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Abstract

Purpose
Plant-Soil – “Arbuscular Mycorrhizal Fungi (AMF)” system dynamics are driven by complex arrays of simultaneous cause-effect relationships. Understanding
this complexity requires high sophisticated analytical tools and methods such as Structural Equation Modeling (SEM). There has been no practical solution to
determine plant-fungus coexistence e�cacy. Therefore, the objective of this study is to �nd a multidisciplinary method to determine the contribution of AMF in
coexistence with maize plant.

Methods
Con�rmatory factor analysis divided the variables into two groups. On the ecophysiological basis, SEM was employed to above- and belowground
relationships in corn-mycorrhizae �elds. A SEM model was formulated including the path for cause-effect processes of capture and utilization of resources.
The model was satisfactorily calibrated and validated.

Results
Applying multiple regression revealed that variables including leaf area index, stem diameter, dry matter, SPAD readings, plant height, canopy temperature
have had the most causal effect to forming corn yield under �eld condition of inoculation by AMF. RMSEA = 0.14 and normalized chi-square = 1.97 indicated
the model competence. The direct advantages of AMF symbiosis make an increase of 35 percent in resources capture (radiation and from the soil) by
association.

Conclusions
These results could be used to manage crop producing systems according to ecological guidelines and environmentally sound operations. We recommend
SEM as a crop-soil-AMF system quantifying tool for analyzing treatment effects also for complex arrays of management objectives. The method can employ
to determine the e�cacy of crop-AMF coexistence which in turn reveal related advantageous may resulted in widespread applying AMF in agroecosystems.

1. Introduction
AMF is an important part of the soil biological system, much of bene�cial microbial co-operations throughout the rhizosphere attributed to it (Andrade, 2004;
Smith and Read, 2008). AMF symbiosis with plants roots plays a key role in soil productivity and sustainability of terrestrial ecosystems as well as
agroecosystems (Mader et al., 2002; Lambers et al., 2008; Van Der Heijden and Horton, 2009; Wagg et al., 2014). AMF form mutualistic relationships with 80–
90% of all terrestrial plants, can alleviate prevalent environmental and health concerns related to intensive high input agriculture (Lambers et al., 2008;
Parniske, 2008; Gianinazzi et al., 2010; Gaungi et al., 2019). Many species of soil fungi and bacteria are able to solubilize phosphorus in vitro and some of
them including AMF can mobilize phosphorus in plants. Phosphorus is the second essential element that play a critical role in plant development and growth.
The use of AMF plays a key role in improving the growth and the crops yield. It has been reported that the application of AMF improved growth and
physiological parameters through rising the activities of antioxidant enzymes and reduction of the oxidative damage caused by the salt stress on Stevia
rebaudiana (Janah et al., 2021). Vega et al. (2021) reported that the combined use of sustainable tools such as Si fertilization and AMF could be suggested
as a promising strategy to overcome the negative effects produced by water de�ciency–related stress.

Nowadays, searching for management strategies that are capable of improving phosphorus fertilization e�ciency, increase crop yields and reduce
environmental pollution caused by phosphorus loss from the soil is of a great interest, due to the problems associated with the restriction of supply
phosphorus fertilizer, its rapid �xation in agricultural soils, high costs and environmental pollution caused by it (Alori et al., 2017). The use of mycorrhizal
fungi as biofertilizers in agro-ecosystems could be an appropriate solution to this problem. In any coexistence relationship, it is crucial to determine the
relative contribution of the two living organisms involved to manage the relationship. In other words, the identi�cation of pros and cons, or costs and bene�ts
of the relationship reveals whether or not the relationship is in natural equilibrium. The overall e�cacy of mycorrhizal symbiosis is determined by two
components including infectiveness (the rate of infection of the host plant by the fungus) and effectiveness (the rate of the fungus infection could be
affecting the host plant performance positively mainly through the ecophysiological mechanisms/processes) (Lambers et al., 2008; Gianinazzi et al., 2010;
Jahan, 2012; Schutz et al., 2018; Ganugi et al., 2019). The only conventional method which is being used today just focuses on measuring the level of
infection. It has been employed during the past decades as “Determining the percent root length colonization” and is based on the direct observation of fungal
organ structures in the root cells of the host plant using binocular. The grid-line intersect method requires �xing and dyeing the host plant root cells, and
determining the percentage of host plant root length that contain the fungal structures including mycelia, vesicles and arbuscules (Giovannetti and Mosse,
1980). This method is not only inaccurate, but also is time consuming, laborious and costly. Moreover, possible dying of the root cortex vessels and other
related structures simulating false mycorrhizal structures, could be a serious problem. In addition to the above problems, the most important disadvantage of
the method, which highlights the necessity of searching for a new and e�cient method, is to ignore the determination of the extent of mycorrhizal fungal
effectiveness. Allen (2001) showed that root length colonization percentage is not an appropriate index for determining the mycorrhizal infection. Although
the e�cacy of this method was questioned by some researchers later (Allen, 2001; Hart and Reader, 2002; Jahan and Nassiri-Mahallati, 2013), it is still the
only common method, and no alternative has been found. The method proposed in the present paper, unlike the traditional one which is structural oriented (It
does not distinguish between natural, neutral and parasitic coexistence relationships) is based on the ecophysiological mechanisms and processes of the
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host symbiont plant. In other words, it is functional oriented. In addition to fungal structures, this method considers a range of growth and ecophysiological
characteristics of the host plant as a functional consequence of its symbiosis which is revealed in plant performance. Unveiling the underlying mechanisms
and processes, together with the mathematical relationships between them, helps to quantify the contribution and evaluate the level of usefulness of
mycorrhizal symbiosis.

Structural equation modeling (SEM) is sometimes called a “second generation” multivariate method as it provides some advances beyond other so-called
“�rst generation” multivariate methods such as: canonical correspondence analysis (CCA), principal components analysis (PCA), nonmetric multidimensional
scaling (NMS), multiple regression (Fornell, 1982; Grace, 2006) .As detailed by Grace (2006), SEM goes beyond the descriptive nature of �rst generation
approaches by introducing con�rmatory tests and testing of multivariate hypotheses. It is a highly �exible method applied to test networks of causal
relationships. SEM brings researchers closer to causal understanding (as used by Shipley, 2000) by �tting data to models representing hypotheses according
to correlative information by determining goodness-of-�t as well as comparing �ts among models representing alternative mechanistic hypotheses. SEM
could be the best thought of as a quantitative modeling approach rather than a speci�c statistical technique. A fundamental premise of SEM is that
abstracting systems as probabilistic networks provides scientists a practical and effective way to study cause-effect relationships. While when causality is
relatively well-known in an ecosystem, SEM has a great strength of ability to partition direct and indirect effects making distinct multiple pathways by which
one entity can in�uence another. Accordingly, the strength of these various pathways can then be estimated and compared (Lamb, 2010) that is why since
2000, SEM is becoming increasingly popular in ecological researches (de Mazancourt et al., 2013). Before that, standard methods (e.g., ANCOVA, multiple
regression) did not act satisfactorily where the goal was to study biological mechanisms leading to an outcome (Lamb et al., 2011). There has been little
study on ecological aspects of cropping systems using SEM.

The physiological, biochemical, and molecular mechanisms underlying this synergistic action remain poorly understood. The ecological interactions between
crop plants and AMF, especially the dynamics of symbiosis are still largely unexplored. Therefore, the main objective of this study is to explore a way to go
beyond the solely observation and evaluation of fungal structures in the host plant in order to assess the e�cacy of the plant-fungus symbiosis. This
multidisciplinary approach consisting of plant ecophysiology, AMF ecophysiology, soil ecology, multivariate statistical methods and mathematical modeling
should reveal the underlying ecophysiological mechanisms/processes of the host plant, which are in�uenced by ecological conditions and entity of the
symbiont fungus. It is hoped that this innovative approach enhances our understanding of plant-AMF coexistence in practice and shed lights on more detailed
conceptualization of the mechanisms involved, which in turn would be led to more productive -sustainable environment and food production systems.

2. Materials And Methods

2.1. Site description
Field studies conducted at the Research Farm of Agriculture Faculty, Ferdowsi University of Mashhad, Iran (latitude: 36° 15¢ N; longitude: 59° 28¢ E; elevation:
985 m above sea level.). Experiment station was located in Kashaf River watershed in northeast of the country in a semi-arid region (Fig. 1) with mean annual
precipitation of 252 mm and temperature of 15° C. Soil samples were taken at 0–15 and 15–30 cm depths and analyzed for some physiochemical properties
before conducting the experiment (Table 1).

Table 1
Soil properties of the experimental �eld (mean of two years).

  Soil depth (cm)  

Soil properties 0–15 15–30

Total N (%) 0.078 0.065

Available P (ppm) 23 20

Available K (ppm) 462 448

C/N 12.8 12.2

pH (saturation extract) 7.2 7.1

OCa (%) 0.53 0.52

ECb (dS m− 1)

SPc (%)

1.2

23.65

1.2

23.90

Bulk density (g cm− 3) 1.43 1.52

Texture grade Loamy-silt Loamy-silt

a OC: Organic carbon; b EC: Soil electrical conductivity;c SP: Saturation percentage

2.2. Experiment design
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The experiments were conducted based on Randomized Complete Block Design (RCBD) with split plot arrangement and three replications in two successive
cropping years at Research Farm of Ferdowsi University of Mashhad to evaluate the effects of AMF on corn under four different cropping systems including:
high, medium, low input and an ecologic system (Table 2) that were allocated to the main plots. Seeds inoculated with arbuscular mycorrhizae fungus
(Glomus intraradices) and control seeds (non-inoculated) were allocated to the sub plots. The inoculant was consisted of spores plus mycelia with CFU of 106
per g. Cropping systems speci�cation is �gured in Table 2.

Table 2
Inputs consumption and agronomical operations in different cropping systems.

Inputs Cropping systems

High input Medium input Low input Ecologic

1- Soil amendments (times)        

Tillage (Mouldboard plow) 2 1 - -

Disk 3 3 3 1

Leveller 3 3 2 1

2- N-P2O5-K2O (kg ha− 1) 220:150:100 170:100:50 120:50:0 -

3- Cattle manure (t ha− 1) - - - 60

4- Chemical control of plant pests and disease (times) 2 1 - -

5- Chemical control of weeds (times) 3 2 1 hand control

 
Comparison of four cropping systems was not of objectives at present study. It is widely accepted that AMF growth and development in ecological systems is
higher than high inputs and conventional systems. Since SEM works on correlation and variance-covariance matrices, all data concerned to four cropping
systems were used in calculations so the �nal result (AMF collaboration and resulting 35% increase in resources capturing) was obtained from the average of
four cropping systems.

2.3. Crop management
Plots of 2.5×3 m with a distance of 1 meter between, to avoid nutrients mixing due to irrigation were arranged. Manure was well mixed with soil using spade
one month before sowing. The nitrogen (N), phosphorus (P) and potassium (K) content of manure were determined 2.36%, 0.59% and 2.08%, respectively. The
�rst split of nitrogen and the total amount of phosphorus were applied to each plot of related systems except of ecologic one at sowing. The inoculum used in
this experiment was a mixture of propagules of the two species of AMF (Glomus intraradices, Glomus mosseae) which were obtained from Soil Biology
Research Division of Soil and Water Research Institute (SWRI, Ministry of Agriculture, IR) and corn seeds (Zea mays L. CV. Single Cross 704) were inoculated
with, in accordance with standard instructions then immediately were sown (SWRI, 2013). The sowing dates (May 2) were the same for two years of
experiment. Corn seeds were inoculated with fungus (except the control plots) and planted on rows 75 cm apart with 25 cm between sowing hole on rows
(The plant density considered 5 plants per square meter). The experiment sites for two years of trial were different but adjacent, which were under fallow
during the last year. Plots were immediately irrigated after sowing and later at 7-day intervals.

The corn was selected because it responds well in forming symbiosis with AMF, also is the second most important crop across the world in supplying food
security considering cultivation area and production quantity. Obviously, the suggested method in this study is applicable to all plants that could form
coexistence with AMF.

2.4. Measurements & Calculations
Each plot was divided into 2 sections, one for seed yield and its components determinig and one for destructive sampling during the crop growth period. Leaf
area and dry matter (Drymatter) yield were measured every 2 weeks. -- Leaf area was measured by Leaf Area Meter, Li-Cor, LI-1300, USA. Leaf area index (LAI)
was calculated by dividing each leaf area value to unit ground surface area.

Seed yield (Seedyield) was measured form kept-intact 2 m2 of each plot considering marginal effect. The oven dried plants (at 80 oC for 48 hour) were
weighed. Dry matter and seed yield were measured then harvest index was determined.

To determine the P content of plant tissue (PlantP), samples were ground and prepared by dried digestion then amount of P in sap was measured by
Morphy and Riley (1962) method.

At the end of tasseling stage, the plant height (PlantH) and stem diameter (StemD) were measured.

During the growth period, maximum photosynthesis rate (Amax µ mol.m-2s-1) was measured using LCi, ADC Ltd., UK. The process was repeated �ve
times.

SPAD readings (SPAD is an index for leaf chlorophyll content) were measured using SPAD 502, Minolta, Japan. This process was performed weekly
according to related standard (Beegle and Lingenfelter, 2016).

Canopy temperatures (CT) were recorded using “Infra-red thermometer KM 842 Standard Model, Kane-May, England” according to Roth and Goyne (2004)
manual.
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Root length within speci�c volume of soil is called Speci�c Root Length (SRL). At the end of the growing season root sampling was conducted and SRL
(within 625 cm3 of soil) was determined according to Tennant (1975) method.

Determination of root length colonization percentage (Colon) required �xing, dying and observing the colonized root length by stereoscope which applied
conformed with Kormanik and McGraw (1982) & Giovannetti and Mosse (1980) gridline intersect method, respectively.

To measure the rate of soil respiration (SoilRes µmol s− 1), a separate chamber (SRS 1000 Soil Respiration Hood, ADC BioScienti�c Ltd. UK) was
connected to LCi device to read CO2 amounts.

The ratio of variable chlorophyll �uorescence to maximum chlorophyll �uorescence (Fv/Fm) was measured by OS-30 Chlorophyll Fluorometer, ADC
BioScienti�c Ltd., UK. Measurings were obtained 5 times at �owering stage every 7 days on the third fully extended leaf under the tassel.

2.5. Statistical analysis, calculations & model �tting
A normality test was performed to ensure of the data meets the normal distribution. Transformation was also performed for numerical data where needed. To
ensure uniformity of treatment variances, the Bartlett's test was used. Since there was no statistical difference between experiment data of two years, thus the
mean of each trait values during two years were reported.

The following analyzes were performed step by step on the data collected from �eld experiments:

I. Analysis of variance (ANOVA)

II. Mean comparisons (based on Duncan 's Multiple Range Test)

III. Factor analysis

IV. Run the SEM model

V. Evaluate the initial model and re�ned models (evaluation and calibration)

VI. Validation of the model (calculating the goodness of �t criteria, GOF)

VII. Multiple backward stepwise regression

The ANOVA revealed that the effects of maize biotization with the AMF inoculant on most of maize growth traits were signi�cant (P ≤ 0.01) (data not shown).
Mean comparisons revealed that the values of the studied traits of mycorrhizal maize plants were signi�cantly higher than those of non-mycorrhizal plants
(the means employed to follow the analysis). To explore possible alternative hypothesis as it provides the multidimensional framework needed to capture the
complexity of ecological networks (Xu et al., 2019) and relationships of the maize plant-AMF symbiosis to determine the e�cacy of this coexistence, the data
matric used for ANOVA was prepared and introduced to Amos to continue the analysis. At the �rst step, factor analysis was performed which resulted in two
distinguished factors. Then the variables with most loads (weight) on each factor were determined. Following analysis, the �rst and second factor were
determined as resource capture latent construct and resource utilization latent construct, respectively (Table 3).

Table 3
Two factor including crop and soil characteristics were identi�ed by factor analysis.

First Factor Second Factor

- leaf area index (LAI) - speci�c root length (SRL)

- SPAD readings (SPAD) - plant height (PlantH)

- dry matter yield (Drymatter) - maximum photosynthesis (Amax)

- root length colonization percent (Colon) - canopy temperature (CT)

- stem diameter (StemD) - cob numbers (CobN)

  - seed yield (Seedyield)

  - plant tissue phosphorous percent (PlantP)

  - soil respiration (SoilRes)

  - the ratio of variable chlorophyll �uorescence to maximum chlorophyll �uorescence (FvFm)

 

To check analysis reliability, it must have shown required precision and accuracy of measurement of variables in each factor. Therefore, Cronbach's Alpha
Reliability Test was applied (Bellocchi et al., 2009). Cronbach's Alpha is one of the several indices measuring internal compatibility of questions on a
questionnaire. It is also applicable to tests and observable variables within an index or latent construct. When a construct or an index has internal
compatibility, it means all questions or construct constitutional variables are highly correlated. Some researchers suggested to ensure construct validity,
Cronbach's Alpha should be 70% or higher (Cronbach, 1951; Cramer, 1998). In this study, the resource capture construct was rated 0.77, indicating high
substantial reliability. The Cronbach's Alpha for the resource utilization construct rated 0.5083 which increased to 0.7422 after eliminating plant phosphorus
content (PlantP), soil respiration rate (SoilRes) and the ratio of variable chlorophyll �uorescence to maximum chlorophyll �uorescence (FvFm) variables.

SEM (known also as synonym for LISREL1) was then performed to determine the factor with the most signi�cant in�uence on maize and mycorrhiza
performance considering their ecophysiological basis of growth and development (Lambers et al., 2008). It goes beyond regression analysis. Each SEM
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involves two types of models: First, the measurement model represents the observable variables that measure latent constructs. Second, it is a structural
model that illustrates the cause-effect relationships between the constructs. SEM was then employed to determine which factor had the most signi�cant
in�uence on the performance of corn (the studied ecophysiological traits of corn which were employed in the study as measured variables) and mycorrhiza
(measured variables including percent root length colonization: Colon; speci�c root length: SRL) (Jahan and Nassiri-Mahallati, 2013). Considering the role of
each crop growth and development trait to yield formation, more analysis was performed to call resource capture (ResCap) and resource utilization (ResUti)
as latent constructs. Although theoretical or latent constructs are not directly measurable, but in classic analysis of experimental designs, certain variables
such as biomass, leaf area and yield are measured so characterize the main crop traits that represent plant performance (e.g., resource capturing and
utilizing). After assigning all measured variables to two factors (two latent constructs) the next step was de�ning how these factors do interrelates by path
analysis in format of SEM (Grace et al., 2014).

Several models were created to test hypotheses and con�rm relationships among observed and latent variables to gain additional insight (Evermann and
Tate, 2016). Articulately, sensitive analysis, calibration and validation was performed to obtain the most accurate and e�cient model (Evermann and Tate,
2016; Xu et al., 2019). In the following, the �rst and the second factor (were already determined by factor analysis) were named as resource capture latent
construct and resource utilization latent construct, respectively.

Regression coe�cients, squared multiple correlation coe�cients (R), variance/covariance matrices, direct and indirect path coe�cients were also calculated
(Bellocchi et al., 2009; Grace et al., 2014). Covariance indicates intensity and direction of two variables regarded to each other which are called correlation.
Model parameter estimations are based on calculations between variances and covariances (Evermann and Tate, 2016). The model was calibrated by tuning
off the measured variables in different construct combinations and evaluation of the resulted coe�cients and matrices with of the previous model ones.
Subsequently, satisfactory results were obtained by validating the model using the second-year data. Finally, RMSEA and normalized Chi-square (CMIN) as the
most common evaluation indices were calculated to assess the model accuracy (Evermann and Tate, 2016; Bellocchi et al., 2009). Minitab® Statistical
Software Ver. 17, SPSS® Amos Ver. 21 and MS-Excel Ver. 14 were employed to perform analysis and drawing the �gures and tables.

2.6. Model evaluation
The model goodness of �t has been calculated and shown in Tables 7 and 8. The root mean square error of approximation (RMSEA) is one of the most
important indices for evaluating goodness of �t (Evermann and Tate, 2016). In the present study, RMSEA of 0.144 indicates the robustness of the model
which is re�ected in good competence of measured data with theoretical research model. CMIN means minimum chi-square which was 150 and CMIN/DF
showing normalized Chi-square was 1.97 in research model. Some researchers believe an amount between 1 and 2 and some others believe 1 to 3 is
appropriate for CMIN/DF (Bellocchi et al., 2009). The saturated model is the model in which all possible parameters have been estimated. In other words, all
relations between variables are set up most possibly. The saturated model is always totally competence with Chi-square and degree of freedom equal to zero.
Unlike saturated model, the independence model indicates only variances related to measured variables. In other words, there is no relation between variables
in independence model (also called zero model). Care must be taken to avoid fall in extra theoretical mathematics and statistical aspects of the SEM, due to
possible errors might be resulted from over calculations which could be far away from the objective. To meet the mentioned goal, logical and applied
interpretation of the results is expected while preventing its misunderstanding. Moreover, depending on conditions, future model re�nements may be needed.

2.7. Identi�cation of a regression function to estimate the �nal plant production
The seed yield of mycorrhizal inoculated maize correlated with many of the variables measured in the experiment. Multiple regression technique was
performed to analyze the relationship between yield and traits affecting it more accurately. At �rst, all the studied variables were included in the regression
model and the coe�cient of determination (R2) of this model was calculated by 0.89. Then, a backward elimination stepwise regression technique was
performed to eliminate the variables having partial effect on the seed yield as dependent variable (Y).

1 LISREL (linear structural relations) is a proprietary statistical software package used in structural equation modeling (SEM) for manifest and latent
variables. It requires a "fairly high level of statistical sophistication". the LISREL model, methods and software have become synonymous with SEM.

3. Results

3.1. Factor analysis
Con�rmatory factor analysis divided the variables into two groups, already called the �rst factor including �ve variables and the second factor including nine
variables (Fig. 2). Then variables with the most loading (weight) on each of the groups were dedicated to related factor accordingly.

3.2. The Fitted model
The research model consisting of two latent constructs (Resource capture: ResCap and Resource utilization: ResUtil) is proposed has been thoroughly shown
in Fig. 3 in which the standardized values of path coe�cients and squared multiple correlation coe�cients (R) for each variable and constructs are
represented.

3.3 Regression coe�cients of the model constructs
Comprehending more clearly, Table 4 shows the regression coe�cients of the model constructs as independent variable, and measured variables as
dependent variable with related standard error (S.E.), and critical ratio (C.R.) of t statistic and their probabilities (P). Standardized regression coe�cients of the
model constructs as independent variable to determine the most effective coe�cient more easily also shown in Table 1. The regression coe�cients of
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measured variables including dry matter yield (DM: total aboveground biomass), plant stem diameter (StemD), SRL, leaf chlorophyll content (SPAD) and
Colon were signi�cant (P ≤ 0.01).

Table 4
The regression coe�cients (Estimates) and standardized regression coe�cients of the model constructs as independent variable and measured variables as

dependent variable with related standard error (S.E.), critical ratio of t statistic and their probability (P).
Variables Constructs Estimate S.E. C.R. P Standardized regression

coe�cients

ResUtil ≤--- ResCap − .039 .028 -1.416 .157 − .558

CT <--- ResUtil -68.726 46.126 -1.490 .136 − .726

PlantH <--- ResUtil -595.344 393.571 -1.513 .130 − .885

LAI <--- ResCap 1.000       .889

Amax <--- ResCap 4.187 1.335 3.136 .002 .456

Drymatter <--- ResCap 541.928 82.164 6.596 *** .836

FvFm <--- ResUtil 1.000       .230

StemD <--- ResCap .585 .109 5.372 *** .707

Colon <--- ResCap 6.585 2.817 2.338 .019 .349

CobN <--- ResUtil -18.727 13.997 -1.338 .181 − .394

Seedyield <--- ResUtil -95.048 63.529 -1.496 .135 − .759

SRL <--- ResUtil -1322.171 916.553 -1.443 .149 − .562

SoilRes <--- ResUtil .165 .119 1.390 .165 .460

PlantP <--- ResUtil 1.623 1.113 1.458 .145 .606

SPAD <--- ResUtil -4.861 9.856 − .493 .622 .080

ResUtil (Resources utilization), ResCap (Resources capture), Amax (maximum photosynthesis rate), SoilRes (soil respiration rate), StemD (stem diameter),
FvFm (the ratio of variable chlorophyll �uorescence to maximum chlorophyll �uorescence), PlantP leaf (plant tissue phosphorous percent), PlantH (plant
height), Drymatter (dry matter yield), LAI (Leaf area index), Seedyield (seed yield), CobN (cob numbers), Colon (root length colonization percent), SRL
(speci�c root length), SPAD (SPAD readings), CT (canopy temperature).

 

3.4. Variance- Covariance and Correlation Matrices
Variance and covariance of all measured variables has been shown in Table 5. Coe�cients of correlation between measured variables indicating
standardized values of covariances have been shown in Table 6.
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Table 5
Variance (diagonally elements in table) of every measured variable with related covariance (non-diagonally elements in table).

  Amax SoilRes StemD FvFm PlantP PlantH Drymatter LAI Seed

yield

CobN Colon SRL SPAD CT

Amax 1.580                          

SoilRes − .001 .000                        

StemD − .045 .000 .059                      

FvFm − .013 .000 − .004 .008                    

PlantP .007 .000 .000 .000 .003                  

PlantH 1.086 − .039 1.192 − .291 − .410 195.20                

Drymatter -1.52 − .059 29.143 -1.79 -2.610 1326.39 36409.63              

LAI − .041 .000 .049 − .002 − .005 2.83 46.94 .110            

Seedyield .501 − .007 .221 − .012 − .058 23.37 171.50 .476 6.77          

CobN .206 .000 .009 − .003 − .024 3.66 5.28 .000 1.16 .973        

Colon − .577 .001 .261 .014 − .009 17.26 320.17 .614 1.99 -1.28 30.871      

SRL 9.110 − .180 .143 − .924 -1.019 346.89 2345.90 4.063 58.48 1.775 71.766 2385.682    

SPAD .716 − .004 .337 − .013 .020 6.24 179.11 .330 3.95 .624 1.764 22.370 7.324  

CT .028 − .006 − .013 − .038 − .058 18.00 20.44 .140 2.84 .880 − .280 27.998 .120 3.867

Amax (maximum photosynthesis rate), SoilRes (soil respiration rate), StemD (stem diameter), FvFm (the ratio of variable chlorophyll �uorescence to
maximum chlorophyll �uorescence), PlantP leaf (plant tissue phosphorous percent), PlantH (plant height), Drymatter (dry matter yield), LAI (Leaf area
index), Seedyield (seed yield), CobN (cob numbers), Colon (root length colonization percent), SRL (speci�c root length), SPAD (SPAD readings), CT (canopy
temperature).

 
Table 6

Coe�cients of correlation (r) of measured variables of maize crop and soil.

  Amax SoilRes StemD FvFm PlantP PlantH Dry

matter

LAI Seed

yield

CobN Colon SRL SPAD CT

Amax 1.000                          

SoilRes − .109 1.000                        

StemD − .148 .031 1.000                      

FvFm − .115 .199 − .204 1.000                    

PlantP .097 .256 − .024 .073 1.000                  

PlantH .062 − .372 .351 − .231 − .528 1.000                

Drymatter − .173 − .041 .627 − .104 − .246 .498 1.000              

LAI − .098 − .109 .604 − .077 − .263 .612 .742 1.000            

Seedyield .153 − .349 .349 − .051 − .402 .643 .345 .551 1.000          

CobN .166 − .039 .038 − .036 − .429 .266 .028 − .001 .452 1.000        

Colon − .226 .035 .193 .028 − .029 .222 .302 .333 .138 − .234 1.000      

SRL .148 − .494 .012 − .210 − .375 .508 .252 .251 .460 .037 .264 1.000    

SPAD .210 − .176 .511 − .053 .135 .165 .347 .368 .562 .234 .117 .169 1.000  

CT .011 − .420 − .028 − .216 − .525 .655 .054 .215 .556 .454 − .026 .292 .023 1.000

Amax (maximum photosynthesis rate), SoilRes (soil respiration rate), StemD (stem diameter), FvFm (the ratio of variable chlorophyll �uorescence to
maximum chlorophyll �uorescence), PlantP leaf (plant tissue phosphorous percent), PlantH (plant height), Drymatter (dry matter yield), LAI (Leaf area
index), Seedyield (seed yield), CobN (cob numbers), Colon (root length colonization percent), SRL (speci�c root length), SPAD (SPAD readings), CT (canopy
temperature).

 

To determine adaptability of theoretical model to empirical model, comparing values a standardized residual error covariance matrix was calculated and
results were shown in Table 7.



Page 9/16

Table 7
The matrix of standardized residual error covariance of measured variables of the model.

  Amax SoilRes StemD FvFm PlantP PlantH Dry

matter

LAI Seed

yield

CobN Colon SRL SPAD CT

Amax .000                          

SoilRes − .496 .000                        

StemD -1.229 1.434 .000                      

FvFm − .658 .635 − .774 .000                    

PlantP 1.001 − .152 1.430 − .449 .000                  

PlantH − .064 .227 .008 − .181 .051 .000                

Drymatter -1.443 1.161 .211 .022 .243 .535 .000              

LAI − .943 .798 − .143 .251 .247 1.089 − .006 .000            

Seedyield .631 .001 .327 .836 .358 − .166 − .056 1.125 .000          

CobN .920 .960 − .795 .376 -1.267 − .537 -1.051 -1.322 1.004 .000        

Colon -1.655 .848 − .360 .501 .606 .338 .066 .152 − .066 -2.127 .000      

SRL .707 -1.559 -1.404 − .545 − .222 .063 − .071 − .183 .210 -1.239 1.056 .000    

SPAD 1.303 − .403 1.232 .039 1.954 − .401 − .220 − .236 2.485 .911 − .283 .178 .000  

CT − .323 − .557 -2.072 − .329 − .537 .071 -1.846 − .934 .031 1.103 -1.134 − .742 -1.092 .000

Amax (maximum photosynthesis rate), SoilRes (soil respiration rate), StemD (stem diameter), FvFm (the ratio of variable chlorophyll �uorescence to
maximum chlorophyll �uorescence), PlantP leaf (plant tissue phosphorous percent), PlantH (plant height), Drymatter (dry matter yield), LAI (Leaf area
index), Seedyield (seed yield), CobN (cob numbers), Colon (root length colonization percent), SRL (speci�c root length), SPAD (SPAD readings), CT (canopy
temperature).

 

The values of squared multiple correlation (R) have been shown in Table 5, relating to variable groups. These values are in fact the coe�cient of dependent
variable (ResUtil) and the coe�cients of measured variables in all following rows. The �rst-row value is equal to coe�cient of determination (R2) of regression
analysis.

Table 8
Squared multiple correlation coe�cients (R) between resource utilization construct and measured variables in structural model.

Variable Estimate

ResUtil .311

SPAD .006

SoilRes .212

StemD .500

FvFm .053

PlantP .367

PlantH .784

Drymatter .700

LAI .790

Seedyield .575

CobN .156

Colon .122

SRL .316

Amax .208

CT .527

Amax (maximum photosynthesis rate), SoilRes (soil respiration rate), StemD (stem diameter), FvFm (the ratio of variable chlorophyll �uorescence to
maximum chlorophyll �uorescence), PlantP leaf (plant tissue phosphorous percent), PlantH (plant height), Drymatter (dry matter yield), LAI (Leaf area
index), Seedyield (seed yield), CobN (cob numbers), Colon (root length colonization percent), SRL (speci�c root length), SPAD (SPAD readings), CT (canopy
temperature).
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3.5. Coe�cients of the identi�ed causal paths
Standardized direct effects (which are exactly the same as regression coe�cients speci�ed in Fig. 3) have been shown in Table 9 (A). The standardized direct
effect of LAI by 0.889 means that increasing one unit in S.D. of ResCap latent construct results in 0.889 increase of S.D. of LAI. The full path coe�cients were
obtained from summation of direct and indirect coe�cients of every variable path. The standardized values of these coe�cients help to better compare of
paths (Table 9 (A), (B), (C)).

Table 9
Standardized direct effects (A), standardized indirect effect (B) and standardized full effects (C) for resource capture and resource utilization constructs and

measured variables in structural model.
(A(     (B)     (C)    

Variables ResCap ResUtil Variables ResCap ResUtil Variables ResCap ResUtil

ResUtil − .558 .000 ResUtil .000 .000 ResUtil − .558 .000

SPAD .000 − .080 SPAD .045 .000 SPAD .045 − .080

SoilRes .000 .460 SoilRes − .257 .000 SoilRes − .257 .460

StemD .707 .000 StemD .000 .000 StemD .707 .000

FvFm .000 .230 FvFm − .128 .000 FvFm − .128 .230

PlantP .000 .606 PlantP − .338 .000 PlantP − .338 .606

PlantH .000 − .885 PlantH .494 .000 PlantH .494 − .885

Drymatter .836 .000 Drymatter .000 .000 Drymatter .836 .000

LAI .889 .000 LAI .000 .000 LAI .889 .000

Seedyield .000 − .759 Seedyield .423 .000 Seedyield .423 − .759

CobN .000 − .394 CobN .220 .000 CobN .220 − .394

Colon .349 .000 Colon .000 .000 Colon .349 .000

SRL .000 − .562 SRL .314 .000 SRL .314 − .562

Amax .456 .000 Amax .000 .000 Amax .456 .000

CT .000 − .726 CT .405 .000 CT .405 − .726

Amax (maximum photosynthesis rate), SoilRes (soil respiration rate), StemD (stem diameter), FvFm (the ratio of variable chlorophyll �uorescence to
maximum chlorophyll �uorescence), PlantP leaf (plant tissue phosphorous percent), PlantH (plant height), Drymatter (dry matter yield), LAI (Leaf area
index), Seedyield (seed yield), CobN (cob numbers), Colon (root length colonization percent), SRL (speci�c root length), SPAD (SPAD readings), CT (canopy
temperature).

 

3.6. Model evaluation
The value of RMSE at 90% of probability level (Table 10), and the value of CMIN (Chi-square) (Table 11) indicate that the model had satisfactory accuracy.

Table 10
The values of RMSEA for estimated and independence

model, respectively. (LO90, HI90 respectively represent the
low and the high con�dence intervals of RMSEA lies within

at P = 90%,).
Model RMSEA LO 90 HI 90 P

Default model .144 .110 .178 .000

Independence model .246 .219 .273 .000
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Table 11
The values of CMIN (Chi-square) for estimated, saturated and

independence model, respectively. (DF, P represent degree of freedom
and probability, respectively).

Model NPAR CMIN DF P CMIN/DF

Default model 29 150.021 76 .000 1.974

Saturated model 105 .000 0    

Independence model 14 349.466 91 .000 3.840

 

3.7. Identi�ed regression function
The results of multiple regression showed that the measured variables including dry matter yield (X1), leaf area index (X2), canopy temperature (X3), leaf
chlorophyll content (X4), speci�c root length (X5), and cob number per plant (X6) were the most independent variables affecting corn seed yield. These
identi�ed variables are highly con�rmed with the research results and evidences obtained from plant ecophysiological studies (Lambers et al., 2008). In order
to better interpret the results, of course, the unit of each measured variable must take into account.

Equation 1.

Y = -29.86-0.003 (X1) + 3.011(X2) + 0.329 (X3) + 0.376 (X4) + 0.019 (X5) + 0.476 (X6)     R2 = 0.89**

4. Discussion
Although assigning of the variables to the factors was conducted based on factor loadings, it is also noticed there are remarkable empirical supporting
evidences of ecophysiological basis among variables (Lambers et al., 2008). In the following, the best �tted model was selected consists of two measuring
models including: 1- The resource capture (ResCap) measuring model, 2- The resource utilization (ResUtil) measuring model. These measuring models were
related through the structural model (Grace et al., 2010). The model �tting clearly revealed causality path from resource capture to resource utilization is
shown by arrow (Fig. 3). The effect of resource utilization construct on speci�c root length (SRL: total root length in speci�c soil volume for instance in 25
cm3) is -0.562 which indicates one unit increase in standard deviation (S.D.) of ResCap results in 0.562 unit of decrease in S.D. of SRL. This coe�cient for
percent root length colonization (Colon) were 0.349. Quite considerable amounts in covariances included: DM, Colon (320.17); Seedyield, SRL (58.48); DM,
SRL (2345.90); CT, SRL (27.99); Colon, SRL (71.76); SRL, SPAD (22.37). It was suggested that analysis of variance-covariance matrices provides
comprehensive interpretation of changes in path coe�cients across the scales (Grace ae al., 2010, 2014; Evermann and Tate, 2016). Plant height (PlanH) was
highly correlated with SRL (0.50), CT (0.65), and LAI (0.61).

Subtracting sample covariance matrix from implied covariance matrix results in residual covariance matrix. In resulted matrix, lower residual near to zero,
closer theoretical model to empirical model. In other words, the standardized residual covariances comply a normal distribution so when the standardized
residual error is bigger than 1.96, it indicates statistically signi�cant difference between implied and sample covariances (Evermann J, Tate M, 2016). The
lesser amount (< 1) of covariances like in Colon-Drymatter (0.066), Colon-Seedyield (-0.066), Colon-LAI (0.152), Colon-PlantH (0.338), Colon-stemD (-0.360),
Colon-FvFm (0.501), Colon-PlantP (0.606), Colon-SoilRes (0.848) (Table 4), and indicates high correspondence of implied (theoretical) and sample (empirical)
covariance matrices. The residual covarinces of SRL-PlantH (0.063), SRL-Drymatter (-0.071), SRL-LAI (-0.183), and SRL- Seedyield (0.210) were also less.
These values indicate that colonization of maize root as a result of mycorrhizal inoculation had positive effects on growth traits and overall performance of
maize.

The value of R = 0.31 of resource utilization as dependent variable indicates that the suggested model explains 31.1% of variations of the resource utility
variable. R in fact indicates the concept of reliability (Bellocchi et al., 2009). In other words, the ResUtil value is the same as the standardized squared factor
loading. For instance, the value of 0.575 for seed yield (Seedyield) means: ResUtil explain 57.5% of seed yield variations. From another aspect, the values of R
indicate the adequacy of every variable. As shown in Table 8, the major values are more than 0.500 indicating they are ideal indices to assay their own latent
construct. Conclusively, variables empowering ResUtil as the �nal determining factor make higher yield formation. In this study, inoculation of maize plant
with AMF makes the dominant ability of ResUtil more effective resulting in higher corn yield. When the correlation coe�cient is between 30–50% it means that
the observed variable is relatively week, but it could be enough to continue analysis. The values more than 50% mean that the observed variable is eligible to
calculate the latent variable (Bellocchi et al., 2009; Evermann and Tate, 2016). It is worth noting, since variables like leaf area index (LAI), plant height (PlantH)
mainly de�nes plant radiation capture ability (Lambers et al., 2008), AMF inoculation indirectly increase also resource capture (ResCap) through corn shoots.
Root system development and nutrients capture are physiologically followed by the shoot ability to capture and use radiation (Lambers et al., 2008).
Generally, Table 8 indicates high R of Seedyield, CT, PlantH with ResUtil construct. Reversely the lower R of maximum photosynthesis rate (Amax), Colon and
SRL suggest that the �nal determining factor of corn yield is in fact its ability to utilize resources. As formerly explained, the higher R of LAI, PlantH as
radiation capture ability had the most impact to determine corn yield (LAI, PlantH potentially de�ne optimum space distribution of leaf area (widely known as
“Canopy Architecture” in crop ecophysiology) (Lambers et al., 2008). The correlation coe�cients of LAI-Colon (0.33), LAI-SRL (0.25), plantH-SRL (0.50) and
plantH-LAI (0.61) which means the effect of AMF is indirect and mainly was realized by increasing LAI and PlantH (Table 6). Many researchers previously
proved the AMF symbiosis increases the host plant leaf area, change root/shoot ratio which in turn enhances water uptake, and consequently improving plant
tolerance against stresses �nally resulted in improved the dry matter accumulation (Lambers et al., 2008; Smith and Read, 2010; Begum et al., 2019).



Page 12/16

The most direct effect on ResCap and ResUtil constructs, were related to LAI and plantH (Table 6A). Considering relations between stemD and vascular
vessels along physiological relations of sink and source (Lambers et al., 2008(, the importance of stemD in resources capturing reveals more clearly. PlantH
plays an important role to more effective radiation capture by leaves. In the other hand, better PlantH normally results better spatial distribution of leaves
(Lambers et al., 2008). The highest amount for the ResCap construct after LAI and DM was ranked to StemD (0.707) indicate plant ability for translocation of
assimilates (photosynthesis products). The values of 0.349, 0.314 for Colon and SRL indicates that result of inoculation with AMF was slightly more affective
in Colon than SRL in resource capture (Table 9A). This collaboration and resulting 35 percent increase in resource capturing by corn seems reasonable. This
fact is strongly supported by the other novel �ndings of our study (Fig. 3).

Coe�cients of Eq. 1 show the relative impact of changes in each of the variables in the model on seed yield. Due to the effect of mycorrhizal inoculation, it
was possible to quantitatively evaluate the response of maize seed yield on the basis of increasing or decreasing mycorrhizal affected variables. SEM
revealed that the consisting variables of LAI, StemD, DM, SPAD, PlantH, CT had the most causal effect on forming corn yield under �eld inoculation of AMF
which is mostly in agreement with the regression results. There are many reports that emphasize the role of mycorrhizal symbiosis in increasing speci�c root
length, increasing water uptake and subsequently decreasing canopy temperature, increasing leaf area and leaf chlorophyll content (as the center of
photosynthetic light reactions) (Lambers et al., 2008(, which ultimately leads to increased plant production (Smith and Read, 2008; Lambers et al., 2008;
Begum et al., 2019). These effects are well re�ected by Eq. 1, which could be con�rmed the validity of the present study. As an applied agroecological
management tool, Eq. 1 can be employed to corn plant under similar conditions of the present experiment to evaluate the effect of mycorrhizal inoculation on
the �nal product, also to estimate or to predict the seed yield. A critical improvement of the equation would be best achieved by estimating or quantifying the
regression coe�cient in accordance of local conditions. Applying such an approach is possible for any other plant species after collecting experimental data
and performing multiple regression on the data.

Conclusion
This study revealed two mechanism/process-based latent construct of resource capture and utilization and con�rmed the quanti�ed cause and effect
relations between. Direct facilities resulted from AMF symbiosis was revealed in increase of 35% in resource capturing through collaboration. The �tted model
indicated high accuracy and competence (RMSEA=0.14). The backward stepwise regression technique truly identi�ed and con�rmed the variables whose
effectiveness of mycorrhizal inoculation was recognized by SEM. The coe�cient of determination of the regression model (R2=0.89) indicating that this
model could explain 89% of the total variance in maize seed yield as the dependent variable. Overall, the function-oriented method employed in this study can
be used as an e�cient alternative to the conventional method in determining mycorrhizal (also, any co-existence relationship) e�cacy. Employing this method
for wide range of crop plants, assists the experts and researchers interested in mycorrhizal technology to quantify mycorrhizal effects, which in turn can help
farmers, advisory services, researchers and policy makers to provide the necessary practical ground for the widespread implementation of mycorrhizal
technology in agroecosystems, to improve food production and productivity based on health, cost and energy considerations as the most challenging issue of
our time, that is more important than ever because of the more e�cient and sustainable use of resources and the preservation of the environment could be
resulted from.
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Figure 1

Geographical location of study (Kashaf River watershed at Northeastern Iran).

Figure 2

Loading plot of measured variables on the �rst and the second factor.

Amax (maximum photosynthesis rate), SoilRes (soil respiration rate), StemD (stem diameter), FvFm (the ratio of variable chlorophyll �uorescence to
maximum chlorophyll �uorescence), PlantP leaf (plant tissue phosphorous percent), PlantH (plant height), Drymatter (dry matter yield), LAI (Leaf area index),
Seedyield (seed yield), CobN (cob numbers), Colon (root length colonization percent), SRL (speci�c root length), SPAD (SPAD readings), CT (canopy
temperature).
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Figure 3

A schematic view of suggested model with estimated standardized parameters (path coe�cients have been shown on arrows; coe�cients of multiple squared
correlation (R) have been shown on top right corner of each rectangular).

ResUtil (Resources utilization), ResCap (Resources capture), Amax (maximum photosynthesis rate), SoilRes (soil respiration rate), StemD (stem diameter),
FvFm (the ratio of variable chlorophyll �uorescence to maximum chlorophyll �uorescence), PlantP leaf (plant tissue phosphorous percent), PlantH (plant
height), Drymatter (dry matter yield), LAI (Leaf area index), Seedyield (seed yield), CobN (cob numbers), Colon (root length colonization percent), SRL (speci�c
root length), SPAD (SPAD readings), CT (canopy temperature).


