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Non-parametric empirical machine
learning for short-term and long-term
structural health monitoring
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Abstract
Early damage detection is an initial step of structural health monitoring. Thanks to recent advances in sensing technology,
the application of data-driven methods based on the concept of machine learning has significantly increased among civil
engineers and researchers. On this basis, this article proposes a novel non-parametric anomaly detection method in an
unsupervised learning manner via the theory of empirical machine learning. The main objective of this method is to define a
new damage index by using some empirical measure and the concept of minimum distance value. For this reason, an
empirical local density is initially computed for each feature and then multiplied by the minimum distance of that feature to
derive a new damage index for decision-making. The minimum distance is obtained by calculating the distances between
each feature and training samples and finding the minimum quantity. The major contributions of this research contain
developing a novel non-parametric algorithm for decision-making under high-dimensional and low-dimensional features
and proposing a new damage index. To detect early damage, a threshold boundary is computed by using the extreme value
theory, generalized Pareto distribution, and peak-over-threshold approach. Dynamic and statistical features of two full-
scale bridges are used to verify the effectiveness and reliability of the proposed non-parametric anomaly detection. In order
to further demonstrate its accuracy and proper performance, it is compared with some classical and recently published
anomaly detection techniques. Results show that the proposed non-parametric method can effectively discriminate a
damaged state from its undamaged condition with high damage detectability and inconsiderable false positive and false
negative errors. This method also outperforms the anomaly detection techniques considered in the comparative studies.

Keywords
Structural health monitoring, non-parametric anomaly detection, empirical machine learning, environmental variability,
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Introduction

Health and safety of vital civil structures such as bridges,
high-rise buildings, and dams are of paramount importance
to every society and government due to the high influences
of such structural systems on social life and economics.
Most of these structures were designed and constructed
several years or decades ago with classical design codes and
technologies. Furthermore, aging, material deterioration,
corrosion, settlement, and fatigue are inevitable in their
lifetime. These structures may also experience natural
hazards such as strong or weak seismic ground motions,
strong wind, flood, and hurricane that threaten their safety
and serviceability. To avoid any catastrophic event caused
by the occurrence of damage, structural health monitoring
(SHM) presents a new technology for assessing the safety
and integrity of civil structures in a short-term or long-term

(continuous) fashion.1–4 For this practical process, one at-
tempts to apply ambient or artificial sources for exiting a
civil structure and acquire its static or dynamic responses via
various sensors from classical wireless sensor networks of
accelerometers to images or videos from professional
cameras.5,6 Hence, the main objective of SHM can be
summarized in four levels including early damage
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detection, damage localization, damage quantification, and
damage prognosis.7

Using field monitoring data on real structures and thanks
to recent development of sensing and data acquisition
systems, civil engineers and researchers have paid more
attention to data-driven SHM methods. In general, these
methods rely on applying raw measured data under
the concepts of statistical pattern recognition and ma-
chine learning algorithms.7,8 In contrast to model-driven
techniques,9 the great merit of data-driven methods is to
facilitate SHM of full-scale structures. Furthermore, such
approaches are more suitable for the first level of SHM; that
is, early damage detection.10 Feature extraction and feature
classification are two main parts of a data-driven method.41

The former aims at discovering meaningful information
(damage-sensitive features) from raw measured data, while
the latter refers to the process of utilizing extracted features
and making an accurate decision on the problem under
study via the concept of machine learning.

Machine learning is a branch of artificial intelligence that
aims to automatically recognize or classify information (i.e.,
the extracted damage-sensitive features) based on a learned
pattern or statistical/computational model through training
data. Depending on the type of training data and the
availability of damaged information, a machine learning
algorithm can be categorized as supervised, semi-
supervised, and unsupervised learning classes.7,8,11–13 For
complex and full-scale civil engineering structures, it may
not be practical to impose intentional damage patterns in an
effort to prepare full-labeled training data including un-
damaged and damaged information. Therefore, it seems that
unsupervised learning is more suitable than the other ma-
chine learning algorithms for SHM of civil structures,
particularly for early damage detection. In this algorithm,
the main problem is to discover the relation in the structure
of data and implement the process of decision-making under
the concept of anomaly detection or novelty detection.14

Depending upon the type of statistical/computational
model, unsupervised learning can be divided into non-
parametric, semi-parametric, and parametric methods.15

The separation of these methods relies on the main char-
acteristics of statistical/computational unsupervised model
or novelty detector. If this model or detector does not need
any unknown parameters, called hyperparameters,15 it falls
into a non-parametric framework that provides the simplest
and most effective unsupervised learning tool without es-
timating prior knowledge. Distance-based anomaly detec-
tion methods based on Mahalanobis distance,16,17,43

Kullback-Leibler divergence,18–20 dynamic time warp-
ing,21 singular vector decomposition (SVD),15,22 and
correlation coefficient23 are some successful examples of
non-parametric anomaly detection or unsupervised learning
methods. In contrast, if the model or novelty detector de-
pends on some hyperparameters, the anomaly detection

method is parametric. Data clustering methods based on the
k-means,24 k-medoids,25 fuzzy c-means,15 and Gaussian
mixture model,26 and artificial neural networks based on an
auto-associative neural network27 and auto-encoder28 are
some well-known examples of this kind of unsupervised
learning algorithm. Finally, a semi-parametric novelty de-
tector is based on a combination of the non-parametric and
parametric algorithms in order to enhance the performance
of non-parametric detectors.15,27,29

Despite effective unsupervised learning methods for
health monitoring of full-scale structures, some challenges
are still open problems that need to be dealt with appro-
priately. In the context of data-driven SHM under the
concept of machine learning, a high rate of decision-making
errors (i.e., false positive and false negative) is a major
challenging issue. This challenge may result from variations
in measured data or extracted features due to environmental
and operational conditions.17,42 This problem makes sense
that the structure is undamaged, but the SHM method
mistakenly alarms the occurrence of damage or the structure
really suffered from damage, but the method of interest fails
in accurately alarming damage. The first subject is related to
the false positive error that pertains to an economic issue,
while the second subject refers to the false negative error
that is concerned with a safety issue.11 Hence, it is critical to
deal with the problem of environmental and/or operational
variability in any real-world SHM application. The other
important challenge relates to the general aspect of machine
learning. Although it has been described that unsupervised
learning is an effective and efficient tool for early damage
detection, a robust novelty detector or unsupervised
statistical/computational model should have a proper
generality and reliable performance under any type and
size of data in terms of statistical versus dynamic features
and high-dimensional (large-size) vs. low-dimensional
(small-size) data. Moreover, high classification accuracy
or minimum total error is an important factor for accurate
decision-making. Finally, the other challenge pertains to
the complexity of a machine learning model, particularly
a parametric approach, that may need hyperparameter(s)
for an accurate learning process and decision-making.

Accordingly, this article proposes an innovative non-
parametric anomaly detection method based on the concept
of empirical machine learning.30 In this method, the main
aim is to define a new damage index (novelty score) by
computing an empirical local density for each feature and
finding the minimum distance value of this feature and all
training samples. In this case, the damage index of interest is
obtained by multiplying the local density by the minimum
distance value by getting idea from density peak cluster-
ing31 and its center cluster selection strategy.32 This process
is carried out by using all training and test samples so as to
determine their damage indices for decision-making. An
effective approach through the extreme value theory (EVT),
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generalized Pareto (GP) distribution, and peak-over-
threshold (POT) is considered to determine a thresh-
old boundary. The main contributions of this article
include developing a novel non-parametric anomaly
detection approach under the theory of empirical ma-
chine learning and proposing a new damage index.
Simplicity, computational efficiency and a non-
parametric characteristic are the main methodological
advantages of the proposed method. The engineering
benefits of this method consist of dealing with the major
challenge of the environmental and/or operational
variability conditions and making an accurate decision
under high-dimensional and low-dimensional features
in long-term and short-term monitoring programs. To
verify the effectiveness and reliability of the proposed
method, dynamic and statistical features of two full-
scale bridge structures are incorporated. This method is
also compared with the classical non-parametric
anomaly detection techniques based on the Mahalano-
bis distance and a SVD algorithm as well as recently
published anomaly detection techniques. The effect of
the number of training samples on anomaly detection is
also evaluated. Results demonstrate that the method
presented here is highly able to detect early damage and
properly distinguish a damaged state from an undam-
aged condition with high classification rates. Moreover,
it can be observed that the proposed non-parametric
method outperforms the classical and recently pub-
lished anomaly detection techniques in terms of having
higher damage detectability and smaller false positive
and false negative errors.

Empirical machine learning

The empirical machine learning is a new branch of data
mining that is based entirely on the empirical obser-
vations of data samples and the relative proximity of
these samples in the data space.30 The term “empirical”
is mentioned to distinguish the current machine learning
method from conventional machine learning techniques
that rely strongly on several restrictive prior assump-
tions, generative probabilistic or non-probabilistic
models, a learning process, infinite amounts of
observations/data samples, and some important hyper-
parameters and parameter estimation approaches. In this
regard, the major benefit of the empirical machine
learning is that statistical models or tools under this
theory do not need any prior assumptions and learning
processes, which may be unrealistic and restrictive, or
hyperparameters and parameter estimation. To put it
another way, this theory presents a novel non-parametric
approach to engineering problems.

Having considered the only measured data samples or
features extracted from them, the central core of the

empirical machine learning concentrates on the concept of
cumulative proximity.30 Given the data samples in the
matrix X=[x1,…,xn]2Rp×n, the cumulative proximity of xi
can be derived from the other data samples as follows

qðxiÞ ¼
Xn
j¼1

d
�
xi,xj

�
(1)

where i = 1,2,…,n and d refers to a distance measure.
Equation (1) is an initial empirical measure that is simply
derived from data samples and plays an important role in
the other empirical measures. The cumulative proximity is
important because it provides centrality information on
any particular data without any prior assumptions about
the data generation model. An advantage of the cumulative
proximity is its generality to any distance value, either
univariate (e.g., Euclidean) or multivariate (i.e., Mahala-
nobis). By considering the well-known Euclidean distance
and also correlation among variables in X, the cumulative
proximity based on this statistical metric is rewritten as
follows

qðxiÞ ¼ n

�
����
����xi � x������2 � ������x������2 þ γ

�
(2)

where ||.|| denotes the l2- or Euclidean norm and x 2Rp is the
mean vector of the matrix X. In this equation, γ is a scalar
value defined as

γ ¼ 1

n

Xn
i¼1

xTi Σ
�1xi (3)

where Σ2Rp×p is the covariance matrix of X, which is
expressed in the following form

Σ ¼ 1

n

Xn
i¼1

�
xi � x

��
xi � x

�T
(4)

From the cumulative proximity, one can derive the other
empirical measure called local eccentricity.30 This measure
can be defined as a normalized cumulative proximity that
represents the ensemble properties of the data samples that
are far away from the peak. The local eccentricity of xi is
expressed as

eðxiÞ ¼ 2qðxiÞPn
j¼1q
�
xj
� ¼ ����

����xi � x������2 � ������x������2 þ γ

n

�
γ� ������x������2

� (5)

or

eðxiÞ ¼ 1

n

0
@1þ

����
����xi � x������2

ν

1
A (6)

where ν ¼ γ� ������x������2. Furthermore, in equation (5)
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Xn
j¼1

q
�
xj
� ¼ 2n2

�
γ� x2

�
(7)

Based on the concept of the local eccentricity, one can
derive the other empirical measure called local data density.
Generally, data density is simply defined as the number of
items (i.e., here data samples) per unit of area. In the context
of the empirical machine learning, the local data density is
described by the mutual proximity of data samples as the
inverse of the local eccentricity. In this regard, the local data
density of xi is expressed as follows

λðxiÞ ¼ 1

eðxiÞ ¼
n

1þ ����
����xi � x������2	ν

(8)

Because the local density is derived from the cumulative
proximity, it can be an appropriate measure for anomaly
detection. This is due to the fact that this measure is
equivalent to the inverse of the distance between two points.
This means that as these points have a further distance, they
are far away from together, in which case one can reach a
lower density.

Proposed non-parametric method

The proposed non-parametric method is developed by using
the main concepts of unsupervised learning anomaly de-
tection and empirical machine learning. The main goal is to
define a damage index by using the local data density and
minimum distance value. To detect early damage in short-
term or long-term SHM frameworks, the proposed method
is implemented in the training and inspection phases. The
first phase contains all available data or features concerning
the undamaged or normal condition of the structure, while
the second phase refers to the unknown structural state that
attempts to make an accurate decision on it. To fulfill this
objective, once all damage indices of the training samples in
the training phase have been determined, a threshold
boundary is defined to detect whether the damage index of a
test sample belongs to the normal condition or it is related to
the damaged state.

Damage index

The choice of an effective damage index significantly af-
fects the performance and classification accuracy of any
unsupervised anomaly detection. In other words, in the
context of SHM, if the novelty detector has high damage
detectability, it means that corresponding damage indices
allow one to appropriately discriminate the damaged state
from the normal condition. Accordingly, one can reduce the
decision-making errors or increase the accuracy of feature
classification. Inspired by the concept of density peak
clustering,28 this article proposes a new damage index based

on the local data density (λ) from the theory of empirical
machine learning and the minimum distance value (δ). The
fundamental principle of this damage index originates
from the process of center cluster selection in density peak
clustering.32 The damage index is then expressed as
follows

DI ¼ λδ (9)

The minimum distance value indicates the distance of the
nearest neighbor of each sample, in which case one can find
the most representative feature of that feature sample. With
this strategy, it is possible to deal with the negative effect of
the environmental and operational variability conditions on
decision-making outputs. By performing the calculation of
the damage index through the training and test data, one can
determine the decision-making outputs for SHM and early
damage detection.

Training phase

Assume that the matrix X=[x1,…,xn]2Rp×n includes n
feature vectors of the normal condition, each of which
consists of p variables. Based on the descriptions in em-
pirical machine learning Section 2, one can determine a
local density value for each of the feature vectors of the
training matrix λx1,… λxn, which are equivalent to λðx1Þ,…,
λðxnÞ. To obtain the minimum distance value, it is necessary
to compute the distance of each feature vector with the
remaining feature vectors without itself. Having considered
the ith feature xi, its distance with the remaining features
x1,…,xi–1,xi+1,…,xn is calculated via the Euclidean distance
as follows

d
�
xi,xj

� ¼ �xi � xj
�T�

xi � xj
�

(10)

where j=1,2,…,n–1. In this case, one can determine n–1
distance values dðiÞ1 ,… dðiÞn�1, where dðiÞ1 = d(xi,x1) and
dðiÞn�1 = d(xi,xn). Therefore, the minimum distance value for
the ith feature vector can simply be selected as

δxi ¼ min
�
dðiÞ
1 ,…,dðiÞ

n�1

�
(11)

As such, it can be determined n minimum distance
values δx1,…, δxn for all n feature vectors of the training
matrix. Eventually, the damage indices of the training
samples are computed by multiplying their local density
quantities by their minimum distance value based on
equation (9); that is, DIx1,…,DIxi,…,DIxn, where
DIxi ¼ λxiδxi and i = 1,2,…,n. Using these damage indices,
it is possible to estimate a threshold boundary (see
Threshold boundary). Because the aforementioned dam-
age indices are concerned with the normal condition of the
structure, it is expected that all of them fall below the
threshold boundary implying the safe condition. Any
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deviation of the normal damage index from the threshold is
also indicative of a false positive error.11

Inspection phase

During the inspection phase, one supposes that the matrix Z =
[z1,…,zm]2Rp×m consists of m test samples, each of which is
a p-dimensional vector. The main objective in this stage is
to determine a new damage index for the test sample zk via
the same procedures as the training samples, where k =
1,2,…,m. Hence, one needs to calculate its local density in
the empirical machine learning framework and then select
its minimum distance value among all training samples. For
this aim, it is only necessary to replace the feature vector zk
with xi in the equations related to the cumulative proximity or
equation (2), local eccentricity or equation (6) and local data
density or equation (8). In this regard, one can determine m
local density values λz1,…, λzm for all test samples.

To obtain the minimum distance value of the test sample
zk, the distances between this feature and the training samples
x1,…,xn are computed, which lead to n distance values
~d
ðkÞ
1 ,… ~d

ðkÞ
n , where ~d

ðkÞ
1 ¼ dðzk ,x1Þ and ~d

ðkÞ
n ¼ dðzk ,xnÞ.

Similarly, the distance between zk and each of the training
samples is calculated by the Euclidean distance as same as
equation (10). Hence, the minimum distance value regarding
the feature vector zk can simply be selected as

δzk ¼ min

 
~d
ðkÞ
1 ,…, ~d

ðkÞ
n

!
(12)

Having considered all test samples in Z, one can then de-
termine m minimum distance values δz1,…, δzm. Finally, the
damage indices of the test samples are calculated bymultiplying
their local density quantities by their minimum distance values;
that is,DIz1,…,DIzk ,…,DIzm, whereDIzk ¼ λzkδzk . To recognize
the current state of the structure between the undamaged or
damaged conditions, one should compare each of the damage
index with the threshold boundary. If the damage index exceeds
the threshold, this implies that the structure suffered from
damage; otherwise, it is still in its normal phase.

Threshold boundary

Determination of a threshold boundary is an important
process in an unsupervised anomaly detection framework.
In contrast to supervised learning, in which the decision-
making can be performed by entirely checking the classi-
fication accuracy due to accessibility to full-labeled data44,
an accurate threshold boundary plays a crucial role in
decision-making under unsupervised learning. This pro-
cedure is often carried out by considering the probabilistic
characteristics of damage indices concerning the training
samples.16 Central limit theory (CLT) and EVT provide two
general approaches to determining the threshold boundary.

The former supposes the Gaussianity of damage indices and
utilizes standard confidence intervals under various prob-
abilities (i.e., significance levels).19,21 The latter relies on
the probabilistic properties of extreme values (i.e., maxi-
mum or minimum samples) under non-Gaussianity as-
sumption and tail modeling.16,25 Unlike the CLT, which
requires a large number of data samples, the EVT only
focuses on a few maximum or minimum samples that
provide the best fit to some extreme value distribution.33

Despite the applicability of both methods for threshold
determination, it was demonstrated by some authors that the
EVT-based methods are more reliable for threshold deter-
mination. In this regard, Sarmadi and Karamodin16 pro-
posed an EVT-based technique based on a generalized
extreme value (GEV) distribution and block-maxima ap-
proach. They compared their method with the classical CLT-
based algorithm under a standard confidence interval and
Bootstrap confidence interval. They demonstrated that the
EVT is significantly reliable than the other techniques. In a
comparative study, Sarmadi15 showed that the EVT highly
outperformed the CLT by considering various machine
learning methods and two different features from two full-
scale structures. Entezami et al.33 also reached the same
conclusion by using time series features from laboratory and
full-scale structures and a non-parametric machine learning
method. With such evidence, this article considers the EVT
for the threshold determination.

In statistics, the EVT is a branch of probability theory
that generally intends to analyze extreme values and model
them by some distribution functions. In a univariate case,
the well-known extreme value distributions come from the
Gumbel, Frechet, and Weibull families.34 It is possible to
integrate these distributions into single models and produce
the GEVand GP distributions. The modeling process in the
EVT is often carried out by the block-maxima and POT
methods. The former is based on determining an optimal
number of blocks, dividing all data samples into the de-
termined blocks, selecting the maximum value of each
block, and modeling the maximum samples by the triple
extreme value distributions or the GEV model.16 The latter
relies on determining a threshold level, selecting all samples
over this level, and modeling such selected samples via the
GP distribution.10,35 In both techniques, the inverse of the
cumulative density function (CDF) of the extreme value
distribution under a significance level is representative of a
threshold boundary. Although both the BM and POT
methods are suitable and reliable, it seems that the POT is
more beneficial than the BM due to considering all possible
maximum samples.35 Therefore, this article utilizes the
POT-based threshold determination.

Assume that Y1,…,Ys are the maximum samples (i.e.,
often called exceedances) over the threshold level u. On this
basis, the GP distribution can model these maximum
samples in the following form34

Entezami et al. 5



HðyÞ ¼ 1�
�
1þ ξy

σ

��1=ξ

(13)

where ξ and σ are the main parameters of the GP distribution;
y = Y�u > 0, and 1þ ξy=σ > 0;H(y) refers the CDF of the GP
model. As such, a threshold boundary can be derived by
inverting the CDF under the significance level α as follows

τ ¼
8<
:

uþ σ
ξ

�
α�ξ � 1

�
, ξ ≠ 0

u� σ log α, ξ ¼ 0
(14)

Since the determination of a threshold boundary depends
on the unknown parameters of the GP distribution, one
should estimate them by one of the computational tech-
niques. In statistics, the maximum likelihood estimation is a
popular and effective approach to this objective. Accord-
ingly, one needs to define the log-likelihood function of the
GP distribution and maximize this function with respect to
the unknown parameters (i.e., ξ and σ).34 The other
prominent parameter for threshold determination is to ob-
tain the threshold level u. At first, it needs to clarify that this
parameter entirely differs from the threshold boundary τ
applied to makes a decision. To determine this level, it is

possible to use graphical and numerical approaches. As their
names indicate, the former is based on a graphical function
(e.g., excess sample mean function) and user expertise in
interpreting the mean excess plot.35 The latter relies on
numerical evidence such as a statistical hypothesis tests for
making sure of accurately modeling the GP distribution.10

As Sarmadi and Yuen10 demonstrated, a numerical ap-
proach is superior to a graphical tool due to avoiding
choosing exceedances with user expertise and some labo-
rious attempts finding the linear part of the plot by a visual
observation. Therefore, this article exploits their iterative
numerical approach10 to choose the best threshold level u.

Case studies

A box-girder concrete bridge

To demonstrate the effectiveness and performance of the
proposed non-parametric method, the modal-based features
of the well-known Z24 bridge are applied. This structure
was a classical post-tensioned concrete box-girder bridge
located in Canton Bern, Switzerland.36 It consisted of a
main span of 30 m and two side-spans of 14 m as shown in
Figure 1. In 1998, the Z24 bridge was demolished to build a

Figure 1. The Z24 bridge: (a) longitudinal section and (b) top view.
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new bridge structure with a larger side span. Before this
process, a long-term monitoring program was performed to
measure environmental and vibration data. In the month
before demolition, some realistic damage patterns in a
controlled way were considered to define the damaged state
of this bridge. Using an automated operational modal
identification, natural frequencies in four modes were
extracted from acceleration time histories under actual
environmental variability conditions. Totally, the modal
frequencies included 5652 samples. A data pre-processing
procedure was then applied to eliminate some missing data,
in which the total number of real-valued dynamic features
corresponds to 3932, where the first 3475 samples are as-
sociated with the normal condition of the Z24 bridge and the
remaining 457 samples belong to the damaged state.

In the context of SHM, the Z24 bridge is one of the
famous benchmark structures due to having one-year
monitoring data and existing strong environmental vari-
ability. For example, Figure 2 depicts the identified modal
frequencies of the first and fourth modes. As can be seen,
there are considerable sudden jumps in the modal fre-
quencies of the normal condition, which imply the strong
influences of the environmental fluctuations. Therefore, it is
prominent to address this critical issue by a robust
machine learning method. To detect damage by the

proposed non-parametric method, it is initially necessary to
define the training and test matrices. Accordingly, 80% of
the modal frequencies of the normal condition, Samples 1–
2780, are taken to make the training matrixX = [x1,…,x2780]
2R4×2780, where p = 4 and n = 2780. Subsequently, the
remaining 20% of the modal frequencies of the normal
condition and all samples regarding the damaged states,
Samples 3476–3932, are gathered to produce the test matrix
Z = [z1,…,z1152]2R4×1152, where m = 1152. Notice that one
supposes that only one test sample is available at each time
to regard online damage detection.

Based on the proposed method, the first step in the
training phase is to determine the local density and mini-
mum distance value of each training sample. In this regard,
Figure 3 shows the amounts of λx1,…, λx2780 and δx1,…, δx2780.
An important note in Figure 3(a) is related to sudden re-
ductions in the local density values between the samples
400–800 and 1200–1600, where their modal frequencies
were highly influenced by the environmental fluctuations.
This result means that the local data density originated from
the theory of empirical machine learning can be an indicator
for finding low dense areas in sampling data. Since such
areas are far away from the other data samples, the local
density is an appropriate tool for outlier detection. From
Figure 3(b), the other important note is that the rationale

Figure 2. The modal frequencies of the Z24 bridge: (a) the first mode and (b) the fourth mode.
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behind choosing the minimum distance value is able to
reduce the effect of the environmental variability. In other
words, a simple comparison between Figure 2 and 3(b)
visibly demonstrates that this choice can relatively remove
the environmental fluctuations. Nonetheless, there is still a
peak between the samples 1200–1600 indicating the exis-
tence of such fluctuations.

Having considered all test samples, the main steps of the
proposed non-parametric method are implemented to de-
termine the local densities λz1,…, λz1152 and minimum dis-
tance values δz,…, δz1152 of these samples. Similarly,
Figure 4 displays the amounts of local density and minimum
distance. From Figure 4(a), one can also discern that the
local densities of the damaged states regarding the test
samples z691,…,z1152, which are equivalent to the modal
frequencies of the samples 3476–3932, decrease indicating
low dense areas in sampling data. However, it is not feasible
to directly use the local density as a damage indicator. This
is because the changes caused by the environmental

variability and damage behave similarly, for which the local
density decreases in both conditions. This conclusion also
confirms the importance of proposing the damage index
obtained frommultiplying the local density by the minimum
distance value. In fact, these two components assist us in
reaching a more reliable damage index by reducing the
impact of the environmental variability and providing a
meaningful indicator for damage detection. Therefore, the
local densities are multiplied by the minimum distance
values to obtain DIx1,…,DIx2780 and DIz1,…,DIz1152 regarding
the training and test samples, respectively.

The second step in the training phase is to determine a
threshold boundary for decision-making. Using the ob-
tained damage indices DIx1,…,DIx2780 one should compute a
threshold value based on the GP distribution modeling and
the POT technique. Based on the iterative algorithm of
adequate exceedance selection proposed by Sarmadi and
Yuen,10 seven maximum damage indices from all 2780
samples provide the best fit to the GP distribution model, in

Figure 3. The main components for obtaining the damage indices of the training samples regarding the Z24 bridge: (a) the local densities
λx1,…, λx2780 and (b) the minimum distance values δx1,…., δx2780.

Figure 4. The main components for obtaining the damage indices of the test samples regarding the Z24 bridge: (a) the local densities
λz1,…, λz1152 and (b) the minimum distance values δz,…., δz1152.
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which case the best threshold level (u) is equal to… Notice
that the threshold level u is equivalent to the eighth max-
imum damage index; that is, u = 17.0569. Subsequently, the
maximum likelihood estimation is applied to estimate the
shape and scale parameter of the GP model, which are
ξ = �1.9049 and σ = 26.6746. Hence, the threshold
boundary at a 5% significance level (α = 0.05) corresponds
to τ = 31.013. To interpret the result of damage detection, the
damage indices of the training and test samples are collected
into a vector, whose scores are compared to the obtained
threshold boundary for decision-making. On this basis,
Figure 5 shows the result of damage detection in the Z24
bridge, where the horizontal line refers to the threshold
boundary.

As can be observed, all damage indices of the training
samples are below the threshold line. The same result can be
drawn for the damage indices of the validation data in the
samples 2781–3475. These results convey two important
conclusions. First, the proposed non-parametric method and
proposed damage index could appropriately deal with the
challenge of environmental variability. In this regard, one
can perceive that no sudden increases or jumps are available
between the samples 400–800 and 1200–1600. Second, the
EVT-based threshold determination enables the proposed
non-parametric method to make an accurate decision about
the training and validation samples and entirely label them
as the data related to the normal condition. On the other
hand, it is seen in Figure 5 that the majority of the damage
indices of the damaged state exceed the threshold except for
five points among 457 samples. This demonstrates that the

proposed could correctly discriminate the damaged state
from the normal condition and provide a reliable and rea-
sonable result for early damage detection with an incon-
siderable error.

Despite the effectiveness and reliability of the proposed
non-parametric method, it is necessary to conduct a com-
parison with some existing non-parametric techniques. In
the context of SHM, the anomaly detection based on the
Mahalanobis distance is one of the well-known data-driven
methods for early damage detection.16,17,22,37 This is due to
its some advantages such as simplicity, computational ef-
ficiency, and non-parametric characteristic. The other non-
parametric anomaly detection for SHM applications is
based on the SVD-based algorithm.15,22 Hence, the com-
parison process is based on assessing the performance of the
proposed non-parametric method against the anomaly de-
tection algorithms developed from the Mahalanobis dis-
tance and SVD in terms of damage detectability without
considering the threshold boundary. Accordingly, Figure 6
illustrates the variations in the damage indices obtained
from the proposed method, Mahalanobis distance metric
(DIm), and SVD (DIv). Notice that the full discussions and
main formulations of these methods can be found in Sar-
madi15 and Figueiredo et al.22

From Figure 6(a), it is clear that the scales of the damage
indices of the damaged state are considerably larger than the
corresponding scales regarding the damage indices of the
normal condition. As the damaged state is appropriately
distinguishable from the normal condition, one can con-
clude that the proposed non-parametric method can properly

Figure 5. Early damage detection in the Z24 bridge by the proposed anomaly detection method (NC: Normal Condition and DC:
Damaged Condition).
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provide high damage detectability. By contrast, as
Figure 6(b) and (c) appears, the sudden jump in the modal
frequencies of the normal condition between the samples
1200–1600 (see Figure 2) is still available in the damage
indices obtained from the Mahalanobis distance and SVD.
On the other hand, there is not a proper difference between
the distance quantities (i.e., DIm and DIv) of the damaged
and normal conditions. Furthermore, in Figure 6(b) and (c),
some distance values of the damaged state have similar or
smaller scales than the distance quantities of the normal
condition. This implies low damage detectability of the
classical Mahalanobis distance and the SVD-based anomaly

detection. This comparison proves that these classical
techniques are not reliable for decision-making under strong
variability in data or features. Therefore, one can conclude
that the proposed method is highly superior to these clas-
sical techniques.

To further evaluate, Table 1 lists the numbers and per-
centages of false positive, false negative, and total errors in
early damage detection of the Z24 bridge regarding the
proposed non-parametric method, the classical Mahalanobis
distance (MD), and SVD. Apart from these techniques, this
comparison introduces two other machine learning methods
proposed by Sarmadi.15 These methods are based on
combinations of auto-associative neural networks (AANNs)
with theMahalanobis distance and SVD, called AANN-MD
and AANN-SVD, which were developed to reduce the
decision-making errors by dealing with the problem of
environmental/operational variability. From the data in
Table 1, it is seen that the proposed method with the aid of
the EVT-based threshold estimator presents the best per-
formance with the smallest rates (i.e., the number and
percentage) of the decision-making errors. Having con-
sidered the same threshold estimator, AANN-MD and
AANN-SVD are the next effective techniques for early
damage detection. Nonetheless, the classical Mahalanobis
distance and SVD fail in providing reasonable results.
Although they have no false positive errors, all damage

Figure 6. Evaluation of non-parametric anomaly detectors: (a) the proposed method, (b) Mahalanobis distance, and (c) SVD.

Table 1. Comparison of the proposed method with the classical
and recently published anomaly detection techniques based on the
decision-making errors.

Method (%) False positive False negative Total

Proposed 0 (0.00) 5 (0.87) 5 (0.12)
MD 0 (0.00) 457 (100) 457 (11.62)
SVD 0 (0.00) 457 (100) 457 (11.62)
AANN-MD15 0 (0.00) 8 (1.75) 8 (0.20)
AANN-SVD15 3 (0.09) 11 (2.40) 14 (0.35)

SVD: singular vector decomposition; AANN-MD: auto-associative neural
networks-Mahalanobis distance; AANNA-SVD: auto-associative neural
networks-singular vector decomposition; MD: Mahalanobis distance.
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indices related to the damaged state fall below the threshold,
in which case all of them are incorrectly detected as the
normal indices (i.e., an entire false negative error). This
means that the sudden jump in the modal frequencies of the
Z24 bridge between the samples 1200–1600 are still
available in the damage indices obtained from the Maha-
lanobis distance and SVD. This conclusion is also ob-
servable in Figure 6(b) and (c). Regarding the total error,
one can conclude that the proposed non-parametric method
yields the best performance with the smallest error rate.
After that, AANN-MD and AANN-SVD give the reason-
able results. However, both the classical Mahalanobis
distance and SVD cannot provide reliable outputs of
decision-making due to their considerable errors.

In the other comparison, the computational time for
decision-making by the proposed method, AANN-MD, and
AANN-SVD is measured to compare their efficiency. The
result of this comparison is presented in Figure 7. This
procedure is conducted by the MATLAB function “tic-toc”
and a computer with the specification of Intel® Core i5,
2.20 GHz CPU and 8 G RAM. Regarding AANN-MD and
AANN-SVD, both of them contain three main steps for
decision-making called hyperparameter optimization (i.e.,
selection of the neurons of the hidden layers of the AANN),
data normalization (i.e., the removal of the effects of
environmental/operational variability from initial features)
by an AANN, and damage index calculation via the clas-
sical Mahalanobis distance and SVD. More details about
these techniques are available in Sarmadi.15 As can be seen
in Figure 7, the proposed method requires very short time

for decision-making (i.e., ∼47 s). By contrast, both AANN-
MD and AANN-SVD take longer time due to the procedures
of hyperparameter optimization and data normalization.
Therefore, one can conclude that despite relatively
better performance in decision-making, the proposed
method is more efficient than AANN-MD and AANN-
SVD. Notice that the computational time presented in
Figure 7 will be decreased by applying better computer
systems.

The other comparison is to consider smaller training
samples in the process of feature classification. In most of
the machine learning methods, a good performance is
obtained by using adequate or relatively large training
samples.16,17,36 For this reason, it is attempted to in-
vestigate the performance of the proposed method with
smaller fractions of normal samples equal to 30% and
50% for making the training data. Accordingly, one can
generate new training matrices including 1042 and 1738
training samples. The remaining feature samples of the
normal condition (i.e., the samples 1043–3475 and 1739–
3475 for the 30% and 50% training sample ratios) are
collected to the features of the damaged state (i.e., the
samples 3476–3932) to determine two different matrices
of test samples. Using the new training and test matrices,
all steps of the proposed method along with the EVT-
based threshold estimator are implemented to obtain two
types of damage indices for early damage detection. In
this regard, Figure 8 shows the results of early damage
detection of the Z24 bridge via 30% and 50% training
sample ratios.

From Figure 8(a), one can discern that the proposed
method provides reliable damage detectability with large
damage indices of the damaged state over the threshold
boundary. Moreover, no false positive is observable in the
training samples. However, there are numerous false pos-
itive errors in the validation samples. Apart from this issue,
the sudden jump in the modal frequencies between the
samples 1200–1600 are also available in the validation data.
The result in Figure 8(a) clearly demonstrates the serious
influence of taking a small value of the training sample ratio
on the performance of the proposed method. Although
Figure 8(b) shows that the use of 50% of normal features for
making the training set improves the decision-making
process, there are some false negative errors in the dam-
age indices of the damaged condition. For better clarifi-
cation, Table 2 presents the decision-making errors in early
damage detection under 80%, 50%, and 30% of training
sample ratios. As expected, the best and worst perfor-
mances are related to the ratios equal to 80% and 30%. On
the other hand, although the ratio 50% outperforms 30%, it
cannot yield the good performance of 80%. Thus, simi-
lar to most of the machine learning techniques, it can
be concluded that the proposed method requires rela-
tively large training samples by considering all possible

Figure 7. Computational time for decision-making by the
proposed, AANN-MD, and AANN-SVD methods in early
damage detection of the Z24 bridge.
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Figure 8. Early damage detection in the Z24 bridge by the proposed anomaly detection method by using smaller training sample ratios:
(a) 30% and (b) 50%.

Table 2. Performance evaluation of the proposed method under different training sample ratios.

Training sample ratio, (%) False positive False negative Total

80 0 (0.00) 5 (0.87) 5 (0.12)
50 1 (0.03) 35 (7.65) 36 (0.91)
30 752 (21.64) 0 (0.00) 752 (19.12)
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environmental/operational variability conditions to pro-
vide the best performance for decision-making.

A cable-stayed bridge

In the previous case study, the effectiveness and good
performance of the proposed non-parametric method were
proposed by the relatively large-size modal features in a
long-term scheme. In this section, one attempts to verify the
proposed method by small-size or low-dimensional features
from a short-term monitoring process. For this reason, the
measured vibration responses and statistical features
extracted from them related to a cable-stayed bridge are
considered. This structure is one of the earliest cable-stayed
bridges with continuous pre-stressed box-girder constructed
in China. In some literature, it is called the Tianjin-Yonghe
bridge, which is still under operation. Figure 9 shows this
bridge along with its main dimensions (i.e., the main span
of 260 m and two side-spans of 25.15 and 99.85 m, and the
height of 60.5 m for both concrete towers). In 2005, after
19 years of operation, some cracks were found at the
bottom of a girder segment over the mid-span. In addition,
some cables near the anchors were corroded severely. A
major rehabilitation program was performed to replace the
damaged girder and all cables between 2005–2007. A
sophisticated SHM system organized by the Center of
Structural Monitoring and Control (SMC) at the Harbin
Institute of Technology in China was designed and in-
stalled on the bridge so as to measure environmental and
dynamic data. During a routine inspection in August 2008,
new damage patterns were identified in the girders of the
bridge. Due to the equipment of the bridge with different
sensors, it is possible to use the measured vibration re-
sponses, acquired from ambient vibration, for validating
the proposed method.

As Li et al.38 reported, the vibration responses (accel-
eration time histories) on 12 days (i.e., 1 January, 17 Jan-
uary, 3 February, 19 March, 30 March, 19 April, 5 May, 18
May, 31 May, 7 June, 16 June, and 31 July) are available to
utilize them for damage detection. The vibration mea-
surements consist of 24 sets of 1-h acceleration time his-
tories with 360,000 data points per measurement (h)
acquired from 14 single-axis accelerometers, as shown in
Figure 9. The sampling frequency and time interval of the
acceleration responses are identical to 100 Hz and 0.01 s,
respectively. Because the data samples of the 10th sensor are
meaningless, it is neglected to apply to the SHM process.
On the other hand, the vibration responses of 3 days in-
cluding 31 May, 7 June, and June 16 are excluded due to
poor excitation conditions or lacking stability in the con-
secutive sets.39,40 Accordingly, the vibration data of 9 days
(i.e., 1 January, 17 January, 3 February, 19 March, 30
March, 19 April, 5 May, 18 May, and 31 July) from 13
sensors are incorporated into the SHM process. In this case,
the first 8 days refer to the normal condition of the bridge
and the last day (i.e., 31 July) is a damaged state.38

Feature extraction on the vibration time-domain re-
sponses of the bridge was carried out by time series
modeling through autoregressive moving average (ARMA)
models as fully discussed in Entezami et al.40 Hence, the
final feature sets of this feature extraction are considered
here. These sets include the variances of the ARMA re-
siduals from 13 sensors leading to a feature matrix of 13 ×
192, where the number 192 is obtained from multiplying 24
(the total measurement time for each day) by 8 (the number
of days with the normal condition). The information of the
ARMA models fitted to the 8 days is also used in the vi-
bration data of the last day to extract a new feature matrix of
the same size. To detect damage via the proposed non-
parametric method, such small-size feature samples are

Figure 9. The cable-stayed bridge: (a) the elevation view and main dimensions and (b) the plan view and sensor locations and labels.
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divided into the training and test matrices. In this regard,
80% of the values of the first feature matrix related to the
normal condition is taken to make the training matrix X =
[x1,…,x153]2R13 × 153, where p = 13 and n = 153.Moreover,
the remaining 20% of the variance amounts of the first
feature matrix and all variances of the second feature matrix
related to the damaged state are gathered to produce the test
matrix Z = [z1,…,z231]2R13 × 231, where m = 231.

Based on the main steps of the proposed non-parametric
method in the training phase, one initially needs to compute
the local density of each feature vector in X. In this case, it
can be determined the local densities λx1,…, λx153 as shown in
Figure 10(a). Using the Euclidean distance, the minimum
distance values δx1,…, δx153 of all training samples are then
determined, see Figure 10(b). Unlike the previous case
study, it is seen that no considerable reduction is available in
the local densities, which means that the time series features
were not influenced by the environmental and/or opera-
tional variability conditions. According to the research

conducted by Sarmadi,15 who fully discussed this problem
by proposing an automated prediction level of the envi-
ronmental and operational variability conditions, one can
state that the aforementioned conclusion is reasonable.
Finally, the damage indices of the training samples
DIx1,…,DIx153 are calculated by multiplying these amounts.

In the inspection phase, the procedures of the local
density and minimum distance value calculations are re-
peated by using the all training samples to determine λz1,…,
λz231 and δz1,…, δz231 as shown in Figure 11(a) and (b), re-
spectively. Similarly, these amounts are multiplied to obtain
the damage indices of the test samples DIz1,…,DIz231. To
evaluate the cable-stayed bridge for the problem of damage
occurrence, the EVT-based threshold determination ap-
proach is used to estimate a threshold value via the GP
distribution modeling and the POT framework. In this re-
gard, based on the method proposed by Sarmadi and
Yuen,10 the five maximum samples from DIx1,…,DIx153 are
selected as the adequate exceedances. Accordingly, the

Figure 10. Themain components for obtaining the damage indices of the training samples regarding the cable-stayed bridge: (a) the local
densities λx1,…, λx153 and (b) the minimum distance values δx1,…, δx153.

Figure 11. The main components for obtaining the damage indices of the test samples regarding the cable-stayed bridge: (a) the local
densities λz1,…, λz231 and (b) the minimum distance values δz1,…, δz231.
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shape and scale of the GP distribution are identical to
ξ = �1.3564 and σ = 1281, respectively. By choosing the
sixth maximum sample as the threshold level u = 654.2939
and 5% significance level α = 0.05, the threshold boundary
for the problem of damage detection of the cable-stayed
bridge corresponds to τ = 1582.

All damage indices of the training and test samples are
then collected into a vector to compare the damage indices
with the threshold boundary. Figure 12 shows the result of
early damage detection of the cable-stayed bridge, where
the horizontal line is indicative of the threshold. As can be
observed, all damage indices concerning the normal con-
dition, both the training and validation samples, are below
the threshold line. This result confirms that the proposed
non-parametric method is still reliable when a small set of

features is incorporated in the process of damage detection
with no false positive. Moreover, one can ensure that the
EVT-based method for threshold determination is also
successful in giving an accurate threshold boundary with a
such feature set. Furthermore, the damage indices of the
damaged state in the sample 193–384 exceed the threshold
implying accurate damage detection without any false
negative.

To further demonstrate the effectiveness and reliability of
the proposed method, it is compared with the classical
anomaly detection techniques based on the Mahalanobis
distance and SVD. Unlike the previous case study, where
the severe influence of the environmental variability could
not allow us to compare the non-parametric approaches via
the threshold limits, the current comparative study is based

Figure 12. Early damage detection in the cable-stayed bridge by the proposed anomaly detection method.

Figure 13. Early damage detection of the cable-stayed bridge by the classical non-parametric anomaly detection methods: (a)
Mahalanobis distance and (b) singular vector decomposition.
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on comparing the damage indices (distance values) obtained
from the Mahalanobis distance and SVD with two threshold
boundaries gained by their damage indices in the normal
condition. It needs to mention that the same EVT-based
approach is applied to estimate these two threshold values.

Hence, Figure 13 presents the results of early damage
detection by using the classical non-parametric methods,
where the horizontal lines refer to the aforementioned
threshold boundaries. Due to the weak effect of the

environmental and/or operational variability conditions on
the time series features (i.e., the variances of the ARMA
residuals),15 one can see that the distance values related to
the damaged state in the samples 193–384 are far away from
the corresponding values regarding the normal condition.
On the other hand, although most of the distance quantities
of the training and validation samples are under the
threshold lines, some false positive errors, that is, 9 out of
192 in Figure 13(a) and 2 out of 192 in Figure 13(b), are
observable in the validation samples. Furthermore, both
classical techniques yielded few false negative errors, that
is, 2 out of 192 in Figures 13(a) and 3 out of 192 in
Figure 13(b). An important observation in Figure 13 is that
the variability in distance values obtained from the Ma-
halanobis distance and SVD is much larger than the damage
indices of the proposed method. All the conclusions confirm
that this method is superior to the classical non-parametric
techniques in spite of low effects of the environmental and/
or operational variability conditions on the time series
features (i.e., the variances of the ARMA residuals).

For further investigation, Table 3 lists the numbers and
percentages of the false positive, false negative, and total
errors in early damage detection of the cable-stayed bridge

Table 3. Comparison of the proposed method with the classical
and recently published anomaly detection techniques based on the
decision-making errors.

Method (%) False positive False negative Total

Proposed 0 (0.00) 0 (0.00) 0 (0.00)
MD 9 (4.68) 2 (1.04) 11 (2.86)
SVD 2 (1.04) 3 (1.56) 5 (1.30)
AANN-MD15 0 (0.00) 0 (0.00) 0 (0.00)
AANN-SVD15 0 (0.00) 0 (0.00) 0 (0.00)

MD: Mahalanobis distance; SVD: singular vector decomposition; AANN-
MD: auto-associative neural networks-Mahalanobis distance; AANNA-
SVD: auto-associative neural networks-singular vector decomposition.

Figure 14. Computational time for decision-making by the proposed, AANN-MD, and AANN-SVD methods in the SHM problem of
the cable-stayed bridge.
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by using the EVT-based threshold estimator. Similar to the
previous case study, the amounts in this table intend to
compare the proposed non-parametric method with the
classical Mahalanobis distance and SVD as well as AANN-
MD and AANN-SVD. Compared with the classical ap-
proaches, it is clear that the proposed non-parametric
method along with AANN-MD and AANN-SVD provide
the best performances of decision-making without any
decision-making errors. Although the error rates regarding
the classical Mahalanobis distance and SVD are not as
inappropriate as the corresponding rates in the SHM
problem of the Z24 bridge, they cannot still yield the good
performance of the proposed method.

Furthermore, Figure 14 shows the comparison be-
tween the proposed method and AANN-MD and
AANN-SVD in terms of computational time. Using the
same computer system as the previous case study, it is
observed that the proposed method is more efficient than
AANN-MD and AANN-SVD (i.e., its computational
time is about 4 s). In contrast, the procedures of hy-
perparameter optimization and data normalization take
the longest computational time for AANN-MD and
AANN-SVD. Thus, this comparison reveals that the
proposed method is much more efficient than AANN-
MD and AANN-SVD despite their similar outputs (i.e.,
error rates) of decision-making.

Conclusions

To detect early damage in short-term and long-term
monitoring schemes, this article proposed a novel non-
parametric anomaly detection method based on the theory
of empirical machine learning. Accordingly, a new
damage index was proposed by multiplying the local data
density of each feature obtained from the empirical
machine learning framework by the minimum distance
value of that feature. By implementing this process for
each of the training and test samples in the training and
inspection phase, their damage indices were computed to
detect damage. An EVT-based method based on the GP
distribution modeling and the POT framework was
considered to determine a threshold boundary for
decision-making. The dynamic (modal) and statistical
(time series) features of two full-scale bridge structures
were applied to validate the effectiveness and reliability
of the proposed non-parametric method. Finally, this
method was compared with two classical non-parametric
anomaly detection based on the Mahalanobis distance and
the SVD algorithm.

The results on both structures demonstrated that the
proposed method is highly successful in discriminating the
damaged state from the normal condition in long-term and
short-term procedures with the strong and weak environ-
mental variability conditions, respectively. This method

could also deal with the major challenge regarding the
environmental variability and significantly reduced its
negative influences. In the problem of the Z24 bridge, it was
indicated that the proposed local data density cannot alone
consider as a damage index. In this case, the idea of finding
the minimum distance value of each feature in the training
samples helped to define a more effective and reliable
damage index. In the SHM problem of both bridges, the
comparative studies revealed that the proposed non-
parametric anomaly detector outperforms the classical
Mahalanobis distance and SVD techniques in terms of
providing higher damage detectability and smaller false
positive and false negative errors. The comparisons between
the proposed method with AANN-MD and AANN-SVD in
both bridges showed that all three methods yield reasonable
decision-making outputs. However, the proposed method
gives better performance under strong environmental/
operational variability related to the long-term SHM
problem of the Z24 bridge. Moreover, this method is much
more efficient than AANN-MD and AANN-SVD in terms
of computational time. Nonetheless, the use of a very small
ratio for making training samples seriously reduces the
effectiveness of the proposed method. In this case, one
should consider a relatively large training data by capturing
all possible environmental/environmental variability
conditions.

Despite reasonable and good performance of the pro-
posed non-parametric method for early damage detection,
its main limitations include the necessity of applying ad-
equate training samples and its offline learning scheme in
the training phase. Accordingly, it is recommended to de-
velop the proposed method for smaller training samples in
an online learning manner. Another recommendation for
further research is to evaluate the performance of the
proposed method or its developed version on other types of
structures as well as optimum sensor configurations.
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