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Abstract. In this paper, we investigate the recently proposed relativistic theory for MOND
using phase space analysis. Unlike its precedent theory, namely TeVeS, this theory is claimed
to agree with the observed Cosmic Microwave Background and matter power spectra. We con-
vert the background cosmological equations of the theory to a set of first-order autonomous
equations. Then we explore the corresponding fixed points and their physical meaning. This
method is powerful in the sense that the cosmological behavior of the model is diagnosed
independently of the magnitude of the free parameters of the theory. We show that the the-
ory has a viable sequence of cosmological epochs. Although this theory mimics the standard
cosmological model when specific conditions are used, it provides a richer structure as far as
the background cosmology is concerned. This implies that further investigations are required
to see if this theory contributes to addressing the current cosmological tensions.
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1 Introduction

The dark matter particles have not yet been detected. Therefore, alternative theories of
gravity are still a possible approach to address the missing mass problem. Although modified
gravity theories can explain the flat rotation curves of the spiral galaxies and some other
local properties of different types of galaxies, the formation of the cosmic structures has
been a serious challenge for them. In other words, although most of the modified gravity
theories that deny the existence of the cold dark matter particles can be compatible with
the local/galactic scale observations, they fail to explain the cosmic observations like Cosmic
Microwave Background (CMB) and matter power spectra observations.

Modified Newtonian dynamics (MOND) is one of the phenomenological theories that
are successful in explaining many properties of galaxies [1]. There is a universal acceleration
scale a0 ' 1.2 × 10−10 ms−2 in this theory beyond which the MOND effects appear, see [2]
and [3] for reviews on MOND. There have been several attempts to construct a relativist
theory for MOND. Relativistic Aquadratic Lagrangian (RAQUAL) was proposed in [4] for
the first time. The scalar field in RAQUAL plays the role of an auxiliary potential, and its
gradient then has the dimensions of acceleration and can be used to enforce the acceleration-
based modification of MOND. However, gravitational lensing is insensitive to such conformal
rescalings of the metric (apart from the contribution of the stress-energy of the scalar field
itself), and the non-Newtonian effects of the theory are always very different on dynamics
(which is MONDian) and lensing (which is not). A solution to this problem was therefore
proposed in [5], inspired by ‘stratified’ theories of gravity. More specifically, in addition to the
scalar field of RAQUAL, one may use a non-dynamical time-like vector field with unit-norm
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in order to have a disformal rescaling of the metric. Endowing this vector field with covariant
dynamics of their own has then been the next logical step in developing relativistic MOND
theories, which was actually first achieved in [6]. Tensor-Vector-Scalar (TeVeS) has been a
proof of concept that it is possible to construct a fully covariant theory reproducing MOND in
the weak-field limit for both dynamics and lensing. It was, however, quickly shown that this
theory had a Hamiltonian density unbounded by below and that, even at the classical level,
spherically-symmetric solutions were unstable. A generalized version of TeVeS, not suffering
from similar theoretical problems, was later proposed in [7], but the whole framework was
ruled out by actual observations, in particular by the observations of GW170817 followed by
an electromagnetic counterpart, demonstrating the equality of the speed of light and gravity.
Also, the theory fails in explaining the CMB observations [8]. This was then cured in a new
version of a TeVeS-like theory by [9]. However, it should be noted that if sterile neutrinos with
the mass of 11 eV/c2 are added with the same relic abundance as the cold dark matter in the
standard Λ Cold Dark Matter (ΛCDM) model, then the CMB can be fit within TeVeS [10].

Recently, a new relativistic theory for MOND (RMOND) has been proposed in [11].
This theory shares some common features with TeVeS. The theory is claimed to be consistent
with CMB and matter power spectra observations. Although there is no dark matter particle
postulated in this theory, the corrections that are induced to the standard Friedman equations
via the existence of the extra vector and scalar fields may mimic the dark matter behavior.

In this paper, we investigate the background cosmology in the context of RMOND. We
use the dynamical system approach in order to diagnose the general cosmological behavior of
the model. The outline of the paper is as follows: in section 2 we review the field equations.
In section 3, we derive the modified version of the Friedman equations. In section 4, we
apply the dynamical system approach to RMOND by defining a suitable set of phase space
variables. Then we discuss the meaning of the fixed points and the cosmological viability of
RMOND. The conclusions are drawn in section 5.

2 The field equations of RMOND

The generic action of the theory is given by S = SG + SM , where SM is the action of the
ordinary matter and SG is given by [11]

SG =
∫
d4x

√
−g

16πG

[
R− KB

2 FµνF
µν + 2(2−KB)Jµ∇µφ− F(Y, Q)− λ̂(AµAµ + 1)

]
(2.1)

where λ̂ is the Lagrange multiplier implying the constraint that AµAµ = −1. Only the metric
tensor, not the other fields, appears in SM . Therefore, the standard conservation equation
for the energy-momentum tensor Tµν of the normal matter is satisfied. The scalars Q and
Y, and the vector current Jµ are defined as

Q = Aµ∇µφ, Y = (gµν +AµAν)∇µφ∇νφ, Jµ = Aα∇αAµ (2.2)

In the original notation used in [11], the function F takes the following form

F(Y, Q) = 2Λ + (2−KB)Y + F(Y, Q) (2.3)

where Λ is the cosmological constant responsible for the cosmic speed up. As we will see, the
new fields of RMOND cannot play the role of the dark energy. So it is necessary to keep Λ.
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Now let us assume a general form for the F(Y, Q) as

F(Y, Q) = −2K(Q) +
∞∑
n=2

bnYn (2.4)

where bn are constant coefficients. On the other hand, let us define the functions FQ and FY
as follows

FQ = ∂F
∂Q

= −2dK
dQ

= −2KQ, FY = ∂F
∂Y

(2.5)

Now by varying the action S with respect to the metric tensor gµν , we find the following field
equation

Gµν +Hµν = κTµν (2.6)

where Gµν is the Einstein tensor and κ = 8πG. We use the units in which the speed of light
is c = 1. On the other hand, the tensor Hµν includes all the corrections of this theory to
General Relativity (GR) and is given by

Hµν = −KB

(
FµσF

σ
ν −

1
4gµνF

αβFαβ

)
− λ̂AµAν − (2−KB)gµνJα∇αφ

+ 2(2−KB)
(
Aσ∇(µφ∇σAν) −

1
2AµAν�φ+∇σφA(µF

σ
ν)

)
+ 1

2gµνF− FY∇µφ∇νφ− (2QFY + FQ)A(µ∇ν)φ

(2.7)

Variation of the action with respect to the vector field yields

KB∇µFµν + (2−KB)(∇µφ∇νAµ −∇µ(Aµ∇νφ))− λ̂Aν − ∇
νφ

2 (2QFY + FQ) = 0 (2.8)

and the field equation of the scalar field φ is

∇µ(FQAµ)− 2(2−KB)∇µJµ + 2∇µ(QFYAµ) + 2∇µ(FY∇µφ) = 0 (2.9)

Although with RMOND, we deal with a classical theory of gravity, it is natural to ask:
what is the difference between adding new fields to the action of the gravitational theory
and postulating new dark matter particles? If there is no difference, why should we call
RMOND a modified theory of gravity? Let us explain why there are some basic differences.
In galactic systems, the RMOND fields do not behave by their energy (mass) density to
strengthen gravity, as do dark matter particles. Instead, these fields modify the gravitational
interactions between bodies. Another reason that these fields do not act like dark matter
particles is that they are produced by the baryons and stick with them. This means they
cannot be removed from a self-gravitating system leaving a bare baryonic system. However,
this is quite possible for dark matter particles via mechanisms like tidal stripping.

3 The modified Friedmann equations in RMOND

In this section, we find the modified Friedmann equations in RMOND. To do so, we start
with the flat Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 + a(t)2(dr2 + r2dΩ2) (3.1)
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where a(t) is the cosmic scale factor. In the FRW space-time, all the fields depend only on
the cosmic time, and the above-mentioned complicated field equations can be substantially
simplified. More specifically, it is straightforward to show that Aµ = (−1, 0, 0, 0), Fµν = 0,
Y = 0, Jµ = 0, Q = φ̇, and

F = 2Λ− 2K,
FY = (2−KB),
FQ = −2KQ

(3.2)

It is easy to show that the field equation (2.9) reduces to ∇µ(FQAµ) = 0. This equation in
the FRW space-time takes the following form

K̇Q + 3HKQ = 0 (3.3)

where H(t) = ȧ/a is the Hubble function. This equation shows that KQ drops as 1/a3. This
is one of the main features of the theory and implies that some contributions of the extra
fields in this theory behave like cold dark matter. This is similar to what happens in mimetic
gravity [12]. On the other hand, we use the field equation of Aµ, namely (2.8), to fix the
Lagrange multiplier λ̂. The result is

λ̂ = (2−KB)(Q̇+ 3HQ+Q2)−QKQ (3.4)

By substituting this equation into (2.6), and assuming that the cosmic fluid is described by
an ideal fluid with the baryonic density ρ and pressure p, we find the generalized Friedmann
equations in RMOND:

H2 = κ

3ρ+ Λ
3 + 1

3(QKQ −K) (3.5)

Ḣ +H2 = −κ6 (ρ+ 3p) + Λ
3 −

1
6(QKQ + 2K) (3.6)

These equations combined with (3.3) make the governing equations for the dynamics of the
background cosmology. It is necessary to mention that equations (3.5) and (3.6) take the
standard form as in ΛCDM by defining the following effective density and pressure

ρ̂ = 1
κ

(QKQ −K), p̂ = K
κ

(3.7)

Although KQ drops as 1/a3, it is clear that ρ̂ does not behave like the cold dark matter
component in ΛCDM. Therefore, it is not trivial if the cosmic history in this theory possesses
a true sequence of cosmic epochs. This is why the dynamical system analysis of the theory
may provide valuable information about the validity of the theory.

It is crucial to know the function K. The following four functions in connection with
CMB observations have been proposed in [11]:

K1(Q) = κ2(Q−Q0)2 (3.8)

K2(Q) = κ2
4Q2

0
(Q2 −Q2

0)2 (3.9)

K3(Q) = 2κ2Z2
0 (coshZ − 1) (3.10)

K4(Q) = 2κ2Z2
0 (eZ2 − 1) (3.11)
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where Q0, κ2 and Z0 are free parameters that should be fixed by cosmic observations, and
Z is defined as Z = (Q−Q0)/Z0. As already mentioned, irrespective of the functional form
of K(Q), its derivative with respect to Q drops as KQ = I0/a

3. Where I0 is a constant of
integration. This means that it is possible to find Q in terms of a, and consequently ρ̂ as a
function of the scale factor. It is easy to verify that the corresponding effective densities are

κρ̂1(a) = I0Q0
a3 + I2

0
4κ2a6

κρ̂2(a) ' I0Q0
a3 + I2

0
4κ2a6 −

I3
0

8κ2
2Q0a9 + I4

0
8κ3

2Q
2
0a

12 +O(I5
0 )

κρ̂3(a) ' I0Q0
a3 + I2

0
4κ2a6 −

I4
0

192κ3
2Z2

0a
12 + I6

0
2560κ5

2Z4
0a

18 +O(I8
0 )

κρ̂4(a) ' I0Q0
a3 + I2

0
8κ2a6 −

I4
0

256κ3
2Z2

0a
12 + 5I6

0
12288κ5

2Z4
0a

18 +O(I8
0 )

(3.12)

In all cases, the first term on the right-hand side is I0Q0
a3 = Q0KQ and mimics the cold dark

matter behavior. Now the question is: what is the role of the other terms proportional to
a−n with n > 3? The effective pressure p̂ is also nonzero and can be similarly expanded over
the scale factor a. This directly means that the equation of state parameter ω̂ = p̂/ρ̂ varies
with time and may cause significant deviations from standard cosmology. Although these
extra terms will decay in the late time universe, their impact on the early or intermediate
universe needs to be carefully checked. In the next section, we explore this concern.

4 RMOND as a dynamical system

The background cosmology in RMOND is described by three equations (3.3), (3.5), and (3.6)
alongside the suitable equation of state for the normal matter distribution. In this section, by
choosing appropriate phase space variables, we convert the governing equations to a system of
autonomous first-order dynamical system differential equations. For a comprehensive review
of the dynamical system approach in the cosmological models, we refer the reader to [13].

Our analysis here is independent of the form of the main function K(Q). However, the
decomposition based on the different functions of K(Q) presented at the end of the previous
section, i.e., equation (3.12) is helpful to define the phase space variables. The density ρ can
be written as the combination of the non-relativistic ρm and relativistic ρr components. We
combine ρm with ρd = Q0KQ/κ in the dimensionless variable Ωm(t) as

Ωm = κ

3H2 (ρm + ρd) (4.1)

notice that ρd is the effective dark matter introduced by RMOND. Therefore the total non-
relativistic “matter” contribution to the energy-mass budget of the cosmos is identified by
Ωm. The other variables are defined as

Ωr = κρr
3H2 , ΩΛ = Λ

3H2 , Ωy = K
3H2 , Ωx = (Q−Q0)KQ −K

3H2 , λ =
K2
Q

KQQK
(4.2)

where KQQ = d2K
dQ2 . With these variables, the equation (3.5) takes the following form

Ωm + Ωr + ΩΛ + Ωx = 1 (4.3)

– 5 –
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Notice that Ωy and λ do not appear in this equation. On the other hand, it is necessary to
mention that Ωx includes all the extra corrections that may cause significant deviation from
standard cosmology. Therefore, the time evolution of this parameter is of key importance
here. Using equation (4.3) and (3.5)–(3.6) we find

2Ḣ
3H2 = −

(
Ωm + 4

3Ωr + Ωx + Ωy

)
(4.4)

we use this equation and the following continuity equations

ρ̇m + 3Hρm = 0
ρ̇d + 3Hρd = 0
ρ̇r + 4Hρr = 0

(4.5)

to obtain the following dynamical system equations

Ω′m = 3Ωm

(
Ωm + 4

3Ωr + Ωx + Ωy − 1
)

(4.6)

Ω′r = 3Ωr

(
Ωm + 4

3Ωr + Ωx + Ωy −
4
3

)
(4.7)

Ω′x = 3Ωx

(
Ωm + 4

3Ωr + Ωx + Ωy − 1
)
− 3Ωy (4.8)

Ω′y = 3Ωy

(
Ωm + 4

3Ωr + Ωx + Ωy − λ
)

(4.9)

λ′ = 3λ
(
λ− 2 + Γ(λ)

)
= 3λf(λ) (4.10)

The prime sign stands for derivative with respect to ln a. We do not write an equation
for ΩΛ as it is not an independent variable. So the cosmology of RMOND deals with a
five-dimensional phase space (Ωm,Ωr,Ωx,Ωy, λ). Notice that the function Γ is defined as

Γ = KQKQQQ
K2
QQ

(4.11)

where KQQQ = d3K
dQ3 . λ and Γ are functions of Q. Therefore, in principle, one may eliminate

Q to obtain Γ as a function of λ. Before moving on to find the fixed points, let’s express
the deceleration parameter q = −äa/ȧ2 and the effective equation of state parameter ωeff in
terms of the dynamical system variables:

q(t) = −1− Ḣ

H2 = −1 + 3
2

(
Ωm + 4

3Ωr + Ωx + Ωy

)
(4.12)

ωeff = 2q − 1
3 = −1 + Ωm + 4

3Ωr + Ωx + Ωy (4.13)

4.1 Fixed points
Now let us find the fixed points associated with the system. To do so, the right-hand side
of the dynamical system equations should be set to zero. The roots of the right-hand side of
the λ′ equation, irrespective of the exact form of K, are shown by λ∗. It turns out that for
each root λ∗, there are four fixed points labeled as Pi, i = 1, . . . , 4. These points and their
properties are shown in table 1. In the following, we discuss them in more detail.
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Lable (Ωm,Ωr, Ωx, Ωy, λ) ωeff q

P1 (0, 1, 0, 0, λ∗) 1
3 1

P2 (1− Ωx, 0, Ωx, 0, λ∗) 0 1
2

P3 (0, 0, 0, 0, λ∗) −1 −1

P4 (0, 0, 1, λ∗ − 1, λ∗) λ∗ − 1 −1 + 3λ∗
2

Table 1. The fixed points and their characteristics.

Lable (E1, E2, E3, E4, E5) Stability

P1 (4, 1, 1, 4− 3λ∗, A) Unstable

P2 (3, −1, 0, 3(1− λ∗), A) Unstable

P3 (−4, −3, −3, −3λ∗, A) Stable

P4 (−3(1− λ∗), −3(1− λ∗), 3λ∗, −4 + 3λ∗, A) Unstable if λ∗ > 0

Table 2. Eigenvalues of the Jacobian matrix and their stability for the fixed points. A is defined as
3
(

Γ(λ∗)− 2 + λ∗(2 + dΓ(λ∗)
dλ )

)
.

4.1.1 P1: radiation-dominated phase

The effective equation of state parameter, in this case, is ωeff = 1/3, and the relativistic matter
dominates the cosmic soup. On the other hand, as expected, this is an unstable phase.
To be specific, let us express our dynamical systems equations (4.6)–(4.10) as x′i = fi(x)
where x = (Ωm,Ωr,Ωx,Ωy, λ). Then the linear stability matrix components are given by
Mij = ∂fi/∂xj . The eigenvalues associated with each fixed point specify the stability of the
point. Since our phase space is five-dimensional, there are five eigenvalues Ei for each point.
The eigenvalues and their stability are summarized in table 2.

In this phase, the scale factor grows as a(t) ∝ t1/2. Therefore, there is a standard
radiation-dominated phase in the thermal history of RMOND provided that λf(λ) = 0 at λ∗.

4.1.2 P2: matter-dominated phase

P2 is a fixed line since Ωx takes arbitrary values. Since ωeff is zero, the scale factor varies as
a(t) ∝ t2/3. This is the same behavior as the matter-dominated phase in ΛCDM. There are
two specific points on this line: 1) the point Ωx = 0 and Ωm = 1 on this fixed line correspond
to the standard matter-dominated phase. In other words, despite the existence of extra terms
in the effective density ρ̂, there is a standard matter-dominated phase in RMOND. 2) The
point Ωx = 1 and Ωm = 0: although the normal non-relativistic matter does not have any
contributions to the cosmic evolution at this phase, the extra terms combined in Ωx still
behave like a matter component with ωeff = 0.

For the fixed line P2, the eigenvalue E1 is positive, and it is enough to guarantee that
all the points on this fixed line are unstable.
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4.1.3 P3: de Sitter phase

This fixed point corresponds to ΩΛ = 1, ωeff = −1 and q = −1. This point is stable if λ∗ > 0
and A < 0. If so, then P3 is a standard de Sitter phase necessary to explain the cosmic
speed up.

4.1.4 P4: Ωx dominated phase

This fixed point does not exist in the standard cosmology. Depending on the value of λ∗, this
fixed point describes an accelerated or decelerated expansion. This fixed point is of special
importance in the sense the extra terms proportional to a−n with n > 3 in the effective energy
density control the cosmic evolution. So it is important to ensure that these terms do not
cause serious deviations from the standard cosmology. Since such a phase does not exist in
the standard cosmology, it is natural to expect that the cosmic evolution should not stay too
long in this phase. This directly means that this fixed point should be unstable. Otherwise,
there would be a false phase that the cosmic evolution falls into it and stays there forever.

It should be noted that for λ∗ > 0, the third eigenvalue is positive E3 > 0, and the point
is unstable. Fortunately, the condition λ∗ > 0 is also necessary for having a stable de Sitter
phase. In other words, at the same time, we have a viable de Sitter phase, and an unstable
Ωx dominated phase.

4.2 Different potentials

In our analysis in the previous subsection, we did not choose any specific potential K(Q).
Now, let us investigate all the potentials proposed in RMOND. We start with the simple
quadratic potential K1(Q).

4.2.1 The quadratic potential K1(Q)

In this case it is easy to show that

λ(Q) = 2, Γ(Q) = 0 (4.14)

this means that for this specific case, the phase space is four-dimensional since λ is constant.
Therefore we have four eigenvalues for each point. One may simply ignore the eigenvalue E5.

This potential possesses a true unstable matter-dominated phase. This is also the case
for the radiation-dominated phase. The late time de Sitter solution is stable as expected.
Although P4 is unstable, it appears in a wrong place and causes violent deviations from the
standard cosmology.

The time evolution of the cosmic densities for two specific choices of initial conditions
has been shown in figure 1. Each panel corresponds to a specific trajectory in the phase space.
In the top panel, we have chosen the current observational values of the cosmic densities as
the initial conditions. The evolution starts with the decelerating phase P4 with Ωx = 1 and
ωeff = 1, and then continues to the unstable matter-dominated phase P2. Finally, it reaches
the de Sitter phase P3. The radiation-dominated point P1 is never realized with these specific
initial conditions. Therefore, clearly, this is a wrong evolution for the cosmic background.

To capture the radiation-dominated phase, we use a much higher value for the current
magnitude of Ωr. On the other hand, we keep all the other initial conditions unchanged. The
evolution of the cosmic densities is shown in the bottom panel of figure 1. In this case, the
evolution starts with P4, then enters the radiation-dominated phase P1. Then the trajectory

– 8 –



J
C
A
P
1
0
(
2
0
2
2
)
0
2
9

-�� -�� -� � �

���

���

���

���

���

���

-�� -�� -� � �

���

���

���

���

���

���

Figure 1. The evolution of the cosmic density parameters in the quadratic potential K1(Q). In
the top panel the initial conditions are set at ln a = 0 as Ωm = 0.3, Ωr = 10−5, Ωy = 10−10 and
ΩΛ = 0.68. In the bottom panel everything is the same as in the top panel but Ωr = 10−2.

in the phase space gets close to P2 and eventually falls into the late time accelerated fixed
point. However, the existence of P4 at the early universe clearly signals a wrong evolution.

To summarize, let us emphasize that the quadratic potential K1(Q) is not viable. This
fact has already been reported in [11] based on different analyses. Notice that with this
potential, the total energy density falls as A/a3 + B/a4 + C/a6. Each term dominates in
a specific period of time. Therefore, it is natural to expect an extra phase associated with
the last term. As the dynamical system analysis proved, the existence of this extra phase
destroys the validity of the quadratic model.

4.2.2 The Higgs-like potential K2(Q)

In this case it is easy to show that

λ(Q) = 4Q2

3Q2 −Q2
0
, Γ(λ) = 3

4λ(2− λ) (4.15)
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Figure 2. The evolution of λ for the Higgs-like potential K2(Q). In this model, λ starts at λ = 4/3,
and then two separate branches, shown by red and blue curves, are possible. The dashed gray line
indicates the line λ = 4

3 .

Q0 indicates the minimum of the potential at the late time de Sitter phase. At the late time by
Q→ Q0, we find λ∞ = 2 and Γ∞ = 0. The equation (4.10) can be analytically integrated as

( | 4− 3λ |
| 4− 3λ0 |

)3
×
( | 2− λ0 |
| 2− λ |

)2
× | λ0 |
| λ |

= a6 (4.16)

where λ0 is the current value of λ, namely λ(0) = λ0. It should be noted that the current
value of the scale factor is scaled to unity throughout this paper. By taking the limit of (4.16)
at a→ 0 we find that λ always starts with λ = 4

3 . There are two general degenerate branches
for the time evolution of λ shown in figure 2. By degenerate, we mean that although the
evolution of λ is different, the other phase variables are the same in both branches. They
can be classified by the value of λ0. By looking at the right-hand side of (4.10), and assum-
ing that 0 ≤ λ ≤ 2 it is clear that λ′0 > 0 if 4

3 < λ0 < 2. In this case, the blue curve is
realized. On the other hand, λ′0 < 0 if 0 < λ0 <

4
3 and the red curve is achieved. The blue

branch asymptotically reaches the value λ = 2, and accordingly, the red curve asymptotically
reaches λ = 0. Interestingly, each asymptotic value corresponds to a set of fixed points. More
specifically, it is easy to show that there are three roots for λf(λ) as λ∗ = 0, 4

3 , 2. As already
mentioned, for each value of λ∗, in principle, there are four fixed points. Lets us label the 12
fixed points/lines as P [0]

i , P [4/3]
i and P [2]

i for i = 1, 2, 3, 4.
Now let us pick the same initial conditions used in the quadratic model. The result has

been shown in figure 3. The evolution starts with the standard radiation-dominated phase
P [4/3]

1 then enters the standard matter-dominated phase P [4/3]
2 . In the end, the evolution falls

into the late time de Sitter phase P [2]
3 (or P [0]

3 ). As mentioned before, this phase is stable if
λ∗ > 0 and A < 0. It is easy to show that this potential has a standard accelerated phase
because both fixed points P [0]

3 and P [2]
3 have a negative value for A. It should be noted that

the evolution of the density parameters, shown in figure 3, is almost insensitive to the value of
λ0. Notice that the trajectory in the phase space does not pass the nonstandard extra points
P [0]

4 , P [4/3]
4 and P [2]

4 . It should be emphasized that since the evolution starts with λ∗ = 4/3,
unlike in the quadratic model, the points P [0]

4 and P [2]
4 do not appear in the early universe.
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Figure 3. The evolution of the cosmic density parameters in the Higgs-like potential K2(Q). The
initial conditions are set at ln a = 0 as Ωm = 0.3, Ωr = 10−5, Ωy = 10−10, λ0 = 1.8 and ΩΛ = 0.68.

It is interesting to mention that, in the Higgs-like potential, the point P [4/3]
4 is charac-

terized by ωeff = 1/3. In other words, this point behaves like a radiation-dominated phase.
However, notice that this is not a standard radiation-dominated phase in the sense that the
relativistic matter has no contribution. This phase does not appear in the solution presented
in figure 3.

Figure 4 illustrates the projected phase space for autonomous equations (4.6)–(4.10) on
the Ωx − λ plane. For all values of λ∗, the points P [λ∗]

4 are unstable as expected. On the
other hand, the points P [0]

3 and P [2]
3 are stable. These stable points indicate the late time de

Sitter phase. The green area illustrates the region where the cosmic expansion is accelerated,
i.e., ä > 0.

To summarize, the problem with the quadratic model is resolved in the Higgs-like model.
This model gives a viable sequence of fixed points resembling the standard cosmological
model, provided that an appropriate set of initial conditions is used.

4.2.3 The “Cosh” potential K3(Q)
For this potential we have

λ(Q) = 1 + sechZ, Γ(λ) = λ(2− λ) (4.17)

The equation (4.10) can be integrated to give

λ(a) = 1± a3√
a6 + β

(4.18)

where β = −1 + (1 − λ0)−2 and λ0 is the current value of λ. Therefore λ starts with λ = 1
at early times and then asymptotically reaches 0 or 2. In other words, in this case, we have
λ∗ = 0, 1, 2. Let’s indicate the corresponding fixed points/lines by P [0]

i , P [1]
i and P [2]

i . Since
λ starts from λ = 1 at the early universe, the unusual points P [0]

4 and P [2]
4 do not show up.

On the other hand, in this case, the fixed point P [1]
4 lies on the fixed line P [1]

2 and corresponds
to a matter-dominated phase where ωeff = 0. It is necessary to mention that although the
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Figure 4. The projection of phase space on Ωx − λ plane for the Higgs-like potential. P [4/3]
4 , P [0]

4
and P [2]

4 are unstable fixed points. The stable fixed points P [0]
3 and P [2]

3 indicate the de Sitter phase.
The green (shaded) region shows the accelerated expansion phase.
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Figure 5. The evolution of the cosmic density parameters in the case of “Cosh” potential K3(Q). The
initial conditions are set at ln a = 0 as Ωm = 0.3, Ωr = 10−5, Ωy = 10−10, λ0 = 1.8 and ΩΛ = 0.68.

scale factor varies as a(t) ∝ t2/3, this fixed point is not standard in the sense that the normal
non-relativistic matter does not contribute to this phase.

In figure 5 we have illustrated the evolution of the cosmic density parameters. The same
initial conditions as in the Higgs-like potential are implemented. It is difficult to discriminate
the evolution of the density parameters in these models. Notice that the trajectory in the
phase space passes the following points/line P [1]

1 , P [1]
2 and P [2]

3 (or P [0]
3 ). Since A is negative,

the stability of the late time de Sitter phase, i.e., P [0]
3 and P [2]

3 , is guaranteed. The problematic
fixed point P [1]

4 does not appear in this solution.
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Figure 6. The projected phase space on Ωx − λ plane for the “Cosh” potential. There are three
unstable points corresponding to the Ωx dominated phase, P [1]

4 , P [0]
4 and P [2]

4 . The de Sitter phase is
denoted by P [0]

3 and P [2]
3 . The green (shaded) area indicates the accelerated regime.

The projected phase space for this potential has been plotted in figure 6. Trajectories
with different initial conditions start from P [1]

4 which is a repulsive point, and get close to
two saddle points P [0]

4 and P [2]
4 . All the trajectories finally enter the stable points P [0]

3 and
P [2]

3 that represent the late time de Sitter phase. The green (shaded) region in this figure
denotes the area in which ωeff < −1

3 , i.e., the accelerated expansion regime.

4.2.4 The exponential potential K4(Q)
Mathematically, the exponential model is more complex than the other models as far as the
background cosmology is concerned. In this case, the functions λ and Γ are

λ(Q) = 2eZ2Z2

(eZ2 − 1)(1 + 2Z2)
, Γ(Q) = 2Z2(3 + 2Z2)

(1 + 2Z2)2 (4.19)

Although one can easily find λ(Γ), it is not possible to find an expression for Γ(λ). Therefore,
there would be some difficulties with the numeric solutions of the dynamical system differ-
ential equations. In the following, we replace λ with a new definition that is suitable for the
exponential potential. However, before moving on, let us mention that one may numerically
find λ∗s for our original definition of λ. To do so, let us plot the right-hand side of (4.10)
in terms of Z, namely λ′(Z). It turns out that λ′ vanishes at Z = 0,±1.793, and ±∞.
Accordingly, by taking the limit of λ(Z) at these values, we find λ∗ = 2, 0.90, and 1. Notice
that P [0.9]

4 corresponds to an accelerated phase with ωeff = −0.1.
Our analysis so far is powerful in the sense that the free parameters of the theory

do not appear in the calculations. The existence of the viable cosmic epochs is explored
independently of the magnitude of the free parameters. This is the case also in GR when the
magnitude of the gravitational constant G and the velocity of light do not directly appear in
the dynamical system analysis. Now we redefine λ for the exponential potential. The only
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Figure 7. λ′ in terms of ln a for the exponential potential K4(Q).

cost is that we will need the magnitude of the free parameters. It proves useful to define λ̃
and Γ̃ as follows

λ̃ = KQ
Z0KQQ

= Z
1 + 2Z2 ,

Γ̃(λ̃) = Z0KQQQ
KQQ

= 6Z + 4Z3

1 + 2Z2 = 1 + 8λ̃2 −
√

1− 8λ̃2

2λ̃

(4.20)

λ̃ satisfies the following equation

λ̃′ = −3
2 λ̃
(
1− 8λ̃2 +

√
1− 8λ̃2

)
(4.21)

which in this case, we find three roots λ̃∗ = ±1/
√

8, 0.
Except for the equation (4.9), the other equations of the dynamical system do not

change. We need to replace (4.9) with

Ω′y = −3
(Z0
Q0

)
(Ωm − Ωb)λ̃+ 3Ωy

(
Ωm + Ωx + Ωy + 4

3Ωr

)
(4.22)

where Ωb is the baryonic cosmic density parameter and satisfies the following equation

Ω′b = 3Ωb

(
Ωm + Ωx + Ωy + 4

3Ωr − 1
)

(4.23)

Now we have to choose suitable values of Z0 and Q0 compatible with CMB observations.
We pick them from [11] as Z0 = 10−17 and Q0 = 10−4. Notice that from (4.21) we have
| λ̃ |≤ 1/

√
8. Therefore, the first term on the right-hand side of (4.22) is extremely small.

So we neglect this term. We have numerically solved the dynamical system equations for the
same initial conditions as in the other models. The result is shown in figure 8. We see that
the background cosmology follows a standard trajectory in the phase space similar to the
standard ΛCDM model.
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Figure 8. The evolution of the cosmic density parameters in the exponential potential K4(Q). The
initial conditions are set at ln a = 0 as Ωm = 0.3, Ωr = 10−5, Ωy = 10−10, and ΩΛ = 0.68. On the
other hand, λ̃(−17) = 1/

√
8 and Q0/Z0 = 1013 as in [11].
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Figure 9. The evolution of the effective equation of state parameter in RMOND models compared
with ΛCDM.

4.3 Comparison with ΛCDM

We confirmed that the quadratic model K1 does not work. On the other hand, the other
three models give a suitable sequence of fixed points with a true expansion rate. It would
be instructive to compare the evolution of density parameters in RMOND with those in
standard cosmology. To do so, we compare the effective equation of state parameter ωeff in
different models. In the case of ΛCDM we use the initial conditions at ln a = 0 as Ωr = 10−5

and ΩΛ = 0.68. This is the same as that we used in the RMOND models. Notice that the
initial condition on Ωm in ΛCDM should be equal to Ωm+Ωx at ln a = 0 in RMOND models.
The evolution of ωeff is shown in figure 9. The three cosmological epochs, namely the matter,
radiation, and dark energy-dominated phases, can be clearly seen as step-like features in ωeff.
As expected, the K1 model violently deviates from ΛCDM. On the other hand, the other
models cannot be distinguished from ΛCDM.
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In most of the figures reported so far, we have used Ωy = 10−10 at ln a = 0. It should be
mentioned that choosing this very small value is not necessary. In other words, the results are
not sensitive to the current value of Ωy in the sense that it can be varied in a wide interval. As
an example, in figure 10, we have shown the evolution of the density parameters as well as ωeff
in K3 model and ΛCDM when Ωy = 10−2. In the top panel, ωeff is compared in K3 and ΛCDM
models. In the middle panel, the time evolution of Ω’s has been shown for the ΛCDM case.
Accordingly, the bottom panel belongs to K3. It is clear that the deviation from the standard
case is very small as far as the expansion rate is concerned. On the other hand, although
the evolution of Ωm is different in both models, the combination of Ωm and Ωx, namely
the dashed curve in the bottom panel, in the K3 model mimics the behavior of Ωm in the
standard model. It turns out that choosing larger values for Ωy leads to the wrong evolution.

5 Discussion and conclusions

In this paper, we investigated the cosmological dynamics of the newly proposed relativistic
theory for MOND. The theory has two extra fields compared to GR. A scalar field φ and a
vector field Aµ which are supposed to play the role of the dark matter component in ΛCDM.
In addition, there is a free function in the action of the theory with four different proposed
forms in connection with the CMB observations [11]. To study the cosmological evolution
within this theory, we used the dynamical system approach. By converting the governing
equations to a set of first-order differential equations, we constructed a five-dimensional
dynamical system which has three fixed points and one matter-dominated fixed line. We
investigated the stability of the points and line by the linear stability theory (table 1). Using
this approach, we proved that the theory has a true sequence of the cosmological epochs.
The expansion rate of the cosmos in the different phases can exactly coincide with that in
standard cosmology, provided that a suitable set of initial conditions is imposed. However, it
is necessary to mention that the theory provides a richer structure in the sense that there are
more fixed points compared to ΛCDM. Consequently, different initial conditions, in principle,
could cause deviations from the standard model of cosmology.

We reiterate that this theory has an extra fixed point (P4) compared to GR. This point
corresponds to the Ωx dominated phase, which does not exist in the standard cosmology.
This fixed point is unstable in all the models, and the trajectories in the phase space do not
necessarily pass this nonstandard extra point except in one of the models, namely K1, in
which P4 unavoidably appears at the early universe and causes violent deviation from the
standard cosmology. So this specific model is certainly ruled out. This is not new and has
been already noticed in [11] using different interpretations.

Our results imply that RMOND has a simple and viable cosmological behavior at the
background level. More specifically, with a suitable choice of initial conditions, RMOND
successfully recovers ΛCDM, while deviations from ΛCDM are possible as well.
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Figure 10. The evolution of the cosmic density parameters and the corresponding effective equation of
state parameter in K3 model. The middle panel belongs to cosmic density parameters in ΛCDM. The
initial conditions for the K3 model at ln a = 0 are Ωm = 0.3, Ωr = 10−5, Ωy = 10−2, and ΩΛ = 0.68.
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