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Abstract
Recently, it was demonstrated that an atom exhibits quasi-random walk behavior in an 
atom-cavity system when two longitudinal and transverse laser pumps are simultane-
ously excited by the system. The longitudinal pump irradiates the cavity, whereas the 
transverse pump irradiates an atom, directly. The model presented in this study contains a 
two-level atom in an electrodynamic cavity stimulated by two longitudinal and transverse 
laser pumps. The longitudinal laser frequency was tuned to excite the electrical (internal) 
state of an atom. We investigated the entanglement dynamics between the cavity field and 
internal atomic modes, and the von Neumann entropy measure was used to this end. The 
atomic quasi-random walk behavior and cavity dissipation were considered in this study. 
This study was conducted for different atomic states, two regimes of the strong, and the 
weak coupling. Our numerical results show that atomic random-walk motion can help us to 
enhance the amount of entanglement between the internal atomic modes and cavity fields 
for a long time.

Keywords Cavity QED · Quasi-random walk · Entanglement · Von Neumann entropy 
measure

1 Introduction

Quantum entanglement is a fascinating research topic in quantum mechanics that differs 
from classical physics (Chuang and Nielsen 2010; Mahon 2008; Bell 1964). Until 1990, 
quantum entanglement was considered as a strange curiosity with no practical applications. 
In 1991, Ekert introduced the first application of quantum entanglement (Ekert 1992). 
Later, Bennett and Wisner showed that two entangled parts can communicate between 
two classical bits by sending only one qubit (for instance, a two-dimensional quantum sys-
tem in Hilbert space (Bennett and Wiesner 1992)). Entangled states are very important 
both conceptually and practically and are used in the processing of quantum information 
such as quantum cryptography, quantum teleportation, quantum computing and quantum 
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communication (Bennett et  al. 1996, 1993; Deutsch and Ekert 1998; Gisin et  al. 2002; 
Imamog et  al. 1999; Saharia et  al. 2019; Ikram et  al. 2017, 2015; Ul-Islam et  al. 2016; 
Imran et al. 2016). In the presence of external fields, one can change the degrees of inter-
nal and external freedom of the atom. By adjusting the interaction time or by choosing 
the appropriate initial conditions for the atom or field one can generate the entangled or 
hyper-entangled states (Ali et al. 2022a, 2022b) which further can be utilized for teleporta-
tion (Nawaz et al. 2017; Poldy et al. 2008) and information distribution over the quantum 
networks (Leibrandt et al. 2009; Hinkel et al. 2015).

A random walk is a path involving random and sequential steps using a random simu-
lation algorithm. The random walk includes a walker and a random value generator that 
walker follows its path in random steps. It is also frequently used and powerful for com-
putational models that have been used in computer science, physics, economics, and psy-
chology (Sames et al. 2014; Walther et al. 2006; Jaynes and Cummings 1963; Vedral et al. 
1997; Baghshahi et al. 2015). Random walk is a basic model for stochastic processes over 
time and divides into the classical and quantum random walk.

One of the most investigated systems that are used to generate and maintain entangle-
ment is the atom-cavity system. The atom-cavity system consists of one or atomic ensem-
bles via tailored cavity modes (Uhlmann 2000; Vidal and Werner 2002). The atom-cavity 
system can be used for information processes and quantum computing [29–34]. Also one 
can create optimal states that are favorable for quantum information. For information pro-
cesses and quantum computing, it is desirable to have more coherence between subsys-
tems. In other words, one needs the entanglement with a long time and high maximum 
value, and high stability. In the presence of external fields, one can change the degrees 
of internal and external freedom of the atom. In most previous works, the electric (inter-
nal) levels of the atom were excited with an internal cavity field [35–38]. Meanwhile, by 
changing the atomic position in the cavity, the atomic motion (external mode) must be 
considered. It was demonstrated that the atom shows quasi-random walk (QRW) behavior 
in the atom-cavity system when two longitudinal and transverse laser pumps are excited the 
system, simultaneously [34]. The laser pumps light interference in the cavity that provides 
the time-depended electrical potential for the atom if two laser frequencies have small mis-
matched. The atomic QRW disappeared in the absence of a second transverse laser pump 
called as Non-Quasi-Random Walk (NQRW).

In this paper, first, we review the QRW of the atom in the cavity and then study the 
entanglement dynamics between internal atomic modes and the cavity field by considering 
QRW and dissipation in the cavity. We used the von Neumann entropy measure to this end. 
Our numerical results show that considering the QRW can help us to enhance the entangle-
ment value between the internal atomic modes and cavity fields.

The paper is organized as follows: In the second section, we introduce the model and 
the entanglement measure that will be used in this study to investigate the entanglement 
dynamic in our system. In the third section, we present numerical evidence showing the 
occurrence of the QRW behavior. In the fourth section, we investigate numerical results 
and study the changes and find the optimal state of entanglement, we apply the electromag-
netic field within the cavity in the Fock state and atom in-ground, excited, and the superpo-
sition of ground and excited states, as well as the initial entangled state between the atom 
and cavity field. We compared the results of the entanglement dynamic for two QRW and 
NQRW cases and two regimes of the strong and the weak coupling. In addition, we inves-
tigate the effect of changing the amplitude of the transverse pump on the amount of entan-
glement in two regimes of the strong and the weak coupling. The last section is devoted to 
the general results and discussions.
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2  Model and entanglement dynamic

2.1  Model

The atom-cavity system, presented in this work, consists of an atom within the cavity 
that is stimulated by two laser pumps (See Fig. 1). We consider two energy levels for an 
atom. When an atom is excited with an external light field, the light may be absorbed 
with the electron in-ground ( �g⟩ ) state and jump to the excited ( �e⟩ ) state. In the full 
quantum model, the atom and external field are quantized and the interaction between 
fields and atom can be described with a complete quantum Jaynes-Cummings model. 
Therefore, the Hamiltonian of the supposed system can be written as follows [38]:

The Hamiltonians (under the rotating wave approximation) consist of the free part of 
the atom and cavity field H0 , the interaction between atom and cavity field Ha−f  , and the 
exciting pump’s Hamiltonian Hp:

In the above equations, p and m are the atomic momentum and mass, respectively. ωa 
and ωc are the atomic transition and the cavity field frequencies, respectively. We define 
the coupling function f (x) = �cos(kx) where � is the maximum coupling rate between 
the atom and the electromagnetic field. It depends explicitly on the atomic position and 
is maximal when the atomic dipole moment and the linear light polarization are in par-
allel and k is the wave number. ηL and ωL ( ηT and ωT ) are the longitudinal (transverse) 
laser pump amplitude and frequency, respectively. â† and â are the creation and annihila-
tion operators, respectively, σ̂z is the z-component of the Pauli matrix, and σ̂+ and σ̂− are 
the creation and the annihilation of the atomic transition.

In order to get rid of the explicit time dependence, we transform the Hamiltonian to a 
frame rotating with �L . The Hamiltonian now reads:

(1)Hs = H0 + Ha−f + HP.

(2)H0 =
p2

2m
+

�𝜔a

2
�̂�z + �𝜔câ

†â,

(3)Ha−f = �f (x)
(
�̂�+â + �̂�−â†

)
,

(4)Hp = �𝜂L
(
â†e−i𝜔Lt + âei𝜔Lt

)
+ �𝜂T

(
�̂�+e−i𝜔T t + �̂�−ei𝜔T t

)
.

Fig. 1  A schematic view of the 
atom-cavity system
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where, Δc = �L − �c  Δc = �L − �c ,  Δa = �L − �a and�T = �L − �T.
One needs to find the evolution of the system by solving the Lindblad equation as (Chuang 

and Nielsen 2010):

where, γ and κ are the atomic and cavity decay rates, respectively.

2.2  Entanglement dynamics

There are different measures to calculate the entanglement dynamics such as von Neumann 
entropy [39, 40], concurrence [41], negativity [42], and entanglement of formation [43, 44]. 
Using von Neumann entropy, one can calculate the entanglement between the atom and the 
field within the cavity. Meanwhile, the reduced von Neumann entropy, as a measure of entan-
glement between subsystems, satisfies the general conditions consisting of Schmidt decom-
position, local invariance, continuity, and additivity (Chuang and Nielsen 2010). To this end, 
after solving the Lindblad equation to find the density matrix of the system at each time, 
according to the von Neumann entropy, the reduced entropy of the atom is calculated through 
the corresponding reduced density operator by:

where, �A(t)=TrF�(t) is the reduced density matrix of the atom and �(t) is the density 
matrix of the system at each time. Next, the entanglement is achieved using the following 
equation:

The quantities �i are eigenvalues of the matrix �A(t) . In the following, the entanglement 
value is calculated in both the QRW and the NQRW cases.

As mentioned, in the NQRW case, the internal mode of the atom interacts with the cavity 
field, which is excited with a longitudinal laser pump, only. But in the QRW case, both laser 
pumps are presented and the atom is excited with a transverse laser pump, directly. In the next 
section, we use the QUTIP package to solve the Lindblad equation and obtain the entangle-
ment dynamics, numerically [45, 46].

(5)
H =

p2

2m
+

�Δa

2
�̂�z + �Δcâ

†â + �𝜆 cos (kx)
(
�̂�+â + �̂�−â†

)

+ �𝜂L
(
â† + â

)
+ �𝜂T

(
�̂�+e−i𝛿T t + �̂�−ei𝛿T t

)

(6)
�̇� = −

i

�
[H, 𝜌] +

√
𝜅

2

�
2a𝜌â† − â†a𝜌 − 𝜌â†a

�

+

√
𝛾

2

�
2�̂�−𝜌�̂�+ − �̂�+�̂�−𝜌 − 𝜌�̂�+�̂�−

�
,

(7)SA(t) = −Tr
(
�A(t) log(�A(t)

)
,

(8)SA(t) = −

2∑

i=1

�i(t) log �i(t).
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3  Evidence for quasi‑random walk

In this section, according to the equations mentioned for the motion of the atom, we study 
the changes in the position of the atom. The complete equations of motion for atom and 
field are (including the dissipative dynamics of the field mode at rate κ and the atomic de 
coherence at rate γ) [35]:

here, �(� ) is an average of the cavity field (atomic polarization). Also, 𝜔r =
ℏk2

2m
 and 

called the recoil frequency of the atom. We present numerical evidence showing the occur-
rence of a QRW behavior of the atom (see Fig. 2). This is achieved by fixing the set of 
parameters (all of these parameters were used in next section): Δa =  − 15κ, Δc =  − 15κ, �L 
= 10κ, �T = ( 5.5,10,19) κ, �T = 0.1π κ, γ = (0.2,0.9) κ, � = (0.6, 3) κ, k = 2π,x0 = 3.5 × 10−3 , 
p0 = 0 and recoil frequency �r = 1κ. In the following, we set κ = 0.1 for numerical simula-
tions and normalize the time in units ofκ−1.

4  Numerical results and discussion

In this section, we investigate entanglement in two regimes of the strong and the weak cou-
pling. As known, in the strong coupling regime, the coupling rate between the atom and the 
cavity field is larger than any dissipation rate in the system ( 𝜆 ≫ γ, κ). Also, the effect of 
changes in the transverse pump amplitude on the amount of entanglement was investigated. 
The initial state of the atom can be tailored in the ground ( �g⟩ ), excited ( �e⟩ ), the 

(9)�̇� =
(
−𝜅 + iΔc

)
𝛼 − 𝜆 cos (kx)𝛽 + 𝜂L,

(10)�̇� =
(
−𝛾 + iΔa

)
𝛽 + 𝜆 cos (kx)𝛼 + 𝜂Te

i𝛿T t,

(11)ẋ = 2𝜔rp,

(12)ṗ = 2𝜆k sin (kx)Im(𝛼∗𝛽).

Fig. 2  Quasi-random walk 
trajectories: (Blue curve) � = 3κ, 
γ = 0.2κ, κ = 0.1,�

L
 = 10κ,�

T
 = 

5.5κ, (green curve) � = 3κ, 
γ = 0.2κ, �

L
 = 10κ, �

T
 = 19κ 

(brown curve) � = 3κ, γ = 0.2 
κ, �

L
 = �

T
 = 10κ, (black curve) 

� = 0.6 κ, γ = 0.9 κ,�
L
 = 10κ,�

T
 

= 5.5κ (yellow curve) � = 0.6κ, 
γ = 0.9κ, �

L
 = �

T
 = 10κ, (red 

curve) � = 0.6κ, γ = 0.9κ,,�
L
 = 

10κ,�
T
 = 19κ
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superposition of ground and excited as well as the initial entangled state between the atom 
and the cavity fields ( 1√

2
(�e⟩ +�g⟩ ). In addition, the cavity fields can be expanded of Fock, 

and we cut off the field dimensional in 16 because the results are similar and higher dimen-
sional would increase the computational time. First, we compare the amount of entangle-
ment with the reduced von Neumann entropy measurement in QRW and NQRW cases in 
the strong coupling regime. This is achieved by fixing the set of parameters to: Δa =  − 15κ, 
Δc =  − 15κ, �L = 10κ, �T = 19κ, �T = 0.1πκ, γ = (0.2,0.9)κ, � = (0.6,3)κ, κ = 0.1, k = 2π, 
x0 = 3.5 × 10−3 , p0 = 0 and recoil frequency �r = 1κ.

The result of the entanglement for the strong coupling regime is shown in Fig. 3. It is 
obvious from this figure that, by adding QRW atomic motion, the maximum entanglement 
is increased. In addition, over time, the amount of entanglement tends to be a constant 
value, which this constant value is higher in the QRW case with respect to the NQRW case.

Also, when the atom is in the ground state, the maximum amount of entanglement is 
higher between these different initial states. In the initial entangled state, the amount of 
entanglement decreases to a constant value of 0.8. The amount of entanglement in the 
QRW case retains for a long time but in the NQRW, the entanglement decreases and then 
tends to zero value.

In the following, we investigate the amount of entanglement in QRW and NQRW cases 
in the weak coupling regime. The results are shown in Fig. 4.

It can be seen from this figure that, when the time goes up, the amount of entanglement 
is increased, and the maximum amount of entanglement in the QRW case is about 1. In 
both cases, the amount of entanglement tends to be a constant value and this constant value 
is higher in the QRW case with respect to the NQRW case. Also, when the atom is in the 
ground state, the maximum amount of entanglement is higher, compared to other states. In 
the initial entangled state, the amount of entanglement decreases to a constant value of 0.7. 

Fig. 3  Comparison of entanglement with the reduced von Neumann entropy measurement in the QRW 
(blue) and the NQRW (red) cases in the strong coupling regime, � = 3κ, γ = 0.2κ, κ = 0.1when the atomic 
initial states are in a) the superposition of ground and excited states b) the ground state c) the excited state 
d) the entangled state
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The amount of entanglement in the QRW case retains this value for a long time but in the 
NQRW, the entanglement decreases and then tends to zero value.

As shown in the previous section, the presence of the transverse laser pump (via small 
frequency mismatched with respect to the longitudinal pump) led to atomic QRW motion 
in the cavity. In the next step, we want to investigate the effect of changing the amplitude 
of the transverse pump on the entanglement dynamics in two regimes of strong and weak 
coupling. For this purpose, we consider three values �T=(5.5κ, 10κ, 19κ) for the trans-
verse pump amplitude. The results are depicted in Fig. 5. This shows that with increased 
transverse pump amplitude, the amount of entanglement increases and reaches the maxi-
mum value and decreases to a constant value that preserves this amount for a long time. 
When the atom is in the ground state, the maximum amount of entanglement is higher with 
respect to the other states.

The results for the entanglement value for the QRW case and the weak coupling regime, 
in which we change the transverse pump amplitude, are depicted in Fig. 6. These results 
confirm the results of Fig. 5, which is that with the increase of the transverse pump ampli-
tude, the amount of entanglement increases and then tends to a constant value, with the 
difference that the constant value of entanglement is lower than in the case of the strong 
coupling regime.

5  Conclusion

We studied the entanglement in an atom-cavity system by considering the atomic quasi-
random walk motion. We investigated different states to find the optimal state. The results 
show that considering the QRW enhances the amount of entanglement between the internal 
atomic modes and cavity fields. In addition, over time, the amount of entanglement tends 
to be a constant value, which this constant value is higher in the QRW case. We show that 

Fig. 4  Comparison of entanglement with the reduced von Neumann entropy measurement in the QRW 
(blue) and the NQRW (red) cases in the weak coupling regime, � = 0.6κ, γ = 0.9κ, κ = 0.1, when the atomic 
initial states are in a) the superposition of ground and excited states b) the ground state c) the excited state 
d) the entangled state
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Fig. 5  Comparison of entanglement for different values of transverse pump amplitude in the QRW case and 
the strong coupling regime. � = 3κ, γ = 0.2κ, �

L
=10κ for all diagrams and �

T
 = 5.5κ (blue) �

T
 = 10κ (red), �

T
 

= 19κ (green). a) The superposition of ground and excited states b) the ground state c) the excited state d) 
the entangled state

Fig. 6  Comparison of entanglement for different values of transverse pump amplitude in the QRW case and 
the weak coupling regime. � = 0.6κ, γ = 0.9κ, �

L
 = 10κ for all diagrams and �

T
 = 5.5κ (blue) �

T
 = 10κ (red), 

�
T
 = 19κ (green): a) The superposition of ground and excited states b) the ground state c) the excited state 

d) the entangled state
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with increased transverse pump amplitude, the amount of entanglement reaches the maxi-
mum value and decreases to a constant value, and almost preserves this amount for a long 
time. This maximum value and constant value in the strong coupling regime and �T = 19κ, 
are higher. It seems that the atomic initial ground in the strong coupling regime has more 
favorable results compared to other states since it can better show distinctions between the 
QRW and the NQRW states. As known, in quantum information and quantum computa-
tion, it is desirable to have more coherence between the subsystems. In other words, one 
needs to create and preserve entanglement with a long time, high maximum value, and 
more stability. Furthermore, in high temperatures (with respect to Absolute zero Kelvin 
temperature) the atomic motion must be considered and cannot be ignored. Therefore, 
we hope our results help to tailor more efficient initial quantum states and open up new 
research topics in high-temperature quantum information processing.
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