g^{q-1}\right\|_{\phi, p} \leq\|U\|$ or $\|g\|_{\phi, q} \leq\|U\|$. For the converse, let g be a $\phi(L)$ bounded and $U(f)=\Gamma_{g^{q-1}}(f)$ for some $\phi(L)$-bounded, so $g \in L^{q}(G)$. Then, by Corollary 3.7, U is $\phi(L)$-factorable. Now, by the assumption, g is $\phi(L)$-bounded and by Theorem3.6, we have:

$$
\begin{aligned}
\|U f\|_{p}^{p} & =\int_{G / \phi, p}\left|\Gamma_{g^{p-1}}(f)\right|^{p}(\dot{x}) \mathrm{d} \dot{x} \\
& \leq \int_{(G / \phi(L))}\|f\|_{\phi, p}^{p}\|g\|_{\phi, q}^{p}(\dot{x}) \mathrm{d} \dot{x} \\
& \leq \operatorname{esssup}_{\dot{x} \in G / \phi(L)}\|g\|_{\phi, p}^{p} \int_{G / \phi(L)}\|f\|_{\phi, p}^{p}(\dot{x}) \mathrm{d} \dot{x} \\
& =\operatorname{esssup}_{\dot{x} \in G / \phi(L)}\|g\|_{\phi, p}^{p}\|f\|_{p}^{p,}
\end{aligned}
$$

where $\dot{x} \in G / \phi(L)$. Thus, $\|U\|$ is bounded.
Now, by letting $f=g^{q-1}$, we get $\|U\|=\operatorname{esssup}_{\dot{x} \in G / \phi(L)}\|g\|_{\phi, p}(\dot{x})$. This completes the proof.

Theorem 3.9 For $1<p<\infty$, let $U: L^{p}(G) \longrightarrow L^{q}(G)$, (where $L^{q}(G)$ is dual of $\left.L^{p}(G)\right)$, be a bounded $\phi(L)$-factorable operator and U^{*} be its adjoint. Then, U^{*} is $\phi(L)$-factorable. Moreover, for $f \in L^{p}(G)$ and $g \in L^{q}(G)$, we have:

$$
\Gamma_{g^{q-1}}(U(f))=\Gamma_{U^{*}(g)}(f)
$$

Proof For $f \in L^{p}(G), g \in L^{q}(G)$, and $h \in B_{\infty(G)}$, we have:

$$
\begin{aligned}
\left.\left\langle U^{*}(h g), \overline{f^{p-1}}\right)\right\rangle & =\left\langle h g, U\left(\overline{f^{p-1}}\right)\right\rangle \\
& =\left\langle g, \bar{h} U\left(\overline{f^{p-1}}\right)\right\rangle \\
& =\left\langle g, U\left(\overline{h f^{p-1}}\right)\right\rangle \\
& =\left\langle U^{*}(g), \overline{h f^{p-1}}\right\rangle \\
& =\left\langle h U^{*}(g), \overline{f^{p-1}}\right\rangle .
\end{aligned}
$$

Therefore, U^{*} is $\phi(L)$-factorable. Now, we have:

$$
\begin{aligned}
\int_{G / \phi(L)} \Gamma_{g^{q-1}}(U(f))(\dot{x}) d \dot{x} & =\left\langle U(f), \overline{g^{q-1}}\right\rangle \\
& =\left\langle f, U^{*}\left(\overline{g^{q-1}}\right)\right\rangle \\
& =\int_{G / \phi(L)} \Gamma_{U^{*}(g)}(f)(\dot{x}) \mathrm{d} \dot{x}
\end{aligned}
$$

Therefore, Lemma 3.2 completes the proof.

Acknowledgements The authors would like to thank Professor H.R. Ebrahimi Vishki for his helpful consult and also reading this paper and whose recommendations greatly improved this manuscript. We would also like to thank Doctor R. Raisi Tosi for her valuable suggestions. Also, the authors would like to thank the referee for their valuable comments and remarks.

References

1. Casazza, P.G., Lammers, M.C.: Bracet Products for Weyl-Heisenberg Frames. Advances in Gobor Analysis. Applied and Numerical Harmonic Analysis, pp. 71-98. Birkhauser, Boston (2003)
2. Detmar, A., Echterhoff, B.: Principles of Harmonic Analysis. Springer, New York (2009)
3. de Boor, C., DeVore, R.A., Ron, A.: The structure of nitely generated shift-invariant spaces in $L^{2}\left(R^{d}\right)$. J. Funct. Anal. 119(1), 37-78 (1994)
4. Folland, G.B.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995)
5. Folland, G.B.: Real Analysis. Wiley, New York (1984)
6. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis, vol. 1. Springer, New York (1936)
7. Kamyabi Gol, R.A., Raisi, Tosi R.: Bracket products on locally compact Abelian groups. J. Sci. Islam. Repub. Iran 19(2), 153-157 (2008)
8. Kamyabi Gol, R.A., Raisi, Tosi R.: ϕ-factorable operators and Weyl-Heisenberg frames on LCA groups. Bull. Iran. Math. Soc. 37(1), 101-113 (2011)

Springer

Journal: 41980 Article No.: 0537
9. Kutyniok G.: Time frequency analysis on locally compact groups. Ph.D. Thesis, Padeborn University (2000)
10. Ron, A., Shen, Z.: Frames and stable bases for shift invariant subspaces of $L^{2}\left(\mathbb{R}^{d}\right)$. Can. J. Math. 1051-1094 (1995)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Journal: 41980
Article: 537

Author Query Form

Please ensure you fill out your response to the queries raised below and return this form along with your corrections

Dear Author
During the process of typesetting your article, the following queries have arisen. Please check your typeset proof carefully against the queries listed below and mark the necessary changes either directly on the proof/online grid or in the 'Author's response' area provided below

Query	Details required	Author's response
1.	Please provide the expanded author name.	

[^0]: R. A. Kamyabi Gol
 kamyabi@um.ac.ir
 F. Roohi Afrapoli
 fatemeroohiafrapoli@gmail.com
 F. Esmaeelzadeh
 esmaeelzadeh@bojnourdiau.ac.ir
 1 Department of Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
 2 Department of Mathematics Ferdowsi University of Mashhad Center of Excellence in Analysis on Algebraic Structures (CEAAS), P. O. Box 1159-91775, Mashhad, Iran
 3 Department of Mathematics, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran

