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Abstract
The main objective of conducting numerical simulations of flows in rivers with vegeta-
tion is to investigate the complex flow dynamics involved in non-equilibrium conditions. In 
such cases, it is inappropriate to apply the drag coefficient CD, which is typically derived 
based on uniform flows involving groups of infinitely long cylinders. This paper presents a 
method for evaluating the drag forces acting on emergent obstacles for non-uniform open-
channel flows. This method is devised based on two sets of experiments: on flows with 
small-diameter cylinders, focusing on the water surface profiles through the group; and on 
flows with large-diameter cylinders, focusing on the local pressure distribution and local 
water surface profile around a target cylinder. In addition to the conventional drag force 
expression that includes CD, two new terms are proposed to account for the effects of water 
surface variation and pressure gradient in non-uniform open-channel flow on the drag. The 
first of these terms, which introduces the use of the Froude number to account for the effect 
of water surface variation, is derived theoretically and evaluated against past and present 
experimental results under uniform-flow conditions. On the other hand, the second of these 
terms, which includes the representative length of the separation zone to evaluate the effect 
of pressure gradient, is confirmed to be a necessity through numerical calculation of the 
longitudinal water surface profile in emergent cylinders. The incorporation of these two 
terms using a simple unified expression can help improve the accuracy of numerical simu-
lations for practical problems of flows with emergent obstacles.

Highlights

(1) Conventional drag-force terms are shown to be insufficient for calculations of water 
flows with emergent obstacles.

(2) The effect of water surface variation on the drag force is derived theoretically as a 
function of the Froude number.

(3) For accelerating flows, additional drag forces are revealed by local pressure distribution 
and water surface profiles.
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1 Introduction

The effects of vegetation on water flow, turbulence, and sediment transport have attracted 
considerable interest from researchers in a variety of fields [1–4]. For example, it has been 
demonstrated that the characteristics of canopy flows should be clearly determined to prop-
erly understand the behaviors of wind flows involving forest canopies [5, 6] and groups of 
buildings in urban areas [7], as well as the behaviors of water flows involving coral reefs 
[8] and in gravel-bed rivers with boulders [9–11]. It is also important to know the resist-
ance characteristics of a group of cylinders in fluid flow because of the occurrence of this 
structure in a number of applications of fluid dynamics, such as heat exchangers, where 
arrays of cylinders are a common configuration [12].

Generally, in flow calculations, multiscale obstacles are divided based on two charac-
teristic scales: large-scale topography, which can be resolved using a computational mesh 
explicitly as a boundary shape; and small-scale topography, which is evaluated using sub-
scale models [9, 11]. In a number of studies, numerical simulations of flows through veg-
etation have been conducted using fine meshes to resolve the effects of obstacles [7, 13]; 
in others, the effects of vegetation have been modeled using temporal-spatial averaging of 
the governing equations [3, 5, 6, 8, 14–18]. Based on the complexity of vegetation condi-
tions in rivers, the second aforementioned approach is considered to be suitable for practi-
cal applications [18–20]. When averaged over space in Reynolds-averaged Navier–Stokes 
equations for local flows, in addition to the dispersion term due to sub-average-scale flows, 
the fluid force terms appear in conjunction with Gauss’ divergence theorem in the momen-
tum equation integrating the local pressure distribution and shear stress acting on the 
objects [6, 15]. The problem, as with the closure problem for turbulence, is how to repre-
sent the hydrodynamic force terms induced by sub-average-scale flows around the bounda-
ries and distinguish them from the average-scale flow [21]. The drag-force terms in the 
momentum equations are evaluated using drag coefficients, which determine the accuracy 
of the models [22]. The drag coefficients also appear in equations for evaluating the turbu-
lence intensity and dispersion coefficients of passive particles in water flows [3, 14, 17, 23, 
24].

Meanwhile, several studies have contributed to determining the drag induced by vegeta-
tion [25–29]. However, although actual vegetation tends to be irregularly shaped and flex-
ible [18], circular cylinders have been employed to model rigid vegetation in calculations 
regarding the characteristics of canopy flow. The drag coefficient CD of a circular cylinder 
in a free-stream flow (defined as a uniform flow that lacks a free surface, and typically dis-
tinguished from a uniform open-channel flow) is known to be a function of the Reynolds 
number R = Vd/v (V, free-stream velocity; d, cylinder diameter; v, kinematic viscosity); 
the same is true for a sphere among several representative immersed bodies [30–32]. The 
variation in the drag coefficient of an array of cylinders depends on the space between 
the cylinders and the density of the array. Several researchers have contributed to corre-
lating drag coefficients of cylinder arrays with well-established relationships between the 
drag-force coefficient and Reynolds number for a single cylinder. For example, Koch and 
Ladd [25] and Tanino and Nepf [26] applied the equation proposed by Ergun [33], which 
was devised for pressure drops in packed columns, to the drag coefficient and Reynolds 
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number function. Kothyari et al. [34] proposed a relationship between the drag coefficient 
and Reynolds number for subcritical flows as a positive logarithmic function of the density, 
showing that the drag coefficient increases rapidly for low density values. Cheng [35] pro-
posed a formula for the drag coefficient of a cylinder array by expanding the relationship 
for an isolated cylinder based on the concept of a pseudo-fluid model [36] and validated the 
formula against several drag-force coefficient datasets.

On the other hand, in contrast to most canopy flows, open-channel flows, such as in 
rivers, involve the Froude number F  = V/(gh)0.5 (g, gravity; h, water depth), an important 
dimensionless parameter that influences the drag coefficient, especially for emergent obsta-
cles in shallow-water flows. In fact, the drag coefficients of hydraulic structures are related 
to the Froude number [31]. However, only a few studies have investigated the effect of 
the Froude number on the drag coefficients of emergent cylinders in open-channel flows. 
Furthermore, Kothyari et  al. [34] indicated that, whereas the drag coefficient is not sub-
stantially influenced by the Froude number in subcritical flows, the coefficient decreases 
with respect to the Froude number in supercritical flows. The results of a study by Huai 
et al. [37], in which a large-eddy numerical simulation model was used in conjunction with 
three identical-density conditions, showed that CD largely decreases as F  increases. It is 
significant that CD is smaller in supercritical flows than in subcritical flows; however, the 
underlying mechanism for this distinction has not yet been elucidated.

Most previous studies on the evaluation of drag forces and flow resistance were con-
ducted based on uniform open-channel flows. However, to fulfill the objective of apply-
ing drag-force coefficients to numerical simulations of flows in natural rivers [19, 20], a 
method for evaluating the effects of non-equilibrium flow in average scales on the resist-
ance must be developed. For example, Busari and Li [38] investigated the interference 
effects of finite-length vegetation in gradually varied flows, whereas Uchida et al. [11] pro-
posed a dynamic rough-wall law to account for the effect of non-equilibrium flow near a 
bed with submerged boulders on the flow resistance. However, despite these efforts, there 
has been insufficient research on methods for evaluating the direct effects of non-equilib-
rium open-channel flows on the drag force.

To take into account the resistance of vegetation in rivers, it is necessary to elucidate the 
effects of variations in the water surfaces around obstacles. For non-equilibrium flows with 
pressure gradients in an average scale, because the separation regions behind the obstacles 
exhibit low flow velocities [12, 39, 40], pressures acting on the backs of the obstacles are 
inferred to be affected by the pressure downstream in the scale of the separation length.

The objective of this study is to develop a method for evaluating the drag coefficient of 
emergent cylinders in an array in a non-uniform open-channel flow. The proposed method 
is to be designed for numerical simulations. In addition to the conventional drag-force 
expression, which includes the drag coefficient, this paper proposes two new terms for 
evaluating the effects of water surface variation in a local scale and pressure gradient in an 
average scale on the drag force for emergent cylinders. For the first term, a drag-coefficient 
equation is derived theoretically as a function of the Froude number. This equation is com-
pared with drag coefficients from previous experiments and our laboratory experiment on 
uniform flows without the introduction of any calibration parameters. For the second term, 
the representative length of the separation zone is introduced to evaluate the effect of the 
pressure gradient in the average scale on the drag force in non-uniform open channel flows. 
The calculation of gradually varied flows with emergent cylinders reveals the necessity of 
the term to account for the effect of the pressure gradient on the drag forces in accelerating 
flows. The validity of the term is supported by the results of supplementary experiments 
that focus on the distribution of pressure on a cylinder in a group. Based on this pressure 
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distribution, the negative pressure gradient for accelerating flow decreases the pressure in 
the separation zone behind the cylinder. It is then demonstrated that several non-uniform 
water-surface profiles, including accelerating and decelerating flows, can be reproduced 
well using a simple unified expression incorporating these two terms.

2  Experimental setup

Two sets of experiments were conducted in this study. The first set of experiments inves-
tigated longitudinal water surface profiles using an experimental channel, in which sev-
eral small-scale emergent cylinders were installed, and focused on developing a method 
for evaluating the resistance. To clarify the effects of water surface variation and pres-
sure gradients on drag force, three types of flow behavior, i.e., uniform, accelerating, and 
decelerating flows, were examined. The second set of experiments involved a supplemental 
study that elucidated the mechanism of the hydrodynamic force and pressure distribution 
on emergent cylinders. This experiment was conducted to measure the local water surface 
variations around large-scale emergent cylinders and the distribution of pressure acting on 
a cylinder in the group.

The first set of experiments was conducted in a water-recirculating flume (length, 
3.0 m; width B, 0.3 m) with varying channel slopes. The flows were adjusted to either 
uniform or non-uniform flow using a weir installed downstream. For this study, we 
regard uniform flow as that when the water surface gradients coincide with the chan-
nel gradient. The emergent cylinders were circular wooden dowels (diameter d, 10 mm; 
height, 20  cm). The Styrofoam floor of the flume was drilled, and the dowels were 
installed individually in longitudinal and lateral intervals Δx and Δy, respectively, 
of 0.0344 m in a staggered array from the downstream end of the channel (Fig. 1) to 
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Fig. 1  Experimental setup of flume and cylinders: a side view (cylinders omitted); b, c plan views; d mag-
nified plan view



Environmental Fluid Mechanics 

1 3

maximize the flow resistance. The density of cylinders per unit area, λ, is defined as 
λ = Nπd2/4, where N is the number of cylinders per unit area (present experimental 
conditions: N = 1/(ΔxΔy)), and d is the cylinder diameter. The density λ = 0.067 in this 
experiment is in the range of actual vegetation densities in the flood plains of Japan 
[41].

The experiments consisted of Case L and S series: In the Case L series (Fig. 1b), the 
cylinders cover the last 2.0  m of the flume, whereas in the Case S series (Fig.  1c), the 
cylinders cover only 1.0 m of the flume between the upstream and downstream ends. Flow 
depth was measured using a point gauge with a 0.1-mm vernier scale mounted on a car-
riage that could be moved along the flume rails. The water depth h was measured along the 
longitudinal axis on the centerline of the flume at intervals of 0.2 m. The resistance evalua-
tion in this study is based on the results of this water surface profile measurement, i.e., the 
focus of this study is the modeling of phenomena that can affect the larger-scale analyses 
of one-dimensional measurement approaches, such as water surface profiles. On the other 
hand, the effects of the upstream and downstream ends of a cylinder group on the internal 
structure, such as on the velocity distribution and turbulence in two- or three-dimensional 
flow structures, are not included in this study. Investigations regarding these aspects of flow 
behavior will require further advancement of the results of this research. The volumetric 
discharge was measured using a triangular weir with a tank 0.8 m in length, 0.4 m in width, 
and 0.4 m in height. The average cross-sectional velocity (bulk velocity) U was defined 
using the mean depth h as U = Q/(hB), where Q and B are the discharge and width of the 
flume, respectively.

There are several possible definitions of representative velocity for evaluating canopy 
drag, including bulk velocity U [16–18, 42, 43], pore velocity Up = U/(1 − λ) [18, 26, 34, 
41], and constructed velocity Uc = U/(1 − d/Δy) [44]. The undisturbed velocity, which is 
defined as a local velocity removing the target obstacle, is considered appropriate to eval-
uate a local pressure change by installing the target obstacle [45–47]. Because the local 
pressure change around the obstacle induces the hydrodynamic force, the representative 
velocities include the bulk, pore, and constructed velocities, which can be regarded as 
attempts to estimate the undisturbed velocity. However, the undisturbed velocity is affected 
by other cylinders and hydraulic conditions, and thus a proper method for the evaluation of 
the undisturbed velocity has not yet been established [47]. The definition of representative 
velocity is also relevant to discussions regarding the representative flow velocity for the 
Froude number, which is relevant to deriving the depth profile equation (see Eq. 8). In this 
study, the vegetation density was relatively low, and its effect was small [18]. Furthermore, 
as in many numerical calculations on flows involving vegetation [16, 17, 20], the bulk 
velocity was employed to focus on the effects of the water surface and pressure gradient 
on the drag coefficient. Nevertheless, there remain questions regarding the representative 
velocity for future studies to resolve.

Table  1 summarizes the bed slope and discharge conditions for the experiments on 
uniform, accelerating, and decelerating open-channel flows. For Cases L1–L6, the differ-
ences in the gradients between the water surface and bed, calculated using measurements 
obtained at 0.2-m intervals over 1.4 m, were less than 0.4 ×  10−4. Large values of R were 
used to decrease the dependence of the drag coefficient on the Reynolds number [26–29, 
34, 35, 48]. To distinguish the effects of the Froude number from those of the Reynolds 
number, a more detailed investigation will be necessary because the effect of the Reynolds 
number on the drag coefficient varies with cylinder conditions [25–29]. Thus, instead of 
analyzing a large amount of drag coefficient data, we examine the effects of the Froude 
number and water surface theoretically in the following section.
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The second set of experiments, a supplementary study using larger-scale cylinders 
(diameter 0.1 m), was conducted in a channel of width 0.8 m and length 24 m to meas-
ure the local water surface around an emergent cylinder and the distribution of pressures 
acting on it. The channel slope was 1/200. The cylinders, 3.3 m in length, were installed 
in a staggered array with Δx = 0.25 m and Δy = 0.225 m, as shown in Fig. 2. The experi-
ments included uniform-flow and acceleration conditions with a constant experimental 
discharge Q of 0.035  m3s−1. The experimental conditions are summarized in Table 2. 
In this set of experiments, the representative velocity for calculating the pressure coef-
ficient and drag coefficient was measured using a MicroADV (SonTek) probe based 
on an undisturbed flow, i.e., without the cylinder of interest, to eliminate the effect of 
high velocities along the sidewalls, which were due to the small number of cylinders in 
the transverse direction (each row comprised only two or three cylinders, as shown in 
Fig. 2). The vertical distribution of pressures acting on the center cylinder of the group 
was also obtained. Figure 3 shows the pressure-measurement cylinder installed in the 
center of the group (x = 0 in Fig.  2). This 10-cm-diameter cylinder, along the side of 
which six equidistant holes were drilled (3 cm apart), was used to measure the pressure 
at different water depths. The cylinder was equipped with 5-mm-diameter tubes, which 
were connected to manometer glass tubes with a diameter of 0.6 mm. The pressure p 
on the cylinder was measured at an arbitrary angle θ with respect to the flow using the 
manometers as the pressure-measurement cylinder was rotated. The measurements were 
performed at intervals of π/18. The accuracy of the pressure measurement using the 
manometers was estimated to be 0.2–0.3 mm based on averages over the vertical pres-
sure points for each angle.

-2 -1 0 1 2

Flow

(m)

Fig. 2  Experimental setup with large-cylinder array for measuring pressure distribution around cylinders 
and local water surface profiles

Table 2  Experimental conditions 
for pressure distribution on 
emergent cylinder

a Water depth on pressure-measurement cylinder

Coefficient or 
parameter

Free stream 
(Rouse [30])

Uniform flow Accelerating flow

hp (m)a – 0.18 0.13
R 1.86 ×  105 2.7 ×  104 3.6 ×  104–6.8 ×  104

F – 0.18 0.33–0.62
Cpmin  − 1.40  − 2.55  − 3.43
CD0 1.29 1.79 2.68
βCp  − 0.24  − 0.40  − 0.51
dh/dx – 0  − 0.02
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3  Equation of water surface profile for flow with cylinders

To determine the relationship between the water surface profiles and drag forces on the 
vegetation, we first consider the momentum equation in the streamwise direction for shal-
low-water flows (hydrostatic pressure and no vertical velocity distribution) in a wide rec-
tangular channel:

 where ft is the external force acting on the water column in a unit area, including the shear 
stress on the channel bed and drag forces on the vegetation. For a steady-flow condition, we 
have

where q is the unit flow discharge. By substituting Eq. (2) into Eq. (1), we obtain

where F 2 = q2/gh3. For the case involving no cylinders, ft = τ0 = ρgSf (τ0, bed shear stress; 
Sf, friction slope); therefore, the well-known governing equation for gradually varied flows 
[30, 49] can be obtained. For flows with emergent-cylinder vegetation models, the total 
force ft includes a term for the drag force acting on the vegetation:

where Nfd is the drag force acting on the cylindrical obstacles in a control volume with a 
unit area, and fd is the drag force on a cylindrical obstacle. Substituting the Manning rough-
ness coefficient n in SI units and the drag coefficient CD, we obtain

For evaluations involving bed shear stress, we did not consider deformations of the ver-
tical velocity profile, as in many two-dimensional analytical studies on rivers [16–20]. It is 
known that the vertical velocity profile varies between accelerating and decelerating flows 
[50] and with the resistance by the cylinder group [44]. In addition, because the presence of 
the cylinder group results in horseshoe vortices, a secondary resistance due to the cylinder 
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(
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�t
+ U

�U

�x

)

= �gS0 − �g
�h

�x
−
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h
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(3)
(

1 − F
2
)dh

dx
= S0 −

ft

�gh

(4)ft = �0 + Nfd

(5)ft =
�gn2U2

h1∕3
+ NCD

�U2

2
hd

Fig. 3  Pressure-measurement 
cylinder with manometers
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group, apart from the drag forces acting on them, is also generated [11]. To accurately 
evaluate the total resistance, an advanced model capable of calculating the non-equilibrium 
velocity profile [11] will be necessary. However, as indicated afterward, because the con-
tribution of bottom shear stress to the total resistance is assumed to be much smaller than 
the drag force on the cylinders, the first term of Eq. (5) was simplified based on an assump-
tion of a uniform velocity profile. When Eq. (5) is substituted into Eq. (3) for non-uniform 
flow, the water depth profile for a gradually varying flow with emergent vegetation can be 
obtained [38, 49]:

The results for uniform flow (dh/dx = 0) can then be deduced:

For a flow that involves dense emergent vegetation, the drag coefficient term is known 
to be dominant over the bed friction term [26]. The bed friction term with n = 0.010 esti-
mated for the channel bed material (Styrofoam) used in this study is much smaller than the 
drag force terms (< 1% for Cases L1–L6 outlined in Table 1). In this study, the drag force 
acting on the emergent cylinders in the uniform open-channel flows (Cases L1–L6) was 
evaluated using Eq. (7), using averaged gradients of the total head U2/2 g + h + z, instead of 
S0, to minimize the effects of non-equilibrium flow.

4  Drag in uniform open‑channel flows

In this study, the drag fd, defined in Eq. (4), on an emergent obstacle in open-channel flows 
comprises three components: the base component f0, which excludes the effects of water 
surface variation and pressure gradients or drag forces acting on an infinitely long cylin-
der for deep uniform open-channel flows ( F  = 0); and two additional components fs and fp, 
associated with variations in the water surface and the pressure gradient attributed to the 
drag force, respectively.

This section discusses fs; the other component fp is discussed further in the paper in the 
section on the calculation of the water surface profile.

The base component f0 has already been analyzed in several past studies. Typically, the 
drag force is composed of pressure and friction components, the former being dominant 
in flows with high Reynolds numbers [30, 32], in which the drag is attributed directly to 
the relative pressure Δp acting on an object in the flow. Herein, the relative pressure on a 
vertical cylinder is expressed as Δp = p − p0, where p is the actual pressure acting on the 
cylinder surface, and p0 is the pressure of the “free stream” or “undisturbed flow” [45–47] 
at that point without the objective cylinder. The pressure drag is often referred to as “form 
drag” because of its strong dependence on the shape or form of the object [30]. In general, 
pressure is described as a dimensionless pressure coefficient Cp based on the representative 
velocity U under free-stream or undisturbed-flow conditions as follows:

(6)dh

dx
=

S0 −
n2U2

h4∕3
−

CDNdU
2

2g

1 − F
2

(7)S0 −

(

2
n2

h1∕3
+ CDNdh

)

U2

2gh
= 0

(8)fd = f0 + fs + fp
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Figure 4 shows the differential force for the base component of the drag force. For 
the free-stream condition without a water surface, the drag is calculated as

where dA = h(d/2)dθ. By substituting Δp from Eq. (9) into Eq. (10), we obtain

To obtain the drag coefficient for the base component, CD0, we divide both sides of 
Eq. (11) by 0.5ρU2hd, yielding

It should be noted from the projected area hd that the drag coefficient CD0 does not 
account for the water surface variation effect (i.e., the drag coefficient for a very small 
Froude number F ).

As the flow in an open channel passes around a cylinder, local water surface varia-
tions occur. The water surface profile around the cylinder is assumed to be superposed 
on an undisturbed open-channel flow, i.e., without the objective cylinder, and its varia-
tion Δh, as illustrated in Fig. 5. In this figure, the water level of the undisturbed open-
channel flow for the objective cylinder is represented by a horizontal dashed line. Here, 
there is no pressure gradient in the streamwise direction of the undisturbed flow based 
on an assumption of a uniform flow. The additional term associated with the water sur-
face variation, fs in Eq. (8), is applied such that the other additional term is not consid-
ered (i.e., fp = 0). The water surface variations Δh are induced by the pressure variation 
Δp around the cylinder under the water surface. Given that negative gauge pressures are 
untenable, the water level is reduced to the height of the zero-gauge pressure.

(9)Cp =
Δp

�U2∕2

(10)f0 =

2�

∫
0

Δp cos �dA

(11)f0 =
hd

4
�U2

2�

∫
0

Cp cos �d�

(12)CD0 =
1

2

2�

∫
0

Cp cos �d�

Fig. 4  Differential force acting 
on cylinder in free-stream flow 
for base component of drag force
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To derive the effect of water surface variation around an emergent obstacle on the drag 
coefficient, we considered a typical pressure distribution around a cylindrical obstacle at an 
arbitrary water depth h (Fig. 6a). When the hydrostatic pressure in the undisturbed open-
channel flow ρg(h − z) (where z is the height of the section) is subtracted from the actual 
pressure p, the result is Δp, distributed as shown in Fig. 6b. Based on an assumption of a 
constant Δp in the vertical direction and in the hydrostatic pressure distribution, Δh(θ) is 
defined as

where Cp(θ) is the pressure coefficient.

(13)Δh(�) =
Δp(�)

�g
=

U2

2g
Cp(�)

Fig. 5  Schematic of water surface profile around objective circular cylinder and definition of water surface 
variation Δh 

Fig. 6  Schematic figures of pressure distribution on objective cylinder at several heights defined in Fig. 5: 
a variation in pressure distribution, p, at depth h − z below water surface at its normal level;b relative pres-
sure distribution Δp; c variation in pressure distribution at lowest water level of fluctuating part; d pressure 
distribution at a higher water level than in (c)
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However, because of the range of variation in the water surface (z >  Δpmin/ρg, Δpmin: 
minimum value of the relative pressure Δp), the effect of the water surface needs to be 
considered in the relative pressure distribution. Figure 6c shows the pressure variation 
at z =  0 where Δp = p, whereas Fig.  6d shows an example between the highest water 
level (in front) and lowest water level. In this range, a zero-pressure value occurs above 
the water surface, and the distribution of the actual Δp values is different from that 
shown in Fig. 6b. This induces an additional force as an effect of the water surface vari-
ation in open-channel flow.

To formulate the problem, we focused on the water surface variation component of 
the drag fs in Eq.  (8). Based on sections at heights below the undisturbed water depth 
h, an additional pressure force Δf is required to compensate for negative pressures at 
angles with negative Δh, at which ρg(h − z) + Δp is negative. The additional differential 
force due to the water surface variation component, dfs, is defined as

Conversely, based on sections above the undisturbed water depth h, the same addi-
tional pressure as that appearing in Eq.  (14) was applied under the assumption of a 
hydrostatic pressure distribution. Therefore, Eq. (14) is considered to be a definition of 
the infinitesimal force required to induce the water surface variation component of drag 
fs for both negative and positive Δh, and the drag component fs is given by

Substituting Δh from Eq.  (13) into Eq.  (15), we obtain the water surface variation 
component of the drag, fs:

Substituting Eqs. (11), (12), and (16) into Eq. (8) for uniform-flow conditions (fp = 0), 
we obtain the following, using the drag coefficients CD for fd:

Dividing both sides by ρU2CD0hd/2 and substituting Eq. (12) into Eq. (17) yields the 
drag coefficient for open-channel flows.

The relative drag coefficient CD/CD0 is proportional to the square of the Froude 
number, with the proportionality factor composed of CD0 and βCp. The coefficient βCp 
is defined as the second-order moment of the pressure coefficient around the cylinder, 
expressed as

(14)dfs =
(

d

2
d�

)�g

2
Δh2

(15)fs =

2�

∫
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�gd

4
Δh2 cos �d�
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16g
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5  Experimental results for uniform flows

The drag coefficient for base component of the drag force, CD0, and the coefficient βCp, 
calculated based on the distribution of the measured pressures on the cylinder, are listed 
in Table 2 and are compared with values calculated based on free stream-flow conditions 
[30]. Note that the coefficients βCp for accelerating flow that are outlined in Table 2 include 
the incremental drag due to the pressure gradient, which is described further in the paper, 
and are defined differently from the CD0 based on Eq. (8). Figure 7 shows the variations in 
CD0 and βCp with respect to vegetation density. Whereas the drag coefficient CD0 increases 
as the vegetation density increases, the coefficient βCp tends to decrease. This is because 
the pressure coefficient Cp used to determine βCp using Eq. (19) depends on the Reynolds 
number and the conditions of the cylinder array. Moreover, the symmetry between the vari-
ations in the drag coefficient CD0 and the variations in the coefficient βCp reveals a high 
correlation relationship between them. However, the available data are limited, and further 
study will be necessary to accurately predict the effect of water surface changes on the drag 
coefficient. Nonetheless, because all values of βCp calculated herein, as shown in Fig. 7, are 
negative, it can be inferred that the drag coefficient in an open-channel flow decreases as 
the Froude number increases, which is consistent with the findings of previous studies [34, 
37].

Figure  8a shows the drag coefficient CD as a function of the Froude number F  for 
the uniform-flow conditions listed in Table  1. Figure  8a enables comparisons between 
the experimental values in different hydraulic conditions and theoretical values based 
on Eq.  (18). The drag-force coefficient based on the absence of water surface effects, or 
F → 0 , i.e., CD0, is necessary for Fig.  8. The value CD0 = 1.22 is obtained to minimize 
the root-mean-square error (RMSE) between the measured drag coefficient and the drag 

(19)�Cp =

2�∫
0

C2
p
cos �d�

(

2�∫
0

Cp cos �d�

)2

Fig. 7  Variations in the drag coefficient for the base component of drag force, CD0, and coefficient βCp 
with respect to vegetation density λ for high Reynolds number, including data from Etmian et al. [44] for 
R = 1340. Data for λ = 0 are for single cylinder
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coefficient calculated using Eq. (18), with the data subject to F  < 0.5. The value CD0 = 1.79 
in Table 2 is a result of a three-cylinder row array with high velocity along the sidewall, 
whereas CD0 = 1.22 when a sufficient number of cylinders in a row are used in the experi-
ment. However, the differences in CD0 can be explained by the blockage effect, because 
the CD0 values 1.22 and 1.79 become 0.76 and 0.81, respectively, after correction for the 
blockage effect, i.e., C*

D/CD= (1 −D/Δy)1.35 (C*
D: corrected CD for blockage effect) [51]. 

For comparison, Fig.  8 also includes previous experimental results from Kothyari et  al. 
[34] and Ishikawa et al. [43] on emergent cylinders in uniform flows, in which the values 
of CD0 were obtained in the same manner as described previously, i.e., using Eq. (20). In 
line with the variations in CD0 and βCp shown in Fig. 7, the experimental data are com-
pared with calculation results based on possible ranges of values of CD0 and βCp. Most of 
the experimental data are explained well within the range of the calculation results, except 
for a number of scattered values with low R . This result demonstrated how the influence 
of the Froude number on the drag coefficient came to be overlooked. However, accord-
ing to the relationship between CD/CD0 and F  (Fig. 8a) for higher values of F  , the drag 
coefficient has an apparent tendency to decrease as the Froude number is increased, even 
in subcritical-flow conditions. This decrease in CD/CD0 with respect to increasing F  was 
also confirmed when we compared the drag coefficients for Cases L3–L7 (as outlined in 
Table 1), in which F  varied within a small range of R . The dependence of CD on R and F  
is discussed as follows.

In Eq. (18), the drag coefficient CD is used in conjunction with CD0, βCp, and F  . The 
values of CD0 and βCp are defined by the pressure coefficient Cp, as expressed in Eqs. (12) 
and (19), respectively. Based on an assumption of a hydrostatic pressure distribution, as 
described earlier, Cp is supposed to be independent of F  , whereas CD is a function of F  

Fig. 8  CD/CD0 as a function of Froude number: a effect of F  on experimental CD data; b comparison 
between experimental data and theoretical results
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and Cp. On the other hand, Cp around a cylinder can be expressed as a function of R based 
on the similarity principle with respect to the Reynolds number for the Navier–Stokes 
equations [32]. From this, CD can be considered a function of the two independent vari-
ables F  and R, as CD(F,R ). The empirical Ergun formula has been applied to the calcula-
tion of drag coefficient on aligned cylinders [25, 26], as follows:

Equation  (20) represents the relationship between the drag coefficient and Reynolds 
number of a single body immersed in a free-stream flow with a relatively high Reynolds 
number [26]. The coefficients α0 and α1 of the equation have been investigated using exper-
imental data and are known to be a function of the array characteristics.

If the CD0 in Eq.  (18) is obtained using Eq.  (20), and a constant βCp is assumed, the 
value of CD can be expressed as a function of R and F  as follows:

Calculating the total derivative of dCD of Eq. (22) produces Eq. (23):

Referring to Tanino and Nepf [26] for the order of α0, we investigated the dependence 
of CD on F and R for CD0 = 1 and α0 = 100 (Fig. 9). Even in subcritical-flow conditions 
 (log10(F ) < 0), the dependence of CD on F  in flows with large Reynolds numbers is not 
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negligible relative to that on R . For example, the effect of F  becomes apparent at approxi-
mately F  = 0.3  (log10(F ) = 0.5) for R =  103.

In Fig. 8b, the theoretical lines calculated using Eq. (18) for free-stream, uniform, and 
accelerating open-channel flow conditions with constant values of βCp (Table 2) explain the 
decreasing trends exhibited by the experimental results. On the other hand, the decreasing 
trends exhibited by the experimental values of CD/CD0 with respect to increasing CD0F

2 
became milder compared to the theoretical decreasing trend based on Eq. (18) with con-
stant values of βCp. Overall, the experimental results demonstrated a tendency to deviate 
from the theoretical lines at higher Froude numbers. In addition to the variation in βCp 
with hydraulic conditions, this result implies that, at high Froude numbers, Eq. (18) with 
constant βCp cannot be applied to very shallow-water-depth conditions behind the cylin-
der. The limitation of Eq. (18) is evident in the negative drag coefficients at high Froude 
numbers. Based on the uniform-flow condition βCp =  − 0.4,    Eq. (18) cannot be applied 
to flows with CD0F

2 >  5 because the calculation produces a negative value for CD. More 
specifically, for the constraint condition that satisfies the positive-water-depth condition 
h + Δh > 0, the limitation on Eq. (18) is derived from Eq. (13) using Cpmin, which takes the 
minimum water depth and value of Cp as  F2 <  − 2/Cpmin (Cpmin < 0), based on an assump-
tion of free-stream Cp(θ). For the condition  F2 >  − 2/Cpmin, the bed behind each cylinder 
was dried. Equation (13) for the Δh behind the cylinder must be modified to maintain the 
water depth at h + Δh > 0; thus, a penalty function is applied:

Equation (24) can be introduced to satisfy the constraint condition h + Δh > 0 for the cal-
culation of βcp using Eq. (19), in conjunction with the measurement of the pressure coeffi-
cient distribution based on a uniform open-channel flow (Table 2). At high Froude numbers 
 (F2 >  − 2/Cpmin), the coefficient βCp must increase when the Cp′ in Eq. (24) is used as the Cp 
in Eq. (19). For this uniform open-channel flow, the value of βCp increases from a constant 
value (βCp =  − 0.24, − 0.40, − 0.51) for the supercritical-flow condition, eventually becom-
ing positive at high Froude numbers (Fig. 10), indicating that the drag force on the emer-
gent object will increase at high Froude numbers. Based on the variation in the coefficient 
βCp, the theoretical values for the drag coefficients are modified, as indicated by the dashed 
lines in Fig. 8b. The relative drag coefficient CD/CD0 attains its minimum value and gradu-
ally increases as the Froude number is increased. However, the theoretical lines based on 
Eq. (24) (dashed lines in Fig. 8) still underestimate the measured drag forces, which devi-
ate from the solid theoretical lines over CD0F

2 = 1, where there is still little discrepancy 
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between the solid and dashed lines. This discrepancy between the experimental results and 
the modified theoretical values is attributed to the occurrence of a vertical distribution of 
pressure change Δp induced by the vertical velocity distribution. By contrast, a uniform 
velocity distribution and a hydrostatic pressure distribution were assumed in the derivation 
of Eqs. (18) and (24) even for high Froude numbers. Because the velocity near the water 
surface is higher than the depth-averaged velocity, the actual effect of the water surface on 
the drag force is considered to be greater than that assumed in the present theory. Thus, the 
assumption that Cp is independent of F  , which was used to introduce Eqs. (18) and (21), is 
no longer satisfied at high F  conditions. However, although detailed investigations will be 
necessary for more accurate estimations of the drag coefficient, particularly for flows with 
high Froude numbers, Eq. (18) can be adopted as a first approximation of the drag coef-
ficient in open-channel flows.

6  Calculation of water surface profile for flow with emergent cylinders

Before examining the validity of Eq. (18) for calculating water depth profiles in gradually 
varied flows in conjunction with Eq. (6), we examine the accuracy of the equations for the 
uniform subcritical flows (L1–L5), as visualized in Fig. 11.

Although the coefficient βCp varies with respect to the vegetation density, as indicated 
in Fig. 7, the coefficient is set to βCp =  −0.4 in the upcoming analysis because the variation 
with respect to the density does not appear to be significant when the vegetation density 
is greater than 0.04. Furthermore, we want to focus on the effects of the non-equilibrium 
open-channel flows at the constant-density condition λ = 0.067. The water surface profiles 
are calculated using Eq. (6) from the downstream end water depth at x =  − 0.1 m. The drag-
force coefficient CD is calculated with Eq. (18) for Run U1, whereas the constant CD = CD0 
is applied for Run U2. The RMSEs between the results of the calculation and experiment 
for L3–L5 are larger than those for L1–L2, indicating that the RMSEs depend on the 
velocity head. For the calculations, CD0 = 1.22 is adopted, which is obtained earlier in the 
study for Fig. 8. The RMSEs are affected by measurement errors and the uniform-velocity 
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Fig. 11  Calculation results based on Eq.  (6) and RMSEs of water depth for water surface profiles in uni-
form-flow conditions. Equation (18) with CD0 = 1.22 is applied to Run U1, whereas constant CD = 1.22 is 
applied to Run U2. Symbols are measurement results; solid and dashed lines are calculated for Run U1 and 
U2, respectively
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assumption introduced for Eq.  (6). The velocity head causes the local water level to rise 
and is considered to be the representative length of the water surface measurement error, 
measured manually using a point gauge. The RMSEs are also affected by errors in the cal-
culation model based on Eq. (6) from the momentum correlation coefficient in the advec-
tion term in Eq. (1) induced by the spatiotemporal variation in the velocity. The RMSEs 
of Run U1 are smaller than those of Run U2 except for Case L3, in which the effect of 
Eq. (18) for fs on CD is manifested in cases with relatively large F  . The experimental data 
and discussions in this paper regarding water depth are considered to include an order of 
error similar to the velocity head, i.e., a few millimeters at the maximum. The water sur-
face profiles for L1–L5 are well reproduced within this scale.

Subsequently, the same calculation method with the same coefficients as those in Run 
U1 and U2 were applied to gradually varied flows, including accelerating and deceler-
ating flows (Fig.  12). The calculation results from Eq.  (6), in conjunction with Eq.  (18) 
for CD and constant CD = CD0, are indicated by dashed lines and small square symbols, 
respectively. Whereas the water depth profiles for the decelerating flows (b) were properly 
reproduced by the calculation results, those for the accelerating flows (a) were underesti-
mated. Although the calculation method was designed to consider an error of a few millim-
eters even for uniform-flow conditions (Fig. 11), the underestimations by the calculations 
(Fig. 12a) were still significant relative to the error. On the other hand, compared to the 
differences between the measurement and calculation results of Eq. (6), the differences in 
the calculated results between Eq. (18) for CD and constant CD = CD0 were negligible com-
pared to the deference from the measured results because relatively high Froude number 
flow restricted to near the boundary. This indicates that accelerating flows involve a mecha-
nism that increases the drag coefficient or resistance of the obstacles.

(a) Accelerating flow (b) Decelerating flow
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(18) (f = f0 + fs); no-fill, small square symbols are calculated using Eq. (6) with constant CD (f = f0)
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As shown in Table 2, the pressure measurement around a cylinder also revealed that the 
base drag coefficient CD0 for the accelerating flow (CD0 = 2.68) was larger than that for the 
uniform flow (CD0 = 1.79). The base drag coefficients are calculated using the pressure coef-
ficient Cp, which excludes the effect of the water surface from the coefficient, even though the 
coefficients βCp for accelerating flow include the effect of the pressure gradient, as mentioned 
in a previous section. Figure 13 compares the distributions of the pressure coefficients for a 
solitary cylinder in a free stream [30], and for a single cylinder in a cylinder group in uniform 
and accelerating open-channel flows. The Cp values of these experiments were calculated 
based on an assumption of Cp = 1 at the stagnation point [44] to obtain an undisturbed water 
surface level, which is necessary for calculating the Δh distribution. Whereas the distributions 
of the positive pressure coefficients in front of the cylinder among the three cases are simi-
lar, the negative pressure coefficients in the separation zone differ. For the accelerating flow, 
the pressure in the separation zone decreases to values lower than those for the uniform flow, 
contributing to an increase in the drag coefficient for the accelerating flow. The mechanism 
whereby the pressure decreases in the separation zone is explained in Fig. 14, which compares 
the longitudinal water surface profiles for uniform and accelerating flows. It is assumed that, 
in the separation zone, the velocity is low [12, 39, 40], and the water depth is nearly constant; 
furthermore, there is exposure to the water depth just downstream from the separation zone. 
Therefore, the pressure in the separation zone is less for the accelerating flow than for the uni-
form flow because of the pressure gradient in the direction of flow.

The pressure reduction in the separation zone investigated in the experiment and visualized 
in Figs. 13 and 14 indicates that the additional drag force associated with the pressure gradi-
ent, fp, in the accelerating flow should be considered in evaluating the drag force fd of Eq. (8). 
The additional pressure due to the decrease in the separation area is expressed as

(25)fp = −�ghdL
dh

dx

Fig. 13  Distributions of pressure 
coefficients around a solitary cir-
cular cylinder in free-stream flow 
(circles), and around a single 
cylinder in a group in uniform 
flow (squares) and accelerating 
flow (triangles)

Rouse [30]

Uniform flow

Accelerating flow
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where L is the representative length of the separation zone. Equation  (25) is not attrib-
uted to the longitudinal buoyancy, which is calculated using dL = πd2/4, but indicates an 
increasing form drag associated with a decrease in pressure in the separation zone for 
the negative pressure gradient. Based on an assumption that the representative length is 
expressed by the cylinder dowel diameter d as L = kd (k, a coefficient), and a substitution of 
Eq. (25) into Eq. (8), the momentum equation for Eq. (1) can be re-written for steady flow 
conditions as follows:

Equation (26) with a constant unit-width discharge (Eq. 2) yields the following depth 
profile equation for a flow with emergent vegetation:

To calculate accelerating flows using Eq. (27), the coefficient k should be determined. In 
this study, the value k was obtained to minimize the discrepancies of water depth between 
the measurements and calculations based on Eq. (27).

Figure 15 shows the RMSEs of the calculation results at all measurement points against 
k for all accelerating and decelerating flows. For all cases, the RMSE decreases from k = 0 
and then increases after reaching a minimum, except for L10 in decelerating flow, which 
takes the minimum value at k = 0. The k value yielding the minimum RMSE varied by 
case, ranging from 0.0 to 2.1. Therefore, for each case, the k value that yielded the mini-
mum RMSE is applied to the calculation using Eq. (27). According to Fig. 15, the calcula-
tions based on Eq. (27) with appropriate values k yielded low RMSEs in all cases, and the 
minimized RMSEs, i.e., 0.29–1.23 mm, were not significant relative to those in uniform 
flows (Fig.  11). The water surface profiles calculated using Eq.  (27) with appropriate k 
values from Fig. 15 were then compared with those based on the measurement results, as 
shown in Fig. 12. The results obtained using this calculation method are in good agree-
ment with the measurement results. Although introducing Eq. (25), for the calculation of 
fp, to the examination of decelerating flows had little effect on the validity of the analy-
sis, the introduction of the additional drag force fp from Eq.  (8) into the examination of 
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accelerating flows was demonstrated to be a necessity. It must be recalled that the calcula-
tions with Eq.  (6), which adjusts the drag coefficient for the uniform flow and accounts 
for water surface effects with Eq.  (18), could not reproduce the water depth profiles for 
non-uniform flows. Because the practical use of the numerical calculation of flows with 
obstacles necessitates evaluation of the drag force for non-uniform flows, it is significant 
that several non-uniform flows can be reproduced using a unified calculation method. It 
is known that the relative separation length to cylinder diameter varies depending on the 
hydraulic conditions, including the Reynolds number and obstacle arrangement condi-
tion [12, 39, 40], whereas the representative length introduced to evaluate the additional 
drag force in Eq. (25) is indirectly related to the separation length. On the other hand, with 
regard to the proper evaluation of L with the appropriate value of k, that remains a question 
for future research efforts to resolve.

7  Conclusions

This study proposed additional terms for the drag-force expression with the drag coefficient 
to include the effects of the water surface and the pressure gradient in an average scale. 
The effects of adding these terms were investigated through two types of laboratory experi-
ments on uniform and non-uniform open-channel flows with emergent cylinders, focusing 
on the entire longitudinal water depth profile and the distribution of local pressure around 
the cylinder. The main results of the study are as follows:

(1) Based on the assumption of hydrostatic pressure distribution, it was determined analyti-
cally that the drag coefficient CD decreases in proportion to the square of the Froude 
number. The proportionality factor in the derived formula is composed of the drag 
coefficient of the base component of the drag force, CD0, and the second-order moment 
of the pressure coefficient, βCp. The derived formula can reproduce the characteristics 
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of the drag force on emergent cylinders in a uniform flow, as obtained from our experi-
ments and from others previously conducted.

(2) For low Froude number flow, the water surface effects on the drag force for the depth 
profile calculation were negligible in this study. Although the drag coefficient formula 
for uniform flows can be applied to the calculation of water depth profiles in decelerat-
ing flows with emergent cylinders, the same formula led to an underestimation of resist-
ance in accelerating flows, where the pressure in the separation zone decreased because 
of the negative gradient of the water depth in the longitudinal direction. Therefore, a 
modified method with additional drag-force terms accounting for the pressure drop in 
the separation zone was proposed. The accuracy of the acceleration flow reproduced 
therewith was improved considerably through the incorporation of this additional drag 
force into the calculation.

As reported in several past publications on the drag force in open-channel flows, the drag 
coefficient depends on hydraulic conditions and on several factors pertaining to the obsta-
cles, such as their arrangements and shapes. Thus, estimating an appropriate value for the 
drag coefficient of the base component of the drag force is challenging. In fact, parameteri-
zation of the channel resistance coefficients is inevitably necessary in practical applications 
such as flood flow simulations of rivers [19, 20]. The most practical use of numerical cal-
culations for flows with obstacles necessitates an evaluation of drag forces in non-uniform 
flows. The main contribution of this research is the development of an appropriate modifi-
cation of the drag force from the base component for several non-uniform-flow conditions 
using a simple unified expression, which accounts for the open-channel effects due to water 
surface variation and pressure gradients in accelerating flows on the drag-force coefficient. 
It is expected to be particularly useful for resistance evaluation of obstacles in high Froude 
number flows with strong non-equilibrium and unsteadiness, such as dam-break flows and 
tsunamis, where both effects of the water surface and pressure gradient on the drag force 
are considered to be significant. In order to improve the validity of the analysis of the non-
equilibrium flow field, it is necessary to clarify the effect of the pressure gradient on the 
drag force, i.e., the representative length L.
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