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Using the assumption that the independent gauge invariant couplings on the world-volume of the
nonperturbative objects in the string theory are independent of the background, we find the four and the six
gauge field strength and/or the second fundamental form couplings on the world volume of a D ,-brane in

the superstring theory at order @2 in the normalization that F is dimensionless. We have found them by
considering the particular background which has one circle and by imposing the corresponding T-duality
constraint on the independent couplings. In particular, we find that there are 12 4 146 independent gauge
invariant couplings at this order, and the T-duality constraint can fix 150 of them. We show that these
couplings are fully consistent with the partial results in the literature. This comparison also fixes the

remaining 8 couplings.
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I. INTRODUCTION

The critical string theory is a quantum theory of gravity
that reproduces the Einstein theory of general relativity at
the low energy. As in Einstein theory, one expects string
theory and its nonperturbative objects at the critical
dimension to be background independent. In the low
energy effective action, the background independence
means the coefficients of the independent gauge invariant
couplings at each order of ' should be independent of the
background. If one could fix these coefficients in a
particular background in which the effective action has
some symmetries, then that coefficient would be valid for
any other background that may have no symmetry.

The independent couplings at a given order of & are given
as all gauge invariant and covariant couplings at that order
modulo the field redefinitions, the total derivative terms, and
the Bianchi identities. The numbers of independent cou-
plings in the bosonic string theory involving the metric,
dilaton, and the B field at orders o, &%, o® are 8,60,872,
respectively [1-3]. The number of independent world-
volume couplings of O ,-plane in the superstring theory at
order o involving only NS-NS fields is 48 [4], and
involving linear R-R field and the NS-NS fields is 77 [5].
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The background independent coefficients of all these
couplings are fixed when one considers a particular
background that includes one circle, and uses the corre-
sponding T-duality constraints [6—10]. One may also use the
background independence assumption to find the boundary
couplings in the case that the background has boun-
dary [4,11,12].

The world-volume gauge invariant couplings of a non-
perturbative D ,-brane involving open string massless
gauge fields/transverse scalars at long wavelength limit
is given by the Dirac-Born-Infeld (DBI) action [13,14]

$p= =1, [ @y /=detGu + ). (1)

where T, is the tension of the D ,-brane, F,, is field
strength of the gauge field A,, and G, is the pull back of

the bulk metric onto the world volume,l ie.,
~ 0X* (o) 0X* (o)

Gu = a b

Jdo Jo

’1;41/ = auXMahXDnﬂw (2)

where X#(o) is the spacetime coordinate which specifies
the D ,-brane in the spacetime, and 7,, is the spacetime
metric which for simplicity we choose it to be the
Minkowski metric. We have also chosen the B field to
be zero and the dilaton to be a constant. We have

'Our index convention is that the Greek letters (4, v, ...) are the
indices of the spacetime coordinates, the Latin letters (a, d, c, ...)
are the world-volume indices and the Latin letters (i, j, k, ...) are
the transverse indices.
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normalized the gauge field A, to have the same dimension
as the world sheet field X#. With this normalization, the
above action is at the leading order of . The above action
includes all eve n-power of the gauge field strength F .
The transverse scalar fields @ appear in the static gauge
where X4 = 6%, X' = ®'(5). In the static gauge and for
@' = 0, the DBI action reduces to the Born-Infeld action.
The o corrections to the Born-Infeld action have been
studied in [15-20].

In the superstring theory, the first correction to the DBI
action is at order &2, which involves some contractions of
the second fundamental form ", i.e.,

Qabﬂ = DaabX”ﬂ (3)

the gauge field strength F,;, and their covariant derivatives,
e.g.,

Dthc = athc - 1:‘ahd}?dc - f‘quth, (4)

where the Levi-Civita connection I",,¢ is made of the pull-
back metric (2). The world-volume indices of these gauge
invariant tensors are contracted with the inverse of the pull-
back metric G, and the spacetime index in the second
fundamental form are contracted with the spacetime metric
1.~ Even though the a’?-order of the couplings constrains
the independent couplings to have at most the first
derivative of Q and the second derivative of F, however,
there are infinite towers of the gauge field strength, without
derivative on it, in the couplings. Hence, for simplicity we
consider only the couplings at order &> that involve at most
six gauge field strengths and/or the second fundamental
form. Using the background independence assumption, we
are going to find such couplings in this paper. That is, we
first find the independent gauge invariant couplings and
then consider a particular background that has one circle.
For this background, the couplings should satisfy the
T-duality constraint [21,22], i.e., the T-duality transforma-
tion of the world-volume reduction of the independent
covariant couplings must be the same as the transverse
reduction of the couplings, up to some total derivative terms
and field redefinitions in the base space. This constraint
may fix the coefficients of the independent couplings. This
method has been used in [23] to find the corrections to the
DBI action in the bosonic string theory at order & which
involve at most eight gauge field strengths and/or the
second fundamental forms. The covariant approach has
been used in [23] to find the independent couplings,
however, the T-duality constraint has been used in the
static gauge. In this paper, we are going to use the covariant
approach for finding the independent couplings as well as
for imposing the T-duality constraint.

The outline of the paper is as follows: In Sec. II, we find
all independent covariant couplings at order /> which
involve at most six gauge fields and/or the second

fundamental forms. We find there is no independent
couplings at the level of two fields, there are 12 indepen-
dent couplings at the level of four fields, and there are 146
couplings at the six-field level. The coefficients of these
couplings are independent of the backgrounds in which the
D,-branes are placed. To fix these 158 background
independent coefficients, in Sec. III, we consider a back-
ground that includes a circle. Then the independent
couplings must satisfy the T-duality constraint. We find
that the T-duality constraint fixes the 12 parameters of the
four-field couplings up to five parameters. They are
consistent with the couplings that are found in the literature
by the S-matrix method. We use this comparison to fix the
remaining 5 parameters. We then find that the T-duality
constraint fixes 145 parameters of the six-field couplings.
We show that the couplings which involve only the gauge
field are consistent with the all-gauge-field couplings that
are found by Wyllard in [18]. We also fix the remaining 3
parameters by this comparison. In Sec. IV, we extend the
all-gauge-field couplings found in [18] to covariant form
and found their corresponding four-field and six-field
couplings involving the second fundamental form. In
Sec. V, we briefly discuss our results.

II. INDEPENDENT COUPLINGS

In this section we are going to find the independent
couplings at order o that involve at most six gauge fields
and/or the second fundamental form. We apply the method
used in [2] to find the independent couplings. The inde-
pendent couplings are all gauge invariant couplings modulo
the field redefinitions, the total derivative terms, the
identities corresponding to the derivative of the second
fundamental form, the Bianchi identity corresponding to
the gauge field

01aFp =0 (5)

and the following identity involving the second fundamen-
tal form and d,X*:

Qabﬂacxyr]/w =0. (6)

The above identity can easily be verified by using (3) and
writing the covariant derivative in terms of the partial
derivative and the Levi-Civita connection, and then writing
the connection in terms of the pull-back metric (2). Using
the above identity, one finds that there is a scheme in which
0X can appear only through the pull-back metric (2) and its
inverse. For example, the coupling DQ0X can be written as
—QQ which can easily be verified by taking the covariant
derivative of the above identity. Hence, we use the scheme
in which the couplings involve only the contractions of F,
Q and their covariant derivatives, i.e.,
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2nad)? .
g —_{ ’;Z) Tp/dl’“m/—detGab[,’

x (F,DF,...,Q,DQ, ...). (7)

In principle, one can construct all contractions of the gauge-
field strength and/or the second-fundamental form. We call
the coefficients of these couplings a/,d}, .... However,
they are not independent couplings.

To remove the total derivative terms from the gauge
invariant couplings in (7), we first construct a vector Z¢ at
order /% from F, Q and their covariant derivatives with
arbitrary coefficients z;, z,, .... Then one is free to add the
following total derivative term to (7):

J =-a’T, / drt'e\/—detG,,D,I°. (8)

The total derivative terms may remove some of the
structures in (7) completely, e.g., FDDDDF or QDDQ,
and may also remove only some of the couplings in a
particular structure in (7). Hence, in writing the couplings
in (7), we do not include the structures that are removed
completely by the total derivative terms.

One is also free to change the field variables as’

A, = A, + d%6A,,
Xt — Xt 325X, (9)

where the tensors 6A, and 6X* are all contractions of F, Q
and their covariant derivatives at order o/3/? with arbitrary
coefficients yq, y, .... If one replaces this field redefinition
into the leading order action (1), it would produce the
following couplings at order o/’

K= —a’sz/d”“m/—detGab

X [-D,F 54, — G Q. 6X "y, + -], (10)

where dots represent the terms that involve all higher orders
of F resulting from the linear perturbation of the leading
order action (1) around (9). If one uses the arbitrary
parameters in 6A, and 6X* to remove all couplings in
(7) which have D, F® and G*’Q,,", then there would be no
residual arbitrary parameters in 64, and 6X* to remove any
couplings in (7) that have the same structure as the
couplings in the dots above. Therefore, in the scheme that

*One may also consider the change of variables at order o'/
and consider the second perturbation of the DBI action which
also produces couplings at order o’>. However, such field
redefinition would also produce at the linear order, the couplings
at order o which is in conflict with the fact that there is no world-
volume couplings in the superstring theory at order . Hence,
there should be no such field redefinition.

the field redefinitions remove the couplings that have
D, F® or G**Q,,", one must ignore the dots above.

If one adds 7, K to the action (7), they change only the
coefficients of the gauge invariant couplings a}, d5, ..., i.e.,

S+T+K=S5. (11)

where S is the same action as (7) in which the coefficients
of the gauge invariant couplings are changed to a;, a,, ....
One can write the above equation as

AS+ T +K =0, (12)

where AS is the same as (7) in which the coefficients of the
gauge invariant couplings are Jda;,da,,... where
da; = a} — a;. If one solves the above equation, one would
find some relations between only da;, da,, .... The number
of these relations represents the number of couplings that
are invariant under the field redefinitions and the total
derivative terms.

However, to solve the equation (12), one has to impose the
Bianchi identity (5) and the identities corresponding to the
derivative of the second fundamental form, to write (12) in
terms of independent couplings. To impose the Ilatter
identities automatically, one can write the covariant deriv-
atives in terms of partial derivatives and the Levi-Civita
connection. Moreover, one can go to the local frame in
which the Levi-Civita connection is zero but its derivatives
are not zero. Then, one can write the derivatives of the
connection in terms of the pull-back metric (2). In the
resulting expression, then one has to replace the two dX in
which their spacetime indexes are contracted with each
other, i.e., 9,X#9,X"n,,, by the pull-back metric (2). To
impose the Bianchi identity (5), we write the terms that have
partial derivative of the gauge field strength in terms of the
gauge potential, e.g., d,Fp. = 0,0,A,. — 0,0.A,. The result-
ing terms have noncovariant expressions F, ddA, ddoA, ...,
and 0X, 00X, 000X, .... The world-volume indices are
contracted with the inverse of the pull-back metric (2)
and the spacetime indices are contracted with 7,,. In other
words, the equation (12) is written in the local frame in terms
of noncovariant but independent terms. The coefficients
of the independent terms which involve é&ay,das, ...,
215224 -++» Y15 Y2, ... must be zero. The solution of the
resulting linear algebraic equations gives zi,2»,...,
2 Y15 Y25 o5 Ym in terms of Zn+1>Tn42s <o Ym+1s Y425 « -+
and éa,, da,, ... in which we are not interested. The solution
also gives some relations between only da;, da,, ... in which
we are interested. The number of the latter relations gives the
number of independent couplings in (12).

Since there can be any number of gauge field strength
F,, in the couplings at any order of «, there are infinite
number of independent couplings at each order of «'.
Hence, we have to classify the independent couplings in
substructures in which their couplings are independent. In
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our choice for the field redefinition that removes all terms
that involve D, F and G**Q,,", the field redefinition does
not relate the terms which have different number of the
gauge fields, to each other. The total derivative terms and
the Bianchi identities do not relate the couplings with
different number of gauge fields either. Hence, in our
choice for the field redefinition, the number of independent
couplings at each level of gauge field is fixed. Moreover,
the couplings that involve only F, & modulo the trace of €2,
are not related to the other couplings by the field redefi-
nitions, by the total derivative terms and by the Bianchi
identity. Hence, we choose all such couplings at each level
of gauge field as independent couplings. We use the above
prescription to find all other independent couplings at each
level of gauge field.

When X* is constant, i.e., Q =0, the independent
couplings involve only the gauge field strength F_, and
its partial derivatives. The above prescription can be used to
find the independent couplings in this case. In the case that
X* is not constant, i.e., Q # 0, there is a scheme in which the
independent couplings classify into two sets of couplings.
One set of couplings is the same as the set of independent
couplings in the case that X* is constant. The second set of
couplings is the independent couplings which become zero
when X* is constant. It has been shown in [2] that in fact
there is such scheme for the independent couplings of the
bosonic string theory for metric, B-field, and dilaton at order
a'?. In particular, it has been shown in [2] that there are 60
independent couplings at this order. In one particular
scheme, the couplings have been written as two sets. One
set, which has 20 couplings, includes the dilaton only as the
overall factor e=2?, and another set that has 40 couplings,
includes the derivative of the dilaton. In this scheme, when
the dilaton is constant, the couplings reduce to 20 couplings
that are the independent couplings when the dilaton is
constant [24]. It has been shown in [2], that there is also
a scheme in which the dilaton appears as an overall factor in
all 60 independent couplings. In this scheme, when the

(2zd')?

§DO -

dilaton is constant, the number of couplings does not
change, however, the 60 couplings are not independent
any more when the dilaton is constant. In this paper we are
going to use the scheme in which the independent couplings
are such that when X* is constant, they reduce to the
independent couplings of only the gauge field.

We begin with the couplings that have zero gauge field at
order o’?. There are 4 couplings involving QQQQ modulo
the trace of Q. Apart from this structure, the Lagrangian in
(7) has one structure as

L'~ DQDQ. (13)

Using the package xAct [25], one finds there are 5
couplings in the above structure. The vector in the total
derivative (8) has one structure as

7 ~QDQ. (14)

The field redefinitions 6A, has no structure at this level and
O0X* has one structure as

5X* ~ DDQ. (15)

Using the package xAct, one can construct all possible
contractions in Egs. (14) and (15). Then we replace them in
(12) and go to the local frame to write Eq. (12) in terms of
the independent structures. However, the coefficients of all
the resulting independent structures cannot be zero because
we have already set aside some of the independent
couplings. Since we have chosen the couplings in the
structure QQQQ as independent couplings, we have to
remove all independent structures that are reproduced also
by QQQQ, i.e., remove the terms that have four and more
fields. One finds the resulting linear algebraic equations
have no solution that involves only day, ..., as. It means
there are no independent couplings at zero gauge field
except the 4 couplings in QQQQ, i.e.,

|
% T, / dPHloy/—det G, [b,Q, QP Q4 Oy, + 2 Q,C, QUL Q

+ b3QabyQabﬂchu96du + b4galmgabﬂgcdu96du]i (16)

where we have chosen the coefficients of the 4 independent
couplings to be by, ..., by.

Next, we consider the couplings at the level of two gauge
fields at order a’%. There are 18 independent couplings in
the structure QQQQFF modulo the trace of €. Apart from
this structure, the Lagrangian in (7) has 4 structures as

L' ~DDFDDF + DFDFQQ + FDFQDQ + FFDQDQ.
(17)

|

Using the package xAct, one finds there are 118 gauge
invariant couplings in these structures. The vector in the
total derivative (8) has 4 structures as

T ~ FFQDQ + FDFQQ + DFDDF + FDDDF.  (18)

The field redefinitions 6A, and 6X* in (10) have 3 and 4
structures, respectively, as
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0A, ~ QQDF 4+ FQDQ + DDDF,
6X* ~QDFDF + FDFDQ + FQDDF + FFDDQ. (19)

Using the package xAct, one can construct all possible
contractions in (18) and (19). Then replacing them in (12),
going to the local frame to write the equation (12) in terms
of the independent structures, and removing the terms that
have six and more fields which are reproduce also by the
independent couplings in the structure QQQQFF, one
finds the resulting linear algebraic equations has 4 solutions
that involve only éay,...,da;;g. It means there are 4
independent couplings at four gauge field level on top of

|

(2ra)?

§DO -
96

the 18 couplings in the structure QQQQF F. One can set all
of the coefficients in (7) to zero except 4 of them. However,
one is not totally free to choose the 4 couplings. The correct
choices must be such that when one replaces the nonzero
couplings in (12), the linear algebraic equations produce 4
relations da; = da, = day = da, = 0. For the wrong
choices of the independent couplings, the algebraic equa-
tions, would produce less than 4 relations between only da;.
There are different ways (schemes) to choose the 4
independent couplings. One can choose the 4 independent
couplings in the structure DFDFQQ. The couplings in a
particular scheme are the following:

T, / dPloy/—det G pla; D F p D FP Q4 Q% + a; DF**DIF QM Q4

+ a3D*F** Dy F Q.4 Qy,, + asD*F**DUF,¢Q, FQy,,
+ flQueﬂgbfygceugdfyFabFCd + fZQaeMthcheﬂQdfyFabFCd

+ f3Queﬂgbfﬂgceygdﬂ/FabFCd + f4gueﬂgbeygcf/49dfyFabFCd
+ 592" Q7 Q1 FPF U+ f6 Q™ Q. Q0 [ Qyp F FP
+ f7chUQCdﬂQdquequabFab + fSde”chQdfﬂQevaacFab
+ foQ2uH Q¢ Q1 Qyp FPFU + f10Q,% Q¢ Q1 Qyp F,CFP
+ 1R, QUQ Q1 F iy FP + f12Q4 Q7 Q% Q0 F F*
=+ fl3QacMdebgefygeprabFCd =+ f14de”ch”Qenyef,4FaCFab
+ flSchDQCdMQenyefuFabFab + flGQacMdeﬂQevaefyFabFCd
+ f17deﬂchﬂQequefyFacFab + flSchﬂQCdﬂQevaefyFabFab]a

(20)

where we have chosen the coefficients of the 4 independent
couplings to be ay, ..., a,. We have also included in above
couplings the 18 independent couplings in the structure
QQOQQFF with coefficients f, ..., f15. Note that the above
independent couplings become zero when X* is constant,
which is consistent with the fact that there is no indepen-
dent couplings of two gauge fields at order .

We now consider the couplings that have four gauge
fields at order o>, Apart from the structure QQQQFFFF,
the Lagrangian in (7) has 6 structures as

L' ~DFDFDFDF + FDFDFDDF + FFDDFDDF
+ FFDFDFQQ + FFFDFQDQ + FFFFDQDQ.

(21)
|

[

There are 1124 gauge invariant couplings in these
structures. The vector in the total derivative (8) has 5
structures as

1 ~FDFDFDF + FFDFDDF
+ FFFDDDF + FFFFQDQ + FFFDFQQ. (22)

The field redefinitions 6A, and 6X* in (10) each has 5
structures as

0A, ~DFDFDF + FDFDDF + FFDDDF + QQFFDF + FFFQDQ,
OXt ~ FFQDFDF + FFFDFDQ + QFFFDDF + FFFFDDQ + QQQFFFF. (23)

In this case, after removing the eight and more fields from the independent structures in the local frame, one finds the
resulting linear algebraic equations have 68 solutions that involve only day, ..., da; 4. It means there are 68 independent
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couplings at four gauge field on top of the independent couplings in QQQQFFFF. We find that there are at least 4
independent couplings in the structures in the first line of (21) and there are at most 64 independent couplings in the
structures in the second line of (21). Since there are 4 independent couplings for only gauge field at order /%, we choose the
4 couplings in structure DFDFDFDF and 64 couplings in the structures in the second line of (21). The couplings in a
particular scheme are the following:

(2zd)? Z
B T, | d""'o\/—detG e\ D Fp.D*F**DyF,;DFef + ;D ,F*D*F*DF ;,D' F,

+ ¢3D,F¥*D*F*DF ., D' Fp,y + ¢4D,F,D*F*D ,F ;sD°F ./

+ d|DF**DF,°F 1, F/"Q, /' Q. + dyDF**D ,F*F 1, F/"Qy, Q.
+ d3DF**DIF F'F Q" Qe gy + dsDFPDYFF M F 3, Q0,,M Q) p,
+ dsDF* Dy FYF j/ F "Q, " Q.1 + deD*FP* DUF ,°F 1, F/"Q, 4 Q4
+ d;DF*DIF ¢ F JF (" Q Qe + dsDF*DYFSF L F 9, " Qy
+ dyD*F**DIFF " Fp Q* Qg + dioDFPDUFIF ( F, Q0 Quy,
+ d\DF**DIFTF ,F " QFQyp, + d 1y D FDUFTF " F Q4 Qupy
+ d;3DF**DIFIF  F,"Q #Qyy, + diyDFDIFTF , F ' Q Q
+ disDF**D,F,F " FIQ #Qqp, + digD*F** Dy F *F "FIQ #Q
+ di7DF**DIFIF , F Q" Qyp + digDFP*DYFIF ) F 1 Q.M Q
+ dygDF*D F,4F ., F/ Q" Qy,, + dyyDF*D,F F ,;FI Q.MM Q.
+ dy D*F*D,F*F JF 'Q#Q, s, + dyyD*F**DIF,°F JF /" Q11 Q. s,
+ dy3DF*D F*F/ F "Q*Q, s, + dpyD*F*D,F“F J F "Q, ' Q,,
+ dysDF* Dy F*F JF Q' Qo1 + dogDF**DUF, F S F ("Q g Qe
+ dyDF* D F*F,/F Q' Qo1 + dog D F** Dy F*F JF ' QD1
+ dyyDF* D F*F,/ F ' Q Q1 + d3gD*F** Dy F*F (g F/"Q 4 Q,
+ d3y DF*° D F*Fp F/"Q Q1 + dypyD*F** Dy F*F J F 1, Q Q.
+ d33D*F**DIF,F JF 4;Q."Q,;, 4 d3y D F** D FYF I F ,Q Q.
+ d3sD*F**DIF ¢ F J F Q" Qyp, + dsgDF?°D F*F I F Q4 Q)
+ dy;D*FP* D F¥F, . F/"Q # Q.1 + d3gDF**D F,'F *FI"Q, 4 Q.
+ d3oD*F**DyF F *FI"Qu Q1 + dsgD* F** Dy F (. F4 FI"Q 4 Q1
+dy DF**DIF,F J F " Q. Qpy, + dipDFPDYFIF (g F 1, Q. Q
+ dyyDF**DF,°F JF " Q' Qy, + dyyDF*DF F °F S Q" Q
+ dysDF*DIF ,°F ,yF JQ,"Qpp,, + dysD*F*D ,F“F,,F S Q,"Qy,
+dDF*DIF ,°F . F / Q" Qpy,, + dygD*F*“D F“F, . F //Q,"Qy,
+ dyDF*D,F . F / F*Q,"Qy, + dsoDFP** DUF ¢ F (4 F .oQ 11, ™
+ ds) DF*° D FYF pqF . oQ, " + dsyDF*° D FY F . F 3, Q,
+ ds3DF"° D F,F . F 4,93, " + dsy D*F* D, F “F . F 4,Q 1, Q"
+ dssDF" Dy F 4o F 4o F4 Q. Q" + dsgDF*° D ,F,9F " FI Q' Qs
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+ ds;DF** D, F*F,/F "Q.*Qpy,, + dsgD FPDYFF , F " Q1 Qy,
+ dsgD*F**DIFIF ' F 1, Q. M Qyp, + dgoDFP**DUF L, F J F /" Q. #Q,
+ dg D*F**DIF ,°F , yF/"Q #Q,1, + dgyDF**DF ,F J F ., Q" Q1
+ dezD*QPH DT F yqF o F ' F g, + dey D FP DYQIHF 3y F ' F Qg + QQQQFFFF), (24)

where we have chosen the coefficients of the 4 independent
couplings to be cy,...,c4, and the 64 couplings to be
di,...,dgs. Since the couplings in the structure
QQQQFFFF involve eight fields F,  in which we are
not interested in this paper, we did not write the dependent
couplings in this structure. Note that when Q is zero, the
above couplings reduce to the independent couplings of
four gauge field at order o>

We finally consider in this section the couplings which
have six gauge fields. Apart from the structure
QQQQFFFFFF, the Lagrangian in (7) has 6 structures as

L' ~FFDFDFDFDF + FFFDFDFDDF
+ FFFFDDFDDF + FFFFDFDFQQ
+ FFFFFDFQDQ + FFFFFFDQDQ. (25)

In this case the couplings in the structures in the second line
have eight gauge field or the second fundamental form in
which we are not interested in this paper. On the other hand,
in the scheme that we are using in this paper in which the
independent couplings should be reduced to the indepen-
dent couplings of only gauge field when X* is a constant,
one can find the independent couplings in the first line by
finding the independent couplings of only the gauge field.
At the end, the partial derivatives are replaced by the
|

I
covariant derivatives. So we consider only the six gauge

field structures
Ly, ~FFDFDFDFDF + FFFDFDFDDF
+ FFFFDDFDDEF.

There are 2836 gauge invariant couplings in these structures.
The vector in the total derivative (8) has 3 structures as

I ~ FFFDFDFDF + FFFFDFDDF + FFFFFDDDF.
(26)

The field redefinition 0A, has 3 structures as

A, ~ FFDFDFDF + FFFDFDDF + FFFFDDDF.
(27)

The derivatives are all partial derivatives. In this case, one
needs only to impose the Bianchi identity (5) to find the
corresponding independent structures in (12). One finds the
linear algebraic equations have 64 solutions thatinvolve only
oay, ..., 0arg36. It means there are 64 independent couplings
at six gauge fields when X* is constant. The couplings in a
particular scheme are the following:

(27[0/)2 p+1 ~ a gbe de nf hp u
SO -— Tp d o —detGab[elD F DbF D FdeD Ff FaMFCh

96

+ e,DF**DyF% D F/"D"F ,¢F ,,F oy + €3D*F**DyF% D F/"D"F 1, F , F ..,
+ e,DF**DyF “D*F/"D"F ;)F . ,F 4, + esDF*D,F ,“D°F/"D ,F,"F ., F,
+ €D F**D F,*D*F/"D¢F ,F " F 4, + €;D“F** D, F¥ DI F . yD"F {“F ,,,F o)
+ egD*F**D,F%D ,F/"D'F (F ,F,, + egD*F*D,F*DF /D' F,"F .,F
+ e,0D*F**D,F¥*D,F /D"F;"F.,F ., + ¢,,D*F**D,F ,*D*F /D" F {F 4, F ,
+ €1yD*F**D,F4D ;F/"D"F ;,,F \ F ,,, + €;3D*F*D,F*D F/"DF " F ,,,F ,,
+ ey DF*D,F¥D F/"D(F “F ,F ,,, + €1sD*F** D, F* D F /D (F"F ,, F,,
+ e16D*F*D,F *D°F /D F"F ,,F,, + €7D F*D,F%D,F ./ D"F ;*F ,,F
+ e1gD*F**D,F D*F / D"F “F ,,F ., + €10D“F**D,F*D/F .;D"F ;"F ,,,F
+ e D*F*D,F%D F/"D"F . F ,F ., + €1 D*F*D,F* DI F "D"F 4 F , F,,
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+ e, DF*D,F¥D F"D jF 1,F " F ,, + e3D*F"*D,F ,"D°F /D"F ;*F ,, F ;,,
+ ey DF**D ,F¥D,F/"D"F 4,F .t F),, + €35DF*D},F ,“DF S D"F ,F 4¢F ,
+ e3D*F**D,F ,*D°F /D /F *F }*F),, + ex;D*F**D,F ,"D°F /D"F ,;F j*F},,
+ exyDF*D,F4D FI"D 4F " F ¢ F,, + €29D*F"* D F . D jF"DYF/F (),
+ e30D*F**D,F D F D' F"F ,;F},, + e3,D*F*D,F .*D,F ,*D/ F"F ,;F ),
+ €3, D*F**D,F4*D,F ;/D"F F ,;F}, + e3D*F*D,F¥*D,F ,/D"F "F ,;F ),
+ e34D*F**D,F4%D/F,,D"F "F ,¢F,, + e3sD*F*D,F,D‘F /D"F /'F ,/F ),
+ e3sDF**D,F ,"D*F /D"F /' F ;s F ), + e3D“F*D ,F*D/F\, D"F /' ,;F ),
+ e33D“F**D F¥D¢F "D/ FyyF ,“F},, + €30D“F**D ,F* D/ F,yD"F ., F " F},,
+ e40D*F*D ,F*Dy,F /D F."F(“F, + e D*F**D,F,*D F*' D ,F /' F ;" F},,
+ e, D*F*D,F D F/D,F,"F (“F}, + e3D“F"*DyF . D'F¢/ D F /" F
+ e44D*F**D ,F},'D ,F /'D‘F J F ;*F},,, + e4sD“F**D,F*D,F ,/D"F .,F (“F},,
+ e4sD*F*°D ,F¥ D/ F,uD"F . ,F ;" F,, + e57D*F**D,F, D F*/D"F ;,F ;" F},,
+ e4sD*F*D,F "D F/ D"F 4,F *F),, + e4oDF**D ,F* DI/ F},.D"F ;,F ;" F},,
+ esoD*F*D,F ,.D*F¢ D F 4, F),,F" + e5;DF*D ,F,DF ./ D (F 4, F ,, F™
+ esoDF*D,F ,"D*F /D F 4, F ), F" + es3D*F**D,F*D F 4,D/ F . F,, F™
+ esyDF**D ,F¥D¢F . ,D'F}, F),,F" + essD'F*D,F¥DF ;D' F," F . ,F},,
+ es¢D,D"F "D D ,F ,F *F*F,F/ + e5;D,DF ,,D},D¢F 4,F** F/Fef Fhv
+ esgDF*D ,F¥D,F/"D"F 4¢F . ,F,, + eseD*F*D,F ,“D*F/"D F ,“F .,,F y,
+ eqoD*F**D,F D F D' F "F *F),, + e D*F**D,F D ,F ,*D' F " F ;/* F ),
+ e D*F**D,F¥DIF "D"F 4, F  /F ,,, + e3D,D"F ;DD ,F ., F ,*F**F / F 4,
+ e64sD,D},F 1,D*F**D}F . . F // F*F" + QQOQFFFFFF

+ FFFFDFDFQQ + FFFFFDFQDQ + FFFFFFDQDQ), (28)

where ey, ..., eqs are some parameters. The couplings in the structures in the last line above and in the structure
QQQQFFFFFF involve more than six gauge field and/or the second fundamental forms in which we are not interested in
this paper. When Q is zero, the above couplings reduce to the independent couplings of four gauge fields at order o’>. Hence,
the derivatives in the above independent couplings are now covariant derivatives.

The parameters of the independent couplings in (16), (20), (24), and (28) are background independent parameters
which may be found by the appropriate S-matrix elements in flat spacetime. The couplings of four gauge field and/or the
second fundamental form have been found by the S-matrix element of four open string vertex operators [17,26]. They are

ay ==, 6122613:(14:—2; b1:0, b2:2, b3:—2, b4:0,

cL =3, Cy = Cy = — C4:—1. (29)

0| = | =

1 1
47 27

However, we are going to find the parameters in the next section by imposing the T-duality constraint.

III. T-DUALITY CONSTRAINT

We now try to fix the parameters in the actions (16), (20), (24), and (28). The assumption that the world-volume effective
action at the critical dimension is background independent, means the parameters in these actions are independent of the
background. Hence, to fix them we consider a specific background that has a circle. That is, the manifold has the structure
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MU0 = MO x SO, The manifold M has coordinates
x* = (x",y), where x* is the coordinate of the manifold
M®) and y is the coordinate of the circle V). The world-
volume action has two reductions on the circle. When the
D ,-brane is along the circle, i.e., @ = (@, y), the reduction
is called S}, and when the D ,-brane is orthogonal to the
circle, i.e., a = a, the reduction is called S;. These two
actions are not identical. However, the transformation of S}
under the following T-duality transformations

A, =X,
Aa i Aa,

Xt — XF, (30)
|

J

a’zT],_l /de\/—detg]a[;Daja,

K =T, | d’c\/—detq,;|-DF*"6A

where 7% is a vector which is made of the base space fields
F, Q% 0X” and their covariant derivatives at order o>/ with
coefficients ji, j»,.... In the above equations, the world-
volume indices are contracted with the inverse of the pull
back of the base space metric onto the world volume of
D,_,-brane, i.e.,

Jap = 02 X703, X 15, (33)

and the dots in £ represent the terms that involve all higher
orders of F and 0X” that are resulted from inserting in the
world-volume reduction of (1), the following field redefi-
nitions:

Aa g A& + a/3/25Aa,
XP— X+ o325,
X' — XV + 326X, (34)

and using integration by part. The coefficients of the gauge
invariant terms in 64, 6X#, 56X at order o*/? are ky, k5, ....
Unlike in K, the dots in K cannot be ignored because
they have contribution with some fixed parameters in
some of the structures in the constraint (31), i.e., if one
ignores them, then one would find the world-volume
actions (16), (20), (24), and (28) satisfy the constraint
(31) when all parameters in the actions are zero, which is
not true.

For the world-volume reduction, a = (a,y) and
u = (fi,y). Using the fact that the second fundamental

which is called SZZI, should be the same as S;,_l, up to
some total derivative terms and field redefinitions in the

base space, i.e.,

AS+T+K=0, (31)

where AS = S;ffl — S;_l, the total derivative term j and

the field redefinition contributions are

-7 bQZ X Ny — gab@‘; pOX My -], (32)

|
form is zero when yu is a world-volume index, and the fact
that in the dimensional reduction one assumes field are
independent of the y coordinate, i.e., the Kaluza-Klein
modes are ignored, one finds the following nonzero world-
volume reductions:

Gap = b
Qm}” = Qa13~7
Dyt = Dald o,
Fap = Fap
Fay = Fay,
Fyi = Fy,
D;Fj :DaFaZ’
DaFZ;y = DaFEy’
DF\j = DaFyi;,

(35)

where Q. ;7 = D;0;X", and the covariant derivatives on
the right-hand side are made of the pull-back metric (33).

For the transverse reduction, a = a@ and u = (i, y). Since
the index y is a transverse index, one finds the following
nonzero transverse reductions:
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Q3 = Q. — 0. XY XFQ, l-,y<

Q~ ily - Q~ i]y 1 Y ) ’
a ab \1-9,X' X"

Fap = Faps

1
1- aéxyaéxy) ’

D;Fyz = DaFj + XV (F 395" — F3Q2),
DaDF 5 = DaDyFo 5 — 0° XY (DaF 2395 — DiF Q0" + DiFesQy 7)), (36)

where, for the simplicity in writing, on the right-hand side
of the transverse reductions of DQ and DDF, we have
not written the results completely in terms of the base
space tensors Q and D. One can easily replace them
from the reductions of € and DF. In both world-volume
and transverse reductions, one observers that the identity
(6) reduces to the corresponding identity in the base
space, i.e.,

=0 (37)

and the reductions satisfies the Bianchi identity (5). Note
that the gauge field in the base space satisfies its corre-
sponding Bianchi identity

Note also that there is no relation corresponding to (6) for
u,v =y. Hence, one cannot remove the term d; X" from the
independent covariant couplings in the base space.

Using the reductions (35) and (36), one can calculate AS
in (31). To solve the T-duality constraint (31), one has to
write it in terms of independent couplings in the base space,
i.e., the Bianchi identity (38) and the identities correspond-
ing to the second fundamental forms must be imposed into
it. As in the previous section, we write the covariant
derivatives in the base space in terms of partial derivatives
and the Levi-Civita connection which is made of the pull-
back metric (33). Moreover, one can go to the local frame in
which the Levi-Civita connection is zero but its partial
derivatives are not zero. Then, one can write the derivatives
of the connection in terms of the pull-back metric (33). In
the resulting expression, then one has to replace the two
0;X* in which their spacetime index are contracted with
each other, i.e., 0;X#0;X"1; ;, by the pull-back metric (33).
One also has to write the partial derivatives of the gauge
field strength in terms of the gauge field potential. The final

resulting noncovariant expression involves independent
structures made of F;,0;0;A¢, ..., 0;X*,0;0; X%, ... and
0;X”,0;0;X”, .... The coefficients of these independent
structures which involve the parameters in the effective
action found in the previous section, the parameters in the
total derivative terms (32) and the parameters in the field
redefinitions (34), must be zero. They produces some linear
algebraic equations for these parameters. Solving them, one
finds some relations involving only the parameters of the
independent couplings found in the previous section in
which we are interested in this paper. The solution also
produces some relations for j, js, ceosdnp ki ky, ..., k,, in
terms of the parameters of the effective action and
Jnj1sJnt2s s ki1 kygo, ... In which we are not
interested.

Since the T-duality constraint (31) at order &> involve all
orders of fields F;,0;X”, it relates the coefficients of all
infinite number of independent couplings at order .
However, to solve this constraint one has to truncate the
independent couplings in the effective action to a fixed
number of F, Q. In the previous section we have found the
couplings up to six F, Q. To find the parameters of these
truncated couplings, one has to truncate also the indepen-
dent structures in (31). If one considers an action at a given
order of o, and at the level of m fields F, Q, then the
independent structures in the constraint (31) which have
more than m fields in the local frame must be ignored. The
coefficients of the remaining independent structures must
be zero. The resulting linear algebraic equation should be
solved to find some relations between the parameters of the
independent couplings in the action.

The independent couplings that we have found in the
previous section have 12 couplings at the level of four F, Q,
i.e., the couplings with coefficients a;, a,, as, ays, by, by,
bz, by, cy, o, c3,c4. To find the T-duality constraint on
these couplings, we consider the following structures for
the vector of the total derivative terms:
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I~DDYDXDX’ DX’ + DY DX’ DX’ + QO DX’ + FDD D FDX'DXY + DD FDFDX> DX
+ FDDFQ’DXY + DFDFQ’DXY + FFQ* DY + FDFQYQY + FDFDQY DX

+ FFDDQDX” + DX’ DX DQP + DX QPP (39)
For the field redefinitions, we consider the following structures:

5XY ~FFDD® + FDD D FDX® + FDFDS + FD D FQY + DFD D FDXY + DFDFC
+DDYDX DX’ + X DY DXY + QY + QDO DXY + QFQPY
SAT~DDDFDXDX’ + DDYDX'F + ¥ DX’DDF + DY DX DF + DYF + Y DF,

6XF ~ DD DX’ DX + Q' DY DX + P DY DXy + G QY. (40)

@1

Note that all terms in the reduction AS in the constraint (31) involve, among other things, 0X” and/or Q. Hence the total
derivative terms and the field redefinitions must include these fields as well. Using the package xAct, one can construct all
possible contractions in (39) and (40). Then replacing them in (31), going to the local frame to write the equation (31) in
terms of the independent structures, and removing the terms that have six and more fields, one finds the resulting linear
algebraic equations have the following solution that involves only the parameters of the effective action

as — dy 3 ay 612—613+a4 as
e I AT E e N R 2
by — —ay+2b;, by 2T M b 4(4a1 Y ay —2by). (41)

The above parameters are consistent with the results from the S-matrix method (29). It turns out that the unfixed parameters
above can not be fixed by studying the T-duality constraint at the level of six F, Q. So for studying the constraint (31) at
level of six F, Q, we consider the parameters (29) for the four F, Q couplings.

We have found the independent couplings at the level of six F, Q in the previous section, i.e., the couplings with
coefficients f1, f2, ..., f1s, di,d>,...,dgs and ey, e,, ..., eq4. To find the T-duality constraint on these couplings, we
consider the following structures for the vector of the total derivative terms:

I~DDXYDX'DX*DX’DX'DX> + D' DX*DX* DX’ DX’ + Q'@ Q* DX’ DX’ DX’ + FD D D FDX?DX?DX*DX”
+ FFD DQDX*DX*DXY + D D FDFDX*DX*DX*DX® + FD D FQ' DX’ DX’ DX” + FDFDQ' DX’ DX’ DX
+ FFQ*DQY DX’ DXY + DFDFQ’ DX? DX’ DX? + FDFQ' QDX DXY + FFQ*Q' QY DXY
+ FFFDDDFDX’DX* + FFFFD D DX’ + FFD D FDFDX’DX* + FFFD D FQ' DX*
+ FDFDFDFDX’DXY + FFDFDFQ'DX* + FFFFQ' DQ + FFFFDFDQ' DX?
+ FFFDFQYQY + FDOP DX DX’ DX DX> + QFQPQ* DX’ DX DXY + FFQF DOP DX DX

+ FDFOYQPDX'DXY + FFQFQPY DX, (42)
For the field redefinitions, we consider the following structures:

6XY ~D DY DX'DX’DX’DX? + QDY DX DX’ DX? + Q' QDX DX* + DD Q' FFFF
+ FFFDDDFDX® + DQ’FFFDF + FFDFD D FDX® + Q' FFFDD F + Q'FFDFDF
+ FDFDFDFDX’ + DD Q'DX’DX'FF + FD D D FDX*DX>DX”
+ QDOYYDXYFF + DQ*DX*DXFDF + DFD D FDX?DX>DX”
+Q'FDD FDX'DX” + Q’QQ'FF + Q*Q'FDFDXY
+ Q'DFDFDX’DXY + Q"DOP DX’ DX’ DXY + Q' QP DX DX?

+ FFQPDQPDXY + FQPDFDFDXY + Q' FDFCF QY
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SA% ~ FFDD D FDX’DX> + FFFD D DX’ + FDFD D FDX’DX® + FFD D FQ’ DX’ + FFFQY DY
+ FFDFD& DX’ + DFDFDFDX’DX® + FDFDFQ’ DX’ + FFDFQ'QY + DD D FDX? DX’ DX’ DX”
+FDDYDX'DX’DX> + DD F’DX'DX’DX> + DFDQYDX?DXYDXY + FQ' DY DX DX

SXF ~ DD DX’ DX’ DX’ DX + DOF DX DX DX + QFDQY DX DX DXY + QP DX DX
+DDOFDX’DX’FF + DY DX FF + DQ*DXDXFDF + Q"D DX’FF

+ QFDX’DX*FD D F 4+ FQ QY FF 4 Q" DX’ DX*DFDF + QFQ' DX FDF + QFQPQ*DXY DX . (43)

Using the package xAct, one can construct all possible contractions in (42) and (43). Then replacing them in (31), using the
parameters (29) for the four F, Q couplings, going to the local frame to write the equation (31) in terms of the independent
structures, and removing the terms that have eight and more fields, one finds the resulting linear algebraic equations have
the following solution that involves only the 146 parameters of the effective action:

1 5 17
d2_>1(8+6d1_d16)’ d3—>§—2d1, d4—>—7—d1—d16, ds—1-4d,,

3
d6—>—1—d1, d7—>—8, dg—)§+2d1, d9—>—4, dlo—)—1—4d1,
dll—)1+4d1, d12—)4, d13—)1+4d1, d14—)—1—4d1, dls—)—l,

di; = 1+4d,, d18—>—%—2d1, dig—1+2dy, dy— _4 :

dyy = —1+4d, +2d, d22—>22—7+6d1—5d16, d23—>—%—2d1,

dyy—T+4d,, dos—13+8d,=2dyg, dog——8, dyy——21—12d, +4dq,

dog = —T—4d; +2d,s, d29—’%+2d17 d3—2(6+6d,—di), d3—>—4(1+d,),
dy—2(-2+ds), dy—1, dy—1-4d,,

1 17 d
d35—>—13—4d1+4d16, d36—>§—6d1—d16, d37 —>I+6d1—¥,
d
dig——9-20d,, dy—4+12d,, dy—2+4d, —%,

d41—>—17—4d1+6d16, d42—>5+4d1, d43 —>5+4d1, d44—>6+8d1—2d16,

dys—0, dyg—>—4-8d;, dy;—0, dyg—2+4d, d49—’—;

dso—’—%—du d51—>%+%d17 dsz—’—l%—%du d53—’—; d54—>§+d1,

d55—>—%, ds¢—1, ds;7—0, dsg—5+4d,;,

dsg—>—6—4d, +2d, dél_’_%_zdl_dl6+d60’ dey — -1,

diy= =24 dig, dss =0, ey = (~T+4d, 421+ 2d), €3 (1+4d; ~2dis +2dio),
33—’%(7_4611—20716—26160), 64_’_d1+§(_3+d16)’

1 1
65 —)g(—7+4d1 +2dl6+2d60)7 86 —)R(lg—F 12d1 - 14d16 +6d60)1
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e; = 0, eg — 0, ey —>%(—13+—4d1 + 8ds — 2dgy),
€10 —’%(—7"‘4511 +2d16 + 2dg) en = 2(=2+d).
e = —2+di, e;; =0, ey = %(—67 —12d, + 38d,¢ — 6dy), e;s = 0,
el —> d| + ;1 (=23 4 10d 6 + 2dg), ey — %(—15 +4d; + 6ds + 2dg),
e = =6(-2+dig). e = (=9~ 4d; + 6 ~ 2.
e — %(1 +4d; = 2d,s + 2dg), ey = 2(=2+ds),
e —>%(17+4d1 —2d,6 + 2dyg), ey3 = 2(=2+djg), ey — 0,
eys — é(lS —4d, — 6d,s —2dg), ey = % (—49 — 4d, 4+ 10d,¢ — 2dg),
ey = 6 —di, ex = 2(=2 +dje), €9 _)1178“ +4d, — 2d,5 + 2dg),
ez — %(9 +4d; — 6d,s + 2dg), €3 = %(1 +4d; —2d,s + 2dg).
ey — %—I— 2d; — dyg + dgp, ey3 — é(—ll +20d, — 2d,¢ + 10dy),
€34 *5(15—4611 — 6dy5 — 2dg). e3s _)%(_2+d16)’
5 deo 1
636_)Z+d1_d16 T 637_’E(33+4d1_18d16+2d60)7
€33 — %(—17 —4d, + 10d,¢ — 2d), €39 — %(—33 —4d, + 18d,4 — 2d),
ey — =2+ dis, eq — %(—149 —20d; + 34d,s — 10dy),
ey = dy + % (41 = 10d 6 + 2dq). €43 — %(—1 —4d, + 2d,6 — 2dy),
e — %(83 +12d, — 14d,¢ + 6dy), €45 — %(—63 +4d, 4+ 30d,s + 2dg),
e45 — %(15 —4d| - 6d\s — 2dgy), 47 — é(Sl +12d, — 14dy6 + 6dgo),

1 1
648 g Z(—33 - 4d1 + 6d16 - 2d60)7 649 - 3—2(—51 - 12d1 + ]4d16 - 6d6())1

1
esop = 0, €51 = —5» es) = 0, €53 =~ g esy — 0,

ess = 0, ese = —2 + dig, es7 > =2+ dje, ess = 0, esg = 0,
1 1
€en0 — §<—1 - 4d1 + 2d16 - 2d60)7 (3 g g (51 + 12d1 - 14d16 + 6d60),

1 d

662_)_5_2d1+d16_d607 663_)1_716’ s = 0,
1

f1— —4+3d, f2_)§(7+4d1_d16)’

1 1
f3— 1(9 +4d, — 6d,¢ + 2dg). fa=3 (14 4d, + 2d,6 + 2dy),
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f5_)4(_2+d16)7 fﬁ_)z’ f7_)01 fg-’-z, f9_)8_2d169
1
Sfio— =2, f11—>§, fi2 = =2, f13 = =2+ d. f14a — 6,
1
fis _)_5’ fi6 = —1, fi7 = -1, fig = 0, (44)

where the parameters, d;, di6, dgo remain unfixed. We have
also imposed the T-duality constraint (31) in the static
gauge [23] and found exactly the same result.

To check the above results, we compare them with the
correction at order o> to the Born-Infeld action that has
been found by Wyllard by the boundary state method [18].
This correction, which involves all levels of the gauge field
strength is the following:

(2ra’)?

dr*oy/=dethy |1+

1
% (_hdahbchfehuzswabszfcd + 3 hfehuzseuszf)] ,

2
Sﬁn) =-T,

(45)
where
Seuas = 060, F ap + 200, F 410y Fyja»
Sew = " Seuans
hap =MNap + Fap, (46)

and h“ is the inverse of h,,. The above action can be
expanded to find the gauge field couplings at all levels of
gauge field strength. The couplings at the level of four and
six gauge field should be related to the corresponding
couplings in (24) and (28) with the parameters (29) and
(44), up to some total derivative terms and field redefini-
tions. Note that, since the parameters in the two actions are
fixed, in order to compare the two actions, one should use
all terms in the field redefintion /C, i.e., the dots in (10)
should not be ignored. It has been verified in [18] that up to
|

d2—>%, dy = 2, d4—>—§,
d; = =8, dg — 2, dy — —4,
dip = 4, diz — 2, dig = -2,
dls—’—ldw—’; dzo*—%,
dy; = =2, dyy — 8, dys = 7,
dyg — 0, dyy — 2, dyp =7,

|

field redefinitions and total derivative terms, the two gauge
field couplings are zero and the four gauge field couplings
are the same as the corresponding couplings in (24) with
parameters (29). We have compared the six gauge fields in
the action (45) with the couplings in (28) with the
parameters in (44). We have found they are the same up
to some total derivative terms and field redefinitions
provided that the unfixed parameter to be the following:

dl() - 4, d60 - —1 (47)

To perform this calculation, we insert the six gauge field
coupling of (45) on the right hand side of (11), and the six
independent gauge field couplings of (28) with the para-
meters (44) on the left hand side of (11). Then after
imposing the Bianchi identity, one finds for some total
derivative terms in J and field redefinitions in /C, the two
sets of couplings are exactly the same if there is the above
values for the unfixed parameters. This confirms that the
couplings involving F, Q that are fixed by the T-duality
constraint (31), are consistent with the couplings involving
F that are fixed by the boundary state method. Note that,
neither the couplings in the action (45) nor the independent
couplings in our scheme, include terms that have D, F.
However, since the total derivative terms include terms that
have D,F“, in the comparison (11), one must include the
field redefinition /C.

Hence, the six gauge field strengths and/or the second
fundamental forms are fixed in the particular scheme that
we have chosen in the previous section for the following
parameters:

ds — 0, dg — —Z,
dyg = =2, dy — 2,
dis — -1, di7 = 2,
dy — 8, dy — -5,
dys — -8, dyy — =8,
d3; — -5, dy — 4,
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15
d33 = 1, d34 = 0, d35 - 2’ d36 — _5’ d37 - Z’
d38 d —14, d39 - 7, d40 - 1, d41 - 6, d42 - 6,
dyz — 6, dyy — 0, dys — 0, dys — —6, dy; — 0,
3 1
dyg = 3, dag = =5, dso > =5 ds; — 1, dsy > =5,
5 3 1
d53—>—§, d54—’§7 dss—’—@ dsg — 1, ds; = 0,
dsg g 6, d59 g 1, d61 g —6, d62 g —1, d63 - 2, d64 - O,
e; — 0, ey, — =3, e; — 0, ey — 1, es — 0,
5
66—>—§, e; — 0, eg — 0, eg — 5, e — 0,
€11 —)4, 612—)2, 813—)0, 614—)11, 615—)0,
e — 4, e — 1, ey = —12, e — 4, ey = —1,
€y — 4, €yy — ], €r3 —> 4, €rq4 — O, €r5 —> —1,
1
e = —1, ey = 2, e = 4, €9 — 16 ez = =2,
1
€3] =~ 5 e3 — —4, e33 — =3, ey — —1, e3s — 1,
5
€3 = =3, €37 = 3 ey — 3, €39 — 5, eq = 2,
ey — —1, ey =0, ey = 1, €4y = 3, eys =7,
1
€46 = _5’ ey — —1, e)3 — =2, €19 — Z’ eso — 0,
1
es1 = =5 es) — 0, €53 =g esy — 0, ess = 0,
€56 —> 2, €57 — 2, €58 — 0, €59 — O, €60 — 1,
es1 — —1, esy — 4, es3 — —1, ess — 0,
fl_)8’ f2_)27 f3_)_4’ f4_)23
fs =38, fe =2, f7-0, fs = =2, fo—0,
1
Sfio—= -2, f11—>§7 fi2 = -2, fiz =2, fia— 6,
1
f15—>—5’ fie = —1, fir = -1, fis = 0. (48)

The independent couplings at order > in the previous
section with the parameters (29) and (48) include only four
and six gauge field strengths and/or the second fundamen-
tal forms. It would be interesting to extend these couplings
to all levels of the gauge field strength. In the next section
we study this extension.

IV. TOWARDS ALL GAUGE FIELD COUPLINGS

Using the fact that the corrections to Born-Infeld action
at order o’? and at all levels of F;, are known [18], one can

066016

easily extend these couplings to the covariant form by
extending the partial derivatives in these couplings to the
covariant derivatives and by extending the world-volume
flat metric to the pull back of the bulk flat metric (2), i.e.,

S, > =T, | d""'c\/deth,, {1 +

1
x (-hdah’whfehuzsm,,Szﬂ,,, +3 thh"zseuSZfﬂ :

(2ra')?
96

(49)

-15



MOHAMMAD R. GAROUSI and SAMAN KARIMI PHYS. REV. D 106, 066016 (2022)

where One can expand the above action to find the four and six
gauge field couplings with known coefficients. Then one

Seuar = D D, F o, + 2h”dDeF[a|CDM‘Fb]d, can use them, and the couplings which involve Q with the

S — pabg unknown coefficients that we have found them in a

e euab> particular scheme in Sec. II, as the starting point for

hayy = Gup + Fop. (50)  imposing the T-duality constraint (31), to find the unknown
coefficients. We have done this calculation and found the
and A’ is inverse of h,,. following couplings for QQQQ and QQQQFF:

2
S, D d / AP o\ /= det G oy 29,6, QP Q Q) y, — 20, QUHQ 1, Q4

+ 9Qafmbf Qo Ry, FUF —8Q,4Q, QY Qyp, F0 FE
+ 39,9, QS Qup FPF 4 80, 4Q,Q ,Q,  F© e
+3Q,%4Q,4Q, Q1 F, F® — 5Q,%4Q,4Q, Q,, F F

— 109,79, Q2 Q, FPF —3Q,%Q.¢, QY Q, 1, F, F

1
+3 Q. QUWQ Q1 F oy F — Q1 Q1 Q% Q1 F F
20,40 Q, QF FUF 4 50,50 1 Q, Q6 F,CFb

1 : ef a 1 efv pab fe 1 efv cpa
- Egcdvgﬂdﬂgefyg I F oy FP — Egacmbdﬂgeﬂg fvpabped — Egbdﬂgcdﬂgeﬂg VF CF). (51)

Note that the QQQQ terms above are exactly the second fundamental form correction that has been found in [27] up to

terms that involve the trace of the second fundamental form, (see [20]), which are removed in our scheme.
We have also found the following couplings for the structures that include DF or DQ:

2
S, 7) / A6\ /—det(Gy { D, Fy, D F*Q,,, Q4 4 DFCDIF,€Q 1Q

— 2D“FbCDbFadQC HQ ey — SDFPDIF,Q, Qup

3
= DUFPDFy F Q' Qg + 5 DFP Do FF 1y FQ Qe

— DFbDAFeTF ) F,, QM Q

cfu cfu

- lD“F”CD"F“f F,"F ,Q,./Q
2

— 2DF" Dy F®F JF"Q, Q01 — 16D F*DIF ¢ F S F (" Q 11 Qy,,

+ SDF*DIF F'F Q0 F Qg + 4D FPDUFTF  F Qi Qg

— 6D F*DYF/F . F "D,/ Qqp, — 2D FPDYFF ,F Q' Qy

— 4D F*DIFIF " F(,, Q' Qqapy, + 6D FP*DIFIF , F " Q #Q

+ 2DF*DIFeIF , F " Q #Qqpy + 6D FP* D FLF " FIQ 4 Quy,
+4DF"Dy,F *F "F'Q #Qup, — gD“FbCDaF,,dFefF"f Q. Q
+ 3D F**D,F F . F/ Q" Qy, + 10D F** D, F*F J F *Q.,*Q, s,
— TDF*DIF,°F JF " Q1 Q5 + 3D F** D FF,/F "Q'Q, 1,
+ 10D*F*D,F¥F JF ;"Q, #Q,, + 4D F** D, F*F JF "Q ' Q.
—2DF*D F*F,/F "Q Dy, — 2D F*D,F“F JF ' Q, #Q
— 11DF**D ,F*F,JF " Q #Qp, + 6D F*D,F¥F , ,F/"Q #Q,,

ehy
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—2DFbD F*F, F"Q #Qyp, — 2D*F*DUF ¢ F J F 4, Q.M Q

ehu

+ 2DF*DF,°F JF "Q,#Q,, — 5SDF*°D ,F*F,/F "Q,#Q,.,

+4DF*°D ,FYF, . F/"Q#Q,,

— 14D“FPD ,F},?F “F/"Q,#Q

ehu

+ 6DF*D,F *F *F/"Q*Q,p,, + 3DF** D, F . [F*FI"Q,#Q,,
+ 6DF*DF,F JF /"Q.*Qp, + 6D F**DF ¢ F J F Q4,4 Qp,
—4DF"DIF,°F ,yF J Q" Qpy,, + 4AD*F**D F*F,yF J Q" Qy,
+ 12D*F*DIF,F .. F i/ Q" Qp, — 10D*F**D F*F ), F // Q" Qy,,

. 5 .
—4DF*DyF . F J F* Q" Q. + 5 DOFPDIF,°F 4y F o2, Q™

11 BB .
— 4 DUFYD FF i F o 3, QM + - D*FP D F* F . F R,

5
+ 2D“F" D F,F °F 4,9, Q" — > DF*DyF ,'F °F 4,9, "

3 .
+ 3 DUFY Dy F oo F g FQp, QM — 6D F*D,F\'F ' FIQ ' Qp,

+ 8D“F D, F*F,/F "Q. " Qpp, + 2D F*DUFIF (, F " Q1 Qpp,
—10D“F*DYFF " F 1 Q. Qup, + DF*DIF,°F JF /"Q # Q.
— 8DF"DIF,°F . F/"Q #Q,, + 8DF*DF,*F J F .;Q,"Q,,,

+2DQPHDIQ | F yF ) F M F )y — 4D FP* DIQEIHE  F ' F 1, Q| (52)

One may extend the above calculations to find the covariant
couplings involving € at the higher levels of gauge fields
that correspond to the action (49). Then the question arises,
is it possible to find a compact expression for the covariant
couplings involving € in terms of 2%, as in (49)? We have
checked that the couplings in (51) cannot be written in
terms of QQQQAhhh. The reason may be related to the
particular scheme that we have used for the independent
couplings in Sec. II. Even though the couplings with the
structure QQQQ and QQQQFF are independent of the
scheme, but their coefficients that are fixed by the T-duality
are scheme dependent because the T-duality relates these
parameters to the parameters of the couplings involving DF
or DQ, which are scheme dependent.

V. CONCLUSION

In this paper we have found the independent world-
volume couplings at order &> involving four and six F, Q
and their covariant derivatives, in the normalization that F
is dimensionless. We have found that there are 12 couplings
at the four-field level and 146 couplings at the six-field
level. The assumption that the effective action of the
D ,-brane at the critical dimension is background indepen-
dent is then used to find the parameters of the above
independent couplings. That is, we have considered a
particular background that has one circle. In this

I

background, the effective action should satisfy the
T-duality constraint (31). This constraint fixes all param-
eters in terms of only 8 parameters. We have shown that
these parameters are consistent with the all-gauge-field
corrections to the Born-Infeld action that have been found
in [18]. This comparison also fixes the remaining §
parameters. We have found the couplings in a particular
scheme that is different from the scheme that has been used
in [18].

We then considered the couplings that have no second
fundamental form to be the same as the couplings found by
Wyllard in [18] in which the partial derivatives are extended
to the covariant derivatives and the flat world-volume
metric to the pull back of the bulk flat metric. We have
found the covariant couplings involving four and six F, Q
that are consistent with these couplings under the T-duality,
i.e., (51) and (52). We could not succeed to extend them to
all levels of F. The independent couplings (51) and (52) are
in the particular scheme that we have considered in Sec. II.
That may be the reason the covariant couplings (51) and
(52) could not be written in a closed form in terms of 2** to
include all levels of F.

To find the covariant couplings at all levels of F, one
may first need to find the independent covariant couplings
involving €2, in terms of he_ That is, one should consider
all gauge invariant couplings involving DF,Q and their
covariant derivatives at order o>
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(2nd')?

S =-

t—Tp [ d7lo/=dethy, L' (DF. ... Q.DQ. ...). (53)

where the spacetime index of Q is contracted with the spacetime metric 7, and the world-volume indices are contracted
with 4%, Then one adds to this action the total derivative terms and field redefinitions

J = —d’T, / dP*16D,[\/= det hyy, 1]

1 1
K =-aT, | d"'o\/=dethy, [—2 (h" — hP)D,6Ay + 5 (" + 1")0, X" Dy6X* 1, |. (54)

In this case, one has to use the identity (6) to write the field
redefinition terms produced by the last terms above, in
terms of Q. Doing the same steps as in Sec. II, one can find
the independent couplings in terms of 2%’. Then one may
expand them and impose the T-duality constraint (31) to
find the parameters of the independent couplings. It would
be interesting to find these covariant couplings in terms of
he®, if they exist. We have done this calculation for the
covariant couplings at order « in the bosonic string theory
that have been found in [23] up to the eight-field level, and
found that there is no such covariant couplings in terms of
he Tt is in accord with the observation that in the bosonic
string theory, the world-volume gravity couplings on the
Dl,—brane in the presence of constant B field, in terms of
inverse of h,, =n,, + B,y + F,, cannot be written in a
covariant form at order o [28].

The D ,-brane action in type II superstring theory has
also the Wess-Zumino coupling that at the lowest order of
o involves the R-R potential and F,, [29]. The o
corrections to this action involving only F and its covariant
derivatives, have been found in [18]. The corrections that
involve only Q have been found in [27]. It would be
interesting to use the T-duality constraint to find the
correction that involves F, © and their covariant derivatives
at order o’?, as we have done in this paper for the DBI
action.

We have used the field redefinitions to remove the
couplings that have D,F® or G*Q,,*. These couplings
are not produced by the disc-level S-matrix elements of
massless open string vertex operators either. However, the
second fundamental form in nontrivial bulk background

has gravity contribution as well as the transverse scalar
contributions. If one uses the bulk field redefinitions to
write the bulk effective action in a fixed scheme, then one
would not be allowed to use the field redefinitions to
remove the trace of the second fundamental form from the
world-volume effective action of the D ,-brane. Hence, the
world-volume couplings involving the trace of the second
fundamental form should be reproduced by the disc-level
S-matrix elements of massless closed string vertex oper-
ators. In fact, such couplings have been found in the
bosonic string theory at order « in [30] and in the
superstring theories at order o/?> in [27]. Similarly, the
couplings involving D, F“® have closed string contribution
through the standard replacement of F by F + B in the
world-volume effective actions. If one uses the bulk field
redefinitions to write the bulk effective action in a fixed
scheme, then one would not be allowed to use the field
redefinitions to remove D,B% from the world-volume
effective action of the D,-brane. Hence such couplings
may be reproduced by the disc-level S-matrix elements of
massless closed string vertex operators. Alternatively, one
may find the couplings involving D,B® and the second
fundamental form by studying the T-duality constraint on
the world-volume couplings of massless closed string
states [31].
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