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Abstract: Nonlocal gravity (NLG) is a classical nonlocal generalization of Einstein’s theory of gravi-
tation developed in close analogy with the nonlocal electrodynamics of media. It appears that the
nonlocal aspect of the universal gravitational interaction could simulate dark matter. Within the
Newtonian regime of NLG, we investigate the deviation of the gravitational force from the Newtonian
inverse square law as a consequence of the existence of the effective dark matter. In particular, we
work out the magnitude of this deviation in the solar system out to 100 astronomical units. Moreover,
we give an improved lower limit for the short-range parameter of the reciprocal kernel of NLG.

Keywords: nonlocal gravity; solar system; deviations from Newton’s law of gravity

1. Introduction

The nonlocal treatment of material media in physics has a long history [1–3]. In its
present form in electrodynamics, in particular, history dependence is taken into account
in the constitutive properties of atomic media; that is, one retains the basic equations of
Maxwell involving the electromagnetic fields (E, B) and their excitations in the medium
(D, H), but the constitutive connections between these fields become nonlocal due to history
dependence. The resulting constitutive relations involve a nonlocal kernel that incorporates
the atomic and molecular physics of the background medium [4–6]. Nonlocal gravity
(NLG) is a classical nonlocal generalization of Einstein’s general relativity [7] that has been
constructed in close formal analogy with the nonlocal electrodynamics of media [8–10].
There is no medium in the gravitational case; hence, the corresponding nonlocal kernel
must ultimately be determined on the basis of observational data. The detailed physical
motivation for the nonlocal extension of GR and a comprehensive treatment of NLG is
contained in Ref. [10].

Einstein’s general relativity (GR) can be expressed in an exact form that resembles
Maxwell’s electrodynamics. Indeed, there is a well-known teleparallel equivalent of general
relativity (TEGR), which is the gauge theory of the group of spacetime translations [11].
Therefore, TEGR, though nonlinear, is formally analogous to electrodynamics and can be
rendered nonlocal via history-dependent constitutive relations as in the nonlocal electrody-
namics of media. In the resulting theory of nonlocal gravity (NLG), there is a fundamental
preferred frame field in spacetime; moreover, the gravitational field is locally defined, but
satisfies partial integro-differential field equations. Nonlocal gravity theory employs an
extended geometric framework involving both the Riemannian curvature of spacetime
and the Weitzenböck torsion of the preferred frame field. Furthermore, NLG is consistent
with the universality of gravitational interaction and the principle of equivalence of inertial
and gravitational masses that has strong observational support. Indeed, free test particles
and null rays follow geodesics of the spacetime geometry, which ensures the universality
of free fall within the framework of classical physics. The only known exact solution of
the field equations of NLG is the trivial solution, namely, Minkowski spacetime in the
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absence of gravity. Thus far, the nonlinearity of NLG has prevented finding exact solutions
for strong-field regimes such as those involving black holes or cosmological models [12].
However, linearized NLG and its Newtonian limit have been extensively studied [10,13].

Heuristically, NLG theory involves a kind of spatial and temporal average of the
gravitational field over the past; that is, the gravitational memory of past events survives
in some form in the field equations of NLG. When one writes the field equations of NLG in
the same way as GR field equations, one finds that the source term contains, in addition
to the standard symmetric energy–momentum tensor of matter, certain purely nonlocal
gravity terms as well. These nonlocal gravity source terms, within the Newtonian regime
of the NLG theory, help this theory recover the purely phenomenological Tohline–Kuhn
modified gravity explanation of the “flat" rotation curves of spiral galaxies [14–16]. That is,
the nonlocal aspect of universal gravitation appears to simulate dark matter. Therefore, it
is natural to interpret the extra nonlocal gravity source terms of NLG in terms of nonlocally
induced effective dark matter, which would be a remnant of the past gravitational events.
In the Newtonian regime of NLG, which is briefly described in the next section, such a
memory becomes instantaneous and reduces to a spatial average with a time-independent
universal kernel. What is now considered dark matter in astrophysics and cosmology
may indeed be the manifestation of the nonlocal component of the universal gravitational
interaction [10,17–19].

In nonlocal electrodynamics, the kernel is based on the quantum physics of the
medium; however, there is no medium in NLG. In this case, we must rely on astronomical
data for the determination of the kernel. On the other hand, in conformity with the nonlocal
electrodynamics of media, there is no Lagrangian for NLG. In fact, in Ref. [9] an action
principle was formulated for linearized NLG that included a time-asymmetric nonlocal
kernel in connection with the past history of the gravitational field. However, the nonlocal
field equation that resulted from the variation of the action involved a time-symmetric
kernel that violated causality. It seems that an action principle for NLG is in conflict with
causality.

Within the Newtonian regime of NLG, the properties of effective dark matter and
its distinguishing features in comparison with the standard dark matter paradigm have
been the subject of recent investigations [17–19]. The main purpose of present work is to
describe the general attributes of the gravitational force within the Newtonian regime of
nonlocal gravity and study in detail its deviation from the Newtonian inverse square force
law within the solar system.

1.1. Nonlocal Newtonian Gravity

The gravitational field equation of NLG reduces in the Newtonian limit to the nonlocal
Poisson equation

∇2Φ(x) +
∫

χ(x− y)∇2Φ(y) d3y = 4πG ρ(x) , (1)

where χ is the universal kernel of NLG in the Newtonian regime. Here, ρ(x) is the density
of matter in a Cartesian system of coordinates, x = (x, y, z), G is Newton’s constant of
gravitation and Φ(x) is the corresponding gravitational potential. Regarding Equation (1),
we note that temporal retardation vanishes and an average over the past reduces in the limit
of instantaneous connection to a spatial average when one formally lets c→ ∞. For the sake
of simplicity, we have suppressed the possibility that Φ and ρ could, in principle, depend
upon the instantaneous temporal coordinate t. Under physically reasonable mathematical
conditions, it is possible to express Equation (1) in its reciprocal form

4πG ρ(x) +
∫

q(x− y)[4πG ρ(y)] d3y = ∇2Φ(x) , (2)



Universe 2022, 8, 470 3 of 20

where q is the reciprocal kernel. This is the Poisson equation with an extra source term,
namely,

∇2Φ = 4πG (ρ + ρD) , ρD(x) =
∫

q(x− y)ρ(y) d3y . (3)

It is natural to interpret ρD as the nonlocally induced density of effective dark matter. It is
given by the convolution (“folding”) of the reciprocal kernel q with the density of matter
ρ. Therefore, the existence and distribution of effective dark matter in NLG is intimately
connected with the material source and its distribution.

The reciprocal kernel q must be determined on the basis of observational data. On
the other hand, NLG in the Newtonian regime requires that q(x) be absolutely integrable
as well as square integrable over all space [10,20]. Within the Tohline–Kuhn modified
gravity scheme [14–16], which NLG recovers in the Newtonian regime of the theory, the flat
rotation curves of the spiral galaxies had already led to the introduction of the spherically
symmetric Kuhn kernel

1
4πλ0

1
|x− y|2 , (4)

where λ0 ∼ 1 kpc is the basic galactic length scale in this approach. To implement the
mathematical requirements of NLG regarding q, we introduce two new length scales a0
and µ−1

0 to moderate the short and long distance behaviors of the Kuhn kernel, respectively.
This then leads to two possible simple positive spherically symmetric functions for q that
have been studied in detail [10]. These functions, which are integrable as well as square
integrable, are

q1(r) =
1

4πλ0

1 + µ0 (a0 + r)
r (a0 + r)

e−µ0 r , q2(r) =
r

a0 + r
q1(r) , (5)

where Kuhn’s kernel is recovered for a0 = µ0 = 0 and r = |x− y|. For a0 = 0, q1 = q2 = q0,

q0(r) =
1

4πλ0

1 + µ0 r
r2 e−µ0 r , (6)

which is integrable but not square integrable. In fact,

4 π
∫ r

0
q0(s)s2 ds = α0

[
1− (1 + 1

2 µ0r) e−µ0r
]

, α0 := 2/(λ0 µ0) . (7)

The integral of q0 over all space is the dimensionless constant α0 and similarly,

4 π
∫ ∞

0
qi(s)s2 ds = α0 wi , w1 = 1− 1

2
ζ0 eζ0 E1(ζ0) , w2 = 1− ζ0 eζ0 E1(ζ0) , (8)

where
ζ0 := a0µ0 (9)

is another dimensionless constant. Here, E1(x) for x > 0 is the exponential integral func-
tion [21], namely,

E1(x) =
∫ ∞

x

e−t

t
dt , E(n)

1 (x) =
dnE1

dxn , E(1)
1 (x) = − e−x

x
= −E0(x) , (10)

En(x) :=
∫ ∞

1

e−xt

tn dt ,
dEn(x)

dx
= −En−1(x) , x En(x) = e−x − n En+1(x) , (11)

where in the definition of En(x), n = 0, 1, 2, · · · . Moreover, q0 > q1 > q2 for any finite
radial coordinate r. It proves useful to define

Ei(r) = 4π
∫ r

0
[q0(s)− qi(s)]s2 ds ; (12)
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then, we have for i = 1, 2,

4 π
∫ r

0
qi(s)s2 ds = −Ei + α0

[
1− (1 + 1

2 µ0r) e−µ0r
]

, (13)

where
E1(r) =

1
2

α0 ζ0 eζ0 [E1(ζ0)− E1(ζ0 + µ0r)] , (14)

E2(r) = 2 E1(r)−
1
2

α0 ζ0
µ0r

µ0r + ζ0
e−µ0 r . (15)

The quantities E1(r) and E2(r) are positive monotonically increasing functions that start
from zero at r = 0 and approach Ei(∞) = (1−wi)α0 > 0 as r → ∞. In fact, with wi, i = 1, 2,
given by Equation (8), E1(∞) = 1

2 α0 ζ0 eζ0 E1(ζ0) and E2(∞) = 2 E1(∞).
The effective dark matter in NLG has some specific attributes that must be mentioned

here. Consider a point particle of mass m that is located at xm; then, Equation (3) implies

ρ(x) = m δ(x− xm) , ρD(x) = m q(x− xm) . (16)

The reciprocal kernel q is spherically symmetric by assumption; therefore, the point particle
of mass m is surrounded by a spherical distribution of effective dark matter of density m q
that extends to infinity and decays exponentially to zero with a decay length of µ−1

0 . The
strength of this distribution is characterized by the Tohline–Kuhn parameter λ0 ∼ 1 kpc;
indeed, the effective dark matter disappears for λ0 → ∞.

The net effective dark matter mD corresponding to point mass m is given by

mD = m
∫

q(x) d3x = mα0 w. (17)

Extending Equation (16) to a distribution of a large number of point particles, it follows
that ρD is always finite for a Newtonian astronomical system; moreover, ρD traces out,
albeit in an extended and diffuse manner, the form of the matter distribution. Therefore,
the distribution of the effective dark matter in NLG is quite different from the standard
dark matter paradigm. The fact that ρD is the convolution of the reciprocal kernel q with
the density of matter ρ can be used to estimate the local density of effective dark matter
according to NLG in our solar neighborhood [22]. Moreover, it is an important property of
the convolution that the total effective dark matter over all space is given by

MD =
∫

ρD(x)d3x =
∫

q(x) d3x
∫

ρ(x) d3x = α0 w M , (18)

where M is the mass of the source. This is a natural generalization of Equation (17) for an
extended system. We can use these considerations to estimate the amount of dark matter
within a given galaxy by calculating approximately the portion of MD that is confined
within the boundaries defined for the galaxy [17,19].

1.2. Gravitational Force in NLG

In NLG, as in GR, free test particles follow future-directed timelike geodesics of the
spacetime metric. Naturally, in the transition from NLG to its Newtonian regime, the speed
of light formally approaches infinity in the same way as in GR and the gravitational force
on a test particle of inertial mass m in a gravitational potential Φ(x) is thus given by the
Newtonian result

F(x) = −m∇Φ(x) . (19)

Imagine a point particle of mass m at xm as in Equation (16); in this case, Equation (3)
implies that the gravitational potential is due to the point mass m as well as its cocoon of
effective dark matter. The latter forms a spherical distribution centered on m with density
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mq. Imagine now another point particle of mass m′ located at x′. The gravitational force on
m′ due to m can be calculated using Equation (19); indeed, the result is

FNLG(x′) = Gm′
xm − x′

|xm − x′|3

[
m + m

∫ |xm−x′ |

0
4 π s2q(s)ds

]
, (20)

where the first term in the square brackets is simply the Newtonian result due to point
mass m, while the second term is due to its cocoon, namely, the spherical distribution of
effective dark matter of density mq surrounding m. We have employed Newton’s shell
theorem here, since m′ is affected only by the attractive force of the portion of the cocoon
that is within a sphere centered on m of radius |xm − x′|, the distance from m to m′. In fact,
m′ is unaffected by the remaining mass of the cocoon as a direct consequence of Newton’s
shell theorem. Furthermore, this theorem states that the spherical portion of the effective
dark matter of radius |xm − x′| acts as though it were concentrated at xm. It follows that

FNLG(x′) = Gm′m
xm − x′

|xm − x′|3
[
1 + ∆(|xm − x′|)

]
, (21)

where Equation (13) implies

∆(r) =
∫ r

0
4 π s2q(s) ds = −E(r) + α0 [1− (1 + 1

2 µ0r) e−µ0r] . (22)

Here, ∆ contains the contribution of the effective dark matter and E(r), which vanishes
when a0 = 0, has been defined in Equations (14) and (15). We note that ∆(r) is a posi-
tive monotonically increasing function that starts from zero at r = 0 and asymptotically
approaches ∆(∞) = α0w in accordance with Equation (8).

We can now extend FNLG to a matter distribution. That is, the NLG force on a point
mass m at x due to a matter distribution with density ρ(x) is given by

FNLG(x) = −Gm
∫
[1 + ∆(|x− y|)] x− y

|x− y|3 ρ(y) d3y . (23)

Let us first imagine that we are in the exterior of a finite astronomical source. As we move
away from the source, the gravitational attraction increases due to the effective dark matter
and eventually the Newtonian inverse square law is recovered; that is, very far from the
source, |x− y| � µ−1

0 and we find ∆(|x− y|) ≈ α0w. Hence, Equation (23) reduces to the
Newtonian result

FNLG(x) ≈ −G(1 + α0w)m
∫ x− y
|x− y|3 ρ(y) d3y , (24)

except that Newton’s constant G has now been replaced in effect by G(1 + α0w). For
|x| � |y|, we have to lowest order in |y|/|x|,

FNLG(x) ≈ −G(1 + α0w)mM
x
|x|3 , (25)

where M is the mass of the source and (1 + α0w)M is its mass plus its associated net
effective dark matter. For a galactic source, the corresponding rotation curve, where the
attractive acceleration of gravity equals the centripetal acceleration of circular motion, is
then essentially Newtonian very far from the galaxy. This consequence of NLG appears
to be consistent with the conclusion of a recent study of the far-flung rotation data of the
Milky Way and M31 [23].
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For the sake of completeness, let us mention that the gravitational potential in NLG
for a matter distribution of density ρ is given by

NLGΦi(x) =− G
∫ [

1− Ei(∞) + α0(1− e−µ0r)

+
r

λ0
(1 + i

a0

r
)eζ0 E1(ζ0 + µ0r)

] ρ(y)
|x− y| d3y ,

(26)

where r = |x− y| and i = 1, 2, corresponding to q1 and q2, respectively. In fact, one can
show explicitly using Equation (23) that FNLG(x) = −m∇NLGΦ(x).

In Equation (3), for the effective dark matter density ρD, q = 0 leads to ρD = 0 and
we recover Poisson’s equation of Newtonian gravity that is a consequence of the inverse
square law. Therefore, we expect that NLG leads to deviations from the inverse square law
as a result of the existence of the effective dark matter. On small laboratory scales, there has
been great progress in verifying Newton’s law of gravitation down to a distance of about
50 µm and efforts are under way to explore even smaller distances [24–29]. For the sake
of completeness, we mention here that the leading quantum correction to the Newtonian
gravitational potential, −GM/r, due to mass M is given by [30]

− GM
r

(
1 +

17
20π

L2
P

r2

)
, (27)

where LP = (h̄G/c3)1/2 ≈ 10−33 cm is the Planck length. In NLG, G is a constant of nature
as well, since there is no firm observational evidence in support of a variable G. Meanwhile,
terrestrial experiments regarding Newton’s law and the measurement of Newton’s constant
of gravitation G continue at present [31,32]. On the other hand, interesting experiments
have been proposed recently to measure directly deviations from the inverse square law
of gravity in the solar system out to 100 astronomical units (AU) and beyond [33–36]. In
any case, modifications are expected due to the presence of dark matter [37]. Finally, on
larger galactic scales, we expect to determine the reciprocal kernel q from the rotation
curves of spiral galaxies. By fitting the predictions of NLG with observational data, we
hope to find a0, α0 and µ0. However, in connection with the short-distance parameter a0,
reliable rotational data is not available very close to the center of the galactic bulge. It
therefore appears that we could ignore the short-range parameter a0 when we compare the
predictions of NLG with the rotation curves of spiral galaxies. In this way, α0 and µ0 have
been determined; in fact,

α0 = 10.94± 2.56 , µ0 = 0.059± 0.028 kpc−1 , λ0 =
2

α0 µ0
≈ 3± 2 kpc (28)

based on the observational data regarding nearby galaxies and clusters of galaxies [38].
We should mention the possibility that the three parameters of the reciprocal kernel could
in principle depend upon cosmological time; here, however, we assume that they refer to
the present cosmological epoch [10]. Regarding the observational determination of a0, we
note that a lower bound for a0, namely, a0 & 1015 cm, or about 100 AU, was calculated in
2015 using the solar system data available at that time in connection with the perihelion
precession rate of Saturn [39]. The implications of NLG for the solar system crucially
depend on the value of a0 and we will employ current solar system data to improve the
lower bound on a0 in Section 4.

The aim of this paper is to present a general discussion of the gravitational force within
the framework of NLG; in particular, we henceforth focus on deviations from the inverse
square law of gravitation in the solar system out to 100 AU and beyond, which could be
measurable in principle via future experiments [33–36].
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2. NLG Force in the Solar System

Let us start with Equation (23) for the force of gravity according to NLG due to a
compact object such as a star. We are interested in the force in the exterior of the source,
|x| > |y|, but with

|x− y| � µ−1
0 ≈ 17 kpc . (29)

This is the situation of interest in connection with solar system experimental proposals
contained in Refs. [33–36]. In view of Equation (29), we want to expand ∆(r) in Equation (23)
in powers of µ0r � 1. To this end, we start with Equation (22), where E(r) is given by
Equations (14) and (15). For E1 in Equation (14), let us expand E1(ζ0 + µ0r) in a Taylor
series about E1(ζ0) to obtain

E1(r) = −
1
2

α0ζ0eζ0
∞

∑
n=1

(µ0r)n

n!
E(n)

1 (ζ0) . (30)

From the definition of the exponential integral function in Equation (10), we find for
n = 0, 1, 2, · · · ,

E(n+1)
1 (x) = (−1)n+1n!

e−x

xn+1 Wn(x) , (31)

where Wn is a polynomial of degree n defined by

Wn(x) :=
n

∑
k=0

xk

k!
. (32)

For n→ ∞, Wn(x)→ ex. Furthermore, in terms of these polynomials, we have for E2(r) in
Equation (15),

a0

a0 + r
e−µ0r =

∞

∑
n=0

(−1)nWn(ζ0)

(
r
a0

)n
, (33)

where r < a0 by assumption. Then, putting these results together, we have

E1(r) =
r

λ0

∞

∑
n=0

(−1)n

n + 1
Wn(ζ0)

(
r
a0

)n
(34)

and

E2(r) =
r

λ0

∞

∑
n=0

(−1)n+1 n− 1
n + 1

Wn(ζ0)

(
r
a0

)n
. (35)

Remarkably, our expansions in powers of µ0r � 1, where µ−1
0 ≈ 17 kpc is the long-range

parameter of the reciprocal kernel q, end up being in effect expansions in powers of r/a0,
where a0 is the short-range parameter of q. Writing Equation (22) in the form

∆(r) = −E(r) + r
λ0

∞

∑
n=0

(−1)n+1 n− 1
(n + 1)!

ζn
0

(
r
a0

)n
, (36)

we obtain expansions

(1)∆(r) =
r

λ0

∞

∑
n=1

(−1)n+1

n + 1

[
Wn(ζ0) +

n− 1
n!

ζn
0

](
r
a0

)n
(37)

and
(2)∆(r) =

r
λ0

∞

∑
n=1

(−1)n+1 n
n + 2

Wn(ζ0)

(
r
a0

)n+1
, (38)

for q1 and q2, respectively.
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Let us write ∆ in Equation (23) as

∆(|x− y|) =
∞

∑
n=2

∆n(ζ0)
|x− y|n

λ0an−1
0

, (39)

where ∆n(ζ0) are dimensionless functions of ζ0 = µ0a0. Comparing relations (37) and (38)
with Equation (39), we conclude that for n = 2, 3, 4, · · · ,

(1)∆n(ζ0) =
(−1)n

n

[
Wn−1(ζ0) +

n− 2
(n− 1)!

ζn−1
0

]
(40)

and
(2)∆n(ζ0) = (−1)n−1 n− 2

n
Wn−2(ζ0) , (41)

where Wn(ζ0) = ∑n
k=0 ζk

0/k!. Therefore, depending on whether we use q1 or q2, we find

(1)∆(r) =
1
2
(1 + ζ0)

r2

λ0a0
− 1

3
(1 + ζ0 + ζ2

0)
r3

λ0a2
0
+

1
4
(1 + ζ0 +

1
2 ζ2

0 +
1
2 ζ3

0)
r4

λ0a3
0
− · · · (42)

or
(2)∆(r) =

1
3
(1 + ζ0)

r3

λ0a2
0
− 1

2
(1 + ζ0 +

1
2 ζ2

0)
r4

λ0a3
0
+ · · · , (43)

respectively. We expect that these series converge for r < a0. It is straightforward to
calculate higher-order terms in these series, which we must substitute in Equation (23) in
order to calculate general NLG deviations from Newton’s law of universal gravitation. This
is explicitly illustrated in the rest of this section for a spherically symmetric source.

2.1. Spherically Symmetric Distribution of Matter

Imagine a spherically symmetric distribution of matter confined within a sphere of
finite radius r0. Each point particle of mass m has an accompanying sphere of effective
dark matter of density mq surrounding it and the spherical symmetry of mass distribution
naturally results in an effective dark matter distribution that is spherically symmetric
and concentric with the matter distribution. To see this in detail, consider a Cartesian
coordinate system (x, y, z) with its origin at the center of the spherical source of radius r0.
In the convolution formula for ρD(x) in Equation (3), let the orientation of the coordinate
system be such that x = (0, 0, r) and y = (y sin θ cos φ, y sin θ sin φ, y cos θ), with no loss in
generality. Then, after integration over the azimuthal angle φ, we can write

ρD(r) = 2π
∫

ρ(y) y2 dy q(U) sin θ dθ , (44)

where
U := |x− y| = (r2 − 2ry cos θ + y2)1/2 ,

∂U
∂(cos θ)

= − ry
U

. (45)

The integration over the remaining angular coordinate is straightforward and results in

ρD(r) =
2π

r

∫ r0

0
ρ(y) y [Ψ(r + y)−Ψ(|r− y|)] dy , (46)

where
Ψ(s) =

∫ s
q(u)u du . (47)

Let us next calculate the gravitational force experienced by a test point particle of mass
m due to the concentric spherical distributions of ρ and ρD. The result is simply obtained
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via Newton’s shell theorem, namely, the attractive force of gravity is radial with magnitude
FN +FD, where FN is the strictly Newtonian part due to ρ; that is,

FN(R) =
4πGm

R2

∫ R

0
ρ(r)r2 dr , FD(R) =

4πGm
R2

∫ R

0
ρD(r)r2 dr , (48)

where R is the distance from m to the common center of ρ and ρD.
In Appendix A, ρD(r) is explicitly worked out for a spherical source of constant

density ρ0. In this case, an exact analytic formula can be obtained for the force FD due
to effective dark matter. On the other hand, we are interested in the deviations of the
gravitational force from the inverse square law in the solar system in connection with recent
experimental proposals [33–36]; therefore, for practical purposes, we use the approximation
scheme involved in expansions (42) and (43) to derive an alternative formula for FD(R) as
described below.

2.2. Alternative Formula for FD(R)

Alternatively, we can use Equation (23) to compute the gravitational force in NLG
when the source of mass M is spherically symmetric and confined within a sphere of radius
r0. To compute the relevant integral in Equation (23), we employ the same approach as
in the previous subsection in order to find the gravitational force on m when it is located
outside the source, namely, R > r0. The force is then along the negative z direction and has
magnitude FN +FD, where the Newtonian part is simply given by FN = GmM/R2 and
the effective dark matter part is given by

FD(R) = 2πGm
∫ r0

0
ρ(y)y2 dy

∫ 1

−1

∆(U )
U 3 (R− y cos θ) d(cos θ) , (49)

where U is defined by
U := (R2 − 2Ry cos θ + y2)1/2 . (50)

In principle, expansions (42) and (43) could be continued for U < a0 and the resulting
convergent infinite series could be used in Equation (49) to determine the contribution of
effective dark matter to the gravitational force. That is, let us expand ∆(U ) in powers of U
as in Equation (39). Then, with

R− y cos θ =
1

2R
(U 2 + R2 − y2) (51)

and employing the same integration approach as above, we can write Equation (49) in the
form

1
m
FD(R) =

4πG
R2

∞

∑
n=2

∆n(ζ0)

(n2 − 1)λ0an−1
0

∫ r0

0
In(y; R)ρ(y)y2 dy . (52)

Here, we have introduced

In(y; R) =
1

2y
[(nR− y)(R + y)n − (nR + y)(R− y)n] , (53)

which is an even function of y, while In(y;−R) = (−1)nIn(y; R). We note that In(0; R) =
(n2 − 1)Rn; moreover, In(y; 0) = −yn for n = even, while In(y; 0) = 0 for n = odd.
Specifically,

I2(y; R) = 3R2 − y2 , I3(y; R) = 8R3 , I4(y; R) = 15R4 + 10R2y2 − y4 ,

I5(y; R) = 24R5 + 40R3y2 , I6(y; R) = 35R6 + 105R4y2 + 21R2y4 − y6 , · · · . (54)

Plugging these expressions into Equation (52), we find that the deviation from the Newto-
nian gravitational force involves the even moments of the mass density ρ.
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To illustrate this general approach, we next calculate the NLG modification of the
gravitational force explicitly for a spherical source of constant density ρ0.

2.3. FD(R) for a Spherical Source of Constant Density

Let us now assume that the density of matter is constant and equal to ρ0 such that the
mass of the source is given by

M =
4π

3
ρ0 r3

0 . (55)

Then, the integration over the source in Equation (52) can be simply carried through and
the result takes the form

1
m
FD(R) =

GM
λ0a0

[
∆2

(
1− 1

5
r2

0
R2

)
+ ∆3

R
a0

+ ∆4

(
1 +

2
5

r2
0

R2 −
1

35
r4

0
R4

)
R2

a2
0
+ · · ·

]
, (56)

where we can now substitute ∆n(ζ0) from either Equation (40) or (41) to determine the
force due to the effective dark matter depending on whether we use reciprocal kernel q1 or
q2. Therefore, outside the source, we have the important result

FD(R)
FN(R)

=
R2

λ0a0

[
∆2

(
1− 1

5
r2

0
R2

)
+ ∆3

R
a0

+ ∆4

(
1 +

2
5

r2
0

R2 −
1
35

r4
0

R4

)
R2

a2
0
+ · · ·

]
. (57)

As mentioned before, we are interested in the experiments [33,35] that propose to
measure deviations from Newton’s inverse square law in the solar system at the level of
about 10−7 out to a distance of 100 AU. Let us note that with a0 & 100 AU, the amplitude
of NLG deviation from the inverse square law given by Equation (57) at R = 100 AU is

R2

λ0a0
.

R
λ0
≈ 1.5× 10−7 , (58)

where λ0 ≈ 3 kpc in agreement with Equation (28). Furthermore, for the Sun, r0 = R� ≈
5× 10−3 AU; therefore, beyond the orbit of the Earth, terms of order r2

0/R2 and higher
may be neglected in Equations (56) and (57). This means that the NLG deviation from the
Newtonian acceleration of gravity beyond the orbit of the Earth can be approximated by

FD(R)
FN(R)

≈ R2

λ0a0

∞

∑
n=0

∆n+2(ζ0)

(
R
a0

)n
, (59)

which is due to the effective dark matter of the Sun. General expressions for (1)∆n+2(ζ0)
and (2)∆n+2(ζ0), n = 0, 1, 2, · · · , are given in Equations (40) and (41).

The effective dark matter of the Sun affects the planetary orbits as well. The extra
acceleration of gravity experienced by a planet outside the orbit of the Earth is given by

1
m
FD(R)|q=q1 ≈

GM�
λ0a0

[1
2
(1 + ζ0)−

1
3
(1 + ζ0 + ζ2

0)
R
a0

+
1
4
(1 + ζ0 +

1
2 ζ2

0 +
1
2 ζ3

0)
R2

a2
0
+ · · ·

] (60)

or
1
m
FD(R)|q=q2 ≈

GM�
λ0a0

[
1
3
(1 + ζ0)

R
a0
− 1

2
(1 + ζ0 +

1
2 ζ2

0)
R2

a2
0
+ · · ·

]
, (61)

depending upon whether we use q1 or q2 for the reciprocal kernel of NLG. We now turn to
the general implications of Equation (56) for the orbits of planets in the solar system.
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3. NLG: Planetary Orbits in the Solar System

Imagine a planet of mass m in orbit about a star of mass M within the framework
of Newtonian mechanics. This is the standard classical two-body problem in Newtonian
celestial mechanics and it is possible to formulate it exactly within the Newtonian regime
of NLG by taking due account of the effective dark matter of the star as well as the planet.
To simplify matters, however, we write the equation of relative motion in our case as

d2R
dt2 +

GMR
R3 = −F(R)

R
R

, (62)

where we have assumed m � M, M + m ≈ M and that the force due to the planet’s
effective dark matter can be neglected. Here, F(R) is the magnitude of the perturbing
function due to the effective dark matter of the star. The NLG perturbing force is central,
attractive and conservative; hence, the relative orbit is planar. In the background Cartesian
coordinate system (X, Y, Z), let (X, Y) be the orbital plane; moreover, we introduce polar
coordinates (R, ϕ) such that X = R cos ϕ and Y = R sin ϕ. The unperturbed relative orbit
is an ellipse in the (X, Y) plane with one of its foci at the origin of coordinates. That is,
when we turn off the perturbation in Equation (62), R = (X, Y, Z) with Z = 0 and

R =
A0(1−E2

0)

1 +E0 cos(ϕ−G0)
, (63)

where A0, E0 and G0 are the semimajor axis, eccentricity and argument of the pericenter of
the unperturbed relative orbit, respectively. The unperturbed pericenter has coordinates

A0(1−E0)(cosG0, sinG0, 0) . (64)

Moreover, motion along the unperturbed orbit takes place such that

dϕ

dt
=

L0

R2 , L0 = [GMA0(1−E2
0)]

1/2 , (65)

where mL0 is the orbital angular momentum of the unperturbed relative orbit. Let T be the
period of the unperturbed orbit, then the Keplerian frequency Ω is given by

Ω =
2π

T
, Ω2 =

GM
A3

0
. (66)

For the perturbed system (62), the instantaneous position and velocity of the relative
motion define an osculating ellipse that is momentarily tangent to the perturbed orbit;
therefore, the perturbed relative motion can be described via the evolution of the osculating
ellipse given by the Lagrange planetary equations [40]. In the present planar case, the
Lagrange planetary equations reduce to

dA
dt

= −2E sin(ϕ−G)

Ω(1−E2)1/2 F(R) , (67)

dE
dt

=
1−E2

2AE
dA
dt

, (68)

dG
dt

=
(1−E2)1/2

AEΩ
F(R) cos(ϕ−G) . (69)
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To reveal the long-term behavior of the perturbed Keplerian system (62), we average
over the “fast" Keplerian motion of frequency Ω. In our approximation scheme, we define
the average of a function f by

< f >=
1
T

∫ T

0
f dt =

1
2π

(1−E2
0)

3/2
∫ 2π

0

f (ϕ)dϕ

[1 +E0 cos(ϕ−G0)]2
, (70)

where Equations (63)–(66) for the unperturbed orbit have been employed. Let us now write

F(R) =
∞

∑
n=0

FnRn , Fn =
GM

λ0an+1
0

∆n+2 , (71)

using Equation (59). Here, R is given by Equation (63) for the unperturbed orbit. Averaging
Equations (67) and (68), we find 〈

dA
dt

〉
=

〈
dE
dt

〉
= 0 , (72)

which means that on average the shape and size of the orbit remain unchanged. Moreover,
the Keplerian ellipse slowly precesses and the rate of precession is given by〈

dG
dt

〉
= − 1

E0 Ω

∞

∑
n=0

An−1
0 (1−E2

0)
n+2Fn In , (73)

where

In = − 1
2π

∫ η0+2π

η0

cos η dη

(1 +E0 cos η)n+2 . (74)

Here, η0 is a constant. By taking derivatives of the integrals below with respect to the
eccentricity E0,

1
2π

∫ η0+2π

η0

dη

1 +E0 cos η
=

1
(1−E2

0)
1/2

,
1

2π

∫ η0+2π

η0

dη

(1 +E0 cos η)2 =
1

(1−E2
0)

3/2
,

(75)
we can evaluate I0 and I1. More generally,

E0
∂In

∂E0
= (n + 2)[In+1 − In] . (76)

In this way, we find

I0 =
E0

(1−E2
0)

3/2
, I1 =

3
2

E0

(1−E2
0)

5/2
, I2 =

1
2
(4 +E2

0)E0

(1−E2
0)

7/2
, etc. (77)

Substituting these results in Equation (73), we find for the rate of pericenter precession〈
dG
dt

〉
= − GM

λ0a0

(1−E2
0)

1/2

A0 Ω

[
∆2 +

3
2

∆3
A0

a0
+

1
2

∆4(4 +E2
0)
A2

0
a2

0
+ · · ·

]
. (78)

This general result can also be obtained by studying the average motion of the Runge–Lenz
vector, as explained below.

Precession of the Runge–Lenz Vector

For the perturbed Keplerian system (62), we define the Runge–Lenz vector Q by

Q := V× L− GM
R
R

, (79)



Universe 2022, 8, 470 13 of 20

where V = dR/dt and L = R×V are the relative velocity and specific orbital angular
momentum of the relative motion, respectively. The latter is in the Z direction and has
magnitude L. It follows from Equations (62) and (79) that

dQ
dt

= −F(R)
R
R
× L = LF (− sin ϕ, cos ϕ, 0) , (80)

in the background Cartesian system of coordinates. For the unperturbed orbit, Q is a
constant of the motion and is given by

Q0 := GME0 (cosG0, sinG0, 0) . (81)

The Runge–Lenz vector points in the direction of the pericenter and its magnitude is char-
acterized by the eccentricity of the orbit; indeed, it vanishes for a circular Keplerian orbit.

For a small perturbing function as in Equation (62), the rate of temporal variation of Q
is “slow”; therefore, its overall precession becomes evident once we average Equation (80)
over the “fast” Keplerian motion. Employing the same averaging procedure as in the first
part of this section, we find 〈

dQ
dt

〉
= Q (− sinG0, cosG0, 0) , (82)

where

Q = −L0

∞

∑
n=0

An
0 (1−E2

0)
n+3/2Fn In . (83)

In computing the average in Equation (82), we have assumed ϕ−G0 = η and used the
integrals

1
2π

∫ 2π

0

sin ϕ dϕ

[1 +E0 cos(ϕ−G0)]n+2 = −In sinG0 , (84)

1
2π

∫ 2π

0

cos ϕ dϕ

[1 +E0 cos(ϕ−G0)]n+2 = −In cosG0 , (85)

where In is given by Equation (74).
Finally, we can write 〈

dQ
dt

〉
= ω×Q0 , (86)

where frequency ω points in the Z direction and its magnitude ω is the rate of pericenter
precession. Therefore,

ω =
Q

GME0
= − 1

E0Ω

∞

∑
n=0

An−1
0 (1−E2

0)
n+2Fn In , (87)

in agreement with Equation (73).

4. Improved Lower Bound for a0

The nonlocal modifications of gravity in the solar system crucially depend on the
short-range parameter a0 of the reciprocal kernel. To emphasize this point, let us write the
result of the previous section for the perihelion precession frequency of planets beyond the
Earth more explicitly as follows:

ω|q=q1 = − 1
2

Ω
A2

0
λ0a0

(1−E2
0)

1/2
[
1 + ζ0 − (1 + ζ0 + ζ2

0)
A0

a0

+ (1 + ζ0 +
1
2 ζ2

0 +
1
2 ζ3

0)(1 +
1
4E

2
0)
A2

0
a2

0
− · · ·

]
, (88)
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ω|q=q2 = − 1
2

Ω
A2

0
λ0a0

(1−E2
0)

1/2
[
(1 + ζ0)

A0

a0

− 2(1 + ζ0 +
1
2 ζ2

0)(1 +
1
4E

2
0)
A2

0
a2

0
+ · · ·

]
, (89)

where Ω is the Keplerian frequency of the planetary orbit and ζ0 = a0µ0. In these expres-
sions, the terms in the square brackets up to and including those proportional to A0/a0
agree with the results of previous work [10,39]; however, terms of order (A0/a0)

2 and
higher are new.

In principle, solar system observations can be used to limit the magnitude of the short-
distance parameter a0 [41]. In 2015, observational data regarding the rate of perihelion
precession of Saturn was employed to set an important lower bound on a0 of about 1015 cm;
in fact, a0 & 2× 1015 cm if q1 was used for the reciprocal kernel of NLG in the Newtonian
regime, whereas a0 & 1

2 × 1015 cm if q2 was used [39]. Specifically, to avoid conflict with
high-precision ephemerides, it was assumed that nonlocal gravity should not produce
an extra shift in the perihelion precession of Saturn that in absolute magnitude would be
greater that 2× 10−3 seconds of arc per century. To obtain a significant lower bound on
a0 in this way, the planetary orbit should be rather far from the Sun [39]. Indeed, Saturn’s
orbit has a semimajor axis A0 ≈ 9.58 AU, eccentricity E0 ≈ 0.0565 and an orbital period
T ≈ 29.46 yr. In the meantime, improved data for the rate of perihelion precession of Saturn
has become available [42]. Based on the new data, we can now assume that the absolute
magnitude of the extra contribution of nonlocal gravity to the rate of perihelion precession
of Saturn must not exceed 0.67 × 10−3 seconds of arc per century. This conservative
estimate increases by a factor of 3 the lower limit on a0. That is, if the reciprocal kernel of
nonlocal gravity is q1, we find a0 & 400 AU. However, if the reciprocal kernel is q2, we find
a0 & 100 AU.

5. Discussion

This paper goes beyond the preliminary calculations contained in previous
work [10,39] and presents a general treatment of the NLG deviations from the inverse
square law of gravity in the solar system. To obtain explicit expressions for the deviations
due to NLG, we have assumed that the Sun has uniform density and is spherically symmet-
ric. These simplifying assumptions in the specific case of classical nonrelativistic nonlocal
modification of Newtonian gravity are adequate at present; however, better approximations
may be necessary when detailed observational data become available in the future. In any
case, with these assumptions the force of gravity on a point mass m at a distance R from
the Sun is radial toward the Sun in NLG and is given by

GmM�
R2

[
1 +

1
2
(1 + ζ0)

R2

λ0a0
− 1

3
(1 + ζ0 + ζ2

0)
R3

λ0a2
0

+
1
4
(1 + ζ0 +

1
2 ζ2

0 +
1
2 ζ3

0)
R4

λ0a3
0
+ · · ·

] (90)

or
GmM�

R2

[
1 +

1
3
(1 + ζ0)

R3

λ0a2
0
− 1

2
(1 + ζ0 +

1
2 ζ2

0)
R4

λ0a3
0
+ · · ·

]
, (91)

depending upon whether the reciprocal kernel is chosen to be q1 or q2 as given in Equa-
tion (5). Terms proportional to R4 inside the square brackets are new and go beyond
previous results [10,39]; moreover, methods developed in this paper make it possible to
calculate all of the higher-order terms in these equations as well as their influence on plane-
tary orbits in the solar system. Here, ζ0 = µ0a0, λ0 ≈ 3 kpc and µ−1

0 ≈ 17 kpc. Furthermore,
employing new observational data regarding the perihelion precession rate of Saturn, we
can provide a new lower limit for the short-range parameter a0 of the reciprocal kernel
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that is an improvement by a factor of 3 over the old one [39]; that is, a0 & 400 AU if the
reciprocal kernel q is q1 and a0 & 100 AU if it is q2. Let us recall here the requirement
of NLG that the reciprocal kernel be integrable as well as square integrable; indeed, the
presence of a0 is necessary to avoid a singularity at r = 0 in the reciprocal kernel and
thereby satisfy the reasonable mathematical requirements of NLG.

In the Newtonian regime of NLG, the nonlocal aspect of the universal gravitational
interaction appears in effect as dark matter. In modern astronomy, dark matter is needed to
explain the dynamics of galaxies, clusters of galaxies, and structure formation in cosmology.
In the current standard model of cosmology, the energy content of the universe consists of
about 70% dark energy, about 25% dark matter and about 5% visible matter. Most of the
matter in the universe is currently thought to be in the form of certain elusive particles of
cold dark matter that, despite much effort, have not been directly detected. The existence
and properties of this cold dark matter have thus far been deduced only through its gravity.
On the other hand, it is possible that there is no dark matter at all and the theory needs to be
modified on the scales of galaxies and beyond in order to take due account of what appears
as dark matter in astronomy and cosmology. A suitably extended theory of gravitation
could then account for observational data without any need for dark matter. In this way,
modified gravity theories such as NLG have been constructed. Indeed, other approaches to
nonlocal gravitation exist in connection with dark matter or dark energy that draw their
inspiration from developments in quantum field theory. In one such class of nonlocal
models concerned with cosmic acceleration, there is effectively no deviation from general
relativity within the solar system [43,44].

The results of the present investigation are expected to be of interest in connection with
future experiments that will look for the signature of dark matter in the solar system [33–36];
moreover, such experiments may indeed determine the short-range parameter a0 of the
reciprocal kernel q.
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Appendix A. ρD(r) for a Spherical Constant Density Object

Imagine a spherical system with constant density of matter up to radius r0. That is,
ρ(r) = ρ0 for r ∈ [0, r0] and otherwise ρ(r) = 0. We use a Cartesian coordinate system with
its origin at the center of the sphere. We want to compute ρD throughout space using the
convolution formula given in Equation (3) with q = q1 or q = q2. Let us note that q and
ρ are spherically symmetric; therefore, ρD(x) is spherically symmetric as well and is thus
only a function of r = |x|. For the sake of simplicity, we use below

r̂ := µ0 r , r̂0 := µ0 r0 . (A1)

Appendix A.1. q = q1

Let us first choose q = q1, which can now be written as

q1 =
α0µ3

0
8π

1 + ζ0 + Û
Û(ζ0 + Û)

e−Û , (A2)
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where α0 := 2/(λ0 µ0), ζ0 := µ0a0 and

Û := µ0 |x− y| = µ0 (r2 + y2 − 2ry cos θ)1/2 , y = |y| . (A3)

With no loss in generality, we have assumed here that x is in the z direction and θ is the
polar angle of y. Therefore,

(1)ρD(r) =
α0ρ0

4

∫ 1 + ζ0 + Û
Û(ζ0 + Û)

e−Û ŷ2 dŷ sin θ dθ , (A4)

where ŷ := µ0 y. From the integration over θ, we find∫ (
1 +

1
ζ0 + Û

)
e−ÛdÛ = −eζ0

[
e−ζ0−Û + E1(ζ0 + Û)

]
. (A5)

In this way, we find our main result, namely,

(1)ρD(r) =
α0ρ0 eζ0

4 r̂

∫ r̂0

0
ŷ dŷ

[
e−|r̂−ŷ|−ζ0 − e−r̂−ŷ−ζ0

+ E1(|r̂− ŷ|+ ζ0)− E1(r̂ + ŷ + ζ0)
]

,
(A6)

where Û(θ = 0) = |r̂− ŷ| and Û(θ = π) = r̂ + ŷ.
To do the integral, the following results are useful:∫

x sinh x dx = x cosh x− sinh x ,
∫

xe−x dx = −(1 + x)e−x . (A7)

Furthermore, consider

I(r̂0, A) :=
∫ r̂0

0
ŷ dŷE1(ŷ + A) , I(−r̂0, A) =

∫ r̂0

0
ŷ dŷE1(−ŷ + A) , (A8)

where A is a constant. Using integration by parts, we find

I(r̂0, A) =
1
2

r̂2
0E1(r̂0 + A) +

1
2

∫ r̂0

0

ŷ2

ŷ + A
e−ŷ−A dŷ . (A9)

The end result is

I(r̂0, A) =
1
2
(1− A)e−A +

1
2

A2E1(A)− 1
2
(1 + r̂0 − A)e−r̂0−A

+
1
2
(r̂2

0 − A2)E1(r̂0 + A) .
(A10)

Let us first calculate the outside density, namely, r > r0. We have from Equations (A6)–
(A10),

(1)ρD(r > r0) =
α0ρ0 eζ0

4 r̂

[
2e−r̂−ζ0(r̂0 cosh r̂0 − sinh r̂0)

+ I(−r̂0, r̂ + ζ0)− I(r̂0, r̂ + ζ0)
]

,
(A11)

which works out to be

(1)ρD(r > r0) =
α0ρ0 eζ0

8 r̂
{

2e−r̂−ζ0 [3r̂0 cosh r̂0 + (r̂ + ζ0 − 3) sinh r̂0]

+ [(r̂ + ζ0)
2 − r̂2

0][E1(r̂ + ζ0 + r̂0)− E1(r̂ + ζ0 − r̂0)]
}

. (A12)
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Next, we calculate the effective dark matter density in the interior of the compact
sphere, i.e., for r < r0. In employing Equation (A6), we need to split the integration of
y ∈ (0, r0) into two parts: integration over y ∈ (0, r), where r − y > 0, and y ∈ (r, r0),
where r− y < 0. Hence,

(1)ρD(r < r0) =
α0ρ0 eζ0

4 r̂

∫ r̂

0
ŷ dŷ

[
e−r̂+ŷ−ζ0 − e−r̂−ŷ−ζ0 + E1(r̂− ŷ + ζ0)− E1(r̂ + ŷ + ζ0)

]
+

α0ρ0 eζ0

4 r̂

∫ r̂0

r̂
ŷ dŷ

[
er̂−ŷ−ζ0 − e−r̂−ŷ−ζ0 + E1(−r̂ + ŷ + ζ0)− E1(r̂ + ŷ + ζ0)

]
. (A13)

We can write this expression as

(1)ρD(r < r0) =
α0ρ0

2 r̂
[r̂− (1 + r̂0) e−r̂0 sinh r̂] +

α0ρ0 eζ0

4 r̂
[I(−r̂, r̂ + ζ0)

− I(r̂0, r̂ + ζ0)− I(r̂,−r̂ + ζ0) + I(r̂0,−r̂ + ζ0)] . (A14)

Using Equation (A10), we find after some algebra

(1)ρD(r < r0) = A1 + B1 + C1 , (A15)

A1 = α0ρ0[1− 1
2 ζ0eζ0 E1(ζ0)] , (A16)

B1 = −α0ρ0

4 r̂
e−r̂0 [r̂ cosh r̂ + (3 + 3r̂0 − ζ0) sinh r̂] , (A17)

C1 =
α0ρ0 eζ0

8 r̂
{[(r̂ + ζ0)

2 − r̂2
0]E1(r̂0 + r̂ + ζ0)− [(r̂− ζ0)

2 − r̂2
0]E1(r̂0 − r̂ + ζ0)} . (A18)

The effective dark matter density in NLG is the convolution of the reciprocal kernel
q with the density of matter ρ; in the case under consideration here, we have a constant
density sphere with radius r0. For reciprocal kernel q1, we have calculated the dark matter
density outside (1)ρD(r > r0) and inside (1)ρD(r < r0) the sphere. It is possible to show
that these agree on the surface of the sphere r = r0 and (1)ρD is therefore a continuous
function throughout space.

Appendix A.2. q = q2

The reciprocal kernel is now q2 = [Û/(ζ0 + Û)]q1. Thus, with the same notation and
convention as before, we have

(2)ρD(r) =
α0ρ0

4

∫ 1 + ζ0 + Û
(ζ0 + Û)2

e−Û ŷ2 dŷ sin θ dθ . (A19)

After the θ integration, namely,

∫
(1 + ζ0 + Û)Û

(ζ0 + Û)2
e−ÛdÛ = − Û

ζ0 + Û
e−Û − eζ0 E1(ζ0 + Û) , (A20)

we find

(2)ρD(r) =
α0ρ0

4 r̂

∫ r̂0

0
ŷ dŷ

(
|r̂− ŷ|

|r̂− ŷ|+ ζ0
e−|r̂−ŷ| − r̂ + ŷ

r̂ + ŷ + ζ0
e−r̂−ŷ

)
+

α0ρ0 eζ0

4 r̂

∫ r̂0

0
ŷ dŷ[E1(|r̂− ŷ|+ ζ0)− E1(r̂ + ŷ + ζ0)] , (A21)

where Û(θ = 0) = |r̂− ŷ| and Û(θ = π) = r̂ + ŷ.
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For the outside region (r > r0), we use the methods described above to find

(2)ρD(r > r0) =
α0ρ0 eζ0

8 r̂
{

2e−r̂−ζ0 [3r̂0 cosh r̂0 + (r̂ + 3ζ0 − 3) sinh r̂0]

+ [(r̂ + ζ0)(r̂ + 3ζ0)− r̂2
0][E1(r̂ + ζ0 + r̂0)− E1(r̂ + ζ0 − r̂0)]

}
. (A22)

In a similar way as before, we find the effective density of dark matter inside the spherical
object of constant density ρ0, namely,

(2)ρD(r < r0) = A2 + B2 + C2 , (A23)

A2 = α0ρ0[1− ζ0eζ0 E1(ζ0)] , (A24)

B2 = −α0ρ0

4 r̂
e−r̂0 [r̂ cosh r̂ + 3(1 + r̂0 − ζ0) sinh r̂] , (A25)

C2 =
α0ρ0 eζ0

8 r̂
{[(r̂ + ζ0)(r̂ + 3ζ0)− r̂2

0]E1(r̂0 + r̂ + ζ0)

− [(r̂− ζ0)(r̂− 3ζ0)− r̂2
0]E1(r̂0 − r̂ + ζ0)} .

(A26)

On physical grounds, we expect that ζ0 < 1; for instance, a reasonable value for
the short distance parameter a0 is 1018 cm ≈ 1 light-year, in which case ζ0 ≈ 2× 10−5 is
very small compared to unity and one cannot observationally distinguish the two cases
involving q1 and q2. For ζ0 < 1, ρD(r) has a maximum with zero slope at the center of the
object (r = 0). For ζ0 = 0, the two cases agree, since q1 = q2 = q0; in this case, Figure A1
illustrates the behavior of ρD(r) for r̂0 = µ0r0 = 0.3.

0.0 0.2 0.4 0.6 0.8

0.0

0.5

1.0

1.5

Figure A1. The effective dark matter for a constant density sphere given by Equations (A22) and (A23).
Here, ρD(r̂)/ρ0 is plotted versus r̂ = µ0r and we have assumed that ζ0 = 0 and r̂0 = µ0r0 = 0.3.
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