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Using the assumption that the independent gauge invariant couplings on the world-volume of the
nonperturbative objects in the string theory are independent of the background, we find the four and the six
gauge field strength and/or the second fundamental form couplings on the world volume of a Dp-brane in
the superstring theory at order α02 in the normalization that F is dimensionless. We have found them by
considering the particular background which has one circle and by imposing the corresponding T-duality
constraint on the independent couplings. In particular, we find that there are 12þ 146 independent gauge
invariant couplings at this order, and the T-duality constraint can fix 150 of them. We show that these
couplings are fully consistent with the partial results in the literature. This comparison also fixes the
remaining 8 couplings.
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I. INTRODUCTION

The critical string theory is a quantum theory of gravity
that reproduces the Einstein theory of general relativity at
the low energy. As in Einstein theory, one expects string
theory and its nonperturbative objects at the critical
dimension to be background independent. In the low
energy effective action, the background independence
means the coefficients of the independent gauge invariant
couplings at each order of α0 should be independent of the
background. If one could fix these coefficients in a
particular background in which the effective action has
some symmetries, then that coefficient would be valid for
any other background that may have no symmetry.
The independent couplings at a given order of α0 are given

as all gauge invariant and covariant couplings at that order
modulo the field redefinitions, the total derivative terms, and
the Bianchi identities. The numbers of independent cou-
plings in the bosonic string theory involving the metric,
dilaton, and the B field at orders α0; α02; α03 are 8,60,872,
respectively [1–3]. The number of independent world-
volume couplings of Op-plane in the superstring theory at
order α02 involving only NS-NS fields is 48 [4], and
involving linear R-R field and the NS-NS fields is 77 [5].

The background independent coefficients of all these
couplings are fixed when one considers a particular
background that includes one circle, and uses the corre-
sponding T-duality constraints [6–10]. Onemay also use the
background independence assumption to find the boundary
couplings in the case that the background has boun-
dary [4,11,12].
The world-volume gauge invariant couplings of a non-

perturbative Dp-brane involving open string massless
gauge fields/transverse scalars at long wavelength limit
is given by the Dirac-Born-Infeld (DBI) action [13,14]

Sp ¼ −Tp

Z
dpþ1σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðG̃ab þ FabÞ

q
; ð1Þ

where Tp is the tension of the Dp-brane, Fab is field
strength of the gauge field Aa, and G̃ab is the pull back of
the bulk metric onto the world volume,1 i.e.,

G̃ab ¼
∂XμðσÞ
∂σa

∂XνðσÞ
∂σb

ημν ≡ ∂aXμ
∂bXνημν; ð2Þ

where XμðσÞ is the spacetime coordinate which specifies
the Dp-brane in the spacetime, and ημν is the spacetime
metric which for simplicity we choose it to be the
Minkowski metric. We have also chosen the B field to
be zero and the dilaton to be a constant. We have
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1Our index convention is that the Greek letters ðμ; ν;…Þ are the
indices of the spacetime coordinates, the Latin letters ða; d; c;…Þ
are the world-volume indices and the Latin letters ði; j; k;…Þ are
the transverse indices.
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normalized the gauge field Aa to have the same dimension
as the world sheet field Xμ. With this normalization, the
above action is at the leading order of α0. The above action
includes all eve n-power of the gauge field strength Fab.
The transverse scalar fields Φi appear in the static gauge
where Xa ¼ σa; Xi ¼ ΦiðσÞ. In the static gauge and for
Φi ¼ 0, the DBI action reduces to the Born-Infeld action.
The α0 corrections to the Born-Infeld action have been
studied in [15–20].
In the superstring theory, the first correction to the DBI

action is at order α02, which involves some contractions of
the second fundamental form Ωab

μ, i.e.,

Ωab
μ ¼ Da∂bXμ; ð3Þ

the gauge field strength Fab and their covariant derivatives,
e.g.,

DaFbc ¼ ∂aFbc − Γ̃ab
dFdc − Γ̃ac

dFbd; ð4Þ

where the Levi-Civita connection Γ̃ab
c is made of the pull-

back metric (2). The world-volume indices of these gauge
invariant tensors are contracted with the inverse of the pull-
back metric G̃ab, and the spacetime index in the second
fundamental form are contracted with the spacetime metric
ημν. Even though the α02-order of the couplings constrains
the independent couplings to have at most the first
derivative of Ω and the second derivative of F, however,
there are infinite towers of the gauge field strength, without
derivative on it, in the couplings. Hence, for simplicity we
consider only the couplings at order α02 that involve at most
six gauge field strengths and/or the second fundamental
form. Using the background independence assumption, we
are going to find such couplings in this paper. That is, we
first find the independent gauge invariant couplings and
then consider a particular background that has one circle.
For this background, the couplings should satisfy the
T-duality constraint [21,22], i.e., the T-duality transforma-
tion of the world-volume reduction of the independent
covariant couplings must be the same as the transverse
reduction of the couplings, up to some total derivative terms
and field redefinitions in the base space. This constraint
may fix the coefficients of the independent couplings. This
method has been used in [23] to find the corrections to the
DBI action in the bosonic string theory at order α0 which
involve at most eight gauge field strengths and/or the
second fundamental forms. The covariant approach has
been used in [23] to find the independent couplings,
however, the T-duality constraint has been used in the
static gauge. In this paper, we are going to use the covariant
approach for finding the independent couplings as well as
for imposing the T-duality constraint.
The outline of the paper is as follows: In Sec. II, we find

all independent covariant couplings at order α02 which
involve at most six gauge fields and/or the second

fundamental forms. We find there is no independent
couplings at the level of two fields, there are 12 indepen-
dent couplings at the level of four fields, and there are 146
couplings at the six-field level. The coefficients of these
couplings are independent of the backgrounds in which the
Dp-branes are placed. To fix these 158 background
independent coefficients, in Sec. III, we consider a back-
ground that includes a circle. Then the independent
couplings must satisfy the T-duality constraint. We find
that the T-duality constraint fixes the 12 parameters of the
four-field couplings up to five parameters. They are
consistent with the couplings that are found in the literature
by the S-matrix method. We use this comparison to fix the
remaining 5 parameters. We then find that the T-duality
constraint fixes 145 parameters of the six-field couplings.
We show that the couplings which involve only the gauge
field are consistent with the all-gauge-field couplings that
are found by Wyllard in [18]. We also fix the remaining 3
parameters by this comparison. In Sec. IV, we extend the
all-gauge-field couplings found in [18] to covariant form
and found their corresponding four-field and six-field
couplings involving the second fundamental form. In
Sec. V, we briefly discuss our results.

II. INDEPENDENT COUPLINGS

In this section we are going to find the independent
couplings at order α02 that involve at most six gauge fields
and/or the second fundamental form. We apply the method
used in [2] to find the independent couplings. The inde-
pendent couplings are all gauge invariant couplings modulo
the field redefinitions, the total derivative terms, the
identities corresponding to the derivative of the second
fundamental form, the Bianchi identity corresponding to
the gauge field

∂½aFbc� ¼ 0 ð5Þ

and the following identity involving the second fundamen-
tal form and ∂aXμ:

Ωab
μ
∂cXνημν ¼ 0: ð6Þ

The above identity can easily be verified by using (3) and
writing the covariant derivative in terms of the partial
derivative and the Levi-Civita connection, and then writing
the connection in terms of the pull-back metric (2). Using
the above identity, one finds that there is a scheme in which
∂X can appear only through the pull-back metric (2) and its
inverse. For example, the couplingDΩ∂X can be written as
−ΩΩ which can easily be verified by taking the covariant
derivative of the above identity. Hence, we use the scheme
in which the couplings involve only the contractions of F,
Ω and their covariant derivatives, i.e.,
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S0 ¼ −
ð2πα0Þ2
96

Tp

Z
dpþ1σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det G̃ab

q
L0

× ðF;DF;…;Ω; DΩ;…Þ: ð7Þ

In principle, one can construct all contractions of the gauge-
field strength and/or the second-fundamental form. We call
the coefficients of these couplings a01; a

0
2;…. However,

they are not independent couplings.
To remove the total derivative terms from the gauge

invariant couplings in (7), we first construct a vector Ia at
order α03=2 from F, Ω and their covariant derivatives with
arbitrary coefficients z1; z2;…. Then one is free to add the
following total derivative term to (7):

J ¼ −α02Tp

Z
dpþ1σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det G̃ab

q
DaIa: ð8Þ

The total derivative terms may remove some of the
structures in (7) completely, e.g., FDDDDF or ΩDDΩ,
and may also remove only some of the couplings in a
particular structure in (7). Hence, in writing the couplings
in (7), we do not include the structures that are removed
completely by the total derivative terms.
One is also free to change the field variables as2

Aa → Aa þ α03=2δAa;

Xμ → Xμ þ α03=2δXμ; ð9Þ

where the tensors δAa and δXμ are all contractions of F, Ω
and their covariant derivatives at order α03=2 with arbitrary
coefficients y1; y2;…. If one replaces this field redefinition
into the leading order action (1), it would produce the
following couplings at order α02:

K ¼ −α02Tp

Z
dpþ1σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det G̃ab

q

× ½−DaFabδAb − G̃abΩab
νδXμημν þ � � ��; ð10Þ

where dots represent the terms that involve all higher orders
of F resulting from the linear perturbation of the leading
order action (1) around (9). If one uses the arbitrary
parameters in δAa and δXμ to remove all couplings in
(7) which haveDaFab andGabΩab

ν, then there would be no
residual arbitrary parameters in δAa and δXμ to remove any
couplings in (7) that have the same structure as the
couplings in the dots above. Therefore, in the scheme that

the field redefinitions remove the couplings that have
DaFab or GabΩab

ν, one must ignore the dots above.
If one adds J , K to the action (7), they change only the

coefficients of the gauge invariant couplings a01; a
0
2;…, i.e.,

S0 þ J þK ¼ S; ð11Þ

where S is the same action as (7) in which the coefficients
of the gauge invariant couplings are changed to a1; a2;….
One can write the above equation as

ΔSþ J þK ¼ 0; ð12Þ

where ΔS is the same as (7) in which the coefficients of the
gauge invariant couplings are δa1; δa2;… where
δai ¼ a0i − ai. If one solves the above equation, one would
find some relations between only δa1; δa2;…. The number
of these relations represents the number of couplings that
are invariant under the field redefinitions and the total
derivative terms.
However, to solve the equation (12), one has to impose the

Bianchi identity (5) and the identities corresponding to the
derivative of the second fundamental form, to write (12) in
terms of independent couplings. To impose the latter
identities automatically, one can write the covariant deriv-
atives in terms of partial derivatives and the Levi-Civita
connection. Moreover, one can go to the local frame in
which the Levi-Civita connection is zero but its derivatives
are not zero. Then, one can write the derivatives of the
connection in terms of the pull-back metric (2). In the
resulting expression, then one has to replace the two ∂X in
which their spacetime indexes are contracted with each
other, i.e., ∂aXμ

∂bXνημν, by the pull-back metric (2). To
impose the Bianchi identity (5), wewrite the terms that have
partial derivative of the gauge field strength in terms of the
gauge potential, e.g., ∂aFbc ¼ ∂a∂bAc − ∂a∂cAb. The result-
ing terms have noncovariant expressions F, ∂∂A, ∂∂∂A;…,
and ∂X, ∂∂X, ∂∂∂X;…. The world-volume indices are
contracted with the inverse of the pull-back metric (2)
and the spacetime indices are contracted with ημν. In other
words, the equation (12) is written in the local frame in terms
of noncovariant but independent terms. The coefficients
of the independent terms which involve δa1; δa2;…;
z1; z2;…; y1; y2;… must be zero. The solution of the
resulting linear algebraic equations gives z1; z2;…;
zn; y1; y2;…; ym in terms of znþ1; znþ2;…; ymþ1; ymþ2;…
and δa1; δa2;… in which we are not interested. The solution
also gives some relations between only δa1; δa2;… inwhich
we are interested. The number of the latter relations gives the
number of independent couplings in (12).
Since there can be any number of gauge field strength

Fab in the couplings at any order of α0, there are infinite
number of independent couplings at each order of α0.
Hence, we have to classify the independent couplings in
substructures in which their couplings are independent. In

2One may also consider the change of variables at order α01=2
and consider the second perturbation of the DBI action which
also produces couplings at order α02. However, such field
redefinition would also produce at the linear order, the couplings
at order α0 which is in conflict with the fact that there is no world-
volume couplings in the superstring theory at order α0. Hence,
there should be no such field redefinition.
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our choice for the field redefinition that removes all terms
that involveDaFab andGabΩab

ν, the field redefinition does
not relate the terms which have different number of the
gauge fields, to each other. The total derivative terms and
the Bianchi identities do not relate the couplings with
different number of gauge fields either. Hence, in our
choice for the field redefinition, the number of independent
couplings at each level of gauge field is fixed. Moreover,
the couplings that involve only F, Ω modulo the trace of Ω,
are not related to the other couplings by the field redefi-
nitions, by the total derivative terms and by the Bianchi
identity. Hence, we choose all such couplings at each level
of gauge field as independent couplings. We use the above
prescription to find all other independent couplings at each
level of gauge field.
When Xμ is constant, i.e., Ω ¼ 0, the independent

couplings involve only the gauge field strength Fab and
its partial derivatives. The above prescription can be used to
find the independent couplings in this case. In the case that
Xμ is not constant, i.e.,Ω ≠ 0, there is a scheme in which the
independent couplings classify into two sets of couplings.
One set of couplings is the same as the set of independent
couplings in the case that Xμ is constant. The second set of
couplings is the independent couplings which become zero
when Xμ is constant. It has been shown in [2] that in fact
there is such scheme for the independent couplings of the
bosonic string theory for metric, B-field, and dilaton at order
α02. In particular, it has been shown in [2] that there are 60
independent couplings at this order. In one particular
scheme, the couplings have been written as two sets. One
set, which has 20 couplings, includes the dilaton only as the
overall factor e−2ϕ, and another set that has 40 couplings,
includes the derivative of the dilaton. In this scheme, when
the dilaton is constant, the couplings reduce to 20 couplings
that are the independent couplings when the dilaton is
constant [24]. It has been shown in [2], that there is also
a scheme in which the dilaton appears as an overall factor in
all 60 independent couplings. In this scheme, when the

dilaton is constant, the number of couplings does not
change, however, the 60 couplings are not independent
any more when the dilaton is constant. In this paper we are
going to use the scheme in which the independent couplings
are such that when Xμ is constant, they reduce to the
independent couplings of only the gauge field.
We begin with the couplings that have zero gauge field at

order α02. There are 4 couplings involving ΩΩΩΩ modulo
the trace of Ω. Apart from this structure, the Lagrangian in
(7) has one structure as

L0 ∼DΩDΩ: ð13Þ

Using the package xAct [25], one finds there are 5
couplings in the above structure. The vector in the total
derivative (8) has one structure as

I ∼ΩDΩ: ð14Þ

The field redefinitions δAa has no structure at this level and
δXμ has one structure as

δXμ ∼DDΩ: ð15Þ

Using the package xAct, one can construct all possible
contractions in Eqs. (14) and (15). Then we replace them in
(12) and go to the local frame to write Eq. (12) in terms of
the independent structures. However, the coefficients of all
the resulting independent structures cannot be zero because
we have already set aside some of the independent
couplings. Since we have chosen the couplings in the
structure ΩΩΩΩ as independent couplings, we have to
remove all independent structures that are reproduced also
by ΩΩΩΩ, i.e., remove the terms that have four and more
fields. One finds the resulting linear algebraic equations
have no solution that involves only δa1;…; δa5. It means
there are no independent couplings at zero gauge field
except the 4 couplings in ΩΩΩΩ, i.e.,

S ⊃ −
ð2πα0Þ2
96

Tp

Z
dpþ1σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det G̃ab

q
½b1Ωa

cνΩabμΩb
d
νΩcdμ þ b2Ωa

c
μΩabμΩb

dνΩcdν

þ b3Ωab
νΩabμΩcdνΩcd

μ þ b4ΩabμΩabμΩcdνΩcdν�; ð16Þ

where we have chosen the coefficients of the 4 independent
couplings to be b1;…; b4.
Next, we consider the couplings at the level of two gauge

fields at order α02. There are 18 independent couplings in
the structure ΩΩΩΩFF modulo the trace of Ω. Apart from
this structure, the Lagrangian in (7) has 4 structures as

L0 ∼DDFDDF þDFDFΩΩþ FDFΩDΩþ FFDΩDΩ:

ð17Þ

Using the package xAct, one finds there are 118 gauge
invariant couplings in these structures. The vector in the
total derivative (8) has 4 structures as

I ∼ FFΩDΩþ FDFΩΩþDFDDF þ FDDDF: ð18Þ

The field redefinitions δAa and δXμ in (10) have 3 and 4
structures, respectively, as
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δAa ∼ΩΩDF þ FΩDΩþDDDF;

δXμ ∼ΩDFDF þ FDFDΩþ FΩDDF þ FFDDΩ: ð19Þ

Using the package xAct, one can construct all possible
contractions in (18) and (19). Then replacing them in (12),
going to the local frame to write the equation (12) in terms
of the independent structures, and removing the terms that
have six and more fields which are reproduce also by the
independent couplings in the structure ΩΩΩΩFF, one
finds the resulting linear algebraic equations has 4 solutions
that involve only δa1;…; δa118. It means there are 4
independent couplings at four gauge field level on top of

the 18 couplings in the structureΩΩΩΩFF. One can set all
of the coefficients in (7) to zero except 4 of them. However,
one is not totally free to choose the 4 couplings. The correct
choices must be such that when one replaces the nonzero
couplings in (12), the linear algebraic equations produce 4
relations δa1 ¼ δa2 ¼ δa3 ¼ δa4 ¼ 0. For the wrong
choices of the independent couplings, the algebraic equa-
tions, would produce less than 4 relations between only δai.
There are different ways (schemes) to choose the 4
independent couplings. One can choose the 4 independent
couplings in the structure DFDFΩΩ. The couplings in a
particular scheme are the following:

S ⊃ −
ð2πα0Þ2
96

Tp

Z
dpþ1σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det G̃ab

q
½a1DaFbcDaFbcΩdeμΩdeμ þ a2DaFbcDdFb

eΩae
μΩcdμ

þ a3DaFbcDbFa
dΩc

eμΩdeμ þ a4DaFbcDdFb
eΩac

μΩdeμ

þ f1Ωa
eμΩb

fνΩceνΩdfμFabFcd þ f2Ωa
eμΩb

fνΩceμΩdfνFabFcd

þ f3Ωa
eμΩb

f
μΩce

νΩdfνFabFcd þ f4Ωa
eμΩbe

νΩc
f
μΩdfνFabFcd

þ f5Ωac
μΩb

eνΩd
f
νΩefμFabFcd þ f6Ωb

dμΩc
eνΩd

f
νΩefμFa

cFab

þ f7Ωc
eνΩcdμΩd

f
νΩefμFabFab þ f8Ωb

dμΩc
eνΩd

f
μΩefνFa

cFab

þ f9Ωac
μΩb

e
μΩd

fνΩefνFabFcd þ f10Ωb
dμΩc

e
μΩd

fνΩefνFa
cFab

þ f11Ωc
e
μΩcdμΩd

fνΩefνFabFab þ f12Ωbc
μΩd

fνΩde
μΩefνFa

cFab

þ f13Ωac
μΩbd

νΩefνΩef
μFabFcd þ f14Ωb

dμΩcd
νΩefνΩef

μFa
cFab

þ f15Ωcd
νΩcdμΩefνΩef

μFabFab þ f16Ωac
μΩbdμΩefνΩefνFabFcd

þ f17Ωb
dμΩcdμΩefνΩefνFa

cFab þ f18ΩcdμΩcdμΩefνΩefνFabFab�; ð20Þ

where we have chosen the coefficients of the 4 independent
couplings to be a1;…; a4. We have also included in above
couplings the 18 independent couplings in the structure
ΩΩΩΩFF with coefficients f1;…; f18. Note that the above
independent couplings become zero when Xμ is constant,
which is consistent with the fact that there is no indepen-
dent couplings of two gauge fields at order α02.
We now consider the couplings that have four gauge

fields at order α02. Apart from the structure ΩΩΩΩFFFF,
the Lagrangian in (7) has 6 structures as

L0 ∼DFDFDFDF þ FDFDFDDF þ FFDDFDDF

þ FFDFDFΩΩþ FFFDFΩDΩþ FFFFDΩDΩ:

ð21Þ

There are 1124 gauge invariant couplings in these
structures. The vector in the total derivative (8) has 5
structures as

I ∼ FDFDFDF þ FFDFDDF

þ FFFDDDF þ FFFFΩDΩþ FFFDFΩΩ: ð22Þ

The field redefinitions δAa and δXμ in (10) each has 5
structures as

δAa ∼DFDFDF þ FDFDDF þ FFDDDF þΩΩFFDF þ FFFΩDΩ;

δXμ ∼ FFΩDFDF þ FFFDFDΩþΩFFFDDF þ FFFFDDΩþ ΩΩΩFFFF: ð23Þ
In this case, after removing the eight and more fields from the independent structures in the local frame, one finds the
resulting linear algebraic equations have 68 solutions that involve only δa1;…; δa1124. It means there are 68 independent
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couplings at four gauge field on top of the independent couplings in ΩΩΩΩFFFF. We find that there are at least 4
independent couplings in the structures in the first line of (21) and there are at most 64 independent couplings in the
structures in the second line of (21). Since there are 4 independent couplings for only gauge field at order α02, we choose the
4 couplings in structure DFDFDFDF and 64 couplings in the structures in the second line of (21). The couplings in a
particular scheme are the following:

S ⊃ −
ð2πα0Þ2
96

Tp

Z
dpþ1σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det G̃ab

q
½c1DaFbcDaFbcDdFefDdFef þ c2DaFdeDaFbcDfFdeDfFbc

þ c3DaFdeDaFbcDfFceDfFbd þ c4DaFb
dDaFbcDeFdfDeFc

f

þ d1DaFbcDdFb
eFfhFfhΩad

μΩceμ þ d2DaFbcDaFdeFfhFfhΩbd
μΩceμ

þ d3DaFbcDdFefFb
hFehΩad

μΩcfμ þ d4DaFbcDdFefFa
hFdhΩbe

μΩcfμ

þ d5DaFbcDbFdeFd
fFf

hΩae
μΩchμ þ d6DaFbcDdFb

eFfhFfhΩac
μΩdeμ

þ d7DaFbcDdFb
eFa

fFf
hΩch

μΩdeμ þ d8DaFbcDdFefFb
hFehΩac

μΩdfμ

þ d9DaFbcDdFefFa
hFbeΩch

μΩdfμ þ d10DaFbcDdFefFaeFb
hΩch

μΩdfμ

þ d11DaFbcDdFefFabFe
hΩch

μΩdfμ þ d12DaFbcDdFefFa
hFbeΩcf

μΩdhμ

þ d13DaFbcDdFefFaeFb
hΩcf

μΩdhμ þ d14DaFbcDdFefFabFe
hΩcf

μΩdhμ

þ d15DaFbcDaFb
dFe

hFefΩcf
μΩdhμ þ d16DaFbcDbFa

dFe
hFefΩcf

μΩdhμ

þ d17DaFbcDdFefFaeFbfΩc
hμΩdhμ þ d18DaFbcDdFefFabFefΩc

hμΩdhμ

þ d19DaFbcDaFb
dFefFefΩc

hμΩdhμ þ d20DaFbcDbFa
dFefFefΩc

hμΩdhμ

þ d21DaFbcDbFdeFa
fFd

hΩch
μΩefμ þ d22DaFbcDdFb

eFa
fFd

hΩch
μΩefμ

þ d23DaFbcDaFdeFb
fFd

hΩch
μΩefμ þ d24DaFbcDbFdeFd

fFf
hΩac

μΩehμ

þ d25DaFbcDbFdeFa
fFf

hΩcd
μΩehμ þ d26DaFbcDdFb

eFa
fFf

hΩcd
μΩehμ

þ d27DaFbcDaFdeFb
fFf

hΩcd
μΩehμ þ d28DaFbcDbFdeFa

fFd
hΩcf

μΩehμ

þ d29DaFbcDaFdeFb
fFd

hΩcf
μΩehμ þ d30DaFbcDbFdeFadFfhΩcf

μΩehμ

þ d31DaFbcDaFdeFbdFfhΩcf
μΩehμ þ d32DaFbcDbFdeFa

fFdfΩc
hμΩehμ

þ d33DaFbcDdFb
eFa

fFdfΩc
hμΩehμ þ d34DaFbcDaFdeFb

fFdfΩc
hμΩehμ

þ d35DaFbcDdFb
eFa

fFc
hΩdf

μΩehμ þ d36DaFbcDaFdeFb
fFc

hΩdf
μΩehμ

þ d37DaFbcDaFdeFbcFfhΩdf
μΩehμ þ d38DaFbcDaFb

dFc
eFfhΩdf

μΩehμ

þ d39DaFbcDbFa
dFc

eFfhΩdf
μΩehμ þ d40DaFbcDbFacFdeFfhΩdf

μΩehμ

þ d41DaFbcDdFb
eFa

fFd
hΩce

μΩfhμ þ d42DaFbcDdFefFadFbeΩc
hμΩfhμ

þ d43DaFbcDdFb
eFa

fFc
hΩde

μΩfhμ þ d44DaFbcDbFa
dFc

eFe
fΩd

hμΩfhμ

þ d45DaFbcDdFb
eFadFc

fΩe
hμΩfhμ þ d46DaFbcDaFdeFbdFc

fΩe
hμΩfhμ

þ d47DaFbcDdFb
eFacFd

fΩe
hμΩfhμ þ d48DaFbcDaFdeFbcFd

fΩe
hμΩfhμ

þ d49DaFbcDbFacFd
fFdeΩe

hμΩfhμ þ d50DaFbcDdFb
eFadFceΩfhμΩfhμ

þ d51DaFbcDaFdeFbdFceΩfhμΩfhμ þ d52DaFbcDaFdeFbcFdeΩfhμΩfhμ

þ d53DaFbcDaFb
dFc

eFdeΩfhμΩfhμ þ d54DaFbcDbFa
dFc

eFdeΩfhμΩfhμ

þ d55DaFbcDbFacFdeFdeΩfhμΩfhμ þ d56DaFbcDaFb
dFe

hFefΩcd
μΩfhμ
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þ d57DaFbcDaFdeFb
fFd

hΩce
μΩfhμ þ d58DaFbcDdFefFabFc

hΩde
μΩfhμ

þ d59DaFbcDdFefFa
hFbhΩce

μΩdfμ þ d60DaFbcDdFb
eFa

fFd
hΩcf

μΩehμ

þ d61DaFbcDdFb
eFadFfhΩcf

μΩehμ þ d62DaFbcDdFb
eFa

fFcfΩd
hμΩehμ

þ d63DaΩbcμDdΩef
μ FadFbeFc

hFfh þ d64DaFbcDdΩefμFabFe
hFfhΩcdμ þ ΩΩΩΩFFFF�; ð24Þ

where we have chosen the coefficients of the 4 independent
couplings to be c1;…; c4, and the 64 couplings to be
d1;…; d64. Since the couplings in the structure
ΩΩΩΩFFFF involve eight fields F, Ω in which we are
not interested in this paper, we did not write the dependent
couplings in this structure. Note that when Ω is zero, the
above couplings reduce to the independent couplings of
four gauge field at order α02.
We finally consider in this section the couplings which

have six gauge fields. Apart from the structure
ΩΩΩΩFFFFFF, the Lagrangian in (7) has 6 structures as

L0 ∼ FFDFDFDFDF þ FFFDFDFDDF

þ FFFFDDFDDF þ FFFFDFDFΩΩ

þ FFFFFDFΩDΩþ FFFFFFDΩDΩ: ð25Þ

In this case the couplings in the structures in the second line
have eight gauge field or the second fundamental form in
which we are not interested in this paper. On the other hand,
in the scheme that we are using in this paper in which the
independent couplings should be reduced to the indepen-
dent couplings of only gauge field when Xμ is a constant,
one can find the independent couplings in the first line by
finding the independent couplings of only the gauge field.
At the end, the partial derivatives are replaced by the

covariant derivatives. So we consider only the six gauge
field structures

L0
F ∼ FFDFDFDFDF þ FFFDFDFDDF

þ FFFFDDFDDF:

There are 2836 gauge invariant couplings in these structures.
The vector in the total derivative (8) has 3 structures as

I ∼ FFFDFDFDF þ FFFFDFDDF þ FFFFFDDDF:

ð26Þ

The field redefinition δAa has 3 structures as

δAa ∼ FFDFDFDF þ FFFDFDDF þ FFFFDDDF:

ð27Þ

The derivatives are all partial derivatives. In this case, one
needs only to impose the Bianchi identity (5) to find the
corresponding independent structures in (12). One finds the
linear algebraic equationshave64 solutions that involve only
δa1;…; δa2836. It means there are 64 independent couplings
at six gauge fields when Xμ is constant. The couplings in a
particular scheme are the following:

S ⊃ −
ð2πα0Þ2
96

Tp

Z
dpþ1σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det G̃ab

q
½e1DaFbcDbFdeDfFdeDhFf

uFauFch

þ e2DaFbcDbFdeDdFfhDuFefFauFch þ e3DaFbcDbFdeDdFfhDuFfhFaeFcu

þ e4DaFbcDbFc
dDeFfhDuFfhFaeFdu þ e5DaFbcDbFa

dDeFfhDfFh
uFceFdu

þ e6DaFbcDaFb
dDeFfhDfFehFc

uFdu þ e7DaFbcDbFdeDfFcdDhFf
uFauFeh

þ e8DaFbcDbFdeDdFfhDuFcfFauFeh þ e9DaFbcDaFdeDfFd
uDfFb

hFcuFeh

þ e10DaFbcDaFdeDbFd
fDhFf

uFcuFeh þ e11DaFbcDbFa
dDeFc

fDhFf
uFduFeh

þ e12DaFbcDbFdeDdFfhDuFfhFacFeu þ e13DaFbcDbFdeDcFfhDdFf
uFahFeu

þ e14DaFbcDbFdeDdFfhDfFc
uFahFeu þ e15DaFbcDbFdeDdFc

fDfFhuFahFeu

þ e16DaFbcDbFc
dDeFd

fDfFhuFahFeu þ e17DaFbcDbFdeDdFc
fDhFf

uFahFeu

þ e18DaFbcDbFc
dDeFd

fDhFf
uFahFeu þ e19DaFbcDbFdeDfFcdDhFf

uFahFeu

þ e20DaFbcDbFdeDdFfhDuFcfFahFeu þ e21DaFbcDbFdeDfFc
hDuFdfFahFeu
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þ e22DaFbcDbFdeDcFfhDdFfhFa
uFeu þ e23DaFbcDbFa

dDeFc
fDhFd

uFehFfu

þ e24DaFbcDaFdeDbFfhDuFdeFcfFhu þ e25DaFbcDbFa
dDeFc

fDhFe
uFdfFhu

þ e26DaFbcDbFa
dDeFc

fDfFe
hFd

uFhu þ e27DaFbcDbFa
dDeFc

fDhFefFd
uFhu

þ e28DaFbcDbFdeDcFfhDdFa
uFefFhu þ e29DaFbcDaFbcDdFhuDdFefFefFhu

þ e30DaFbcDbFa
dDcFd

eDfFhuFefFhu þ e31DaFbcDbFc
dDdFa

eDfFhuFefFhu

þ e32DaFbcDaFdeDbFd
fDhFc

uFefFhu þ e33DaFbcDbFdeDdFa
fDhFc

uFefFhu

þ e34DaFbcDaFdeDfFbdDhFc
uFefFhu þ e35DaFbcDaFb

dDeFc
fDhFd

uFefFhu

þ e36DaFbcDbFa
dDeFc

fDhFd
uFefFhu þ e37DaFbcDaFdeDfFbcDhFd

uFefFhu

þ e38DaFbcDaFdeDfFc
hDfFbdFe

uFhu þ e39DaFbcDaFdeDfFbdDhFcfFe
uFhu

þ e40DaFbcDaFdeDbFd
fDeFc

hFf
uFhu þ e41DaFbcDaFb

dDcFefDeFd
hFf

uFhu

þ e42DaFbcDbFa
dDcFefDeFd

hFf
uFhu þ e43DaFbcDbFacDdFefDeFd

hFf
uFhu

þ e44DaFbcDaFb
dDeFd

hDeFc
fFf

uFhu þ e45DaFbcDbFdeDdFa
fDhFceFf

uFhu

þ e46DaFbcDaFdeDfFbdDhFceFf
uFhu þ e47DaFbcDaFb

dDcFefDhFdeFf
uFhu

þ e48DaFbcDbFa
dDcFefDhFdeFf

uFhu þ e49DaFbcDaFdeDfFbcDhFdeFf
uFhu

þ e50DaFbcDbFacDdFefDeFdfFhuFhu þ e51DaFbcDaFb
dDeFc

fDfFdeFhuFhu

þ e52DaFbcDbFa
dDeFc

fDfFdeFhuFhu þ e53DaFbcDaFdeDfFdeDfFbcFhuFhu

þ e54DaFbcDaFdeDfFceDfFbdFhuFhu þ e55DaFbcDaFdeDfFd
uDfFb

hFceFhu

þ e56DeDhFc
uDfDuFdhFa

cFabFb
dFef þ e57DaDcFehDbDfFduFabFcdFefFhu

þ e58DaFbcDaFdeDbFfhDuFdfFceFhu þ e59DaFbcDbFa
dDeFfhDfFe

uFchFdu

þ e60DaFbcDbFa
dDcFd

eDfFe
hFf

uFhu þ e61DaFbcDbFc
dDdFa

eDfFe
hFf

uFhu

þ e62DaFbcDbFdeDfFc
hDuFdhFafFeu þ e63DbDhFe

uDfDuFchFa
cFabFd

fFde

þ e64DeDhFfuDaFbcDbFacFd
fFdeFhu þΩΩΩΩFFFFFF

þ FFFFDFDFΩΩþ FFFFFDFΩDΩþ FFFFFFDΩDΩ�; ð28Þ

where e1;…; e64 are some parameters. The couplings in the structures in the last line above and in the structure
ΩΩΩΩFFFFFF involve more than six gauge field and/or the second fundamental forms in which we are not interested in
this paper. WhenΩ is zero, the above couplings reduce to the independent couplings of four gauge fields at order α02. Hence,
the derivatives in the above independent couplings are now covariant derivatives.
The parameters of the independent couplings in (16), (20), (24), and (28) are background independent parameters

which may be found by the appropriate S-matrix elements in flat spacetime. The couplings of four gauge field and/or the
second fundamental form have been found by the S-matrix element of four open string vertex operators [17,26]. They are

a1 ¼
1

2
; a2 ¼ a3 ¼ a4 ¼ −2; b1 ¼ 0; b2 ¼ 2; b3 ¼ −2; b4 ¼ 0;

c1 ¼
1

8
; c2 ¼

1

4
; c3 ¼ −

1

2
; c4 ¼ −1: ð29Þ

However, we are going to find the parameters in the next section by imposing the T-duality constraint.

III. T-DUALITY CONSTRAINT

We now try to fix the parameters in the actions (16), (20), (24), and (28). The assumption that the world-volume effective
action at the critical dimension is background independent, means the parameters in these actions are independent of the
background. Hence, to fix them we consider a specific background that has a circle. That is, the manifold has the structure
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Mð10Þ ¼ Mð9Þ × Sð1Þ. The manifold Mð10Þ has coordinates
xμ ¼ ðxμ̃; yÞ, where xμ̃ is the coordinate of the manifold
Mð9Þ, and y is the coordinate of the circle Sð1Þ. The world-
volume action has two reductions on the circle. When the
Dp-brane is along the circle, i.e., a ¼ ðã; yÞ, the reduction
is called Swp , and when the Dp-brane is orthogonal to the
circle, i.e., a ¼ ã, the reduction is called Stp. These two
actions are not identical. However, the transformation of Swp
under the following T-duality transformations

Ay → Xy;

Aã → Aã;

Xμ̃ → Xμ̃; ð30Þ

which is called SwTp−1, should be the same as Stp−1, up to
some total derivative terms and field redefinitions in the
base space, i.e.,

ΔS̃þ J̃ þ K̃ ¼ 0; ð31Þ

where ΔS̃ ¼ SwTp−1 − Stp−1, the total derivative term J̃ and
the field redefinition contributions are

J̃ ¼ α02Tp−1

Z
dpσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g̃ã b̃

p
D̃ãĨ

ã;

K̃ ¼ α02Tp−1

Z
dpσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g̃ã b̃

p ½−D̃ãFã b̃δAb̃ − g̃ã b̃Ω̃ν̃
ã b̃
δXμ̃ημ̃ ν̃ − g̃ã b̃Ω̃y

ã b̃
δXyηyy þ � � ��; ð32Þ

where Ĩ ã is a vector which is made of the base space fields
F; Ω̃μ̃; ∂Xy and their covariant derivatives at order α03=2 with
coefficients j1; j2;…. In the above equations, the world-
volume indices are contracted with the inverse of the pull
back of the base space metric onto the world volume of
Dp−1-brane, i.e.,

g̃ã b̃ ¼ ∂ãXμ̃
∂b̃X

ν̃ημ̃ ν̃; ð33Þ

and the dots in K̃ represent the terms that involve all higher
orders of F and ∂Xy that are resulted from inserting in the
world-volume reduction of (1), the following field redefi-
nitions:

Aã → Aã þ α03=2δAã;

Xμ̃ → Xμ̃ þ α03=2δXμ̃;

Xy → Xy þ α03=2δXy; ð34Þ

and using integration by part. The coefficients of the gauge
invariant terms in δAã, δXμ̃, δXy at order α03=2 are k1; k2;….
Unlike in K, the dots in K̃ cannot be ignored because
they have contribution with some fixed parameters in
some of the structures in the constraint (31), i.e., if one
ignores them, then one would find the world-volume
actions (16), (20), (24), and (28) satisfy the constraint
(31) when all parameters in the actions are zero, which is
not true.
For the world-volume reduction, a ¼ ðã; yÞ and

μ ¼ ðμ̃; yÞ. Using the fact that the second fundamental

form is zero when μ is a world-volume index, and the fact
that in the dimensional reduction one assumes field are
independent of the y coordinate, i.e., the Kaluza-Klein
modes are ignored, one finds the following nonzero world-
volume reductions:

G̃ã b̃ ¼ g̃ã b̃;

Ωã b̃
μ ¼ Ω̃ã b̃

μ̃;

DãΩb̃ c̃
μ ¼ D̃ãΩ̃b̃ c̃

μ̃;

Fã b̃ ¼ Fã b̃;

Fãy ¼ Fãy;

Fyã ¼ Fyã;

DãFb̃ c̃ ¼ D̃ãFã b̃;

DãFb̃y ¼ D̃ãFb̃y;

DãFyb̃ ¼ D̃ãFyb̃;

DãDb̃Fc̃ d̃ ¼ D̃ãD̃b̃Fc̃ d̃;

DãDb̃Fc̃y ¼ D̃ãD̃b̃Fc̃y;

DãDb̃Fyc̃ ¼ D̃ãD̃b̃Fyc̃; ð35Þ

where Ω̃ã b̃
μ̃ ¼ D̃ã∂b̃X

μ̃, and the covariant derivatives on
the right-hand side are made of the pull-back metric (33).
For the transverse reduction, a ¼ ã and μ ¼ ðμ̃; yÞ. Since

the index y is a transverse index, one finds the following
nonzero transverse reductions:
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G̃ã b̃ → g̃ã b̃ þ ∂ãXy
∂b̃X

y;

Ωã b̃
μ → Ω̃ã b̃

μ̃ − ∂c̃Xy
∂
c̃Xμ̃Ω̃ã b̃

y

�
1

1 − ∂ẽXy
∂
ẽXy

�
;

Ωã b̃
y → Ω̃ã b̃

y

�
1

1 − ∂ẽXy
∂
ẽXy

�
;

DãΩb̃ c̃
μ → D̃ãΩb̃ c̃

μ̃ − ∂
d̃XyðΩc̃ d̃

μ̃Ωã b̃
y þ Ωb̃ d̃

μ̃Ωã c̃
yÞ;

DãΩb̃ c̃
y → D̃ãΩb̃ c̃

y − ∂
d̃XyðΩc̃ d̃

yΩã b̃
y þ Ωb̃ d̃

yΩã c̃
yÞ;

Fã b̃ → Fã b̃;

DãFb̃ c̃ → D̃ãFb̃ c̃ þ ∂
d̃XyðFc̃ d̃Ωã b̃

y − Fb̃ d̃Ωã c̃
yÞ;

DãDb̃Fc̃ d̃ → D̃ãDb̃Fc̃ d̃ − ∂
ẽXyðDẽFc̃ d̃Ωã b̃

y −Db̃Fd̃ ẽΩã c̃
y þDb̃Fc̃ ẽΩã d̃

yÞ; ð36Þ

where, for the simplicity in writing, on the right-hand side
of the transverse reductions of DΩ and DDF, we have
not written the results completely in terms of the base
space tensors Ω̃ and D̃. One can easily replace them
from the reductions of Ω and DF. In both world-volume
and transverse reductions, one observers that the identity
(6) reduces to the corresponding identity in the base
space, i.e.,

Ω̃ã b̃
μ̃
∂c̃Xν̃ημ̃ ν̃ ¼ 0 ð37Þ

and the reductions satisfies the Bianchi identity (5). Note
that the gauge field in the base space satisfies its corre-
sponding Bianchi identity

∂½ãFb̃ c̃� ¼ 0: ð38Þ

Note also that there is no relation corresponding to (6) for
μ; ν ¼ y. Hence, one cannot remove the term ∂ãXy from the
independent covariant couplings in the base space.
Using the reductions (35) and (36), one can calculate ΔS̃

in (31). To solve the T-duality constraint (31), one has to
write it in terms of independent couplings in the base space,
i.e., the Bianchi identity (38) and the identities correspond-
ing to the second fundamental forms must be imposed into
it. As in the previous section, we write the covariant
derivatives in the base space in terms of partial derivatives
and the Levi-Civita connection which is made of the pull-
back metric (33). Moreover, one can go to the local frame in
which the Levi-Civita connection is zero but its partial
derivatives are not zero. Then, one can write the derivatives
of the connection in terms of the pull-back metric (33). In
the resulting expression, then one has to replace the two
∂ãXμ̃ in which their spacetime index are contracted with
each other, i.e., ∂ãXμ̃

∂b̃X
ν̃ημ̃ ν̃, by the pull-back metric (33).

One also has to write the partial derivatives of the gauge
field strength in terms of the gauge field potential. The final

resulting noncovariant expression involves independent
structures made of Fã b̃; ∂ã∂b̃Ac̃;…, ∂ãXμ̃; ∂ã∂b̃X

μ̃;… and
∂ãXy; ∂ã∂b̃X

y;…. The coefficients of these independent
structures which involve the parameters in the effective
action found in the previous section, the parameters in the
total derivative terms (32) and the parameters in the field
redefinitions (34), must be zero. They produces some linear
algebraic equations for these parameters. Solving them, one
finds some relations involving only the parameters of the
independent couplings found in the previous section in
which we are interested in this paper. The solution also
produces some relations for j1; j2;…; jnj, k1; k2;…; knk in
terms of the parameters of the effective action and
jnjþ1; jnjþ2;…, knkþ1; knkþ2;… in which we are not
interested.
Since the T-duality constraint (31) at order α02 involve all

orders of fields Fã b̃; ∂ãX
y, it relates the coefficients of all

infinite number of independent couplings at order α02.
However, to solve this constraint one has to truncate the
independent couplings in the effective action to a fixed
number of F, Ω. In the previous section we have found the
couplings up to six F, Ω. To find the parameters of these
truncated couplings, one has to truncate also the indepen-
dent structures in (31). If one considers an action at a given
order of α0, and at the level of m fields F, Ω, then the
independent structures in the constraint (31) which have
more than m fields in the local frame must be ignored. The
coefficients of the remaining independent structures must
be zero. The resulting linear algebraic equation should be
solved to find some relations between the parameters of the
independent couplings in the action.
The independent couplings that we have found in the

previous section have 12 couplings at the level of four F,Ω,
i.e., the couplings with coefficients a1; a2; a3; a4; b1; b2;
b3; b4; c1; c2; c3; c4. To find the T-duality constraint on
these couplings, we consider the following structures for
the vector of the total derivative terms:
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Ĩ ∼ D̃ D̃ Ω̃yD̃XyD̃XyD̃Xy þ Ω̃yD̃Ω̃yD̃XyD̃Xy þ Ω̃yΩ̃yΩ̃yD̃Xy þ FD̃ D̃ D̃ FD̃XyD̃Xy þ D̃ D̃ FD̃FD̃XyD̃Xy

þ FD̃ D̃FΩ̃yD̃Xy þ D̃FD̃FΩ̃yD̃Xy þ FFΩ̃yD̃Ω̃y þ FD̃FΩ̃yΩ̃y þ FD̃FD̃Ω̃yD̃Xy

þ FFD̃ D̃ Ω̃yD̃Xy þ D̃XyD̃XyΩ̃μ̃D̃Ω̃ν̃ þ D̃XyΩ̃yΩ̃μ̃Ω̃ν̃: ð39Þ

For the field redefinitions, we consider the following structures:

δXy ∼ FFD̃ D̃ Ω̃y þ FD̃ D̃ D̃ FD̃Xy þ FD̃FD̃Ω̃y þ FD̃ D̃FΩ̃y þ D̃FD̃ D̃ FD̃Xy þ D̃FD̃FΩ̃y

þ D̃ D̃ Ω̃yD̃XyD̃Xy þ Ω̃yD̃Ω̃yD̃Xy þ Ω̃yΩ̃yΩ̃y þ Ω̃μ̃D̃Ω̃ν̃D̃Xy þ Ω̃μ̃Ω̃ν̃Ω̃y;

δAã ∼ D̃ D̃ D̃ FD̃XyD̃Xy þ D̃ D̃ Ω̃yD̃XyF þ Ω̃yD̃XyD̃ D̃ F þ D̃Ω̃yD̃XyD̃F þ Ω̃yD̃Ω̃yF þ Ω̃yΩ̃yD̃F;

δXμ̃ ∼ D̃ D̃ Ω̃μ̃D̃XyD̃Xy þ Ω̃yD̃Ω̃μ̃D̃Xy þ Ω̃μ̃D̃Ω̃yD̃Xy þ Ω̃μ̃Ω̃yΩ̃y: ð40Þ

Note that all terms in the reduction ΔS̃ in the constraint (31) involve, among other things, ∂Xy and/or Ω̃y. Hence the total
derivative terms and the field redefinitions must include these fields as well. Using the package xAct, one can construct all
possible contractions in (39) and (40). Then replacing them in (31), going to the local frame to write the equation (31) in
terms of the independent structures, and removing the terms that have six and more fields, one finds the resulting linear
algebraic equations have the following solution that involves only the parameters of the effective action

c1 →
a1
4
þ a3 − a4

16
; c2 → −

3

8
a3 þ

a4
4
; c3 →

a2 − a3 þ a4
4

; c4 →
a3
2
;

b2 → −a2 þ 2b1; b3 →
a2 þ a4

4
− b1; b4 →

1

4
ð4a1 þ a2 − 2b1Þ: ð41Þ

The above parameters are consistent with the results from the S-matrix method (29). It turns out that the unfixed parameters
above can not be fixed by studying the T-duality constraint at the level of six F, Ω. So for studying the constraint (31) at
level of six F, Ω, we consider the parameters (29) for the four F, Ω couplings.
We have found the independent couplings at the level of six F, Ω in the previous section, i.e., the couplings with

coefficients f1; f2;…; f18, d1; d2;…; d64 and e1; e2;…; e64. To find the T-duality constraint on these couplings, we
consider the following structures for the vector of the total derivative terms:

Ĩ ∼ D̃ D̃ Ω̃yD̃XyD̃XyD̃XyD̃XyD̃Xy þ D̃Ω̃yΩ̃yD̃XyD̃XyD̃XyD̃Xy þ Ω̃yΩ̃yΩ̃yD̃XyD̃XyD̃Xy þ FD̃ D̃ D̃ FD̃XyD̃XyD̃XyD̃Xy

þ FFD̃ D̃ Ω̃yD̃XyD̃XyD̃Xy þ D̃ D̃ FD̃FD̃XyD̃XyD̃XyD̃Xy þ FD̃ D̃FΩ̃yD̃XyD̃XyD̃Xy þ FD̃FD̃Ω̃yD̃XyD̃XyD̃Xy

þ FFΩ̃yD̃Ω̃yD̃XyD̃Xy þ D̃FD̃FΩ̃yD̃XyD̃XyD̃Xy þ FD̃FΩ̃yΩ̃yD̃XyD̃Xy þ FFΩ̃yΩ̃yΩ̃yD̃Xy

þ FFFD̃ D̃ D̃ FD̃XyD̃Xy þ FFFFD̃ D̃ Ω̃yD̃Xy þ FFD̃ D̃FD̃FD̃XyD̃Xy þ FFFD̃ D̃ FΩ̃yD̃Xy

þ FD̃FD̃FD̃FD̃XyD̃Xy þ FFD̃FD̃FΩ̃yD̃Xy þ FFFFΩ̃yD̃Ω̃y þ FFFFD̃FD̃Ω̃yD̃Xy

þ FFFD̃FΩ̃yΩ̃y þ Ω̃μ̃D̃Ω̃ν̃D̃XyD̃XyD̃XyD̃Xy þ Ω̃μ̃Ω̃ν̃Ω̃yD̃XyD̃XyD̃Xy þ FFΩ̃μ̃D̃Ω̃ν̃D̃XyD̃Xy

þ FD̃FΩ̃μ̃Ω̃ν̃D̃XyD̃Xy þ FFΩ̃μ̃Ω̃ν̃Ω̃yD̃Xy: ð42Þ

For the field redefinitions, we consider the following structures:

δXy ∼ D̃ D̃ Ω̃yD̃XyD̃XyD̃XyD̃Xy þ Ω̃yD̃Ω̃yD̃XyD̃XyD̃Xy þ Ω̃yΩ̃yΩ̃yD̃XyD̃Xy þ D̃ D̃ Ω̃yFFFF

þ FFFD̃ D̃ D̃ FD̃Xy þ D̃Ω̃yFFFD̃F þ FFD̃FD̃ D̃ FD̃Xy þ Ω̃yFFFD̃ D̃ F þ Ω̃yFFD̃FD̃F

þ FD̃FD̃FD̃FD̃Xy þ D̃ D̃ Ω̃yD̃XyD̃XyFF þ FD̃ D̃ D̃ FD̃XyD̃XyD̃Xy

þ Ω̃yD̃Ω̃yD̃XyFF þ D̃Ω̃yD̃XyD̃XyFD̃F þ D̃FD̃ D̃ FD̃XyD̃XyD̃Xy

þ Ω̃yFD̃ D̃ FD̃XyD̃Xy þ Ω̃yΩ̃yΩ̃yFF þ Ω̃yΩ̃yFD̃FD̃Xy

þ Ω̃yD̃FD̃FD̃XyD̃Xy þ Ω̃μ̃D̃Ω̃ν̃D̃XyD̃XyD̃Xy þ Ω̃yΩ̃μ̃Ω̃ν̃D̃XyD̃Xy

þ FFΩ̃μ̃D̃Ω̃ν̃D̃Xy þ Ω̃μ̃Ω̃ν̃D̃FD̃FD̃Xy þ Ω̃yFD̃FΩ̃μ̃Ω̃ν̃;

COUPLINGS OF ORDER SIX IN THE GAUGE FIELD … PHYS. REV. D 106, 066016 (2022)

066016-11



δAã ∼ FFD̃ D̃ D̃ FD̃XyD̃Xy þ FFFD̃ D̃ Ω̃yD̃Xy þ FD̃FD̃ D̃ FD̃XyD̃Xy þ FFD̃ D̃FΩ̃yD̃Xy þ FFFΩ̃yD̃Ω̃y

þ FFD̃FD̃Ω̃yD̃Xy þ D̃FD̃FD̃FD̃XyD̃Xy þ FD̃FD̃FΩ̃yD̃Xy þ FFD̃FΩ̃yΩ̃y þ D̃ D̃ D̃ FD̃XyD̃XyD̃XyD̃Xy

þ FD̃ D̃ Ω̃yD̃XyD̃XyD̃Xy þ D̃ D̃ FΩ̃yD̃XyD̃XyD̃Xy þ D̃FD̃Ω̃yD̃XyD̃XyD̃Xy þ FΩ̃yD̃Ω̃yD̃XyD̃Xy

þ D̃FΩ̃yΩ̃yD̃XyD̃Xy þ FΩ̃yΩ̃yΩ̃yD̃Xy þ FΩ̃μ̃D̃Ω̃ν̃D̃XyD̃Xy þ FΩ̃μ̃Ω̃ν̃Ω̃yD̃Xy þ D̃FΩ̃μ̃Ω̃ν̃D̃XyD̃Xy;

δXμ̃ ∼ D̃ D̃ Ω̃μ̃D̃XyD̃XyD̃XyD̃Xy þ D̃Ω̃μ̃Ω̃yD̃XyD̃XyD̃Xy þ Ω̃μ̃D̃Ω̃yD̃XyD̃XyD̃Xy þ Ω̃μ̃Ω̃yΩ̃yD̃XyD̃Xy

þ D̃ D̃ Ω̃μ̃D̃XyD̃XyFF þ D̃Ω̃μ̃Ω̃yD̃XyFF þ D̃Ω̃μ̃D̃XyD̃XyFD̃F þ Ω̃μ̃D̃Ω̃yD̃XyFF

þ Ω̃μ̃D̃XyD̃XyFD̃ D̃ F þ Ω̃μ̃Ω̃yΩ̃yFF þ Ω̃μ̃D̃XyD̃XyD̃FD̃F þ Ω̃μ̃Ω̃yD̃XyFD̃F þ Ω̃μ̃Ω̃ν̃Ω̃yD̃XyD̃Xy: ð43Þ

Using the package xAct, one can construct all possible contractions in (42) and (43). Then replacing them in (31), using the
parameters (29) for the four F, Ω couplings, going to the local frame to write the equation (31) in terms of the independent
structures, and removing the terms that have eight and more fields, one finds the resulting linear algebraic equations have
the following solution that involves only the 146 parameters of the effective action:

d2→
1

4
ð8þ6d1−d16Þ; d3→

5

2
−2d1; d4→−

17

4
−d1−d16; d5→1−4d1;

d6→−1−d1; d7→−8; d8→
3

2
þ2d1; d9→−4; d10→−1−4d1;

d11→1þ4d1; d12→4; d13→1þ4d1; d14→−1−4d1; d15→−1;

d17→1þ4d1; d18→−
1

2
−2d1; d19→1þ2d1; d20→

2−d16
4

;

d21→−1þ4d1þ2d16; d22→
27

2
þ6d1−5d16; d23→−

3

2
−2d1;

d24→7þ4d1; d25→13þ8d1−2d16; d26→−8; d27→−21−12d1þ4d16;

d28→−7−4d1þ2d16; d29→
3

2
þ2d1; d30→2ð6þ6d1−d16Þ; d31→−4ð1þd1Þ;

d32→2ð−2þd16Þ; d33→1; d34→1−4d1;

d35→−13−4d1þ4d16; d36→
1

2
−6d1−d16; d37→

17

4
þ6d1−

d16
2
;

d38→−9−20d1; d39→4þ12d1; d40→2þ4d1−
d16
2
;

d41→−17−4d1þ6d16; d42→5þ4d1; d43→5þ4d1; d44→6þ8d1−2d16;

d45→0; d46→−4−8d1; d47→0; d48→2þ4d1; d49→−
3

2
;

d50→−
5

4
−d1; d51→

5

8
þ3

2
d1; d52→−

5

16
−
3

4
d1; d53→−

5

2
; d54→

5

4
þd1;

d55→−
d1
2
; d56→1; d57→0; d58→5þ4d1;

d59→−6−4d1þ2d16; d61→−
1

2
−2d1−d16þd60; d62→−1;

d63→−2þd16; d64→0; e1→
1

16
ð−7þ4d1þ2d16þ2d60Þ; e2→

3

8
ð1þ4d1−2d16þ2d60Þ;

e3→
1

8
ð7−4d1−2d16−2d60Þ; e4→−d1þ

5

4
ð−3þd16Þ;

e5→
1

8
ð−7þ4d1þ2d16þ2d60Þ; e6→

1

16
ð19þ12d1−14d16þ6d60Þ;
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e7 → 0; e8 → 0; e9 →
1

4
ð−13þ −4d1 þ 8d16 − 2d60Þ;

e10 →
1

4
ð−7þ 4d1 þ 2d16 þ 2d60Þ; e11 → 2ð−2þ d16Þ;

e12 → −2þ d16; e13 → 0; e14 →
1

8
ð−67 − 12d1 þ 38d16 − 6d60Þ; e15 → 0;

e16 → d1 þ
1

4
ð−23þ 10d16 þ 2d60Þ; e17 →

1

8
ð−15þ 4d1 þ 6d16 þ 2d60Þ;

e18 → −6ð−2þ d16Þ; e19 →
1

4
ð−9 − 4d1 þ 6d16 − 2d60Þ;

e20 →
1

8
ð1þ 4d1 − 2d16 þ 2d60Þ; e21 → 2ð−2þ d16Þ;

e22 →
1

8
ð17þ 4d1 − 2d16 þ 2d60Þ; e23 → 2ð−2þ d16Þ; e24 → 0;

e25 →
1

8
ð15 − 4d1 − 6d16 − 2d60Þ; e26 →

1

8
ð−49 − 4d1 þ 10d16 − 2d60Þ;

e27 → 6 − d16; e28 → 2ð−2þ d16Þ; e29 →
1

128
ð1þ 4d1 − 2d16 þ 2d60Þ;

e30 →
1

8
ð9þ 4d1 − 6d16 þ 2d60Þ; e31 →

1

16
ð1þ 4d1 − 2d16 þ 2d60Þ;

e32 →
1

2
þ 2d1 − d16 þ d60; e33 →

1

8
ð−11þ 20d1 − 2d16 þ 10d60Þ;

e34 →
1

8
ð15 − 4d1 − 6d16 − 2d60Þ; e35 →

1

2
ð−2þ d16Þ;

e36 →
5

4
þ d1 − d16 þ

d60
2

; e37 →
1

16
ð33þ 4d1 − 18d16 þ 2d60Þ;

e38 →
1

8
ð−17 − 4d1 þ 10d16 − 2d60Þ; e39 →

1

8
ð−33 − 4d1 þ 18d16 − 2d60Þ;

e40 → −2þ d16; e41 →
1

8
ð−149 − 20d1 þ 34d16 − 10d60Þ;

e42 → d1 þ
1

4
ð41 − 10d16 þ 2d60Þ; e43 →

1

8
ð−1 − 4d1 þ 2d16 − 2d60Þ;

e44 →
1

8
ð83þ 12d1 − 14d16 þ 6d60Þ; e45 →

1

8
ð−63þ 4d1 þ 30d16 þ 2d60Þ;

e46 →
1

16
ð15 − 4d1 − 6d16 − 2d60Þ; e47 →

1

8
ð51þ 12d1 − 14d16 þ 6d60Þ;

e48 →
1

4
ð−33 − 4d1 þ 6d16 − 2d60Þ; e49 →

1

32
ð−51 − 12d1 þ 14d16 − 6d60Þ;

e50 → 0; e51 → −
1

2
; e52 → 0; e53 →

1

8
; e54 → 0;

e55 → 0; e56 → −2þ d16; e57 → −2þ d16; e58 → 0; e59 → 0;

e60 →
1

8
ð−1 − 4d1 þ 2d16 − 2d60Þ; e61 →

1

8
ð51þ 12d1 − 14d16 þ 6d60Þ;

e62 → −
1

2
− 2d1 þ d16 − d60; e63 → 1 −

d16
2

; e64 → 0;

f1 → −4þ 3d16; f2 →
1

2
ð7þ 4d1 − d16Þ;

f3 →
1

4
ð9þ 4d1 − 6d16 þ 2d60Þ; f4 →

1

4
ð1þ 4d1 þ 2d16 þ 2d60Þ;
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f5 → 4ð−2þ d16Þ; f6 → 2; f7 → 0; f8 → −2; f9 → 8 − 2d16;

f10 → −2; f11 →
1

2
; f12 → −2; f13 → −2þ d16; f14 → 6;

f15 → −
1

2
; f16 → −1; f17 → −1; f18 → 0; ð44Þ

where the parameters, d1, d16, d60 remain unfixed. We have
also imposed the T-duality constraint (31) in the static
gauge [23] and found exactly the same result.
To check the above results, we compare them with the

correction at order α02 to the Born-Infeld action that has
been found by Wyllard by the boundary state method [18].
This correction, which involves all levels of the gauge field
strength is the following:

Sð2ÞBI ¼ −Tp

Z
dpþ1σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det hab

p �
1þ ð2πα0Þ2

96

×

�
−hdahbchfehuzSeuabSzfcd þ

1

2
hfehuzSeuSzf

��
;

ð45Þ

where

Seuab ¼ ∂e∂uFab þ 2hcd∂eF½ajc∂ujFb�d;

Seu ¼ habSeuab;

hab ¼ ηab þ Fab; ð46Þ

and hab is the inverse of hab. The above action can be
expanded to find the gauge field couplings at all levels of
gauge field strength. The couplings at the level of four and
six gauge field should be related to the corresponding
couplings in (24) and (28) with the parameters (29) and
(44), up to some total derivative terms and field redefini-
tions. Note that, since the parameters in the two actions are
fixed, in order to compare the two actions, one should use
all terms in the field redefintion K, i.e., the dots in (10)
should not be ignored. It has been verified in [18] that up to

field redefinitions and total derivative terms, the two gauge
field couplings are zero and the four gauge field couplings
are the same as the corresponding couplings in (24) with
parameters (29). We have compared the six gauge fields in
the action (45) with the couplings in (28) with the
parameters in (44). We have found they are the same up
to some total derivative terms and field redefinitions
provided that the unfixed parameter to be the following:

d1 ¼
1

4
; d16 ¼ 4; d60 ¼ −1: ð47Þ

To perform this calculation, we insert the six gauge field
coupling of (45) on the right hand side of (11), and the six
independent gauge field couplings of (28) with the para-
meters (44) on the left hand side of (11). Then after
imposing the Bianchi identity, one finds for some total
derivative terms in J and field redefinitions in K, the two
sets of couplings are exactly the same if there is the above
values for the unfixed parameters. This confirms that the
couplings involving F, Ω that are fixed by the T-duality
constraint (31), are consistent with the couplings involving
F that are fixed by the boundary state method. Note that,
neither the couplings in the action (45) nor the independent
couplings in our scheme, include terms that have DaFab.
However, since the total derivative terms include terms that
have DaFab, in the comparison (11), one must include the
field redefinition K.
Hence, the six gauge field strengths and/or the second

fundamental forms are fixed in the particular scheme that
we have chosen in the previous section for the following
parameters:

d2 →
11

8
; d3 → 2; d4 → −

1

2
; d5 → 0; d6 → −

5

4
;

d7 → −8; d8 → 2; d9 → −4; d10 → −2; d11 → 2;

d12 → 4; d13 → 2; d14 → −2; d15 → −1; d17 → 2;

d18 → −1d19 →
3

2
; d20 → −

1

2
; d21 → 8; d22 → −5;

d23 → −2; d24 → 8; d25 → 7; d26 → −8; d27 → −8;

d28 → 0; d29 → 2; d30 → 7; d31 → −5; d32 → 4;
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d33 → 1; d34 → 0; d35 → 2; d36 → −5; d37 →
15

4
;

d38 → −14; d39 → 7; d40 → 1; d41 → 6; d42 → 6;

d43 → 6; d44 → 0; d45 → 0; d46 → −6; d47 → 0;

d48 → 3; d49 → −
3

2
; d50 → −

3

2
; d51 → 1; d52 → −

1

2
;

d53 → −
5

2
; d54 →

3

2
; d55 → −

1

8
; d56 → 1; d57 → 0;

d58 → 6; d59 → 1; d61 → −6; d62 → −1; d63 → 2; d64 → 0;

e1 → 0; e2 → −3; e3 → 0; e4 → 1; e5 → 0;

e6 → −
5

2
; e7 → 0; e8 → 0; e9 → 5; e10 → 0;

e11 → 4; e12 → 2; e13 → 0; e14 → 11; e15 → 0;

e16 → 4; e17 → 1; e18 → −12; e19 → 4; e20 → −1;

e21 → 4; e22 → 1; e23 → 4; e24 → 0; e25 → −1;

e26 → −1; e27 → 2; e28 → 4; e29 → −
1

16
; e30 → −2;

e31 → −
1

2
; e32 → −4; e33 → −3; e34 → −1; e35 → 1;

e36 → −3; e37 → −
5

2
; e38 → 3; e39 → 5; e40 → 2;

e41 → −1; e42 → 0; e43 → 1; e44 → 3; e45 → 7;

e46 → −
1

2
; e47 → −1; e48 → −2; e49 →

1

4
; e50 → 0;

e51 → −
1

2
; e52 → 0; e53 →

1

8
; e54 → 0; e55 → 0;

e56 → 2; e57 → 2; e58 → 0; e59 → 0; e60 → 1;

e61 → −1; e62 → 4; e63 → −1; e64 → 0;

f1 → 8; f2 → 2; f3 → −4; f4 → 2;

f5 → 8; f6 → 2; f7 → 0; f8 → −2; f9 → 0;

f10 → −2; f11 →
1

2
; f12 → −2; f13 → 2; f14 → 6;

f15 → −
1

2
; f16 → −1; f17 → −1; f18 → 0: ð48Þ

The independent couplings at order α02 in the previous
section with the parameters (29) and (48) include only four
and six gauge field strengths and/or the second fundamen-
tal forms. It would be interesting to extend these couplings
to all levels of the gauge field strength. In the next section
we study this extension.

IV. TOWARDS ALL GAUGE FIELD COUPLINGS

Using the fact that the corrections to Born-Infeld action
at order α02 and at all levels of Fab are known [18], one can

easily extend these couplings to the covariant form by
extending the partial derivatives in these couplings to the
covariant derivatives and by extending the world-volume
flat metric to the pull back of the bulk flat metric (2), i.e.,

Sp ⊃ −Tp

Z
dpþ1σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det hab

p �
1þ ð2πα0Þ2

96

×

�
−hdahbchfehuzSeuabSzfcd þ

1

2
hfehuzSeuSzf

��
;

ð49Þ
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where

Seuab ¼ DeDuFab þ 2hcdDeF½ajcDujFb�d;

Seu ¼ habSeuab;

hab ¼ G̃ab þ Fab; ð50Þ

and hab is inverse of hab.

One can expand the above action to find the four and six
gauge field couplings with known coefficients. Then one
can use them, and the couplings which involve Ω with the
unknown coefficients that we have found them in a
particular scheme in Sec. II, as the starting point for
imposing the T-duality constraint (31), to find the unknown
coefficients. We have done this calculation and found the
following couplings for ΩΩΩΩ and ΩΩΩΩFF:

Sp ⊃ −
ð2πα0Þ2
96

Tp

Z
dpþ1σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det G̃ab

q
½2Ωa

c
μΩabμΩb

dνΩcdν − 2Ωab
νΩabμΩcdνΩcd

μ

þ 9Ωa
eμΩb

fνΩceνΩdfμFabFcd − 8Ωa
eμΩb

f
μΩce

νΩdfνFabFcd

þ 3Ωa
eμΩbe

νΩc
f
μΩdfνFabFcd þ 8Ωac

μΩb
eνΩd

f
νΩefμFabFcd

þ 3Ωb
dμΩc

eνΩd
f
νΩefμFa

cFab − 5Ωb
dμΩc

eνΩd
f
μΩefνFa

cFab

− 10Ωac
μΩb

e
μΩd

fνΩefνFabFcd − 3Ωb
dμΩc

e
μΩd

fνΩefνFa
cFab

þ 1

2
Ωc

e
μΩcdμΩd

fνΩefνFabFab −Ωbc
μΩd

fνΩde
μΩefνFa

cFab

þ 2Ωac
μΩbd

νΩefνΩef
μFabFcd þ 5Ωb

dμΩcd
νΩefνΩef

μFa
cFab

−
1

2
Ωcd

νΩcdμΩefνΩef
μFabFab −

1

2
Ωac

μΩbdμΩefνΩefνFabFcd −
1

2
Ωb

dμΩcdμΩefνΩefνFa
cFab�: ð51Þ

Note that the ΩΩΩΩ terms above are exactly the second fundamental form correction that has been found in [27] up to
terms that involve the trace of the second fundamental form, (see [20]), which are removed in our scheme.
We have also found the following couplings for the structures that include DF or DΩ:

Sp ⊃ −
ð2πα0Þ2
96

Tp

Z
dpþ1σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðG̃abÞ

q �
1

4
DaFbcDaFbcΩdeμΩdeμ þDaFbcDdFb

eΩae
μΩcdμ

− 2DaFbcDbFa
dΩc

eμΩdeμ − 5DaFbcDdFb
eΩac

μΩdeμ

−DaFbcDdFb
eFfhFfhΩad

μΩceμ þ
3

2
DaFbcDaFdeFfhFfhΩbd

μΩceμ

−DaFbcDdFefFb
hFehΩad

μΩcfμ −
1

2
DaFbcDdFefFa

hFdhΩbe
μΩcfμ

− 2DaFbcDbFdeFd
fFf

hΩae
μΩchμ − 16DaFbcDdFb

eFa
fFf

hΩch
μΩdeμ

þ 5DaFbcDdFefFb
hFehΩac

μΩdfμ þ 4DaFbcDdFefFa
hFbeΩch

μΩdfμ

− 6DaFbcDdFefFaeFb
hΩch

μΩdfμ − 2DaFbcDdFefFabFe
hΩch

μΩdfμ

− 4DaFbcDdFefFa
hFbeΩcf

μΩdhμ þ 6DaFbcDdFefFaeFb
hΩcf

μΩdhμ

þ 2DaFbcDdFefFabFe
hΩcf

μΩdhμ þ 6DaFbcDaFb
dFe

hFefΩcf
μΩdhμ

þ 4DaFbcDbFa
dFe

hFefΩcf
μΩdhμ −

5

2
DaFbcDaFb

dFefFefΩc
hμΩdhμ

þ 3DaFbcDbFa
dFefFefΩc

hμΩdhμ þ 10DaFbcDbFdeFa
fFd

hΩch
μΩefμ

− 7DaFbcDdFb
eFa

fFd
hΩch

μΩefμ þ 3DaFbcDaFdeFb
fFd

hΩch
μΩefμ

þ 10DaFbcDbFdeFd
fFf

hΩac
μΩehμ þ 4DaFbcDbFdeFa

fFf
hΩcd

μΩehμ

− 2DaFbcDaFdeFb
fFf

hΩcd
μΩehμ − 2DaFbcDbFdeFa

fFd
hΩcf

μΩehμ

− 11DaFbcDaFdeFb
fFd

hΩcf
μΩehμ þ 6DaFbcDbFdeFadFfhΩcf

μΩehμ
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− 2DaFbcDaFdeFbdFfhΩcf
μΩehμ − 2DaFbcDdFb

eFa
fFdfΩc

hμΩehμ

þ 2DaFbcDdFb
eFa

fFc
hΩdf

μΩehμ − 5DaFbcDaFdeFb
fFc

hΩdf
μΩehμ

þ 4DaFbcDaFdeFbcFfhΩdf
μΩehμ − 14DaFbcDaFb

dFc
eFfhΩdf

μΩehμ

þ 6DaFbcDbFa
dFc

eFfhΩdf
μΩehμ þ 3DaFbcDbFacFdeFfhΩdf

μΩehμ

þ 6DaFbcDdFb
eFa

fFd
hΩce

μΩfhμ þ 6DaFbcDdFb
eFa

fFc
hΩde

μΩfhμ

− 4DaFbcDdFb
eFadFc

fΩe
hμΩfhμ þ 4DaFbcDaFdeFbdFc

fΩe
hμΩfhμ

þ 12DaFbcDdFb
eFacFd

fΩe
hμΩfhμ − 10DaFbcDaFdeFbcFd

fΩe
hμΩfhμ

− 4DaFbcDbFacFd
fFdeΩe

hμΩfhμ þ
5

2
DaFbcDdFb

eFadFceΩfhμΩfhμ

−
11

4
DaFbcDaFdeFbdFceΩfhμΩfhμ þ 11

8
DaFbcDaFdeFbcFdeΩfhμΩfhμ

þ 2DaFbcDaFb
dFc

eFdeΩfhμΩfhμ −
5

2
DaFbcDbFa

dFc
eFdeΩfhμΩfhμ

þ 3

4
DaFbcDbFacFdeFdeΩfhμΩfhμ − 6DaFbcDaFb

dFe
hFefΩcd

μΩfhμ

þ 8DaFbcDaFdeFb
fFd

hΩce
μΩfhμ þ 2DaFbcDdFefFabFc

hΩde
μΩfhμ

− 10DaFbcDdFefFa
hFbhΩce

μΩdfμ þDaFbcDdFb
eFa

fFd
hΩcf

μΩehμ

− 8DaFbcDdFb
eFadFfhΩcf

μΩehμ þ 8DaFbcDdFb
eFa

fFcfΩd
hμΩehμ

þ 2DaΩbcμDdΩef
μFadFbeFc

hFfh − 4DaFbcDdΩefμFabFe
hFfhΩcdμ

�
: ð52Þ

One may extend the above calculations to find the covariant
couplings involving Ω at the higher levels of gauge fields
that correspond to the action (49). Then the question arises,
is it possible to find a compact expression for the covariant
couplings involving Ω in terms of hab, as in (49)? We have
checked that the couplings in (51) cannot be written in
terms of ΩΩΩΩhhhh. The reason may be related to the
particular scheme that we have used for the independent
couplings in Sec. II. Even though the couplings with the
structure ΩΩΩΩ and ΩΩΩΩFF are independent of the
scheme, but their coefficients that are fixed by the T-duality
are scheme dependent because the T-duality relates these
parameters to the parameters of the couplings involvingDF
or DΩ, which are scheme dependent.

V. CONCLUSION

In this paper we have found the independent world-
volume couplings at order α02 involving four and six F, Ω
and their covariant derivatives, in the normalization that F
is dimensionless. We have found that there are 12 couplings
at the four-field level and 146 couplings at the six-field
level. The assumption that the effective action of the
Dp-brane at the critical dimension is background indepen-
dent is then used to find the parameters of the above
independent couplings. That is, we have considered a
particular background that has one circle. In this

background, the effective action should satisfy the
T-duality constraint (31). This constraint fixes all param-
eters in terms of only 8 parameters. We have shown that
these parameters are consistent with the all-gauge-field
corrections to the Born-Infeld action that have been found
in [18]. This comparison also fixes the remaining 8
parameters. We have found the couplings in a particular
scheme that is different from the scheme that has been used
in [18].
We then considered the couplings that have no second

fundamental form to be the same as the couplings found by
Wyllard in [18] in which the partial derivatives are extended
to the covariant derivatives and the flat world-volume
metric to the pull back of the bulk flat metric. We have
found the covariant couplings involving four and six F, Ω
that are consistent with these couplings under the T-duality,
i.e., (51) and (52). We could not succeed to extend them to
all levels of F. The independent couplings (51) and (52) are
in the particular scheme that we have considered in Sec. II.
That may be the reason the covariant couplings (51) and
(52) could not be written in a closed form in terms of hab to
include all levels of F.
To find the covariant couplings at all levels of F, one

may first need to find the independent covariant couplings
involving Ω, in terms of hab. That is, one should consider
all gauge invariant couplings involving DF;Ω and their
covariant derivatives at order α02
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S0 ¼ −
ð2πα0Þ2
96

Tp

Z
dpþ1σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det hab

p
L0ðDF;…;Ω; DΩ;…Þ; ð53Þ

where the spacetime index of Ω is contracted with the spacetime metric ημν and the world-volume indices are contracted
with hab. Then one adds to this action the total derivative terms and field redefinitions

J ¼ −α02Tp

Z
dpþ1σDa½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det hab

p
Ia�

K ¼ −α02Tp

Z
dpþ1σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det hab

p �
−
1

2
ðhab − hbaÞDaδAb þ

1

2
ðhab þ hbaÞ∂aXμDbδXνημν

�
: ð54Þ

In this case, one has to use the identity (6) to write the field
redefinition terms produced by the last terms above, in
terms of Ω. Doing the same steps as in Sec. II, one can find
the independent couplings in terms of hab. Then one may
expand them and impose the T-duality constraint (31) to
find the parameters of the independent couplings. It would
be interesting to find these covariant couplings in terms of
hab, if they exist. We have done this calculation for the
covariant couplings at order α0 in the bosonic string theory
that have been found in [23] up to the eight-field level, and
found that there is no such covariant couplings in terms of
hab. It is in accord with the observation that in the bosonic
string theory, the world-volume gravity couplings on the
Dp-brane in the presence of constant B field, in terms of
inverse of hab ¼ ηab þ Bab þ Fab cannot be written in a
covariant form at order α0 [28].
The Dp-brane action in type II superstring theory has

also the Wess-Zumino coupling that at the lowest order of
α0 involves the R-R potential and Fab [29]. The α02
corrections to this action involving only F and its covariant
derivatives, have been found in [18]. The corrections that
involve only Ω have been found in [27]. It would be
interesting to use the T-duality constraint to find the
correction that involves F,Ω and their covariant derivatives
at order α02, as we have done in this paper for the DBI
action.
We have used the field redefinitions to remove the

couplings that have DaFab or GabΩab
ν. These couplings

are not produced by the disc-level S-matrix elements of
massless open string vertex operators either. However, the
second fundamental form in nontrivial bulk background

has gravity contribution as well as the transverse scalar
contributions. If one uses the bulk field redefinitions to
write the bulk effective action in a fixed scheme, then one
would not be allowed to use the field redefinitions to
remove the trace of the second fundamental form from the
world-volume effective action of the Dp-brane. Hence, the
world-volume couplings involving the trace of the second
fundamental form should be reproduced by the disc-level
S-matrix elements of massless closed string vertex oper-
ators. In fact, such couplings have been found in the
bosonic string theory at order α0 in [30] and in the
superstring theories at order α02 in [27]. Similarly, the
couplings involving DaFab have closed string contribution
through the standard replacement of F by F þ B in the
world-volume effective actions. If one uses the bulk field
redefinitions to write the bulk effective action in a fixed
scheme, then one would not be allowed to use the field
redefinitions to remove DaBab from the world-volume
effective action of the Dp-brane. Hence such couplings
may be reproduced by the disc-level S-matrix elements of
massless closed string vertex operators. Alternatively, one
may find the couplings involving DaBab and the second
fundamental form by studying the T-duality constraint on
the world-volume couplings of massless closed string
states [31].

ACKNOWLEDGMENTS

The research of S. Karimi is supported by Ferdowsi
University of Mashhad under Grant No. 35315(1400/
06/22).

[1] R. R. Metsaev and A. A. Tseytlin, Nucl. Phys. B293, 385
(1987).

[2] M. R. Garousi and H. Razaghian, Phys. Rev. D 100, 106007
(2019).

[3] M. R. Garousi, Eur. Phys. J. C 80, 1086 (2020).
[4] Y. Akou and M. R. Garousi, Eur. Phys. J. C 81, 201 (2021).

[5] M. Mashhadi and M. R. Garousi, J. High Energy Phys. 06
(2020) 171.

[6] M. R. Garousi, Phys. Rev. D 99, 126005 (2019).
[7] M. R. Garousi, Eur. Phys. J. C 79, 827 (2019).
[8] H. Razaghian and M. R. Garousi, Phys. Rev. D 97, 106013

(2018).

MOHAMMAD R. GAROUSI and SAMAN KARIMI PHYS. REV. D 106, 066016 (2022)

066016-18

https://doi.org/10.1016/0550-3213(87)90077-0
https://doi.org/10.1016/0550-3213(87)90077-0
https://doi.org/10.1103/PhysRevD.100.106007
https://doi.org/10.1103/PhysRevD.100.106007
https://doi.org/10.1140/epjc/s10052-020-08662-9
https://doi.org/10.1140/epjc/s10052-021-08990-4
https://doi.org/10.1007/JHEP06(2020)171
https://doi.org/10.1007/JHEP06(2020)171
https://doi.org/10.1103/PhysRevD.99.126005
https://doi.org/10.1140/epjc/s10052-019-7357-4
https://doi.org/10.1103/PhysRevD.97.106013
https://doi.org/10.1103/PhysRevD.97.106013


[9] M. R. Garousi, J. High Energy Phys. 02 (2021) 157.
[10] M. R. Garousi, Nucl. Phys. B971, 115510 (2021).
[11] M. R. Garousi, Phys. Lett. B 809, 135733 (2020).
[12] M. R. Garousi, Phys. Rev. D 105, 106021 (2022).
[13] R. G. Leigh, Mod. Phys. Lett. A 04, 2767 (1989).
[14] C. Bachas, Phys. Lett. B 374, 37 (1996).
[15] A. Abouelsaood, C. G. Callan, Jr., C. R. Nappi, and S. A.

Yost, Nucl. Phys. B280, 599 (1987).
[16] A. A. Tseytlin, Phys. Lett. B 202, 81 (1988).
[17] O. D. Andreev and A. A. Tseytlin, Nucl. Phys. B311, 205

(1988).
[18] N. Wyllard, Nucl. Phys. B598, 247 (2001).
[19] O. Andreev, Phys. Lett. B 513, 207 (2001).
[20] N. Wyllard, J. High Energy Phys. 08 (2001) 027.
[21] D. Robbins and Z. Wang, J. High Energy Phys. 05 (2014)

072.

[22] M. R. Garousi, Phys. Rep. 702, 1 (2017).
[23] S. Karimi and M. R. Garousi, Nucl. Phys. B939, 485

(2019).
[24] D. R. T. Jones and A.M. Lawrence, Z. Phys. C 42, 153

(1989).
[25] T. Nutma, Comput. Phys. Commun. 185, 1719 (2014).
[26] M. R. Garousi, Nucl. Phys. B909, 1 (2016).
[27] C. P. Bachas, P. Bain, and M. B. Green, J. High Energy

Phys. 05 (1999) 011.
[28] F. Ardalan, H. Arfaei, M. R. Garousi, and A. Ghodsi, Int. J.

Mod. Phys. A 18, 1051 (2003).
[29] P. Di Vecchia, M. Frau, A. Lerda, and A. Liccardo, Nucl.

Phys. B565, 397 (2000).
[30] S. Corley, D. A. Lowe, and S. Ramgoolam, J. High Energy

Phys. 07 (2001) 030.
[31] M. R. Garousi and M. R. Hosseini (to be published).

COUPLINGS OF ORDER SIX IN THE GAUGE FIELD … PHYS. REV. D 106, 066016 (2022)

066016-19

https://doi.org/10.1007/JHEP02(2021)157
https://doi.org/10.1016/j.nuclphysb.2021.115510
https://doi.org/10.1016/j.physletb.2020.135733
https://doi.org/10.1103/PhysRevD.105.106021
https://doi.org/10.1142/S0217732389003099
https://doi.org/10.1016/0370-2693(96)00238-9
https://doi.org/10.1016/0550-3213(87)90164-7
https://doi.org/10.1016/0370-2693(88)90857-X
https://doi.org/10.1016/0550-3213(88)90148-4
https://doi.org/10.1016/0550-3213(88)90148-4
https://doi.org/10.1016/S0550-3213(00)00780-X
https://doi.org/10.1016/S0370-2693(01)00676-1
https://doi.org/10.1088/1126-6708/2001/08/027
https://doi.org/10.1007/JHEP05(2014)072
https://doi.org/10.1007/JHEP05(2014)072
https://doi.org/10.1016/j.physrep.2017.07.009
https://doi.org/10.1016/j.nuclphysb.2019.01.006
https://doi.org/10.1016/j.nuclphysb.2019.01.006
https://doi.org/10.1007/BF01565137
https://doi.org/10.1007/BF01565137
https://doi.org/10.1016/j.cpc.2014.02.006
https://doi.org/10.1016/j.nuclphysb.2016.04.039
https://doi.org/10.1088/1126-6708/1999/05/011
https://doi.org/10.1088/1126-6708/1999/05/011
https://doi.org/10.1142/S0217751X03010991
https://doi.org/10.1142/S0217751X03010991
https://doi.org/10.1016/S0550-3213(99)00632-X
https://doi.org/10.1016/S0550-3213(99)00632-X
https://doi.org/10.1088/1126-6708/2001/07/030
https://doi.org/10.1088/1126-6708/2001/07/030

