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Because uncertainty is inherent in engineering structures, 
it is essential to improve the procedures of structural 
control. The present study focuses on applying a 
probabilistic fuzzy logic system (PFLS) in active tendons 
for the covariance response control of buildings. In 
contrast to an ordinary fuzzy logic system, PFLS 
integrates the probabilistic theory into a fuzzy logic 
system that can handle the linguistic and stochastic 
uncertainties existing in the process. To investigate the 
proficiency of the proposed controller, a single degree of 
freedom (SDOF) system and a three-story multiple degree 
of freedom (MDOF) system with different arrangements 
of tendons on the floors are considered. The structures are 
subjected to a random dynamic load modeled using 
Gaussian white noise, and the modeling parameters such 
as damping, stiffness, and mass are considered to be 
random Gaussian samples with a dispersion coefficient of 
10%. The results of the proposed intelligent control 
scheme are compared with those of an uncontrolled 
structural model and a linear quadratic regulator (LQR) 
controller model. The numerical results reveal that the 
probabilistic fuzzy logic controller (PFLC) is more 
efficient than the LQR controller in decreasing the 
structural covariance responses. Moreover, the maximum 
and minimum reductions in displacement responses for 
the MDOF structures are, respectively, about 36% and 
12.5%compared to the LQR controller. It is also showed 
that the PFLC is more accurate because it includes 
stochastic uncertainty. 
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1. Introduction 

The concept of likelihood has become a 

preferred approach to deal with unreliability 

and unpredictability. This has been brought 

into question with the development of the 

fuzzy logic systems [1]. A significant 

advantage of conventional fuzzy logic 

systems (FLSs) is their ability to map 

uncertain information to a linguistic domain. 

However, fuzzy logic systems cannot handle 

uncertainty in practical applications [2, 3]. 

Uncertainty results from lack of information. 

The aspects of uncertainty are inherently 

different and should be addressed by process 

modeling. One aspect is linguistic or non-

stochastic uncertainty and the other one is 

statistical uncertainty, which has been 

represented using the possibility theory. 

Fuzzy logic is a mechanism to handle and 

manipulate linguistic uncertainty. This 

feature enables the use of connoisseur 

science in the form of rules to transform 

unpredicted membership functions (MFs) for 

input and/or output segments of rules; 

however, the knowledge itself is uncertain. 

Stochastic uncertainty affects the appearance 

of an event in the future. This kind of 

uncertainty gives the likelihood of the results 

that may or may not happen. 

In the past decades, the implementation of 

intelligent control schemes such as fuzzy 

logic has been improved. Because of the 

capacity of fuzzy logic to manage linguistic 

uncertainties, it has been widely used. In 

1965, Zadeh proposed the fuzzy logic of 

type-1 [4]. It is evident that the information 

available for the creation of fuzzy rules 

contains unreliable data, but this unreliability 

is not assumed in the fuzzy logic methods of 

type-1. Because the result of a fuzzy logic 

system of type-1 is a single number, it 

requires some measures of dispersion to 

increase the understanding about its 

uncertainties [5]. To overcome this 

shortcoming, Zadeh presented the fuzzy logic 

system of type-2 in 1975 [6] to provide a 

measure of dispersion. This is now 

considered to be essential for the design of 

structures that contain linguistic uncertainty. 

Membership function of a type-1 fuzzy set is 

two-dimensional, so the membership value is 

a crisp quantity within [0, 1]. In contrast, 

type-2 fuzzy sets have three-dimensional 

membership functions, i.e., there is a 

secondary membership value for each 

primary element of a fuzzy set within [0, 1]. 

This secondary membership value should be 

a constant value or a function. A major 

advantage of type-2 fuzzy sets is their 

capability to manage linguistic unreliability. 

Mendel et al. [5, 7-10] improved the basic 

concepts related to type-2 fuzzy sets. To 

decrease the computational complexity of a 

type-2 FLS, an interval type-2 fuzzy logic 

system (IT2FLS) was produced [11-13]. For 

simplicity, IT2FLS assumes that the 

secondary membership is one. To define the 

unreliability boundaries in IT2FLS, upper 

and lower membership functions are 

considered in interval type-2 fuzzy sets [14]. 

The application of fuzzy control algorithms 

has increased for civil engineering structures. 

Al-Dawod et al. [15-19] used an active tuned 

mass damper (ATMD) on the top floor of 

buildings with 5 and 76 stories. These 

structural models have been studied under 

various loading types, including earthquakes 

and wind loads. Pourzeynali et al. [20] 

analyzed an 11-story realistic shear building 

for various types of earthquakes. They stated 

that FLS is very beneficial in minimizing the 

structural response in comparison with the 

linear quadratic regulator (LQR) and linear 

quadratic Gaussian (LQG) methods. Liang 

and Mendel [11] proposed an approach for 

estimating input and antecedent operations 

inIT2FLS by focusing on the upper and 

lower membership functions. Golnargesi et 

al. [21, 22] demonstrated that IT2FLS is 

efficient in reducing the structural responses. 

They used IT2FLSs to specify an active 
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control force. Previous works show that the 

current fuzzy control algorithms have not 

considered stochastic uncertainty. Zabihi and 

Ghanooni-Bagha [23] introduced a semi-

active controller using the combination of 

thermal exchange and intelligent fuzzy logic 

controller.  

For addressing the insufficiencies of 

probability theory [1, 24], it is useful to 

integrate FLS with probabilistic features to 

process uncertainties that include both fuzzy 

and probabilistic aspects. Loginov [25] 

considered a connection between fuzzy and 

probabilistic sets. He recommended that the 

membership function can be described as a 

dependent likelihood. This integration has 

been studied by others [26-28]; however, 

they only studied the relation between 

randomness and fuzziness, which cannot be 

directly applied to engineering applications. 

A probabilistic fuzzy logic system (PFLS) 

was proposed by Meghdadi et al. [27]. In this 

system, a true value has a specified quantity 

in the interval [0, 1] that is called “degree of 

truth” with a “likelihood of truth” that is 

identified by a likelihood value or likelihood 

distribution function. Probabilistic fuzzy 

logic utilizes a probabilistic three-

dimensional membership function to show 

probabilistic uncertainties. The probabilistic 

membership function contains three 

segments: the input signal, the fuzzy degree, 

and the related likelihood. The likelihood 

segment of the probabilistic membership 

function can be used to describe the 

probabilistic unreliability [29]. To present 

stochastic uncertainties in an FLS, the 

primary membership function should be a set 

of fuzzy numbers in [0, 1] and the secondary 

membership function is related to the 

probability density function (PDF). Several 

studies have examined the theoretical 

concepts of PFLS. The probabilistic fuzzy set 

was suggested by Liu and Li [2], who 

introduced probability theory to the 

conventional fuzzy field to describe the 

random property of membership degree. The 

fuzzy degrees in a probabilistic fuzzy set 

become the probabilistic parameters, which 

allow it to obtain both probabilistic and fuzzy 

unreliability. Initially, probabilistic fuzzy sets 

were used to approximate functions and 

control problems. Liu et al. [30] and Li et al. 

[31] introduced a concise review and easy 

tutorial on the improvement of PFLS when 

there exist both probabilistic and fuzzy 

unreliability data. They integrated PFLS into 

a neural network to develop its efficiency 

under time-varying conditions. For example, 

the stochastic nature of wind makes the 

estimating of wind speed a complex problem. 

Zhang et al. [32] designed a practical wind 

speed forecasting pattern utilizing 

probabilistic fuzzy theory. Simulations using 

real collected data for wind speed showed 

that their wind speed estimation model 

performs better than the conventional fuzzy 

types, interval type-2 fuzzy method, and 

neural networks. Huang et.al [33] introduced 

a novel procedure to modify PFLS 

characteristics based on general probabilistic 

fuzzy sets (GPFS). Shaheen et al. [34] 

proposed an adaptive probabilistic TSK 

fuzzy proportional-integral-derivative 

(APTSKF-PID) controller to deal with 

linguistic and stochastic complexities of 

nonlinear dynamic operations. The results of 

two uncertain systems showed that the 

proposed scheme can handle both 

uncertainties better than the adaptive TSK 

fuzzy PID (ATSKF-PID) controller. Nguyen 

[35] introduced a fuzzy logic system along 

with stochastic uncertainty. In the proposed 

fuzzy logic system, the consequent part of 

the rules considered all feasible assumptions 

with different likelihoods. 

To the best of the authors' knowledge, no 

study has been dedicated to probabilistic 

active control in which a probabilistic fuzzy 

logic controller (PFLC) as a novel technique 

has been applied to civil engineering 

structures. The present study has aimed to 
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use a PFLC, which is a combination of fuzzy 

and stochastic theories, for controlling the 

response of structures subject to a dynamic 

random load modeled by Gaussian white 

noise. The mass, stiffness, and damping 

variables of structures are assumed to be 

random Gaussian variables. The dispersion 

coefficient of random parameters is assumed 

to be 10%. To verify the efficiency of the 

proposed control approach, active tendon 

control is applied to two different structural 

models. One of these models has a single 

degree of freedom (SDOF), and has been 

empirically investigated by Chung et al. [36]. 

The other one has a three-story multiple 

degree of freedom (MDOF) system, which 

has also been investigated by Chung et al. 

[37]. The results of the proposed PFLC 

technique are compared with those of an 

uncontrolled structural model and the LQR 

controller. It is observed that the proposed 

PFLC has better efficiency for minimizing 

the structural covariance responses. The 

advantages of the intelligent controller over a 

classic controller are highlighted in the 

present study. 

2. Research significance 

In the last decades, the fuzzy logic control 

method has been considered as an intelligent 

controller in engineering systems. Despite 

the significant efficiency of FLS to overcome 

linguistic uncertainties, it must be noted that 

FLS is not effective in situations where the 

controlled systems are subjected to stochastic 

uncertainties. It is more beneficial when the 

probability theory can be combined with the 

fuzzy theory. Several uncertainties result 

from structural characteristics, mathematical 

model insufficiency, dynamic characteristic 

of earthquake excitation, and lack of 

information in civil engineering structures. 

These uncertainties reduce the efficiency of 

the control systems. Thus, it is essential to 

apply PFLS in controlled structures. This 

research utilizes a probabilistic fuzzy logic 

system to reduce the covariance responses of 

controlled structures. The findings of this 

study show that PFLS is more beneficial in 

reducing structural covariance responses. The 

probabilistic fuzzy logic controller can 

reduce the structural covariance responses by 

applying linguistic and stochastic 

uncertainties which resulted in increasing of 

system reliability. 

3. Problem formulation 

The uncertainty in the movement equation of 

a building can be considered as a random 

variable Δ. This variable is a q-dimensional 

vector with the mean µΔ, covariance σΔ, and a 

joint likelihood distribution. Movement 

equations for an n-degree of freedom 

building can be represented by the 

framework of state-space as [38]: 

wEuBzAz )()()(                       (1) 

and the measurement equation is [38]: 

vFuDzCy )()()(                        (2) 

where z is the 2n-dimensionalvector of 

velocity and displacement, A denotes the 

2n×2nsystem plant matrix, u is the r-

dimension input vector, B is a 2n ×2n  matrix 

describing the position of the applied control 

forces, w denotes the l-dimensional vector of 

excitation, E denotes a 2n ×l matrix defining 

the excitation effects on the building, y is an 

m-dimension measuring vector, C is them×2n  

output matrix of the combination of 

measured states, D is the m ×r feed-through 

matrix, F is an m×m  matrix that affects the 

measurement noise, and v is them-

dimensional vector of noise measuring. 

[w′v′]′ is the white noise vector of zero 

mean and autocorrelation function as [38]: 
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where E[·]denotes the mathematical 

expectation, S is the matrix of uniform 

spectral density, and δ is the Dirac function. 

Non-white noise is integrated into the 

equation by reinforcing the movement 

formulation with an effective perturbation 

filter [39]. 

4. Covariance control fundamentals 

Studying the improvement of the covariance 
control theory emerged in the 1980s [40]. 
The main concept of covariance control is to 
obtain a state covariance by solving the 
closed-loop feedback methodology. Thus, it 
is needed to describe the system 
specifications in the form of covariance, 
variance, or root mean square (RMS).The 
essential reason for improving the theory of 
covariance control is the expression of 
engineering systems in terms of variance 
[41]. The basic quantities that are the product 
of unpredictable inputs and the primary 
conditions exerted one at a time to the 
mechanism are presented in Eqs. (1) and (2) 
[41]. Let the system be driven only by u, so 
an impulsive input is inserted into the i

th
 

input source, and other data are assumed to 
be zero, and the results are added as shown in 
Eq. (5): 

)(tu ii                                                   (5) 

where µi is the intensity of the strike and δ(t) 
denotes the Dirac function. The linear matrix 
in Eq. (6) describes the state covariance 
matrix X [41]. 

TT BUBAXXA 0                               (6)  

where 
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 is the square of 

the matrix of input impulsive disturbance 
magnitudes (intensity). The state covariance 

matrix Xwis produced due to exerting 
impulses one at a time to each of the 
disturbance sources. Moreover, (wi= ωiδ(t)) 
[41] satisfies Eq. (7) as:  
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  is the square of 

the matrix of disturbance magnitudes 
(intensity). To complete the possibilities, if 
the preliminary conditions are exerted one by 
one, state covariance matrix Xx satisfies Eq. 
(8) as [41]: 
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X  is the square of 

the matrix of the initial condition intensities. 
Eventually, Eq. (9) represents the full results 
of all excitations exerted one at a time [41].  

00 XDWDBUBAXAX TT

uwx

T

uwx 
     

(9)  

where 𝑋𝑢𝑤𝑥 = 𝑋 + 𝑋𝑤 + 𝑋𝑥. This describes 
the sum effect of excitation from initial 
conditions and impulsive inputs in u(t) and 
w(t) that have been applied one at a time. 
Matrix Xw includes data about the excitation 
of the system due to impulsive disturbance 
and X includes data about the excitation of 
the system due to impulsive inputs in u(t). 
These basic concepts are the foundation for 
the improvement in the theory of covariance 
control [42]. For a wide class of control 
techniques, as in Eq. (1), the closed-loop 
state is shown as follows [38]: 
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(10)  

where z~ denotes the state vector, )(clA is 

the plant matrix of the closed-loop state, and 

matrix clE denotes the effect of estimated 

noise on the closed-loop technique. By 
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assuming that the structural state parameters 
are completely assessable, the state-space 
matrix of the closed-loop feedback controller 
is given as follows [38]:  

KBAAcl )()()(                     (11) 

where K denotes the feedback gain matrix. 
The Lyapunov mathematical problem is 
showed in Eq. (12). For the linear dynamic 
mechanism in Eq. (10), the covariance matrix 
of the response can be written as the outcome 
of the Lyapunov mathematical problem [38]. 

clclclzzclz ESEAA  2~~~
        (12) 

With the initial conditions 0~ )0( z . The 

stationary covariance matrix can be obtained 

by solving Eq. (12) using 0~  z
  [38]. 

5. Structural model 

5.1. Structural model of single degree of 

freedom 

An SDOF structural model with active 

tendons is depicted in Fig. 1. The prestress 

force of each tendon during a static state is 

denoted by R.  

 
Fig. 1. SDOF model with active tendons [36]. 

The movement equation for uncontrolled and 

controlled SDOF buildings with active 

tendons is presented in Eqs. (13) and (14), 

respectively, as: 

gxmkxxcxm                                  (13) 

cos4 ukxmkxxcxm cg                (14) 

where x denotes the horizontal relative 

displacement, and u denotes the activator 

situation; c, k, and m denote, respectively, the 

damping, stiffness, and mass of the building 

and ẍg is the ground acceleration.  

Control force is generated by pulling a 

collection of active tendons and liberating the 

others [38].Then, the state-space description 

of the movement equations is:  

gc xu
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010
 (15)  

where   xxz  . In this study, the ground 

acceleration is considered as Gaussian white 

noise. Table 1 lists the SDOF model 

parameters [38]. 

Table 1. Model parameters of SDOF structure 

[38]. 

 Mean (µ) Standard deviation (σ) 

c (lb-s/in) 9.02 0.902 

k (lb/in) 7934 793.4 

m (lb-s
2
/in) 16.69 1.669 

kc(lb/in) 2124 0 

α (degrees) 36 0 

5.2. Multiple degrees of freedom  

The MDOF systems with various tendon 

controller placements are used in more 

complex structures. Each system is a three-

story structure with a single-bay exposed to 

one-dimensional earthquake excitation. 

Figure 2 shows the placement of three 

tendons. Case A features tendons only on the 

first floor. Cases B and C have tendons on all 

floors. In case C, activator devices are 

situated on the bottom floor [43]. Figure 3 

shows the dynamic tendon forces for 
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prestress forces (denoted by R). Equation 

(16) presents the mass, stiffness, and 

damping matrices for a simple shear frame 

model. Dynamic equations of the movement 

are written in a state-space form as Eqs. (17), 

(18), and (19) for cases A, B, and C, 

respectively. 

Fig. 2. Three MDOF systems with active tendons [37].

 
Fig. 3. Tendon forces in dynamic state for all cases [43].
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In the above equations ci, ki, and mi are 

damping, stiffness, and mass, respectively, 

related to the ith floor of the structure. The 

situation of the activator is denoted by u. 

Equations (17)- (19) can be formulated in a 

matrix framework as:  

gssssss xMuBxKxCxM  
         

(20) 

If the state vector is defined as   xxz  , 

Eq. (1) can be expressed in the framework of 

the state-space matrices:  
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(21) 

In this study, the simulation parameters, i.e., 

damping, stiffness, and mass, are Gaussian 

random variables. A dispersion coefficient of 

10% is considered for the random variables, 

and the controller is assumed to be definite. 

Table 2 lists the model parameters as 

reported by Chung et al. [37]. 

 

Table 2. Three-story structure model parameters 

[37] 

 
Mean 

(µ) 

Standard deviation 

(σ) 

c1 (lb-s/in) 2.6 0.26 

c2 (lb-s/in) 6.3 0.63 

c3 (lb-s/in) 0.35 0.035 

k1 (lb/in) 5034 503.4 

k2 (lb/in) 10965 1096.5 

k3 (lb/in) 6135 613.5 

m1 (lb-s
2
/in) 5.6 0.56 

m2 (lb-s
2
/in) 5.6 0.56 

m3 (lb-s
2
/in) 5.6 0.56 

kc (lb/in) 2124 0 

θ (degrees) 65 0 

β (degrees) 55 0 

α (degrees) 36 0 

6. Controller method 

6.1. LQR controller 

A state feedback LQR controller is 

introduced by modeling the ground 

acceleration as Gaussian white noise and 

reducing the efficiency index in both the 

SDOF and MDOF systems. The quadratic 

performance indices for the SDOF and 

MDOF systems are shown in Eqs. (22) and 

(23), respectively. 
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where γ denotes the control scheme factor. 

With increasing γ, more weight is given to 

incoming energy, while as γ decreases, more 

weight is imposed on the strain energy. An 

infinite value for γ denotes the uncontrolled 

case [37].  

6.2. Probabilistic fuzzy logic controller 

As described for an ordinary FLS, a PFLS 

contains four significant segments: 

probabilistic fuzzification, fuzzy rules, 

probabilistic fuzzy inference engine, and 

probabilistic defuzzification (Fig. 4). 

The rule base develops from the expert 

knowledge to specify a relationship between 

input domain𝑋1 × 𝑋2 × ⋯ × 𝑋𝑛 ∈ 𝑅𝑛 and 

output domain𝑌 ∈ 𝑅. These rules are in the 

form of an IF-THEN expression as 

follows[3]: 

Rule i: If 1x  is iA ,1

~
 and 2x  is iA ,2

~
and nx  

is inA ,

~
, then y is iB

~
                                  (24)                     

where ijA ,

~
(j = 1, 2,… ,n) (i= 1, 2,…, J) is a 

priori in the view of the j
th

 input variable xj, 
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in the i
th

 rule, and iB
~

is a subsequent section  

associated with the output parameter y [3]. In 

contrast to traditional fuzzy sets, antecedent 

parts ijA ,

~
 and consequent parts iB

~
 are 

probabilistic fuzzy sets (PFSs) in PFLS. 

6.2.1. Probabilistic fuzzification 

One of the major differences between usual 

fuzzy logic and probabilistic fuzzy logic is 

that the fuzzification and defuzzification 

methods in a probabilistic fuzzy logic system 

focus on PFS. Thus, the significance of a 

PFS is introduced as follows: 

 Description 1(PFS): The probabilistic 

fuzzy set A
~

 can be presented by a 

likelihood space ),,( pU x  , where xU  

is the collection of all probable 

occurrences,  1,0xU , and is a σ-

field. The input parameter is Xx  

and the fuzzy degree is  1,0 . 

 
Fig. 4.Structure of PFLS [3]. 

),,(
~

pUA x
Xx





                                

(26) 

An important idea in the probabilistic fuzzy 

approach is that a PFS is a combination of 

primary MF and secondary PDF [31]. For an 

input x, its fuzzy membership degreeµ(x) is a 

statistical parameter with the secondary PDF.  

The primary MF of PFSs ijA ,

~
and iB

~
can be 

employed as [32]: 
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where µ(xj,i) represents the primary fuzzy 

membership degree, and ξj,i, and cj,i are, 

respectively, the width and center of PFS. To 

consider the ability to handle stochastic 

uncertainty, the secondary PDF is presented 

by the randomization of the variables in the 

primary membership function (Fig. 5).In this 

paper, the center cj,i has been randomized to 

follow a Gaussian distribution. The 

secondary PDF can be written as [32]: 
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For any µ in Ux, the PDF can be defined by

 as [3]: 

 

1

0

1)(,0)(  dpp               (25) 

PFS can be demonstrated as Eq.   (26) as 

shown in Fig. 5. 

where ]1,0[, ij  is the primary fuzzy degree 

parameter, ),( ,~
,

jijA
xp

ij

 denotes the PDF, and 

σj,i and uj,i are, respectively,  the standard 

deviation and mean of the Gaussian 

distribution in the view of cj,i. The full details 

of Eq. (28) are presented in Appendix A [32].
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6.2.2. Operation techniques of PFS  

 Description 2 (union operation of 

PFS): probabilistic fuzzy sets A
~

and 

B
~

 can be written as [3]: 

),,(
~

),,,(
~
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pUB
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The union operation of A
~

and B
~

can be 

expressed as: 
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Fig. 5.Probabilistic fuzzy set. 

The cumulative distribution functions of 

fuzzy degrees 𝜇�̃�and 𝜇�̃� are )( ~
A

P  and

)( ~
B

P  , respectively. 

 Description 3 (intersection of PFS): 

The intersection ofprobabilistic fuzzy 

sets A
~

and B
~

can be written as [3]: 
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6.3. Probabilistic fuzzy inference engine 

As previously described, the PFS consists of 
continuous PDF, which is identified as Eq. 
(28). Therefore, the inference engine of PFLS 
can be obtained under a probabilistic 
framework. The probabilistic fuzzy inference 
engine is a nonlinear representation in the 
input domainX1×X2×···×Xn and output 
domain Y as follows [3, 32]: 

),(~~~
,,1

yxR
iini BAA   (36) 

where ini AA ,,1

~~
 represent the Cartesian 

product of ini AA ,,1

~
,,

~
 . For an input x = 



 A. Jalali et al./Journal of Rehabilitation in Civil Engineering 10-1 (2022) 49-68 59 

(x1,…,xn) and associated membership 
function µX(x), the fuzzy relation set Ri in Y 
can be computed as [32]: 

iiMiii BAAAR y  
,,2,1

)(    

(37)  

where 
ijA ,

 and 
iB  define the fuzzy 

membership. The symbol “  ” indicates a t-
norm functioning [32]. The minimum 
functioning has been exerted in this paper. 
Equation (38) denotes the probabilistic fuzzy 
inference in the i

th
 rule[32]. 
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where 
iRp denotes the PDF of )( y

iR , and T 

and * indicate the minimum functioning [32]. 
In Description 3, the PDF of the input firing 
level can be presented as [3, 32]: 
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The firing level of the input variable in the i
th

 

rule is )(xiA
 . ))((

,

~ jA
xP

ij

  is the cumulative 

distribution function (CDF) of 
ijA ,

~ . The 

PDF of inference PFS ))(( yp
iR  can be 

written as [3, 32]: 
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where ))(( ~ yP
iB

  and ))(( xP iA
  are the 

CDF of )(~ y
iB

  and )(xiA
 , respectively.  

6.4. Probabilistic defuzzification 

The defuzzification process is associated 
with fuzzy sets. Since the inference engine is 
based on the probabilistic fuzzy set, a 
probabilistic defuzzification is proposed in 
this paper. The mathematical expectation of a 
stochastic output produces the ultimate 
output by the concept of stochastic 
defuzzification. In this case, the center-of-set 
probabilistic defuzzification method is 
proposed. The probabilistic output of the 
probabilistic fuzzy logic system can be 
determined as [3]: 
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where iy  is the center of probabilistic fuzzy 

set iB
~

 in rule i, J is the number of rules, and 

iA
  is the firing level in rule i; yi and iA

 are 

stochastic variables. One of the limitations of 
the probabilistic theory is that it is 
challenging to obtain the likelihood 
distribution of the product of two parameters 
[32]. To overcome this drawback, Zhang et 
al. [32] suggested replacing yi by the 
mathematical expectation of yi as follows: 








J

i
A

J

i
Ai

PFLS

i

iyE

y

1

1

)(





                                (42) 

Then, a discretization method is needed to 
obtain yPFLS as Eq. (43) [32]. In this process, 
firing level µA

i
 (p(µA

i
) > 0) should be 
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discretized into Q regions [
itiiti

AA
,, , ], 

which are centered at Qiii AAA ,2,1, ,...,,  and 

the associated probability

)(),...,(),( ,2,1, Qiii AAA
PPP  can be estimated 

as Eq. (44) [32]. 
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Finally, every possible combination of 

{
JtJtt

AAA
,2,21,1 ,...,,  } 

( JiQti ,,1,,,1   ) and the concerned 

probabilities are investigated to find all yPFLS 
and their associated P(yPFLS) as follows [32]: 
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As mentioned, the crisp output y can be 
determined using the expected value of yPFLS 
as [32]: 

)()( PFLSPFLSPFLS yPyyEy         (46) 

The probabilistic fuzzy logic controller 
scheme is shown in Fig. 6. 

 
Fig. 6. Flowchart of the utilized PFLC. 

7. Probabilistic fuzzy logic design 

A probabilistic fuzzy logic controller uses 
uncertain information directly obtained from 
the building model. This information is 
defined as PFS.  In this research, PFLC uses 
two input variables, each with three primary 
membership functions, and one output 
variable with seven primary membership 
functions. The velocity and displacement of 
the structures are the inputs of PFLC and the 
output parameter is the active control force. 
The reason for using two input variables is to 
illustrate the efficiency of the PFLS strategy 
in the control problem. The primary 
membership functions for the input and 
output parameters are Gaussian, as denoted 
in Eq. (27), and are introduced for the 
common interval [-1,1]. Previous studies 
have used triangular linear membership 
functions. However, Gaussian functions are 
more capable of estimating and improving 
the results. In this paper, PFLC is used as a 
probabilistic active controller. Thus, the 
membership functions are transformed from 
a simple mathematical model into 
probabilistic parameters. It is assumed that 
the integration of Gaussian and probability 
within membership functions can produce 
better responses. Gaussian functions 
determine uncertainties more effectively than 
other functions. In this study, PFS has been 
constructed by randomly selecting the center 
of the Gaussian fuzzy set; thus, the 
membership function becomes a random 
parameter that can be introduced by the 
secondary PDF function. As presented in Eq. 
(28), the standard deviation and mean of the 
fuzzy sets are two secondary PDF features of 
each primary membership function. The 
proposed primary membership functions for 
input and output parameters are presented in 
Figs. 7 and 8, respectively. The same 
standard deviation for the center of the fuzzy 
sets is considered for both the inputs and 
output. The mean centers of the primary 
membership functions for the input variables 
are -1, 0, 1 and for the output variable are -
0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75.Table 3 
shows the fuzzy parameters to define the 
fuzzy domain [21]. Table 4 presents the 
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inference rules, which have been generated 
from expert's experiences. 

Table 3. Fuzzy variables. 
Membership 

function 
Variable Definition 

Input 

P positive 

Z zero 

N negative 

Output  

PB positive big 

PM positive medium 

PS positive small 

Z zero  

NS negative small  

NM negative medium  

NB negative big 

 
Fig. 7. Primary membership functions of input parameters. 

 
Fig. 8. Primary membership functions of output parameters. 

Table 4. Inference rules for PFLS 

Displacement 
Velocity 

N Z P 

N PB PM PS 

Z PS Z NS 

P NS NM NB 

8. Results and discussion 

To study the efficiency of the proposed 

probabilistic active control strategies for 

decreasing the building responses under 

Gaussian white noise excitation, an SDOF 

and three MDOF structural systems are 

chosen as sample problems. The results of 

these building responses, which are 

controlled by the PFLC method, are 

compared with those controlled by the active 

LQR control method. In the configuration of 

the LQR controller, a full state feedback 

closed-loop mechanism is utilized. For the 

LQR controller, the control design parameter 

γ = 1 is chosen for the performance index in 

Eqs. (22) and (23). Spencer et al. [38] 

showed that, with the use of a smaller value 

of γ, more weight can be imposed on the 

strain energy, so smaller covariance matrix 
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(RMS) responses are obtained for 

displacement. In the optimal control theory, 

finding the control gain matrix is the main 

problem, which can be solved using the 

Riccati algorithm. The gain matrices are 

presented in Tables 5 and 6 for SDOF and 

MDOF systems, respectively. 

Table 5. Transfer function of the LQR controller 

for SDOF. 

 Control gain matrix (G) 

SDOF -1.0969 -0.0717 

 

Table 6. Transfer function of the LQR controller for MDOF. 

 Control gain matrix (G) 

Case A -2.6315 1.6872 -0.0281 -0.0646 -0.0273 -0.0099 

Case B 

-1.1264 0.1119 0.0453 -0.0365 -0.0158 -0.0132 

1.0777 -1.1220 -0.0533 0.0207 -0.0308 -0.0137 

-0.1181 1.1065 -1.-258 0.0026 0.0197 -0.0363 

Case C 

-1.3385 0.4691 0.1108 -0.0453 0.0021 0.0028 

-0.1124 -0.8408 0.3168 0.0015 -0.0425 0.0033 

0.0585 -0.0819 -0.5044 0.0015 0.0024 -0.0393 

The simulation analyses of the single and 
three-story benchmark models with tendon 
systems are conducted using unit intensity 
white noise. The covariance matrix responses 
are compared with the LQR controller and 
PFLC under the same simulation conditions. 
Tables 7, 8, 9, and 10 show the simulation 
results of the covariance matrix of 
displacement and velocity of the uncontrolled 
and controlled models for the top story of the 

SDOF structure, and for each story of cases 
A, B, and C. The calculation of the response 
reduction percentage is introduced as 
follows:  

Response reduction (%) = {(Uncontrolled 
covariance response-Controlled covariance 
response)/(Uncontrolled covariance response)} × 
100. (47) 

 

Table 7. RMS displacement and velocity responses of SDOF model with LQR controller and PFLC. 

Covariance response 

σx(in) σẋ(in/s) 

No control LQR PFLC No control LQR PFLC 

0.1688 0.0162 0.0099 3.6862 0.4940 0.2442 

Table 8. RMS displacement and velocity responses of case A using LQR controller and PFLC 

Floor 

number 

Covariance response (Case A) 

σx(in) σẋ(in/s) 

No control LQR PFLC No control LQR PFLC 

1 0.3986 0.0306 0.0254 6.0211 0.5409 0.4342 

2 0.5319 0.0445 0.0338 7.9492 0.8104 0.7379 

3 0.6648 0.0624 0.0546 9.9477 1.1646 0.9598 

Table 9. RMS displacement and velocity responses of case B using LQR controller and PFLC. 

Floor 

number 

Covariance response (Case B) 

σx(in) σẋ(in/s) 

No control LQR PFLC No control LQR PFLC 

1 0.3796 0.0183 0.0146 5.8932 0.4113 0.3760 

2 0.5320 0.0255 0.0175 8.1934 0.5703 0.4745 

3 0.6133 0.0310 0.0198 9.4697 0.6576 0.5929 
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Table 10. RMS displacement and velocity responses of case C using LQR controller and PFLC. 

Floor 

number 

Covariance response (Case C) 

σx(in) σẋ(in/s) 

No control LQR PFLC No control LQR PFLC 

1 0.3596 0.0133 0.0116 5.5017 0.3711 0.2591 

2 0.4863 0.0183 0.0149 7.3076 0.4690 0.3844 
3 0.6582 0.0236 0.0189 9.9450 0.5766 0.4887 

The results in Tables 7, 8, 9, and 10 reveal 
that the efficiency of the probabilistic fuzzy 
controller is higher than the case of the LQR 
controller. As shown in Table 7 for the SDOF 
model, the controlled covariance response 
decreases in both LQR controller and PFLC 

methods. Tables 8, 9, and 10 reveal that the 
proposed intelligent control system also 
reduces the controlled covariance responses 
of displacement and velocity for each floor of 
cases A, B, and C, respectively. 

Table 11. Displacement covariance response reduction using PFLC and LQR control systems. 

Floor 

number 

Covariance response reduction of displacement (%) 

SDOF Case A Case B Case C 

LQR PFLC LQR PFLC LQR PFLC LQR PFLC 

1 90.4 94.1 92.3 93.6 95.2 96.2 96.3 96.8 

2 - - 91.6 93.7 95.2 96.7 96.2 97.0 

3 - - 90.7 91.8 94.9 96.8 96.4 97.1 

Table 12. Velocity covariance response reduction using PFLC and LQR control systems. 

Floor 

number 

Covariance response reduction of velocity (%) 

SDOF Case A Case B Case C 

LQR PFLC LQR PFLC LQR PFLC LQR PFLC 

1 86.6 93.4 91.0 92.8 93.0 93.6 93.2 95.3 

2 - - 89.8 90.7 93.0 94.2 93.5 94.7 

3 - - 88.3 90.4 93.1 93.7 94.2 95.1 

Tables 11 and 12 show the covariance 
response reduction for displacement and 
velocity, respectively. The LQR controller 
reduces the covariance responses of 
displacement and velocity for the SDOF 
system by 90.4% and 86.6%, respectively. 
The corresponding reductions for PFLC are 
94.1% and 93.4%, respectively. As shown in 
Tables 11 and 12, simulation results for case 
A indicate that PFLC can decrease the 
covariance responses of displacement and 
velocity of the top floor by 91.8% and 
90.4%, respectively. However, the associated 
reductions are, respectively, 90.7% and 
88.3% for the LQR controller. In case B, in 
which there are tendons on all floors, PFLC 
reduces the covariance responses of velocity 
and displacement of the roof level by 93.7% 
and 96.8%, respectively. Further, the 
reductions corresponding to the LQR 
controller are93.1% and 94.9%, respectively 

(Tables 11 and 12). It is evident in Tables 11 
and 12 that, for case C, PFLC reduces the 
covariance responses of displacement and 
velocity, respectively, by about 97% and 95% 
compared to the uncontrolled responses for 
the top floor. Tables 11 and 12 demonstrate 
that the response reductions in displacement 
and velocity for the LQR controller are 
96.4% and 94.2%, respectively, for the top 
floor. Table 13 shows the reduction in 
covariance response of PFLCascompared to 
the LQR controller. The results indicate that 
PFLC reduces the displacement and velocity 
responses of the SDOF system by 38.6% and 
50.6%, respectively, compared to the LQR 
controller. As shown, the displacement 
covariance response reduction compared to 
the LQR controller for the top floor of cases 
A, B, and C are 12.5%, 36.1%, and 20%, 
respectively. Besides, these results for the 
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velocity covariance response are 17.6%, 9.83%, and 15.2%, respectively.  

Table 13. Reduction in covariance response in PFLC as compared to LQR controller. 

Floor 

number 

Covariance response reduction (%) 

SDOF Case A Case B Case C 

Displacement Velocity Displacement Velocity Displacement Velocity Displacement Velocity 

1 38.6 50.6 16.8 19.7 20.2 8.58 12.5 30.2 

2 - - 24.1 8.95 31.4 16.8 18.1 18.0 

3 - - 12.5 17.6 36.1 9.83 20.0 15.2 

The RMS control force (σu) for SDOF and 
MDOF are presented in Tables 14 and 15. 
The results show that the RMS for the 
control force in the SDOF structure in PFLC 
is about 130.70 lb, while that in LQR 
controller is about 91.27 lb. As can be 
observed from the results, the control force 
of PFLC for case A increases by about 30% 
compared to the LQR controller. In case B, 
the control force of PFLC for the first and 
second floors decreases by about 65% and 
16%, respectively, compared to the LQR 
controller. However, in the third floor, it 
increases by about 99%. The results of Table 
15 for case C indicate that the control force 
of PFLC increases in all floors. The 
maximum and minimum values of increase 
for the second and first floors are about 
176% and 47%, respectively. As a result, in 
PFLC, long tendons of structure in case C 
produce greater control forces compared to 
other cases. The active tendons on the top 
floor provide a side effect so that the tendons 
experience reaction forces in the opposite 
direction to the major control forces. One of 
the important reasons for the small top floor 
RMS displacement response in case C 
compared to case B is that the resistance 

control forces in case C are protected by the 
land surface. Because the tendons are very 
long in case C, the utilization of this structure 
is not reasonable, so case B is more 
preferable. As observed from the analytical 
results, the active control force that is needed 
to reduce the structural responses of 
displacement and velocity is greater in PFLC 
than in the LQR controller. Therefore, greater 
response reduction in PFLC compared to that 
in the LQR controller causes a significant 
reduction in the member size of structures.  

By studying and analyzing the results, it can 
be understood that the LQR controller is not 
efficient in considering the uncertainty in 
structural control. However, the ability of the 
PFLC approach to handle the stochastic 
uncertainties in fuzzy rules results in a 
reduction in the structural responses in all 
floors. These reductions are greater in PFLC 
than in the LQR approach. Therefore, the 
PFLC provides more reliable results than the 
classic LQR system.  

It is worth mentioning that the reported 
results correspond to the analysis of a 
specific case and a wider range of analyses 
seems necessary. 

Table 14. RMS horizontal control force of SDOF for LQR controller and PFLC. 

Floor 

number 

LQR  PFLC 

σu(lb) σu(lb) 

top floor 91.27 130.70 

Table 15. RMS horizontal control force of MDOF for LQR controller and PFLC. 

Floor 

number 

Case A Case B Case C 

LQR PFLC LQR PFLC LQR PFLC 

σu 

(lb) 

σu 

(lb) 

σu 

(lb) 

σu 

(lb) 

σu 

(lb) 

σu 

(lb) 
1 130.14 169.23 35.07 12.20 35.81 52.70 

2 - - 19.38 16.24 32.70 90.33 

3 (top) - - 29.87 59.60 30.20 60.80 
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9. Conclusion  

This study presented a probabilistic active 
control using a probabilistic fuzzy logic 
system for civil engineering structures with 
uncertain characteristics subject to dynamic 
random loads, which were modeled as 
Gaussian white noise. The mass, stiffness, 
and damping variables of structures were 
considered to be random Gaussian 
parameters. The dispersion coefficient of 
random parameters was assumed to be 10%.  
Fuzzy and stochastic theories were integrated 
using a PFLC for response control of 
structures. For numerical evaluation, the 
active tendon system was implemented in 
two types of the structural models, one using 
a SDOF system and the other one using a 
three-story MDOF system. The results of 
PFLC were compared with those of an 
uncontrolled structure and an LQR controller. 
The following conclusions can be drawn 
from this study: 

(1)The results of this study demonstrated that 
PFLC is quite efficient in decreasing the 
structural covariance responses compared to 
the LQR controller. The results of 
comparison of controlled covariance 
responses of building floors in cases A, B, 
and C showed that PFLC reduces the 
responses of the floor smore effectively than 
the LQR controller.  

(2) The SDOF system with PFLC produced 
better covariance response values than with 
the LQR controller. 

(3) Case C of the MDOF system with PFLC 
showed the greatest reduction in the 
covariance response.  

(4) Because the tendons are very long in case 
C, and there are six activators on the land 
surface, the use of case C is not feasible and 
case B is more feasible for application. 

(5) The results also showed that the control 
force required to reduce the covariance 
response in PFLC was greater than that in the 
LQR controller. 

It is worth noting that these results were 
obtained by an assumption that earthquake 
excitation is a Gaussian white noise. It is 
strongly recommended that this research be 

continued using far-field and near-field 
earthquakes. 
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Appendix A 

Derivation of probability 

distribution function (PDF) of fuzzy 

set 

Using central limit theory, the center cj,i in 
Eq. (27) is a normally distributed parameter 
as:  

 2

,,, , ijijij uNc                 (A.1) 

The probability distribution function is: 
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Because )1,0(, ij  increments in ),( jx

and reduces in ),( jx , its PDFis obtained 

when 𝜇𝑗,𝑖 ≤ 0,    𝐹𝜇(𝜇𝑗,𝑖) = 𝑃(𝜇 < 𝜇𝑗,𝑖) =
0and when 0 < 𝜇𝑗,𝑖 ≤ 1as described below.

𝐹𝜇(𝜇𝑗,𝑖) = 𝑃(𝜇 < 𝜇𝑗,𝑖) = 𝑃 (𝑒𝑥𝑝 (−
(𝑥𝑗−𝑐𝑗,𝑖)2

2𝜉𝑗,𝑖
2 ) < 𝜇𝑗,𝑖)  = 𝑃 (𝑐𝑗,𝑖 < 𝑥𝑗 − √−2𝜉𝑗,𝑖

2 𝑙𝑛 𝜇𝑗,𝑖 𝑜𝑟𝑐𝑗,𝑖 > 𝑥𝑗 +

√−2𝜉𝑗,𝑖
2 𝑙𝑛 𝜇𝑗,𝑖) = 1 − ∫ 𝑃(𝑐𝑗,𝑖)

𝑥𝑗+√−2𝜉𝑗,𝑖
2 𝑙𝑛 𝜇𝑗,𝑖

𝑥𝑗−√−2𝜉𝑗,𝑖
2 𝑙𝑛 𝜇𝑗,𝑖

𝑑𝑐𝑗,𝑖. (A.3)

Therefore,  

𝐹𝜇(𝜇𝑗,𝑖) = {
1 − ∫ 𝑃(𝑐𝑗,𝑖)

𝑥𝑗+√−2𝜉𝑗,𝑖
2 𝑙𝑛 𝜇𝑗,𝑖

𝑥𝑗−√−2𝜉𝑗,𝑖
2 𝑙𝑛 𝜇𝑗,𝑖

𝑑𝑐𝑗,𝑖, 0 < 𝜇𝑗,𝑖 < 1
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}(A.4)
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(𝜇𝑗,𝑖) = (𝐹𝜇(𝜇𝑗,𝑖))′ =

1
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Therefore, the PDF of the PFS can be summarized as [3]: 
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