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A green methodology for C–S cross-coupling reaction over CuII attached
to magnetic natural talc (c-Fe2O3/talc/Cu

II NPs) as a heterogeneous
and ligand-free catalyst

Malihe Nayamadi Mahmoodabadi and Batool Akhlaghinia

Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

ABSTRACT
Herein a prominent, efficient, facile and environmentally benign catalytic activity of c-Fe2O3/talc/
CuII NPs (as a superparamagnetic composite with average diameter of about 20-30 nm) has been
shown in C–S cross-coupling reactions. A wide variety of aryl iodides, aryl bromides and aryl chlor-
ides with electron-donating or electron-withdrawing substituents reacted with S8 or thiourea form-
ing the corresponding substituted diphenyl sulfides under eco-friendly and mild process
conditions. The results demonstrated remarkable catalytic activity of the nanostructured catalyst
such as chemoselectivity and functional group tolerance. c-Fe2O3/talc/Cu

II NPs as a magnetic cata-
lyst was stable under reaction conditions and can be recycled at least five times with minimal loss
of catalytic activity. Moreover, the use of commercially available and chemically stable sulfur trans-
fer agent, eco-friendly and low-cost solvent and base as well as operational simplicity and easier
work-up procedure make this method a promising candidate for potential applications in some
organic reactions.
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1. Introduction

Today, the carbon-heteroatom bond can be considered as
one of the most important functional groups in organic syn-
thesis which can be used as precursor or intermediate in the
basic and vital infrastructures [1]. Over the last decades,
organic molecules containing C–S bond (with a very special
place in organosulfur chemistry), are prevalent in numerous
bioactive natural products, pharmaceutical [2, 3], and mater-
ial science [4–12]. Thus, designing efficient and high yield
methods for the synthesis of aryl sulfides and their deriva-
tives have been developed over the last years due to their
increasing applications in organic synthetic reactions
[13–20]. Traditionally, C–S bond formation can be accom-
plished by the reaction of thiols with aryl/alkyl halides using

various transition metals [20–34]. This classical method has
attracted high attention as a great contribution to the recent
growth of organic synthesis and indispensable tool for the
synthetic chemists as well. Direct use of highly volatile,
harmful, toxic, odorous, (in sometimes) expensive and less
available thiols with a high tendency to bind to transition
metals can act as metal deactivators and leads to unavoid-
able environmental and safety problems. Moreover, in most
of the C-S cross-coupling reactions, stable disulfides can be
formed through easy oxidative homocoupling S-S reaction
of thiols [35–40]. Consequently, the catalytic activity of tran-
sition metals in C–S cross-coupling reaction is less explored
than the other cross-coupling reactions [1, 41–46], due to
the disadvantages associated with these methods. To gain
sustainable synthetic methods, instead of free thiols various
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sulfur reagents have been applied in the synthesis of various
aryl sulfides and their derivatives such as: thiourea [47–58],
potassium thiocyanate [59–62], carbon disulfide [63–65], S8
[56,58,66–70] and sodium thiosulfate [71]. Among them,
sulfur powder and also thiourea as low cost, odorless, safe
and effective sulfur transfer agents show particular promise
for C–S cross-coupling reaction [48, 72]. A literature review
reveals that amongst all the transition metals, copper is pre-
dominantly attractive because of its polarizability, special
redox properties, low toxicity and cost effectiveness [48, 50,
51, 55, 56, 69, 70, 73]. Also, in the area of transition-metal
catalyzed reactions, copper with quite different behavior
sometimes competes with palladium which may be consid-
ered as a simple renaissance of Ullmann’s chemistry
[74–81]. Most of the widely used copper derivatives with
homogeneous nature, (such as salts, oxides, or complexes
with ligands) hampers the recovery, reuse as well as their
practical applicability mainly in the synthesis of drug mole-
cules, which must be free of any residual metal [81–84].

Consequently, with respect to the principle of green
chemistry in both academia and industry, development of
an environmentally friendly heterogeneous copper catalytic
system devoid metal accumulations, organic waste gener-
ation as well as their economic and industrial significance,
is the main focus in recent years [77, 79, 85–88].
Heterogeneous catalysts with the benefits of recovery and
reuse after completion of the green chemical processes also
has some disadvantages such as highspeed centrifugation
step or tedious workup procedures, which need to be over-
come by more developed techniques. Magnetic nanoparticles
have been widely used in designing environmentally friendly
heterogeneous nanostructured catalysts due to their super
magnetism, large surface areas as well as non-toxicity. An
outstanding feature of magnetic nanostructured catalysts is
that they can be easily separated from the reaction mixture
by an external magnetic field, which achieves a simple separ-
ation of the catalyst without using filtration or centrifuga-
tion. Moreover, magnetic nanoparticles provide high
potential active sites for immobilization of metal ions. There
are many examples in the literature about the utility of het-
erogeneous copper-based catalysts in cross-coupling reac-
tions. Most of them based on copper complexes with
functionalized ligands immobilized on different supports
[89–96]. Synthesis of specialized ligands, immobilization and
copper complex formation steps, often, may limit the appli-
cation of catalyst in organic reactions. In this respect, immo-
bilization of metals onto a ligand free magnetic support

(heterogeneous metallic-based catalysts) with high surface
area, easy product purification and reusability are highly
preferred [97–99]. Recently, we disclosed the efficient cata-
lytic activity of CuII attached to magnetic natural talc
(c-Fe2O3/talc/Cu

II NPs) as a stable and reusable ligand free
magnetic nanostructured catalyst in preparation of 1H-pyra-
zolo[1,2-b] phthalazine-5,10-diones via one-pot multicompo-
nent reaction [100]. Following this study, and in
continuation of our sustainable approach for C–S cross-cou-
pling reaction [56, 57] herein, we report C–S cross-coupling
reaction through the reaction of aryl halides with S8 or thio-
urea in the presence of c-Fe2O3/talc/Cu

II NPs (Scheme 1).

2. Results and discussion

2.1. Catalyst synthesis and characterization

Talc represented by a general formula of Mg3Si4O10(OH)2
[101] was composed of an octahedral magnesium hydroxide
sheet sandwiched between two tetrahedral silica sheets. All
components of this 2:1 type layered configuration were
bonded together by ionic and covalent bonds. Talc as a
monoclinic and/or triclinic mineral without residual surface
charge has BrØnsted acidic sites due to the presence of few
–SiOH and –MgOH groups on the lateral faces. On the
other hand, the existence of Si-O-Si bonds on the basal sur-
face displays low level of Lewis basicity [102–104].
Accordingly, talc can be employed as an excellent natural
support for various heterogeneous catalysts due to having
chemically active sites. To provide easy separation of cata-
lysts, using a simple magnetic bar (instead of centrifugation
and filtration) from the reaction mixture, c-Fe2O3 nanopar-
ticles were incorporated into the talc structure. Furthermore,
easy synthesis and functionalization, large surface area, high
degree of chemical stability in various solvents as well as
cost-effectiveness and biocompatibility have been achieved
upon the application of magnetic nanoparticles in organic
transformations [105–109].

By considering the importance of clean synthetic proce-
dures and following our continuous interest in the develop-
ment of efficient and environmentally friendly catalysts [110,
111], in the present study c-Fe2O3/talc/Cu

II NPs was pre-
pared from commercially available chemicals according the
multiple steps in Figure S36 (Supplemental Materials) [100].
Talc powder (I) as promising supporting material were mag-
netized by reaction between Fe2þ and Fe3þ ions and NaOH.
Thereafter, the obtained Fe3O4/talc was converted to

Scheme 1. Diphenyl sulfides preparation from the reaction of aryl halides with S8 or thiourea in the presence of c-Fe2O3/talc/Cu
II NPs in green media.
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c-Fe2O3/talc NPs (II) upon heating at 220 �C for 3 h. Then,
the reaction of c-Fe2O3/talc NPs with refluxing solution of
Cu(OAc)2.H2O in methanol produced Cu II attached to
magnetic natural talc (c-Fe2O3/talc/Cu

II NPs (III)).
Full characterization of c-Fe2O3/talc/Cu

II NPs was per-
formed by recording Fourier-transform infrared (FT-IR) spec-
troscopy, X-ray powder diffraction (XRD) analysis,
transmission electron microscopy (TEM), field emission scan-
ning electron microscopy (FE-SEM), energy-dispersive X-ray
(EDX), EDX-mapping, vibrating sample magnetometer
(VSM), and inductively coupled plasma optical emission spec-
trometry (ICP-OES) (Supplemental Materials, Figures S1–S6).

2.2. Catalyst performance

The catalytic efficiency of c-Fe2O3/talc/Cu
II NPs in the C-S

cross-coupling reaction was evaluated by the reaction
between iodobenzene (1mmol) and S8 or thiourea
(0.5mmol) as the source of sulfur. To determine the best
reaction conditions, an intensive screening of reaction
parameters was undertaken on a model reaction (Table 1).
As replacement of hazardous solvents with relatively benign
solvents in organic synthesis is one of the important aspects
of green chemistry [112], our initial study was started by
performing the model reaction in EtOH. We and others
have previously reported that “Water Extract of Banana”
(WEB) can be used as a base in Sonogashira-Hagihara and
Suzuki-Miyaura cross-coupling reactions, Dakin oxidation as
well as preparation of 2-amino-3,5-dicarbonitrile-6-thio-pyr-
idines [113–116]. WEB contains potassium carbonate,
sodium carbonate, potassium chloride, and sodium chloride

as the major constituents along with other trace elements
[117]. Accordingly and with respect to the principle of green
chemistry, the sample reaction was examined using WEB as
base. It could be seen that in the absence of c-Fe2O3/talc/
CuII NPs and base, no product is detectable in refluxing
EtOH even after a long period of time (Table 1, entries
1–3). The best results were obtained in short reaction time
in the presence of c-Fe2O3/talc/Cu

II NPs by using WEB
(Table 1, entry 4). The amount of catalyst loading has a con-
siderable effect on the yield of the C–S cross-coupling reac-
tion. To verify the effect of catalyst loading, in a set of
experiments, the model reaction was conducted in the pres-
ence of different amounts of c-Fe2O3/talc/Cu

II NPs (Table 1,
entries 5–8). Pleasantly, it was found that among various
amounts of catalyst screened, the maximum yield of the
desired product (in the reaction of iodobenzene with S8 or
thiourea) was obtained in 40/or 40min by applying 1.1/or
1.4mol% of catalyst (Table 1, entries 6 and 4 respectively).
It is apparent that the reasonable yield of the desired prod-
uct (in the reaction of iodobenzene with S8 or thiourea) was
achieved when the model reaction was performed in reflux-
ing EtOH. (95%/or 98% after 40/or 40min) To achieve the
best temperature, the model reaction’s feasibility was exam-
ined at 70 �C, and 65 �C (Table 1 entries 9, 10). Evidently,
the best catalytic activity of c-Fe2O3/talc/Cu

II NPs was sup-
plied in refluxing EtOH. (93%/or 98% after 40/or 40min)
As the reaction was significantly affected by the amount of
base, after finalizing the amount of catalyst loading and tem-
perature for the reaction of iodobenzene with S8 or thiourea,
the next target was to investigate the proper amount of
WEB (Table 1, entries 11, 12). Applying 0.8mL of WEB

Table 1. Synthesis of diphenyl sulfide from the reaction of iodobenzene with S8 or thiourea catalyzed by c-Fe2O3/talc/Cu
II NPs under different reaction condi-

tions.

Entry Catalyst (mol%)S8 or thiourea Basea (mL) Solvent Temperature (�CÞ Time(min)S8 or thiourea Conversion (%)S8 or thiourea
Isolated yield (%)
S8 or thiourea

1 –/– – EtOH Reflux 24 (h) 0 / or 0 0 / or 0
2 –/– WEB EtOH Reflux 24 (h) 0 / or 0 0 / or 0
3 1.4 / or 1.4 – EtOH Reflux 24 (h) 0 / or 0 0 / or 0
4 1.4 / or 1.4 WEB EtOH Reflux 25 / or 40 100 / or 100 98 / or 98
5 1.2 / or 1.2 WEB EtOH Reflux 30 / or 50 100 / or 100 95 / or 90
6 1.1 / or 1.1 WEB EtOH Reflux 40 / or 65 100 / or 100 95 / or 80
7 0.97 / or 0.97 WEB EtOH Reflux 60 / or 80 100 / or 100 80 / or 75
8 2.7 / or 2.7 WEB EtOH Reflux 20 / or 35 100 / or 100 90 / or 85
9 1.1 / or 1.4 WEB EtOH 70 60 / or 55 100 / or 100 85 / or 80
10 1.1 / or 1.4 WEB EtOH 65 65 / or 65 100 / or 100 80 / or 75
11b 1.1 / or 1.4 WEB EtOH Reflux 70 / or 90 100 / or 100 70 / or 62
12c 1.1 / or 1.4 WEB EtOH Reflux 40 / or 40 100 / or100 90 / or 90
13 1.1 / or 1.4 WEB – 74 24 / or 24(h) 40 / or 40 35 / or 35
14d 0.3g / or 0.3 g WEB EtOH Reflux 24 / or 24(h) 10 / or 10 Trace / or Trace
15e 0.3g / or 0.3 g WEB EtOH Reflux 24 / or 24(h) 10 / or 10 Trace / or Trace
16f 1.4 / or 1.4 WEB EtOH Reflux 24 / or 24(h) 25 / or 20 18 / or 15

Reaction conditions: iodobenzene (1mmol), S8 or thiourea (0.5mmol). The first and the second numbers are related to the S8 reactions’ data and the thiourea
reactions’ data, respectively. aThe used base volume was 1.0mL. bThe used base volume was 0.8mL. cThe used base volume was 1.2mL. dReaction was per-
formed in the presence of talc as the catalyst. eReaction was performed in the presence of c-Fe2O3/talc as the catalyst. fReaction was performed in the pres-
ence of Cu(OAc)2.H2O as the catalyst. The optimized conditions of the S8 reactions’ data and the thiourea reactions’ data are represented in bold in rows 4
and 6, respectively.
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decreased the reaction yield to 70%/or 62% even after 70/or
90min, whereas additional amount of WEB up to 1.2mL
afforded the desired product as the same as using 1.0mL of
WEB. During our optimization studies, by applying the
same reaction conditions, the model reaction was conducted
in solvent-free condition. Comparatively, Table 1 shows that
reaction was carried out but afforded lower yields even after
long reaction time (Table 1, entry13). In further attempts, to
elucidate the catalyst’s role in the C-S cross-coupling reac-
tion, under the optimized reaction conditions the model
reaction was examined in the presence of talc, c-Fe2O3/talc
NPs and Cu(OAc)2.H2O as catalyst (Table 1, entries 14–16).
Reasonably, in all cases low yield of the desired product was
obtained after prolonged reaction time. The obtained result
in the presence of c-Fe2O3/talc/Cu

II NPs confirmed much
more efficiency of nanostructured catalyst than
Cu(OAc)2.H2O in the reaction of iodobenzene with S8 or
thiourea (Table 1, entries 6 and 4 vs 16).

Having the established optimal reaction conditions (Table
1, entries 4 and 6), the scope of the present protocol was
also extended to a wide variety of aryl halides bearing elec-
tron-donating and electron-withdrawing functional groups
(Table 2). As shown in Table 2, good to excellent yields of
diaryl sulfides were obtained from the C–S cross-coupling
reaction of differently substituted aryl iodides, aryl bromides
and aryl chlorides with S8 or thiourea in the presence of
c-Fe2O3/talc/Cu

II NPs. It is worth noting that aryl halides
containing electron-donating substituents (such as
–OCH3.–CH3, –NH2, –OH) required slightly longer reaction
times than the other aryl halides containing electron-with-
drawing substituents (such as –CN, –NO2) to obtain the
respective diaryl sulfides (Table 2, entries 2, 3, 8, 13 and 14
vs entries 4, 5 and 9). Comparatively, the lower reactivity of
the electron-rich aryl halides is the result of more difficult
insertion of copper into the carbon-halide bond than that of
electron-poor ones [118, 119]. As can be seen, the aryl
iodides accomplished the C–S cross-coupling reaction more
quickly than those by aryl bromides and aryl chlorides due
to the lower C-I bond strength as compared to those of C-
Br and C-Cl bonds (Table 2 entry 1 vs entries 7 and 12).
Interestingly, no N-arylating products were produced upon
the reaction of aryl halides bearing unprotected amino
groups with S8 or thiourea using this catalytic system (Table
2, entries 8 and 13). The reactions seemed to be effective in
the case of 2-bromothiophene as a heteroaryl halide. The
respective sulfide was afforded in an excellent yield under
the optimized reaction conditions (Table 2, entry 10). The
successful reaction of 1-bromonaphthalene to give the corre-
sponding sulfide in a high yield could be regarded as an
important aspect of this method (Table 2, entry 11). It is
important to note that the C–S cross coupling reaction is
sensitive to the steric hindrance on the substrate (Table 2,
entries 15 and 16). The C–S cross-coupling reaction of 2,4-
dinitro chlorobenzene with S8 or thiourea produced the cor-
responding product in low yield (30%) even after long reac-
tion time (Table 2 entry 15). Additionally, after prolong
reaction time no product was obtained in the case of 2-
chloro aniline (Table 2 entry 16).

To extend the scope of the reaction further, the chemose-
lectivity of the present method was investigated. The mass
spectrometry of the obtained product from the C–S cross-
coupling reaction of 1-chloro-4-iodobenzene (as dihalogen-
ated aryl halide) with S8 or thiourea confirmed the more
reactivity of iodide (Table 2, entry 6) (Figure S26). Also, the
NMR data confirmed the formation of diaryl sulfide in good
to excellent yield as the only reaction product, and no diaryl
disulfide was formed in any of the cases.

The progress of the C–S cross-coupling reaction was fol-
lowed by the formation of respective product as well as the
disappearance of aryl halide on TLC. All the obtained prod-
ucts were known which isolated and purified as oil or solid
products. The synthesized compounds were initially identi-
fied by comparison of their melting points with those
reported in the literature and/or by mass spectrometry
which the molecular ion peaks exhibited their respective m/z
values. Also, the high-field 1H NMR and 13C NMR spectros-
copy verified the structures of some selected products effect-
ively (Supplemental Materials, Figures S11–S35).

Consistent with the previously reported mechanism in
the literature [52, 69], and according to our previous and
present investigations [56, 57], we would like to propose
conceivable mechanism for the C–S cross-coupling reaction
of aryl halides with S8 or thiourea in the presence of
c-Fe2O3/talc/Cu

II NPs in green media as shown in Scheme
2. Based on the literature report, it was found that WEB
consists of potassium carbonate, sodium carbonate, potas-
sium chloride, and sodium chloride as the major constitu-
ents along with a host of other trace elements [117]. The
pH meter was used to determine the pH of WEB and it was
found to be 9.8.

At the outset of the reaction of aryl halide with S8, it was
hypothesized that sulfur powder was converted to disulfide
ion (I) in basic media which was instantly transformed to
the stable copper disulfide (intermediate II) [69] in the pres-
ence of c-Fe2O3/talc/Cu

II NPs. Subsequently, III which was
produced upon the oxidative addition reaction of aryl halide
to intermediate II, generated the intermediate IV upon aryl
migration reaction. Thereafter, the conversion of intermedi-
ate IV into V followed by oxidative addition reaction with
another aryl halide molecule afforded the key intermediate
VI. Ultimately, the desired diaryl sulfide (VII) was obtained
through a reductive elimination reaction as well as the
regeneration of the active catalytic species CuII for the next
run (Scheme 2a).

Also, a plausible mechanism of the reaction of aryl hal-
ides with thiourea was formulated, as shown in Scheme 2b.
Primarily, it is supposed that via an oxidative addition reac-
tion, CuII species insert into CSP

2-X (I0) bonds which pro-
duced the intermediate II0. Subsequently, intermediate III0

was obtained upon the reaction of intermediate II0 with
thiourea. As shown in Scheme 2b, the reductive elimination
of intermediate III0 smoothly occurred to produce inter-
mediate IV0 and the c-Fe2O3/talc/Cu

II NPs as well. In the
following, the intermediate IV0 afforded the thiol moiety
(V0) in alkaline media which reacted with another molecule
of intermediate II0 to give intermediate VI0. Finally, the
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Table 2. Synthesis of diaryl sulfides from the C–S cross-coupling reaction of aryl halides with S8 or thiourea catalyzed by c-Fe2O3/talc/Cu
II NPs.

Entry Aryl halide Product
Time (h)S8 or
thiourea

Conversion
(%)S8 or
thiourea

Isolated
yield

(%)S8 or
thiourea

1 40 / or 40(min) 100 / or 100 95 / or 98

2 1.35 / or 1.35 87 / or 75 85 / or 72

3 1.15 / or 2.10 89 / or 80 85 / or 75

4 40(min) / or 2 95 / or 92 91 / or 89

5 40 / or 40(min) 90 / or 92 87 / or 89

6 2.45 / or 2.35 47 / or 48 43 / or 45

7 2.40 / or 3 93 / or 85 89 / or 82

8 4.30 / or 4.5 90 / or 86 85 / or 80

9 1.25 / or 2.20 91 / or 85 85 / or 80

10 3.40 / or 4.10 89 / or 80 85 / or 75

11 7.10 / or 8.45 76 / or 79 72 / or 76

12 3 / or 4 75 / or 71 73 / or 68

(continued)
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desired diaryl sulfide (VII) was obtained through a reductive
elimination manner on intermediate VI0 alongside the
regeneration of the active catalytic species CuII for the next
run. To elucidate the details of the mechanism and scope of
C–S cross-coupling reaction of aryl halide with S8 or thio-
urea in the presence of c-Fe2O3/talc/Cu

II NPs further inves-
tigations are required.

2.2.1. Catalyst reusability
Nowadays, decreasing the chemical waste as well as
improvement the selectivity and effectiveness of synthetic
processes can be considered as one of the important criteria
of chemical and pharmaceutical industries in a movement
toward the green chemistry. To implement green chemistry
principles, development of recoverable and recyclable cata-
lysts is necessary. In this regard, the recoverability and reus-
ability of c-Fe2O3/talc/Cu

II NPs in C–S cross-coupling
reaction via the reaction of iodobenzene with S8 or thiourea
were investigated over five runs. The model reaction was
performed under the optimized reaction conditions. Upon
completion of the reaction (40/or 40min), which was moni-
tored by TLC, the reaction mixture was cooled to room
temperature. The catalyst was separated by a magnetic field,
washed with acetone (2� 15mL) and distilled water
(4� 15mL) before drying at 100 �C for 2 h and applied for a
consecutive run under the same reaction conditions. The
results (Figure S7, see “Supporting Information” file) showed
that quantitative conversion/isolated yield of desired product
was obtained for five runs. Loss of activity of c-Fe2O3/talc/
CuII NPs was observed from the fifth run.

The structural stability of c-Fe2O3/talc/Cu
II NPs after five

cycles in the reaction of iodobenzene with S8 or thiourea

was investigated by FT-IR, XRD, FE-SEM, EDX and ICP-
OES techniques.

No significant changes in the frequencies, intensities and
shapes of absorption bands were observed in the FT-IR spec-
tra of the 5th recovered c-Fe2O3/talc/Cu

II NPs from the reac-
tion of iodobenzene with S8 or thiourea. (Figure S1(d and e),
see “Supporting Information” file) Furthermore, XRD analysis
of the 5th recovered catalyst demonstrated that the no changes
were happened in the structure of c-Fe2O3/talc/Cu

II NPs dur-
ing the C–S cross-coupling reaction of iodobenzene with S8.
(Figure S2c, see “Supporting Information” file) Additionally,
the average crystalline size of the 5th recovered c-Fe2O3/talc/
CuII NPs was estimated to be 24 nm according to the Debye-
Scherrer equation. Additionally, according to the FE-SEM
images depicted in Figure S4(c and d), (see “Supporting
Information” file) no agglomeration was observed in the
structure of 5th reused c-Fe2O3/talc/Cu

II NPs. Also, the pres-
ence of Si, Mg, Fe, Cu and O elements in the composition of
5th reused c-Fe2O3/talc/Cu

II NPs clearly authenticated the
composition stability of this nanostructured catalyst (Figure
S5b, see “Supporting Information” file). Based on ICP-OES
analysis, the copper content of the fifth reused nanostructured
catalyst from the reaction of iodobenzene with S8 or thiourea
is found to be 0.714/or 0.696mmol g�1, while the freshly-pre-
pared catalyst was shown to contain 0.736mmol of Cu per
1.000 g of c-Fe2O3/talc/Cu

II NPs.
Now, the obtained results from FT-IR, XRD, FE-SEM,

EDX and ICP-OES techniques confirms the stability of
c-Fe2O3/talc/Cu

II NPs in terms of functional groups, crystal-
line structure, morphology, particle size, and strong coordin-
ation of CuII ions to c-Fe2O3/talc NPs even after five
consecutive recycle runs.

Table 2. Continued.

Entry Aryl halide Product
Time (h)S8 or
thiourea

Conversion
(%)S8 or
thiourea

Isolated
yield

(%)S8 or
thiourea

13 6.50 / or 8.15 74 / or 68 70 / or 65

14 7.25 / or 8.30 72 / or 63 68 / or 57

15� 7.20/24 30/30 25/25
8/24 15/15 10/10

16 24 / or 24 10 / or 10 Trace / or Trace

The first and the second numbers are related to the S8 reactions’ data and the thiourea reactions’ data, respectively. �The data of the first and the second lines
are related to the S8 reaction (after 7.20 h to 24 h) and the thiourea reaction (after 8 h to 24 h), respectively.
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2.2.2. Hot filtration test
Hot filtration test was performed to determine whether the
catalyst is actually functioning in a heterogeneous manner.
At the outset, the reaction of iodobenzene with S8 or thio-
urea was conducted under the optimized reaction condition.
When approximately 50% (after 20/or 20minutes) of the
reaction was proceeded (monitored by TLC) the catalyst was
magnetically separated from the reaction medium. Then, the
reaction was continued for another 20/or 20minutes without
any catalyst under the same reaction conditions and moni-
tored by TLC. (Figure S8, see “Supporting Information” file)
It appeared that after 20/or 20minutes in refluxing EtOH
the reaction did not proceed further toward C–S cross-cou-
pling reaction in the absence of c-Fe2O3/talc/Cu

II NPs. It is
apparent from the ICP-OES analysis that a negligible
amount of Cu leached out during the entire course of the
catalytic C–S cross-coupling reaction (less than 0.07/or
0.07mol%). It means that c-Fe2O3/talc/Cu

II NPs has a truly
heterogeneous nature and good stability without any signifi-
cant leaching of Cu during the C–S cross-coupling reaction
under the optimized reaction conditions.

2.2.3. Poisoning test
To further distinguish the true heterogeneity or homogen-
eity nature of catalyst, poisoning test was done under the
optimized reaction conditions. For this purpose, in two sep-
arate flasks the reaction of iodobenzene with S8 or thiourea
was conducted in the presence and in the absence of ethyle-
nediaminetetraacetic acid (EDTA) as an excellent scavenger
of soluble CuII ions [120]. In this regard, the reaction pro-
gress was monitored by TLC. According to the obtained
results, there is no noticeable difference between the yield of
the reaction in the presence and absence of EDTA in spite
of the high affinity of EDTA to form a stable complex with
the soluble CuII ions. (Figure S37) obtained results demon-
strated no leaching of CuII ions took place in solution dur-
ing the reaction and the reaction arguably proceeds in a
heterogeneous pathway. Therefore, the results clearly certi-
fied the pure heterogeneous nature of c-Fe2O3/talc/Cu

II

under the described reaction conditions (Figure S9).
In another variation, to show the unquestionable features

of c-Fe2O3/talc/Cu
II NPs in C–S cross-coupling reaction of

aryl halides with S8 or thiourea, the efficiency of the present

Scheme 2. Recommended mechanism for the C–S cross-coupling reaction of aryl halides with S8 (a) and thiourea (b) in the presence of c-Fe2O3/talc/Cu
II NPs.
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methodology was compared with some of the previously
reported methods by others. The results of some commonly
(homogeneous and heterogenous) catalysts in the literature
for the same transformation, were tabulated in Tables 3 and
4. As can be apparently seen from Tables 3 and 4 there is
no doubt that all of the listed catalysts significantly
improved the C–S cross-coupling reaction of aryl halides
with S8 or thiourea, nevertheless the reaction of iodobenzene
with S8 or thiourea in the presence of c-Fe2O3/talc/Cu

II NPs
is much superior to almost all of the well-known catalyst
systems in terms of the catalyst loading (Table 3, entries
4–7, Table 4, entries 1, 3–5 and 8–11), solvent (Table 3,
entries 1–3 and 6, Table 4, entries 2–9 and 11), temperature
(Table 3 entries 1–7, Table 4, entries 1–11), reaction times
(Table 3, entries 2 and 5–7, Table 4, entries 2–9 and 11),
easy recovering potential of the catalyst from the reaction
mixture (Table 3, entries 1–4 and 6–7, Table 4, entries 2–4
and 6–10) and high reusability as well (Table 3 entries 6� 7,
Table 4, entries 3–4, 6 and 8–9). Prominently, using envir-
onmentally friendly base (WEB) is another superiority of
this catalytic methodology over the previously reported
methods without using expensive catalyst, solvent
and reagents.

3. Material and methods

3.1. General

All chemical reagents and solvents were purchased from
Merck Chemical Company and were used as received with-
out further purification. The purity determinations of the

products and the progress of the reactions were accom-
plished by TLC on silica gel polygram STL G/UV 254 plates
(using n-hexane: ethyl acetate ¼ 9: 1 as eluent). The melting
points of the products were determined with an
Electrothermal Type 9100 melting point apparatus. The pH
was determined by inoLab pH 7110 pH meter.The FT-IR
spectra were recorded on pressed KBr pellets using an
AVATAR 370 FT-IR spectrometer (Therma Nicolet spec-
trometer, USA) at room temperature in the range between
4000 and 400 cm�1 with a resolution of 4 cm�1. The NMR
spectra were obtained on Brucker Avance 300 and 400MHz
instruments in CDCl3 and DMSO-d6. NMR spectra are cali-
brated using residual undeuterated solvent (TMS at
0.00 ppm 1H NMR; CHCl3 at 77.16 ppm 13C NMR; DMSO-
d6 at 39.52 ppm 13C NMR. Mass spectra were recorded with
a CH7A Varianmat Bremem instrument at 70 eV electron
impact ionization, in m/z (rel%). The crystalline structure of
the catalyst was analyzed by XRD using a D8 ADVANCE-
Bruker diffractometer operated at 40 kV and 30mA utilizing
Cu Ka radiation (k¼ 0.154 nm). Transmission electron
microscopy (TEM) was performed with a Leo 912 AB
microscope (Zeiss, Germany) with an accelerating voltage of
120 kV. FE-SEM images, EDX and EDX-mapping were
recorded using a TESCAN, model: MIRA3 scanning electron
microscope operating at an acceleration voltage of 30.0 kV
and a resolution of about 200, 500 nm and 1 mm (manufac-
tured in the Czech Republic). The magnetic properties of
the catalyst were measured using a vibrating sample magnet-
ometer (VSM, Magnetic Danesh Pajoh Inst.). Inductively
coupled plasma optical emission spectroscopy (ICP-OES)
was carried out with a Varian VISTA-PRO, CCD

Table 3. Comparison of the catalytic activity of c-Fe2O3/talc/Cu
II NPs with those of certain literature precedents using the C–S cross-coupling reaction of iodo-

benzene with S8.

Entry Catalyst Mol% Base Solvent Temperature (�CÞ Time(min) Reusability Isolated yield (%) Ref.

1 NiO(II)-GO 0.03 g NaOEt DMSO 120 30 5 97 [58]
2 Ni(II)-SBA-15 0.06 g KOH DMSO 120 1.40 (h) 5 96 [67]
3 Cu(II)-Vanillin-MCM-41 0.02 g KOH DMSO 110 45 5 90 [68]
4 SBA-16/GPTMS-TSC-CuIa 1.3 KOH – 110 20 7 98 [56]
5 CuFe2O4 MNPs 25 Cs2CO3 PEG-400 120 20.5 (h) 6 97 [69]
6 CuI 10 LiOH�H2O DMF 100 36 (h) – 100 [70]
7 Cu(OAc)2 5 Cs2CO3 PEG-200 110 7 (h) – 100 [66]
8 c-Fe2O3/talc/Cu

II 1.1 WEB EtOH Reflux 40 5 95 Present study
aMesoporous SBA-16 functionalized by aminated 3-glycidyloxypropyltrimethoxysilane.

Table 4. Comparison of the catalytic activity of c-Fe2O3/talc/Cu
IINPs with those of certain literature precedents using the C–S cross-coupling reaction of iodoben-

zene with thiourea.

Entry Catalyst Mol% Base Solvent Temperature (�CÞ Time (min) Reusability Isolated yield (%) Ref.

1 Fe3O4@NiO/Co3O4 3.2:2.8� KOH PEG-400 100 20 8 95 [57]
2 NiO(II)-GO 0.03 g NaOEt DMSO 120 4 (h) 5 95 [58]
3 CuI-DMAPa 5 K2CO3 DMSO 120 10 (h) – 80 [48]
4 Pd2dba3-Triphosb 2 Cs2CO3 1,4-dioxane 100 18 (h) – 71 [49]
5 CuO NPs 5 Cs2CO3 DMSO 110 15 (h) 4 97 [50]
6 CuO@GO 0.01 g Cs2CO3 DMSO 110 12 (h) – 98 [51]
7 Cu(II)-2-MPEc @MCM-41 0.1mmol KOH DMF:H2O 130 12 (h) 6 85 [52]
8 Cu(OAc)2.H2O 5 K2CO3 DMSO 120 12 (h) – 94 [53]
9 CuI 10 Cs2CO3 DMSO 120 24 (h) – 63 [55]
10 SBA-16/GPTMS-TSCd – CuI 1.3 KOH – 110 60 7 95 [56]
11 Magnetic nano CuFe2O4 10 K2CO3 DMF 120 12 (h) 6 94 [54]
12 c-Fe2O3/talc/Cu

II 1.4 WEB EtOH Reflux 40 5 98 Present study
aCuI-4-Dimethylaminopyridine. bTris(dibenzylideneacetone)dipalladium(0)/1,1,1-tris (diphenylphosphinomethyl)ethane. c2-Methoxy-1- phenylethanone.

dMesoporous SBA-16 functionalized by aminated 3-glycidyloxypropyltrimethoxysilane with thiosemicarbazide. � The reported mol% of catalyst means the mol%
ratio of Ni:Co in the catalyst.
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(Australia). The talc was obtained from Gloria Interchem
Pvt Ltd. India. CuII attached to magnetic natural talc
(c-Fe2O3/talc/Cu

II NPs) was prepared by the method
reported previously [100]. All yields refer to isolated prod-
ucts after purification obtained by thin-layer chromatog-
raphy on silica gel. Additional characterization data for the
catalyst (Figures S1–S6) and products (Figures S11–S35) are
presented in the Supplemental Materials.

3.2. Preparation of WEB (water extract of banana
peels ash)

WEB (Water Extract of Banana) (scientific name: Musa bal-
bisiana Colla; family: Musaceae; species: Musa balbisiana)
was obtained according the method reported previ-
ously [113].

3.3. Typical procedure for preparation of diphenyl
sulfide from the reaction of iodobenzene with S8 or
thiourea in the presence of c-Fe2O3/talc/Cu

II NPs

c-Fe2O3/talc/Cu
II NPs (1.1/or 1.4mol%, 0.008/or 0.01 g) was

added to a refluxing solution of iodobenzene (1.0mmol,
0.203 g), S8 or thiourea (0.5mmol, 0.016 g/or 0.038 g) and
WEB (water extract of banana peels ash) (1.0mL) in EtOH
(1.0mL). Upon completion of the reaction (40/or 40min),
which was monitored by TLC, the reaction mixture was
cooled to room temperature. The catalyst was separated by a
magnetic field, washed with acetone (2� 15mL) and dis-
tilled water (4� 15mL) before drying at 100 �C for 2 h, and
reused for a consecutive run under the same reaction condi-
tions. After evaporation of EtOH from the reaction mixture,
the crude product was extracted with ethyl acetate
(3� 15mL). Then the organic layer was dried over anhyd-
rous Na2SO4 and concentrated by rotary evaporator.
Afterwards, the crude product was purified by thin-layer
chromatography on silica gel (n-hexane: ethyl acetate ¼ 9:
1) to yield the desired product (diphenyl sulfide from S8
(0.176 g, 95%) or thiourea (0.182 g, 98%)).

4. Conclusion

In the present study, the application of the previously
designed and characterized c-Fe2O3/talc/Cu

II NPs as a
superparamagnetic composite with average diameter of
about 20-30 nm was attempted to expand in organic reac-
tions. In this sense, a new efficient and eco-friendly proced-
ure for the C–S cross-coupling reaction of aryl halides with
S8 or thiourea under sustainable and mild process condi-
tions is reported. The findings of the present study demon-
strated the excellent performance of the chemically stable
nanostructured catalyst in the coupling of differently substi-
tuted aryl halides (Cl, Br and I) with S8 or thiourea in green
media using WEB as a non-hazardous and low-cost base.
Moreover, significant features of the presented catalytic sys-
tem are impressive catalytic activity, good to excellent yields
of products, excellent functional group compatibility, mild
reaction conditions and easy experimental and work-up

procedure. Given the magnetic nature, c-Fe2O3/talc/Cu
II

NPs showed great potential to be separated very simple by
means of an external magnetic field and reused five times
with only a slight decrease in its catalytic activity. It can be
envisioned the advantage of the present method over exist-
ing ones for the C–S cross-coupling reaction of aryl halides
with S8 or thiourea.
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