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The most important purpose of this article is to investigate perfect reconstruc-
tion underlying range space of operators in finite dimensional Hilbert spaces
by a new matrix method. To this end, first, we obtain more structures of the
canonical K-dual. Then, we survey the problem of recovering and robustness
of signals when the erasure set satisfies the minimal redundancy condition or
the K-frame is maximal robust. Furthermore, we show that the error rate is
reduced under erasures if the K-frame is of uniform excess. Toward the protec-
tion of encoding frame (K-dual) against erasures, we introduce a new concept
so called (r, k)-matrix to recover lost data and solve the perfect recovery problem
via matrix equations. Moreover, we discuss the existence of such matrices by
using minimal redundancy condition on decoding frames for operators. We
exhibit several examples that illustrate the advantage of using the new matrix
method with respect to the previous approaches in existence construction. And
finally, we provide the numerical results to confirm the main results in the case
noise-free and test sensitivity of the method with respect to noise.
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1 INTRODUCTION

The theory of frames has established efficient algorithms for a wide range of applications in the last 20 years.1–5 In most
of those applications, they deal with dual frames to reconstruct the modified data and compare it with the original data.
In frame theory setting, an original signal 𝑓 is encoded by the measurements 𝜃∗F𝑓 (encoded coefficients), where 𝜃∗F is the
analysis operator of a frame F. Then, from these measurements 𝑓 can be recovered applying a reconstruction formula
by a dual frame G (decoding frame) as 𝜃G𝜃

∗
F𝑓 . In real applications, in these transmissions, usually a part of the data

vectors are corrupted or lost, and we may have to perform the reconstruction by using the partial information at hand. So,
searching for the best dual frames that minimize the reconstruction errors when erasures occur, optimal dual problem is
one of the most important problems in frame theory that was introduced by Han et al. in previous works.6,7 To state the
optimal dual problem, we first recall some basic notations of finite classical frames. Let n be an n-dimensional Hilbert
space and Im = {1, 2, … ,m}. A sequence F ∶= {𝑓i}i∈Im ⊆ n is called a frame for n whenever span{𝑓i}i∈Im = n. The
synthesis operator 𝜃F ∶ l2(Im) → n is defined by 𝜃F{ci} =

∑
i∈Im

ci𝑓i. If {𝑓i}i∈Im is a frame, then SF = 𝜃F𝜃
∗
F is called frame
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operator where 𝜃∗F ∶ n → l2(Im), the adjoint of 𝜃F , is given by 𝜃∗F𝑓 = {⟨𝑓, 𝑓i⟩}i∈Im and is known as the analysis operator.
A sequence G ∶= {gi}i∈Im ⊆ n is called a dual for {𝑓i}i∈Im if 𝜃G𝜃

∗
F = In . A special dual frame as {S−1

F 𝑓i}i∈Im is called the
canonical dual of F. It is well-known that {gi}i∈Im is a dual frame of {𝑓i}i∈Im if and only if gi = S−1

F 𝑓i + ui, for all i ∈ Im
where U = {ui}i∈Im satisfies 𝜃F𝜃

∗
U = 0. We refer the reader to Christensen et al8 for more information on frame theory.

The optimal dual problem propounds the following problem: let F = {𝑓i}i∈Im be a frame for n (encoding frame), find
a dual frame of F that minimize the reconstruction errors when erasures occur. If G = {gi}i∈Im is a dual of F (decoding
frame) and Λ ⊂ Im, then the error operator EΛ is defined by

EΛ =
∑
i∈Λ

𝑓i ⊗ gi = 𝜃FD𝜃∗G,

where D is an m × m diagonal matrix with dii = 1 for i ∈ Λ and 0 otherwise. Let

dr(F,G) = max{||𝜃∗GD𝜃F|| ∶ D ∈ r} = max{||EΛ|| ∶ |Λ| = r}, (1)

in which |Λ| is the cardinality of Λ, the norm used in (1) is the operator norm, 1 ≤ r < m is a natural number, and r is
the set of all m×m diagonal matrices with r 1′s and m− r 0′s. Then, dr(F,G) is the largest possible error when r-erasures
fall out. Indeed, G is called an optimal dual frame of F for 1-erasure or 1-loss optimal dual if

d1(F,G) = min {d1(F,Y ) ∶ Y is a dual of F} . (2)

Inductively, for r > 1, a dual frame G is called an optimal dual of F for r-erasures (r-loss optimal dual) if it is optimal
for (r − 1)-erasures and

dr(F,G) = min {dr(F,Y ) ∶ Y is a dual of F} .

See previous works,6,7,9–14 and references therein, for more details and information on optimal reconstruction problem
and identification of optimal dual frames. Also, see previous works15,16 for some new perspectives in the field of optimal
recovery.

This work was motivated by some recent methods of perfect recovery of signals from erasures corrupted frame coeffi-
cients at known or unknown locations.17,18 In all previous approaches presented on classical frames, erasures considered
in frame coefficients (encoding frame coefficients). We are going to extend perfect recovery problem on K-frame theory;
however, we show that the methods previously used does not meet the requirements of reconstruction in K-frame set-
ting. Hence, we consider the erasure coefficients on K-dual coefficients (as encoding frame instead of K-frame). Then we
introduce a new concept, called (r, k)-matrix, to recover lost data and get perfect reconstruction. This also leads to some
new method for recovery problem in ordinary frames, that sometimes work for frames better than the previous methods.
Among other things, we demonstrate the advantages of using the new method in existence and construction with respect
to the previous approaches.

2 PRELIMINARIES

Atomic decomposition for a closed subspace0 of a Hilbert space, as a new approach for reconstruction, was introduced
by Feichtinger et al. with frame-like properties.19 The sequences in atomic decompositions do not necessarily belong to
0, and this striking property is valuable, especially in sampling theory.20,21 K-frames were introduced to study atomic
systems with respect to a bounded operator K ∈ B().22 In fact, K-frames are equivalent with atomic systems for the
operator K and help us to reconstruct elements from the range of a bounded linear operator K in a separable Hilbert
space. In the sequel, we recall some definitions and notations of finite K-frames. A sequence F ∶= {𝑓i}i∈Im ⊆ n is called
a K-frame for n, if R(K) ⊂ R(𝜃F) or equivalently there exist constants A,B > 0 such that

A||K∗𝑓 ||2 ≤
∑
i∈Im

|⟨𝑓, 𝑓i⟩|2 ≤ B||𝑓 ||2, (𝑓 ∈ n). (3)
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If K is an onto operator, then F is an ordinary frame and therefore K-frames arise as a generalization of ordinary frames.
The constants A and B in (3) are called the lower and the upper bounds of F, respectively. Similar to ordinary frames, the
synthesis operator can be defined by 𝜃F ∶ l2(Im) → ; 𝜃F({ci}i∈Im) =

∑
i∈Im

ci𝑓i. A matrix representation for this bounded
operator is the matrix Fn×m whose ith column is the ith K-frame vector, that is,

F = [𝑓1, … , 𝑓m].

Notice that we sometimes denote a K-frame F = {𝑓i}i∈Im by its synthesis matrix F. Also, the analysis operator is given by
𝜃∗F(𝑓 ) = {⟨𝑓, 𝑓i⟩}i∈Im and has the matrix representation as F∗. The frame operator is given by SF = 𝜃F𝜃

∗
F with the matrix

representation as FF∗ and F = F∗F denotes the Gramian matrix with respect to the K-frame F. Unlike ordinary frames,
the frame operator of a K-frame is not invertible in general. Although, in finite dimensional Hilbert spaces, K is a closed
range operator so SF from R(K) onto SF(R(K)) is an invertible operator.23 When we need this restriction of the K-frame
operator we use the notation SF|R(K). Suppose MK denotes matrix representation of the operator K ∈ B(n) with respect
to the standard orthonormal basis of n. Then, a K-frame is said to be 𝛼-tight whenever FF∗ = 𝛼MKM∗

K , Parseval if 𝛼 = 1
and equal norm (EN) if the columns of F have the equal norm.

The authors in Neyshaburi and Arefijamaal24 considered the notion of duality for K-frames and presented several meth-
ods for construction and characterization of K-frames and their duals. Indeed, a sequence {gi}i∈Im ⊆ n is called a K-dual
of {𝑓i}i∈Im if

K𝑓 =
∑
i∈Im

⟨𝑓, gi⟩𝑓i, ( 𝑓 ∈ n), (4)

or equivalently G is K-dual of F if FG∗ = MK . The following result is useful for the proof of our main results.

Theorem 1 (Douglas25). Let L1 ∈ B(1,) and L2 ∈ B(2,) be bounded linear mappings on given Hilbert spaces.
Then the following assertions are equivalent:

(i) R(L1) ⊆ R(L2);
(ii) L1L∗

1 ≤ 𝜆2L2L∗
2, for some 𝜆 > 0;

(iii) There exists a bounded linear mapping X ∈ L(1,2), such that L1 = L2X.

Moreover, if (i), (ii), or (iii) are valid, then there exists a unique operator X so that

(a) ||X||2 = inf{𝛼 > 0,L1L∗
1 ≤ 𝛼L2L∗

2};
(b) N(L1) = N(X);
(c) R(X) ⊂ R(L∗

2).

For every K-frame F = {𝑓i}i∈Im of n using the Douglas' theorem, there exists a unique operator XF ∈ B(n,C
m) so

that 𝜃FXF = K and ||XF||2 = inf{𝛼 > 0, ||K∗𝑓 ||2 ≤ 𝛼||𝜃∗F𝑓 ||2; 𝑓 ∈ n}. (5)
Moreover, {X∗

F𝛿i}i∈Im is a K-dual of F, which its analysis operator obtains the minimal norm and is called the canonical
K-dual. See Guo.26 For further information in K-frame theory, we refer the reader to previous works.19,22–24,27

Throughout this paper, we suppose that n is an n-dimensional Hilbert space, Im = {1, 2, … ,m} and {𝛿i}i∈Im is the
standard orthonormal basis of l2(Im). For two Hilbert spaces 1 and 2, we denote by B(1,2) the collection of all
bounded linear operators between 1 and 2, and we abbreviate B(,) by B(). Matrix representation associated with
an operator T is denoted by MT and the operator associated with a matrix M is denoted by TM . Also, we denote the range
of K ∈ B(n) by R(K) and pseudo inverse of K by K†. For a subspace V ⊆ n the identity operator on V and the orthogonal
projection of  onto V are denoted by IV and 𝜋V , respectively.

The present paper is organized as follows. In Section 2, we recall some definitions and notations of finite K-frames.
In Section 3, we provide more characterizations and structures of K-duals and particularly, the canonical K-duals. We
present some concepts such as minimal redundancy condition and maximal robustness for K-frames and provide some
necessary conditions for a finite set of indices, which satisfies minimal redundancy condition. Moreover, we discuss the
robustness of K-frame under operator perturbation, particularly when the erasure set satisfies the minimal redundancy
condition or the K-frame is maximal robust, in Section 4. Then in Section 5, we introduce a new matrix called (r, k)-matrix
and give the necessary condition for the existence of (r, k)-matrices. This notion leads to a new matrix equation, which
allows the signal vectors underlying the range space of a bounded operator to be exactly recovered. This approach not only
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assures that K-frames with uniform excess under some erasures of K-dual coefficients make complete reconstruction but
also provides a new method for erasure recovery by using ordinary frames, by changing encode and decode frames, which
sometimes work better than the previous methods. In Section 6, we exhibit several examples to illustrate our results and
the advantage of using (r, k)-matrices. Finally, in Section 7, we present the numerical results for the recovery of signals
from erased and noisy K-dual frame coefficients to survey sensitivity of the method with respect to noise.

3 IDENTIFICATION OF THE CANONICAL K-DUAL

In this section, we are going to obtain more structures of K-duals and particularly the canonical K-dual of K-frames. We
note that the definition used here as the canonical K-dual is completely different and more general than Neyshaburi and
Arefijamaal.24 For convenience, we denote the set of all K-dual frames of F = {𝑓i}i∈Im by KDF . Obviously, KDF is a closed
convex subset of m

n , the set of all m-tuples of vectors in n. In the following, we obtain the canonical K-dual in a new
form, which is more useful in the proof of our results.

Lemma 1. Let F = {𝑓i}i∈Im be a K-frame of n. With the above notations, there exists a unique bounded operator
ΓF ∈ B(n) so that {Γ∗

F𝑓i}i∈Im = {X∗
F𝛿i}i∈Im .

Proof. Using Douglas' theorem, there is a unique operator XF ∈ B(n, l2(Im)) so that 𝜃FXF = K and R(XF) ⊆ R(𝜃∗F) =
R(𝜃∗F). So by reusing Douglas' theorem there exists a unique bounded operator ΓF ∈ B(n) so that XF = 𝜃∗FΓF and

||ΓF||2 = inf{𝛼 > 0, || ∗X
F
𝑓 ||2 ≤ 𝛼||𝜃F𝑓 ||2; 𝑓 ∈ n}.

Moreover, we have

Γ∗
F𝑓i = Γ∗

F𝜃F𝛿i = X∗
F𝛿i,

for all i ∈ Im. Hence, {Γ∗
F𝑓i}i∈Im is exactly the canonical K-dual of F.

Easily, it can be checked that a sequence G = {gi}i∈Im is a K-dual of F if and only if gi = Γ∗
F𝑓i + ui, for all i ∈ Im where

U = {ui}i∈Im satisfies 𝜃F𝜃
∗
U = 0.

Lemma 2. Let F = {𝑓i}i∈Im be a K-frame of n and G = {gi}i∈Im be a K-dual of F. Then G is the canonical K-dual if
and only if SG = 𝜃G𝜃

∗
Z for every K-dual Z of F.

Proof. Suppose G is the canonical K-dual and Z is a K-dual of F, so by lemma 1 there exists a unique bounded operator
ΓF ∈ B(n), so that G = {Γ∗

F𝑓i}i∈Im so,

𝜃G(𝜃∗G − 𝜃∗Z) = Γ∗
F𝜃F(𝜃∗G − 𝜃∗Z) = 0.

Thus, SG = 𝜃G𝜃
∗
Z for every K-dual Z of F. Conversely, let for every K-dual Z of F we have SG = 𝜃G𝜃

∗
Z . Then

||𝜃∗G||2 = ||𝜃G𝜃
∗
G|| = ||𝜃G𝜃

∗
Z|| ≤ ||𝜃∗G||||𝜃∗Z||.

This immediately implies that ||𝜃∗G|| ≤ ||𝜃∗Z||; that is, the analysis operator of G has minimal norm and the proof is
complete.

In the case that F is a Parseval K-frame Lemma 2 can be reduced to a result of Xiang.28 The next result presents the
canonical K-dual of some classes of K-frames. The computations are relatively straightforward, so we provide a sketch of
the proof for convenience of the reader.

Proposition 1. Let F = {𝑓i}i∈Im be a K-frame of n. Then the following statements hold;

(i) If F ⊆ R(K) then {K∗(SF|R(K))−1𝜋SF (R(K))𝑓i}i∈Im is the canonical K-dual of F.
(ii) If R(K) ⊆ SF(R(K)) or F ⊆ SF(R(K)), then {K∗((SF|R(K))−1)∗𝜋R(K)𝑓i}i∈Im is the canonical K-dual of F.
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Proof. First, we note that by the assumption F ⊆ R(K) is a K-frame of n and so G ∶= {K∗(SF|R(K))−1𝜋SF (R(K))𝑓i}i∈Im

is a K-dual of 𝜋R(K)F = F by using Proposition 2.3 of Neyshaburi and Arefijamaal.24 Moreover,

SG = K∗(SF|R(K))−1𝜋SF (R(K))SF((SF|R(K))−1)∗K

= K∗(SF|R(K))−1𝜋SF (R(K))𝜃F𝜃
∗
Z

= 𝜃G𝜃
∗
Z,

for every K-dual Z of F. Thus, by Lemma 2, we imply (i). Now, assume that R(K) ⊆ SF(R(K)). The fact that the operator
SF|R(K) ∶ R(K) → SF(R(K)) is invertible implies that R(K) = SF(R(K)). Thus,

K𝑓 =
∑
i∈Im

⟨𝑓,K∗((SF|R(K))−1)∗𝜋(R(K))𝑓i⟩𝑓i,

for every 𝑓 ∈ n. Hence, G ∶= {K∗((SF|R(K))−1)∗𝜋R(K)𝑓i}i∈Im is a K-dual of F. Again, we obtain SG = 𝜃G𝜃
∗
Z, for every

K-dual Z of F. Again, the above computations along with Lemma 2 follows the desired result. The case of F ⊆ SF(R(K))
is similar.

The converse of Proposition 1 does not hold in general. To see this and also the importance of the sufficiency conditions
in Proposition 1, see Examples 1 and 2 in Section 6.

Remark 1. The structure of the canonical K-dual of a Parseval K-frame F is K†F. See Miao et al.29 Indeed, in this case,
ΓF = (K†)∗. Also, in this regard, for a K-frame F ⊆ R(K) we have that ΓF = ((SF|R(K))−1)∗K.

4 MINIMAL REDUNDANCY CONDITION

In this section, we provide the concept of minimal redundancy condition and maximal robust for K-frames and give
some necessary conditions for a finite set of indices, which satisfy minimal redundancy condition. Then, we discuss the
problem of robustness under operator perturbation of K-frame, particularly when the erasure set satisfies the minimal
redundancy condition or the K-frame is maximal robust. For more information of these concepts on classical frames we
refer the reader to previous works.5,30–32

Suppose F denotes the associated matrix of a K-frame {𝑓i}i∈Im in Hilbert space n. A finite set of indices 𝜎 ⊂ Im satisfies
the minimal redundancy condition (MRC) for F whenever {𝑓i}i∈𝜎c is a K-frame for n. Furthermore, we say F satisfies
MRC for r-erasures if every subset 𝜎 ⊂ Im, |𝜎| = r satisfies MRC for F. Also, F is said to be of uniform excess r if it is an
exact K-frame when r columns of F are removed and F is called maximal robust (MR) if every rk columns of F is an exact
K-frame, where rk ∶= rankK. Note that, for a K-frame that is MR, every submatrix n × rk has a left inverse. However,
the converse does not hold, in general. For instance, in Example 2, rankK = 2 and every two columns of F are linearly
independent so every submatrix of F containing two columns has a left inverse, but {𝑓3, 𝑓4} is not a K-frame. In what
follows, we give some necessary conditions for a finite set of indices 𝜎 ⊂ Im, which satisfies MRC. To be convenient, we
use 𝜃𝜎 , S𝜎 , and 𝜉∗𝜎 to denote the synthesis operator, frame operator of a K-frame, and the analysis operator of the canonical
K-dual whenever the index set is limited to 𝜎.

Theorem 2. Suppose F = {𝑓i}i∈Im is a K-frame of n and 𝜎 ⊂ Im satisfies MRC for F. Then

(i) R(𝜃∗FK) ∩ span{𝛿i}i∈𝜎 = {0}.
(ii) If F is a Parseval K-frame then (K − 𝜃𝜎𝜉

∗
𝜎) |R(K†) is an invertible operator from R(K†) onto S𝜎c(R(K)).

Proof. To show (i), on the contrary, assume that there exists a non-zero element 𝛼 ∈ R(𝜃∗FK)∩span{𝛿i}i∈𝜎 . Then, there
exists 𝑓 ∈ n, {ci}i∈𝜎 ⊆ C so that

𝛼 = 𝜃∗FK𝑓 =
∑
i∈𝜎

ci𝛿i.
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Thus, 𝜃∗FK𝑓 ⟂ 𝛿i for every i ∈ 𝜎c and so

⟨K𝑓, 𝑓i⟩ = ⟨K𝑓, 𝜃F𝛿i⟩ = ⟨𝜃∗FK𝑓, 𝛿i⟩ = 0,

for every i ∈ 𝜎c. Hence, K𝑓 ⟂ {𝑓i}i∈𝜎c that is a contradiction. This implies the desired result.
Now, let F be a Parseval K-frame then

K − 𝜃𝜎𝜉
∗
𝜎 = 𝜃𝜎c𝜉∗𝜎c = S𝜎c(K†)∗,

where the last equality is obtained by Remark 1 so it is sufficient to prove that S𝜎c (K†)∗|R(K†) is an invertible operator.
Since 𝜎 satisfies MRC the operator S𝜎c |R(K) is invertible from R(K) onto S𝜎c (R(K)). Consider Γ𝜎c ∶= K∗(S𝜎c |R(K))−1, we
show that Γ𝜎c is the inverse of the operator S𝜎c(K†)∗|R(K†). Indeed

Γ𝜎c S𝜎c(K†)∗𝑓 = K∗(S𝜎c |R(K))−1S𝜎c |R(K)(K†)∗𝑓

= K∗(K†)∗𝑓

= (K†K)∗𝑓

= K†K𝑓 = 𝑓,

for every 𝑓 ∈ R(K†). Thus, Γ𝜎c S𝜎c(K†)∗|R(K†) = IR(K†). On the other hand,

S𝜎c(K†)∗Γ𝜎c𝑓 = S𝜎c (K†)∗K∗(S𝜎c |R(K))−1𝑓

= S𝜎c KK†(S𝜎c |R(K))−1𝑓

= S𝜎c |R(K)(S𝜎c |R(K))−1𝑓 = 𝑓,

for every 𝑓 ∈ S𝜎c(R(K)). Hence, S𝜎c(K†)∗Γ𝜎c |S𝜎c (R(K)) = IS𝜎c (R(K)). This implies the desired result.

It is worth noting that the condition (i) in the above theorem, unlike ordinary frames,31 is not sufficient for a subset 𝜎
to satisfy MRC. See Example 3; moreover, by applying Theorem 2, if 𝜎 ⊂ Im satisfies MRC, we get some K-frames and
K†-frame with K†-dual on the remained index set 𝜎c.

Corollary 1. Let F = {𝑓i}i∈Im be a K-frame of n and 𝜎 ⊂ Im satisfies MRC then

(i) {K∗(S𝜎c |R(K))−1𝜋S𝜎c (R(K))𝑓i}i∈𝜎c is a K†-frame with K†-dual {(K†)∗K†𝑓i}i∈𝜎c .
(ii) {(K†)∗K†𝑓i}i∈𝜎c is also a K-frame for n.

Proof. Since S𝜎c |R(K) is invertible we have that

K†𝑓 = K∗(S𝜎c |R(K))−1S𝜎c |R(K)(K†)∗K†𝑓

= K∗(S𝜎c |R(K))−1𝜋S𝜎c (R(K))
∑
i∈𝜎c

⟨(K†)∗K†𝑓, 𝑓i⟩𝑓i

=
∑
i∈𝜎c

⟨(K†)∗K†𝑓, 𝑓i⟩K∗(S𝜎c |R(K))−1𝜋S𝜎c (R(K))𝑓i,

for every𝑓 ∈ n. Hence, (i) is obtained by Lemma 2.2 of Neyshaburi and Arefijamaal.24 Using the above computations
and the fact that

R(K) = R(K†)∗ ⊆ span{(K†)∗K†𝑓i}i∈𝜎c ,

we get (ii).
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Theorem 3. Let F be the associated matrix of a K-frame for n. Then the following assertions hold, where in all matrix
products below, we let the sizes be compatible.

(i) AFU is TAK-frame for any matrix A and a unitary matrix U. In particular FU is a K-frame and GU ∈ KDAFU for
every G ∈ KDF.

(ii) If A is invertible and U is a unitary matrix then G ∈ KDF if and only if GU ∈ KDAFU .
(iii) If F is 𝛼-tight K-frame then AFU is 𝛼-tight TAK-frame for any matrix A and a unitary matrix U. Moreover, FU is

an 𝛼-tight K-frame.
(iv) If F is EN then UFD is also EN for any unitary matrix U and unitary diagonal matrix D.
(v) If F is MR K-frame then AFD as an TAK-frame is MR for any invertible matrix A and unitary diagonal matrix D.

(vi) If F satisfies MRC for r-erasures then AFD as a TAK-frame satisfies MRC for r-erasures for any unitary diagonal
matrix D and square matrix A.

Proof. Suppose 𝛾 is a lower K-frame bound of F. Then by the assumption in (i) we obtain

AFU(AFU)∗ = AFUU∗F∗A∗

= AFF∗A∗

≥ 𝛾AMKM∗
KA∗

= 𝛾AMK(AMK)∗.

The existence of the upper bound is clear, so AFU is TAK-frame of n. Moreover, if A is the identity matrix, FU is a
K-frame of n. On the other hand, for every G ∈ KDF we have that

AFUU∗G∗ = AFG∗ = AMK ,

so GU ∈ KDAFU and (i) is proved. The cases (ii), (iii), and (iv) are proved by definitions and some straightforward
computations. For (v), we note that AFD is TAK-frame by (i), so we only show that AFD is MR. Indeed, let Fn×m be MR
K-frame, moreover An×n and Dm×m be invertible and diagonal unitary matrices, respectively. Then a submatrix n × rk
of AFD is as A where n×rk is a submatrix of F and rk×rk is a diagonal submatrix of D. Hence, the columns of
 constitute an exact K-frame and so  has a left inverse. This implies that A also has a left inverse; that is, its
columns are linearly independent and generate R(TAK). Moreover, this vector columns constitute an exact TAK-frame.
Thus, AFD is MR.

Finally, let F satisfy MRC for r-erasures, A and D be arbitrary n × n matrix, and m × m unitary diagonal matrix,
respectively. A submatrix n × (m − r) of AFD is as A where n×(m−r) is a submatrix of F and (m−r)×(m−r) is a
diagonal submatrix of D. Since  is a K-frame, applying the assumption, one immediately obtains that A is also
a TAK-frame by (i). This completes the proof.

5 PERFECT RECONSTRUCTIONS BY (R,K)-MATRICES

In what follows, we present some matrix methods, which lead to fewer errors if K-frame is of uniform excess or even we
have perfect reconstruction under erasures. To this end, we present two approaches, one of which is motivated by previous
works17,18; however, unlike ordinary frames, for K-frames it does not work very well. Hence, we set a new concept so
called (r, k)-matrix to get perfect reconstruction in this case. Also, we show this approach works for frames sometimes
better than the previous methods.

Let F = {𝑓i}i∈Im be a K-frame of n with uniform excess r and G = {gi}i∈Im be a K-dual of F. Since {𝑓i}m
i=r+1 is an exact

K-frame then for any gi, (1 ≤ i ≤ r) there exist unique coefficients {𝛼i,𝑗}m
𝑗=r+1 ⊂ C so that

𝜋R(K)gi =
m∑

𝑗=r+1
𝛼i,𝑗𝑓𝑗 , (1 ≤ i ≤ r).
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Consider

 =

⎡⎢⎢⎢⎢⎢⎣

1 0 . . . 0 −𝛼∗
1,r+1 . . . −𝛼∗

1,m
0 1 . . . 0 −𝛼∗

2,r+1 . . . −𝛼∗
2,m

0 0 . . . 1 −𝛼∗
r,r+1 . . . −𝛼∗

r,m

⎤⎥⎥⎥⎥⎥⎦
.

Then



⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨𝑓, 𝜋R(K)g1⟩
.
.
.⟨𝑓, 𝜋R(K)gr⟩⟨𝑓, 𝑓r+1⟩
.
.
.⟨𝑓, 𝑓m⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

for every 𝑓 ∈ n and consequently

1

⎡⎢⎢⎢⎢⎣
⟨𝑓, 𝜋R(K)g1⟩

.

.

.⟨𝑓, 𝜋R(K)gr⟩
⎤⎥⎥⎥⎥⎦
+2

⎡⎢⎢⎢⎢⎣
⟨𝑓, 𝑓r+1⟩

.

.

.⟨𝑓, 𝑓m⟩
⎤⎥⎥⎥⎥⎦
= 0, (6)

where 1 is the submatrix consisting of the first r columns of  and 2 is the submatrix consisting of the remaining
columns. This assures that for any r-erasures of K-dual coefficients {⟨𝑓, gi⟩}i∈Λ, |Λ| = r we may recover the coefficients
{⟨𝑓, 𝜋R(K)gi⟩}i∈Λ by solving the equation (6) as follows

⎡⎢⎢⎢⎢⎣
⟨𝑓, 𝜋R(K)g1⟩

.

.

.⟨𝑓, 𝜋R(K)gr⟩
⎤⎥⎥⎥⎥⎦
= −M2

⎡⎢⎢⎢⎢⎣
⟨𝑓, 𝑓r+1⟩

.

.

.⟨𝑓, 𝑓m⟩
⎤⎥⎥⎥⎥⎦
. (7)

Replacing the coefficients {⟨𝑓, 𝜋R(K)gi⟩}i∈Λ by
{⟨𝑓,∑𝑗∈Λc𝛼i,𝑗𝑓i⟩}i∈Λ and using the fact that the error operator is

obtained by

EΛ =
∑
i∈Λ

𝑓i ⊗ gi =
∑
i∈Λ

𝑓i ⊗ 𝜋R(K)gi +
∑
i∈Λ

𝑓i ⊗ 𝜋R(K)⟂gi,

we get a reduced error operator as

ẼΛ = EΛ − ΔΛ,

where ΔΛ =
∑

i∈Λ𝑓i ⊗ 𝜋R(K)gi. Equivalently, we have ẼΛ𝑓 =
∑

i∈Λ⟨𝑓, 𝜋R(K)⟂gi⟩𝑓i, for every 𝑓 ∈ n. Hence, for computing
of the error operator one needs only find a K-dual frame G, which satisfies

max|Λ|=r

‖‖‖‖‖
∑
i∈Λ

𝑓i ⊗ 𝜋R(K)⟂gi

‖‖‖‖‖ = min

{
max|Λ|=r

‖‖‖‖‖
∑
i∈Λ

𝑓i ⊗ 𝜋R(K)⟂hi

‖‖‖‖‖ ; {hi}i∈Im ∈ KDF

}
. (8)

From this point of view, by a K-frame with uniform excess property, which has a K-dual {gi}i∈Im ⊆ R(K), we will have
the perfect reconstruction. Otherwise, for every K-dual of F, which satisfies (8) the error rate is reduced.
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Now, we present a new method, which allows a perfect reconstruction. Moreover, by this approach K-frames with uni-
form excess under some erasures of K-dual coefficients make a complete reconstruction and this process is independent of
the choice of K-dual. We recall the spark of a matrix30 is the size of the smallest linearly dependent subset of the columns
and the spark of a collection of vectors in a finite dimensional Hilbert space is considered as the spark of its synthesis
matrix. Moreover, for any m × n matrix A

sparkA = min{||x||0 ∶ Ax = 0, x ≠ 0}, (9)

where ||x||0, the Humming weight of a vector x = {xi}i∈In , is defined as follows

||x||0 = ||{𝑗 ∈ In ∶ x𝑗 ≠ 0}|| .
See previous works4,30 for more information. Let F = {𝑓i}i∈Im be a K-frame of n with a K-dual G = {gi}i∈Im . Then we
have that ∑

i∈Im

⟨𝑓i, 𝑓𝑗⟩⟨𝑓, gi⟩ = ⟨K𝑓, 𝑓𝑗⟩,
for all 𝑗 ∈ Im. Equivalently

⎡⎢⎢⎢⎢⎢⎣

⟨𝑓1, 𝑓1⟩ ⟨𝑓2, 𝑓1⟩ . . . ⟨𝑓m, 𝑓1⟩⟨𝑓1, 𝑓2⟩ ⟨𝑓2, 𝑓2⟩ . . . ⟨𝑓m, 𝑓2⟩
. .
. .

⟨𝑓1, 𝑓m⟩ ⟨𝑓2, 𝑓m⟩ . . . ⟨𝑓m, 𝑓m⟩

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

⟨𝑓, g1⟩
.
.

⟨𝑓, gm⟩

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

⟨K𝑓, 𝑓1⟩
.
.

⟨K𝑓, 𝑓m⟩

⎤⎥⎥⎥⎥⎥⎦
,

subsequently, we get

FG∗ = F∗MK . (10)

This motivates the following definition.

Definition 1. Suppose that F = {𝑓i}i∈Im is a K-frame of n with a K-dual G. Then an m × m matrix MF,G with spark
r + 1 is called an (r, k)-matrix associated with F and G whenever

(MF,G − F)G∗ = 0. (11)

Remark 2. Note that by Definition 1, every K-frame F with non-zero vectors has at least a (1, k)-matrix MF,G = F
associated with F and an arbitrary G ∈ KDF .

The next result shows that for a K-frame F, the existence of an (r, k)-matrix associated with F and G ∈ KDF assures the
unknown r-erasures of K-dual coefficients can be completely recovered.

Theorem 4. Let F = {𝑓i}i∈Im be a K-frame of n with a K-dual G and c = {ci}i∈Im be a sequence of K-dual frame
coefficients.

(i) If there exists an (r, k)-matrix MF,G associated with F and G then any r-erasures of K-dual coefficients can be
recovered by solving the equation

(MF,G − F)c = 0. (12)

(ii) If sparkF = r + 1 then any r-erasures of K-dual frame coefficients can be recovered by solving the equation Fc =
𝜃∗FK.
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Proof. To show (i), without losing the generality, we suppose for an original vector 𝑓 the erasure coefficients are
c1 ∶= {ci}r

i=1 = {⟨𝑓, gi⟩}r
i=1 and the remaining coefficients are c2 ∶= {⟨𝑓, gi⟩}m

i=r+1. Furthermore, let M1 and M2 denote
submatrices of MF,G containing of the first r columns and the rest, respectively. Then using (12) we get

M1c1 + M2c2 = Fc = 𝜃∗F𝜃Fc.

Equivalently,

M1

⎡⎢⎢⎢⎢⎣
⟨𝑓, g1⟩

.

.

.⟨𝑓, gr⟩
⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
⟨K𝑓, 𝑓1⟩

.

.

.⟨K𝑓, 𝑓m⟩
⎤⎥⎥⎥⎥⎦
− M2

⎡⎢⎢⎢⎢⎣
⟨𝑓, gr+1⟩

.

.

.⟨𝑓, gm⟩
⎤⎥⎥⎥⎥⎦
. (13)

Using the assumption that the columns of M1 are linearly independent and so the pseudo inverse M†
1 =

(MT
1 M1)−1MT

1 there exists.33 Hence, by (13), we obtain

[ci]r
i=1 = [⟨𝑓, gi⟩]r

i=1 = M†
1
(
[⟨K𝑓, 𝑓i⟩]m

i=1 − M2[⟨𝑓, gi⟩]m
i=r+1

)
.

Thus, the missing coefficients are obtained completely and we have the perfect reconstruction.
On the other hand, it is known that

KerF = KerF∗F = KerF .

Therefore, by (9), we have that sparkF = sparkF . Hence, MF,G = F is an (r, k)-matrix associated with F and G. Now,
the proof of (ii) is complete by using (i). Note that this (r, k)-matrix is independent of K-dual G.

Corollary 2. Let F = {𝑓i}i∈Im be a K-frame of n with uniform excess r > 0. Then every m−r+1 columns of F is linearly
dependent. Moreover, any (m − r)-erasures of K-dual coefficients can be exactly recovered for every K-dual of F.

Proof. Since F is with uniform excess r so any m − r columns of associate matrix F constitutes an exact K-frame for
n. Without loss of generality, let the first m − r + 1 columns of F be linearly independent. Moreover, assume that
R(K) = span{𝜂i}i∈Il . Then for every 𝜂i there exist unique coefficients {𝛼i,𝑗}m−r

i=1 and {𝛼′
i,𝑗}

m−r+1
i=2 so that

𝜂i =
m−r∑
𝑗=1

𝛼i,𝑗𝑓𝑗 =
m−r+1∑
𝑗=2

𝛼′
i,𝑗𝑓𝑗 , (i ∈ Il).

By these equalities, and the assumption that {𝑓i}m−r+1
i=1 is linearly independent, we conclude that

𝛼i,1 = 𝛼′
i,m−r+1 = 0,

𝛼i,𝑗 = 𝛼′
i,𝑗(2 ≤ 𝑗 ≤ m − r).

Consequently,

𝜂i =
m−r∑
𝑗=2

𝛼i,𝑗𝑓𝑗

for all i ∈ Il. So {𝑓i}m−r
i=2 is also a K-frame of n that is a contradiction. This follows that every collection of m − r

+ 1 columns of F is linearly dependent. The moreover part follows from Theorem 4 (ii) and the fact that sparkF =
m − r + 1.

It is worth noticing that Corollary 2 for r = 0 fails. Indeed, if F is a K-frame with uniform excess 0 then F is an exact
K-frame and so sparkF = +∞. Also, Theorem 4 leads to a new approach for erasure recovery by using ordinary frames in
finite dimensional Hilbert spaces by changing encode and decode frames.

Corollary 3. Let F = {𝑓i}i∈Im be a frame of n with m > n and a dual frame G so that sparkF = r + 1. Then any
r-erasures of dual frame coefficients can be recovered by solving the equation Fc = 𝜃∗F, where c is a dual frame coefficient
with unknowns {ci}i∈Λ, |Λ| = r.
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Corollary 4. Let F = {𝑓i}i∈Im be a frame of n with m > n and a dual frame G. Then any 1-erasure of dual frame
coefficients can be recovered by Fc = 𝜃∗F, for unknown erasure c𝑗 , 𝑗 ∈ Im.

The above corollaries illustrate the advantage and difference of using (r, k)-matrix and erasure recovery matrix.17

Indeed, if (F,G) is a pair of dual frames for n. Unlike the customary approach, we consider dual frame G to encode a sig-
nal and F to decode the measurements. Then every erasure of encoding frame coefficients as {⟨𝑓, gi⟩}i∈𝜎 , |𝜎| ≤ sparkF−1
can be exactly recovered by Corollary 3. So, frames with large spark are resilient against more erasures of associated dual
frame coefficients; since for frames K = In , we call (r, k)-matrix associated to F and G an r-matrix for convenience. In
this case, if MF,G is an r-matrix and N is an r-erasure recovery matrix for F, that is, NF∗ = 0 and sparkN = r + 1 then

NMF,GG∗ = NF∗ = 0.

Thus, NMF,G is an 𝜌-erasure recovery matrix for G with 𝜌 = sparkNMF,G ≥ r + 1 since KerMF,G ⊆ KerNMF,G.

5.1 The existence of (r, k)-matrices
In the following, we show the relation between the existence of (r, k)-matrices with MRC. The following result gives a
necessary condition for the existence of (r, k)-matrices and a sufficient condition for a K-dual to satisfy MRC.

Theorem 5. Let F = {𝑓i}i∈Im be a K-frame of n and G ∈ KDF. If there exists a matrix MF,G, which satisfies (11), then
G satisfies MRC for (spark(MF,G − F) − 1)-erasures.

Proof. If MF,G − F has a zero column then spark(MF,G − F) = 1 so the result clearly holds. Now, let all columns of
MF,G − F be non-zero. Hence, spark(MF,G − F) ≥ 2. Also, by the assumption, we have (MF,G − F)G∗ = 0. On the
other hand, if all columns of MF,G − F are linearly independent, then it is invertible, which implies 𝜃∗G = 0 that is a
contradiction. Therefore,

2 ≤ spark(MF,G − F) < ∞.

Now, consider

𝜌 = spark(MF,G − F) − 1

implies that every 𝜌 columns of MF,G − F is linearly independent and so every K𝑓 ∈ R(K) can be recovered from the
coefficients {⟨𝑓, gi⟩}i∈Λc for every Λ ⊂ Im, |Λ| ≤ 𝜌. Without loss of the generality, we discuss the first 𝜌 columns. More
precisely, for every 𝑓 ∈ n there exists {𝛼i,𝑗}m

𝑗=𝜌+1 so that

⟨𝑓, gi⟩ = m∑
𝑗=𝜌+1

𝛼i,𝑗⟨𝑓, g𝑗⟩,(i ∈ I𝜌).

Thus, we can write

||K𝑓 ||4 = |⟨K𝑓,K𝑓⟩|2
=
||||||
⟨

𝜌∑
i=1

m∑
𝑗=𝜌+1

𝛼i,𝑗
⟨
𝑓, g𝑗

⟩
𝑓i +

m∑
i=𝜌+1

⟨𝑓, gi⟩𝑓i,K𝑓

⟩||||||
2

=
||||||
⟨ m∑

𝑗=𝜌+1
⟨𝑓, g𝑗⟩(𝑓𝑗 +

𝜌∑
i=1

𝛼i,𝑗𝑓i

)
,K𝑓

⟩||||||
2

≤

m∑
𝑗=𝜌+1

||⟨𝑓, g𝑗⟩||2 m∑
𝑗=𝜌+1

||||||
⟨(

𝑓𝑗 +
𝜌∑

i=1
𝛼i,𝑗𝑓i

)
,K𝑓

⟩||||||
2

≤ B||K𝑓 ||2 m∑
𝑗=𝜌+1

||⟨𝑓, g𝑗⟩||2,
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where the existence of the upper bound B in the last inequality is assured by the assumption that F is a K-frame.
Therefore,

||K𝑓 ||2∕B ≤

m∑
𝑗=𝜌+1

||⟨𝑓, g𝑗⟩||2 ≤ D||𝑓 ||2,
for an upper bound D of G. Hence, {gi}m

i=𝜌+1 is also a K∗-frame for n. This implies the desired result.

6 EXAMPLES

In this section, we present several examples to show not only the importance of the necessary or sufficient conditions in
our main results but also the advantages and significant differences of (r, k)-matrices with respect to r-erasure recovery
matrices.17 In particular, some examples of some K-frames (frames) are given for which there does not exist any appro-
priate erasure recovery matrix, but infinitely many (r, k)-matrices. In this section, we consider {ei}i∈In as the standard
orthonormal basis of Rn. The first example shows that the converse of Proposition 1 does not hold in general.

Example 1. Consider,  = R3 and F = {e1, e2}. Also, let K ∈ B() so that K𝑓 =
(

c1 + c2 + 1
2

c3

)
e1, for every

𝑓 =
∑

i∈I3
ciei. Then F is a K-frame for  and SF|R(K) = IR(K). Hence,

G ∶= K∗(SF|R(K))−1𝜋SF (R(K))F = K∗((SF|R(K))−1)∗𝜋R(K)F =
{

e1 + e2 +
1
2

e3, 0
}
.

A straightforward computation reveals that
𝜃F𝜃

∗
G = K,

so G ∈ KDF . Moreover SG = 𝜃G𝜃
∗
Z for every K-dual Z of F; that is, G is the canonical K-dual of F; however, F is not a

subset of R(K) or SF(R(K)).

Also, the following example shows the importance of the sufficient conditions in Proposition 1.

Example 2. Let  = R4. Define F = {e1, e2, e3, e1 + e3} and K ∈ B() as K𝑓 = (c1 + c3)e1 +
(

c2 + 1
2

c4

)
e2, for every

𝑓 =
∑

i∈I4
ciei. Then F is a K-frame for  and

𝜋R(K)F = {e1, e2, 0, e1}.

Furthermore, the restriction of K-frame operator

SF|R(K) ∶ span{e1, e2} → span{2e1 + e3, e2}

is given by

SF|R(K)(ei) =

{
2e1 + e3 i = 1,

e2 i = 2

that is an invertible operator. So, we obtain

G ∶= K∗(SF|R(K))−1𝜋SF (R(K))F =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
5

0

2
5

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

0

1

0

1
2

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
5

0

1
5

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3
5

0

3
5

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.
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The Bessel sequence G is a K-dual of 𝜋R(K)F. However, G = {gi}4
i=1 is neither a K-dual of F nor the canonical K-dual

of 𝜋R(K)F. Indeed, for every 𝑓 =
∑

i∈I4
ciei

𝜃F𝜃
∗
G𝑓 = e1(c1 + c3) + e2(c2 + c4∕2) + 4∕5e3(c1 + c3),

and consequently,

𝜃F𝜃
∗
Ge3 = e1 +

4
5

e3 ≠ Ke3.

Thus, G is not a K-dual of F. Also, consider

H = {g1, g2, 0, g4} .

Then H is a K-dual of 𝜋R(K)F. Moreover, ||𝜃∗H|| < ||𝜃∗G|| and this implies that G cannot be the canonical K-dual of 𝜋R(K)F.

The next example shows that the condition (i) in Theorem 2 is not sufficient for a subset 𝜎 ⊂ Im to satisfies MRC.

Example 3. Let , K, and F be as in Example 2. Take 𝜎 = {1, 3} then the sequence {𝑓i}i∈𝜎c = {e2, e1 + e3} clearly is
not a K-frame and so 𝜎 does not satisfy MRC. However,

R(𝜃∗FK) = span{(a, b, 0, a) ∶ a, b ∈ R},

which implies that R(𝜃∗FK) ∩ span{𝛿i}i∈𝜎 = {0}.

In the sequel, we observe the advantages of using (r, k)-matrices with respect to r-erasure recovery matrices. In fact,
we present some K-frames (frames) for which there does not exist any appropriate erasure recovery matrix, but infinitely
many (r, k)-matrices.

Example 4. Suppose that F =
{

e1 − e3, e3, 2e4 − e3,
1
2
(e1 + e3)

}
and K ∈ B(R4) is defined by Ke1 = Ke2 = Ke3 = e1 ,

Ke4 = e4 + e1. Then F is a K-frame for R4 and the Gramian matrix is obtained by

F =

⎡⎢⎢⎢⎢⎣
2 −1 1 0
−1 1 −1 1

2
1 −1 5 −1

2
0 1

2
−1
2

1
2

⎤⎥⎥⎥⎥⎦
.

Since sparkF = 3 by Theorem 4 (ii), we can derive any 2-erasures of K-dual frame coefficients for every K-dual of F.
Moreover, there is not any appropriate erasure recovery matrix for F. Indeed, if N is an l × 4 matrix so that NF∗ = 0
then the third column of N is zero; that is, sparkN = 1. Thus, N can only preserves one erasure of K-frame coefficients.
However, there exist infinitely many (r, k)-matrix. Put

G =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣

1

1

1

1∕2

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

1

1

1

1∕2

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

0

1∕2

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

One may check that FG∗ = K so the sequence G is a K-dual of F and every matrix MF,G satisfies (11) is as follows:

MF,G =

⎡⎢⎢⎢⎢⎣
𝛼1 1 − 𝛼1 𝛼2

1
2
− 1

2
𝛼2

𝛽1 −𝛽1 𝛽2 − 1
2
𝛽2

𝛾1 −𝛾1 𝛾2 2 − 1
2
𝛾2

𝜂1
1
2
− 𝜂1 𝜂2

1
4
− 1

2
𝜂2

⎤⎥⎥⎥⎥⎦
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Therefore, we can find so many (r, k)-matrices associated with F and G, for 1 ≤ r ≤ 3. For example set 𝛼1 = 𝛼2 =
1, 𝛽1 = 𝛽2 = 1, 𝛾1 = −1, 𝛾2 = 2 and 𝜂1 = 𝜂2 = 1∕2. Then we obtain an (3, k)-matrix.

In the last example, we survey the case that a K-frame F satisfies F ⊆ R(K); that is, it can be considered as a frame for
R(K). Moreover, we observe that unlike r-erasure recovery matrices for ordinary frames17 the existence of (r, k)-matrices
is independent of the fact that a K-frame or its dual satisfies MRC.

Example 5. Let  = R4 and F = {−e4, e2, 2e2 − e4, e1}. Also, assume that K𝑓 = c1e1 + c2e2 + (c3 + c4)e4, for every
𝑓 =

∑
i∈I4

ciei. Then F is a K-frame for  and

F =
⎡⎢⎢⎢⎣

1 0 1 0
0 1 2 0
1 2 5 0
0 0 0 1

⎤⎥⎥⎥⎦ .
Thus, sparkF = 3, and we can consider F as a (2, k)-matrix associated with F and each one of its K-duals. We observe
that none of the two columns in F produce R(K). Put

G =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

−1

−1

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

we have that

𝜃F𝜃
∗
G = K,

that is, G ∈ KDF . However, R(K∗) = span{e1, e2, e3 + e4} and so G does not satisfy MRC even for 1-erasures. Moreover,
none of the two columns in G remain K∗-frame for R4. It is worth to note that by taking

MF,G =
⎡⎢⎢⎢⎣

1 0 a1 0
0 1 a2 0
1 2 a3 0
0 0 a4 1

⎤⎥⎥⎥⎦ ,
for all ai ∈ R, i ∈ I4, we obtain a family of (r, k)-matrices with respect to F and G, which r is dependent on the choice
of ai, i ∈ I4. In this case, three columns of MF,G −F are zero but with appropriate choices of ai, we get sparkMF,G = 4.

It is worth noticing that F in Example 5 is also a frame for R(K). From this point of view every m × 4 matrix N so that
NF∗ = 0 has a zero column. Hence, sparkN = 1 and so there is no appropriate erasure recovery matrix for F; however,
we obtain infinitely (r, k)-matrices with respect to F and G with r > 1.

Example 6. Consider  = R5 and

F =
{

e1, e2, e1 + e5,
3
2

e1 + e2,−e2, 2(e5 − e1),
−5
2

e5

}
.

Also, let Ke1 = Ke2 = e1, Ke3 = Ke4 = e2 and Ke5 = e5 + e1. Then F is a K-frame for . A K-dual of F is as follows

G =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

−3∕2

−3∕2

3∕2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

3∕2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,
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A class of (r, k)-matrices associated to F, G are as follows

MF,G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 a12
−1
3

−a12
3
2

a16 −a16

0 a22
2
3

−a22 1 a26 (−1 − a26)
1 a32 2 −a32

3
2

a36

(
−5
2
− a36

)
3
2

a42
3
2

−a42
13
4

a46 (−3 − a46)
0 −1 −2

3
a54 −a54 a56 (1 − a56)

−2 a62 2 −a62 −3 a66 −a66

0 a72
5
2

3 (−3 − a72) a76

(
−a76 − 25

4

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where parameters ai𝑗 in matrix are arbitrary real numbers. A straightforward computation shows that (MF,G−F)G∗ =
0, where F is the Gramian matrix of F. Moreover, every matrix MF,G as above is invertible and so any 6-erasure (or
less) of K-dual coefficients we obtain perfect recovery by Theorem 4.

7 NUMERICAL RESULTS

In this section, we provide numerical results for the recovery of signals from erased and noisy K-dual frame coefficients.
To this end, we use unit norm signals that are generated with uniform distributed random numbers. Also, we produce
randomly generated matrices K and K-frames. It is worth noticing that the numerical results confirmed our method for
perfect recovery based on the results in Section 5, in case the coefficients are noise-free. Hence, we consider several cases of
noisy coefficients to survey the sensitivity and resistance of our approach under noises generated by uniformly distributed
random.

First, we apply Example 6 to compute error rate under noise and different erasures. Indeed, taking different choices for
ai𝑗 in MF,G effects on the errors under erasures. Figure 1 illustrates the error rate of erased coefficients under randomly
generated noises in [0, 0.5] by using (r, k)-matrix MF,G in case ai𝑗 = 1. Also, we observe the situation of errors in Figure 2
with different choices of ai𝑗 .

For more general discussions, we consider an n-dimensional Hilbert space n and choose a matrix K of order n that
is generated by the identity matrix with zeros in some random rows. We try different choices of n, m, r, and sparkF for
randomly generated K-frames F with m vectors inn and a K-dual frame G in case erasures occur in the first r coefficients
constructed by K-dual G so that r < sparkF . We get 10 trail and in each trial we take 100 or 50 test vectors that are
also generated with uniform distributed random numbers and compute the mean of errors. Then we use Theorem 4
for reconstruction of signals. We set out the numerical results in four tables (Tables 1–4) and note that the algorithms
are completely based on Theorem 4. The tables demonstrate the error rates in different noise situations. Due to the fact

FIGURE 1 The error rate of erased coefficients by (r, k)-matrix in
Example 6, in case ai𝑗 = 1
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FIGURE 2 The error rate of erased coefficients using a random
choice of (r, k)-matrix in Example 6

TABLE 1 Error rate of recovery where n = 10,
m = 12, r = 1, sparkF = 2

Trial Vectors Error of 𝝈 = 0.002 Error of 𝝈 = 0.02 Error of 𝝈 = 0.05
1 100 0.0085724 0.098009 0.22036
2 100 0.0091058 0.092629 0.23210
3 100 0.0094286 0.095462 0.23652
4 100 0.0092686 0.087105 0.25751
5 100 0.0103040 0.091419 0.22461
6 100 0.0094113 0.089906 0.22679
7 100 0.0092544 0.097622 0.22807
8 100 0.0097604 0.095072 0.24331
9 100 0.0100730 0.089506 0.24264
10 100 0.0097157 0.087446 0.23899

TABLE 2 Error rate of recovery where n = 15,
m = 23, r = 2, sparkF = 4

Trial Vectors Error of 𝝈 = 0.002 Error of 𝝈 = 0.02 Error of 𝝈 = 0.05
1 50 0.014189 0.15041 0.39533
2 50 0.014351 0.15213 0.37953
3 50 0.014878 0.15375 0.39598
4 50 0.015939 0.14863 0.3760
5 50 0.016308 0.15805 0.36498
6 50 0.015795 0.15551 0.38558
7 50 0.015823 0.15329 0.36468
8 50 0.014342 0.16171 0.36440
9 50 0.014095 0.15123 0.38340
10 50 0.014850 0.15101 0.38548

TABLE 3 Error rate of recovery where n = 21,
m = 25, r = 3, sparkF = 4

Trial Vectors Error of 𝝈 = 0.002 Error of 𝝈 = 0.02 Error of 𝝈 = 0.05
1 100 0.014967 0.14517 0.39464
2 100 0.015608 0.15213 0.39415
3 100 0.015394 0.15783 0.37885
4 100 0.016159 0.14830 0.37944
5 100 0.015569 0.15320 0.38815
6 100 0.015294 0.15439 0.38101
7 100 0.015397 0.15421 0.38292
8 100 0.014943 0.15615 0.41209
9 100 0.014787 0.14919 0.37709
10 100 0.015713 0.15331 0.40505
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Trial Vectors Error of 𝝈 = 0.002 Error of 𝝈 = 0.02 Error of 𝝈 = 0.05
1 100 0.0085436 0.094801 0.19616
2 100 0.0087253 0.08523 0.2190
3 100 0.0088595 0.086994 0.20568
4 100 0.0088853 0.080176 0.23631
5 100 0.0086112 0.087957 0.22753
6 100 0.0078584 0.089711 0.22771
7 100 0.0088493 0.088402 0.22035
8 100 0.0084432 0.097616 0.23225
9 100 0.0094813 0.086268 0.21164
10 100 0.0086436 0.08513 0.2013

TABLE 4 Error rate of recovery where n = 10,
m = 16, r = 5, sparkF = 6

that our results are associated to perfect recovery of signals under erased coefficients without noise, so as we expect, the
numerical results show that the method is sensitive with respect to noise. Although it completely depends on the noise
level and we observe that the approach works well enough in low noise cases.
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