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Abstract
Magnetooptical properties of one-dimensional aperiodic structures formed by stacking together magnetic and nonmagnetic 
layers according to the Kolakoski self-generation scheme are studied theoretically using the 4 × 4 transfer matrix method. 
The effect of the generation stage of the sequence, and the helicity and direction of light propagation through the magneto-
photonic crystals on the transmission/reflection spectra as well as Faraday and ellipticity rotations, have been investigated. 
Our results reveal that this kind of aperiodic magneto-photonic crystals can be used for the fabrication of multifrequency 
laser cavities, and optical filters/sensors.

1 Introduction

Nowadays, the advances in deposition and crystal growth 
technologies have caused the periodic, quasiperiodic, ape-
riodic, and random photonic crystals (PhCs) to attract exten-
sive interest and emerged as a new potential platform for the 
development of high harmonic generators [1–5], terahertz 
emitters [6, 7], optical sensors/filters [8–11] and so on. PhCs 
with magnetic and nonmagnetic constituents are known as 
magneto-photonic crystal (MPCs). Physically, destructive 
interference of scattered waves at the boundary of dif-
ferent layers in PhCs leads to the formation of band gaps 
that prevent waves with certain frequencies from traveling 
through the structure. The presence of the nonreciprocal and 
unidirectional photonic bandgap (PBG) is the most promi-
nent property of MPCs which can be tuned by an external 
magnetic field [12–16]. The enhancement of magnetoopti-
cal effects, such as transmittance and a Faraday rotation, 
are other important features of MPCs. This enhancement 
can be attributable to the constructive interferences of light 
within magnetic layers that cause the light localization and 

light-matter interaction enhancement. Translational-sym-
metry breaking in MPCs with quasi-periodic, aperiodic, 
and random arrangement cause light localization enhance-
ment as well as the emergence of defect mode(s) [17–20]. 
Random MPCs are built without specific rules, while quasi-
periodic and aperiodic ones are fabricated according to 
certain substitutional rules and have an intrinsic symmetry 
of self-similarity, which manifests itself in the structure of 
their Fourier spectra [21]. However, the Fourier spectra of 
quasi-periodic structures like Fibonacci consist of isolated 
Bragg peaks with incommensurate periods, while aperiodic 
structures such as Thue–Morse and Rudin–Shapiro possess 
fractal and flat Fourier spectra with a variety of unique tech-
nological applications [22]. It has been proven that these 
structures combine strong magnetooptical effects with PBG 
properties effectively [23–27].

The Kolakoski self-generating sequence is another kind 
of aperiodic structure that has attracted significant interest 
in different branches of science, including fabricating ape-
riodic MPCs with applications in linear/nonlinear optical 
devices [28–30]. In this work, we study the magnetooptical 
properties of one-dimensional aperiodic MPCs formed by 
stacking magnetic and nonmagnetic materials according to 
the Kolakoski generation scheme. By using the 4 × 4 transfer 
matrix method (TMM), the transmittance, reflectance, Fara-
day rotation, and ellipticity are investigated as a function of 
the frequency, polarization, and angle of incident light for 
different numbers of layers N .
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2  Theory

I. 4×4 Transmission matrix formalism
One of the possible configurations of the structure 

under consideration with N =14 layers is schematically 
depicted in Fig. 1. It is assumed that the letters M denote 
the magnetic layer of thickness dM and N is the nonmag-
netic layer of thickness dN  . The plane electromagnetic 
wave of frequency � propagates in the yz plane with the 
wavevector � = {0, ky, kz}.

At optical frequencies, propagation of electromagnetic 
waves in a material is determined by the properties of the 
dielectric permittivity tensors �̂� and �̂� . In a medium uni-
formly magnetized along the z-axis (polar geometry), the 
tensors have the following form [31–33]:

Within the optical wavelength region, �̂� differs only slightly 
from unity ( �̂� = 𝜇𝛿ij , where �ij is Kronecker delta symbol). 
Furthermore, the non-magnetic crystal with a cubic symme-
try is characterized by the diagonal tensors �̂N = �𝛿ij.

In the following, to study the magnetooptical properties 
of one-dimensional aperiodic MPCs, we use the 4 × 4 trans-
fer matrix method [34–36] which couples the field ampli-
tudes at the structure input and output. According to this 
formalism, the transfer matrix T̂  has the following form:

where Êi is the propagation matrix of the four eigenmodes 
inside the layer i,

(1)�̂� =
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𝜀xx 𝜀xy 0

−𝜀xy 𝜀xx 0

0 0 𝜀zz

⎞⎟⎟⎠
�̂� =

⎛⎜⎜⎝

𝜇xx 𝜇xy 0

−𝜇xy 𝜇xx 0

0 0 𝜇zz

⎞⎟⎟⎠
.

(2)T̂ = Â−1
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with wavevectors k(j)z  , (j = 1...4 of the normal modes). 
Depending on the characteristics of each layer in MPC, the 
electromagnetic field of light that travels inside that is split 
into different modes with different kz s [32]. Matrix Âi relates 
the total electric Exy and magnetic Hxy fields of the plane 
electromagnetic waves at the boundary of the layer to the 
amplitudes of the eigenmodes. Âbg is related to the surround-
ing medium, with i=YIG or GGG. By solving the Maxwell 
equations we can find the elements of the matrices Âi . In this 
case, the electromagnetic wave splits into four modes with 
wavevectors k(1)
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= k
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 , and normalized frequency is 

Ω = �∕c . The explicit form of the matrix Â for the polar 
magnetic layer can be written as
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 , where

The values z− , �− , g− and f − can be obtained from z+ , �+ , 
g+ and f + respectively, by the replacement ( �, k
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[32]. For the normal incidence, wavevectors becomes 
k
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Beside, the wavevectors in the nonmagnetic cubic 
medium are
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Fig. 1  a Polar geometry of an aperiodic stack composed of magnet-
ized ferrite and isotropic dielectric layers with Kolakoski arrangement 
at the eighth generation stage ( N=14). b The polarization ellipse of 
the outgoing beams under normal electromagnetic wave incidence, 
with Faraday and ellipticity angles � and � , respectively
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with n =

√
� and the Â-matrix of the layer is

In the case of normal incidence k
±
= ±nΩ , and

Following the theory provided in [32], we can write the 
transmitted ts , tp and reflected rs , rp light magnitudes in terms 
of the incident light magnitudes as , ap using the transmission 
matrix in Eq. 2 as follows

where subscripts p and s correspond to the p-polarized and 
s-polarized electromagnetic waves, respectively. With the 
assumption that the 1D MPC is embedded in the isotropic 
dielectric media i before and f behind that with refractive 
index ni and nf  respectively, the S matrices read

where �i,f  is the angle between the wavevector and z-axis 
in media i and f. Accordingly, intensities of the transmit-
ted and reflected light are given by T = |tp|2 + |ts|2 and 
R = |rp|2 + |rs|2 , and using � = tp∕ts and � = rp∕rs for trans-
mitted and reflected waves, respectively, the Faraday rotation 
� and ellipticity � angles are determined by

which schematically are represented in Fig. 1b. Generally, 
even with a linearly polarized incident wave, the transmitted 
and reflected waves are elliptically polarized.

II. Kolakoski sequences generation rule
A Kolakoski self-generating sequence (KSGS) is defined 

by the property that it equals the sequence of its run lengths, 
where a run is a maximal subsequence of consecutive identi-
cal letters [37–41]. An infinite one-sided Kolakoski sequence

(8)k2
±
= n2Ω2

− k2
y
,
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which started from digit “2” is called the K(2, 1) sequence. 
In addition the sequence

is the other type of the Kolakoski sequence which started 
from digit “1” and is called K(1, 2).

Classical and generalized Kolakoski sequences can be 
generated by an algorithm that is similar to those of Fibo-
nacci or Thue-Morse sequences. The rules for the generation 
scheme of the classical Kolakoski self-generating sequence 
are briefly: (1) the classical sequence is formed from a pair 
of one-digit numbers 1 and 2; (2) The sequence consists of 
blocks of single and double 1 s and 2 s, each block is con-
taining a different digit or a pair of digits compared to the 
previous block; (3) the j-th block of the sequence has length 
lj = aj (where aj is the j-th element of the sequence); (4) In 
the sequence, there cannot be more than two neighbors with 
the same number; (5) every time when we “read” a new 
number, we alternate between writing 1 and 2. For example, 
the K(2, 1) sequence can be obtained from Eq. by starting 
with initiator 2 and iterating two alternating substitutions 
[37]. The number of generation stages of the Kolakoski 
sequence is defined as � and the total number of layers in 
the structure is N .

3  Numerical calculation and discussion

For the realization of the main features of the magnetoop-
tical response of Kolakoski-based MPCs, we assume that 
magnetic M and nonmagnetic N layers are corresponded to 
digits “1” and “2” in the K(1, 2) sequence, respectively. For 
numerical calculations, as Ref [42], we consider the mag-
netic layers M to be Ce doped yttrium iron garnet Ce:YIG, 
with nYIG=2.21 and �xy=0.009i at �=1.55� m and, nonmag-
netic layers N gadolinium gallium garnet GGG with nGGG
=1.926. We suppose that MPC is surrounded by the medium 
with refractive index, averaged over MPC, in order to avoid 
the effect related to Fresnel reflections at the surface of 
MPC [32], i.e. n=2.0. The layer thicknesses are chosen to 
be dM = �∕4nYIG and dN = �∕4nGGG.

The transmission, Faraday, and ellipticity rotation spectra 
of Kolakoski-based MPCs are presented in Fig. 2. In order to 
study the effect of the number of layers on magnetooptical 
responses, we considered MPCs with the number of lay-
ers, N=60 and N=85. Here �D∕2�c is the dimensionless 
frequency and D = dM + dN . It is important to note that the 
transmission spectra of both of MPCs demonstrate sym-
metrical profiles around certain normalized frequencies, 
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e.g. �D∕2�c = 0.729 . Moreover, they show bands with 
high and low levels of transmission, which are referred to as 
pseudo-stopbands and pseudo-passbands. The interference 

of the reflected waves from the different boundaries and 
field localization inside the structures cause oscillations in 
pseudo-passbands and appearing sharp transmission peaks 
(localized modes) within the pseudo-stopbands, respectively 
[29]. The total number of layers in the MPC determines the 
number of resonances, their spectrum, width, location, and 
magnitude. Figure 2 illustrates that the boundaries of the 
bands become sharper with an increase in N  and that more 
and more resonant transmission peaks emerge in the center 
of the pseudo-stopbands. The peaks get narrower and their 
magnitudes approach 1, Due to the lack of dispersion and 
loss in the materials. Also, some additional pseudo-stop-
bands appear in the spectra, which the number of them can 
be controlled with the parameter N  . Besides, Faraday and 
ellipticity rotation increase with increasing N  and frequency 
of incident light.

The exact values of transmission, Faraday, and ellipticity 
rotations for pseudo-stopbands (1–4) in Fig. 2 are provided 
in Fig. 3. The displayed values are calculated in transmis-
sion peaks. Furthermore, for N=60, the structure achieves a 
flat-top edge-mode with bandwidth of approximately 5THz, 
as shown with double-ended green arrows in Fig. 3a–d. 
The flat transmittance of polarized linear waves and the 
increased Faraday rotation confirm the feasibility of using 
tunable magnetooptic filters for transmission. Reduction of 
the bandgaps width and increase of Faraday rotation with 
increasing number of layers is also evident. Besides, for the 
additional information about the 1D aperiodic MPCs, we 

Fig. 2  The response to the normal incident linearly polarized light: 
The transmission coefficient T (blue solid line), Faraday � (red solid 
line), and ellipticity � (pink dashed-dotted line) vs the normalized fre-
quency for a N=60 and b N=85

Transmission

Fig. 3  a The response to the normal incident linearly polarized light: 
The transmission coefficient T (blue-solid line), Faraday � (red solid 
line), and � ellipticity (pink dashed-dotted line) vs the normalized fre-

quency. a–d for N=60 and e–h for N=85. Vertical lines indicate the 
location of transmission peaks
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have calculated the features of the reflected wave, as seen in 
Fig. 4. Areas with constant Faraday rotation and zero ellip-
ticity are highlighted in the middle of the pseudo-stopbands. 
There is not much change in Faraday rotation of the reflected 
wave as the number of layers and the frequency of incident 
light increase. In this study, dispersion and loss in layers 
were ignored, resulting in R+T=1, however considering 
them can modify magnetooptical responses and provide 
interesting results [43, 44].

It is worth noting that as shown in [21], intrinsic sym-
metry of self-similarity of Kolakoski-based MPCs manifests 
itself in the structure of its Fourier spectra and the structural 
correspondence of the Fourier and the transmission spec-
tra is significant. This indicates the Fourier transformation 
of this aperiodic MPC reveals important information about 
the transmission and reflection spectra, e.g. the position 
of pseudo-bandgaps and pseudo-stopbands in the spectra, 
which can be addressed in the next studies.

Comparing the magnetooptical responses of Kolakoski-
based MPCs with different arrangements of defective, ape-
riodic, and quasiperiodic can yield very interesting results. 
Here, since for numerical calculations, we used the param-
eters provided in the Ref. [42], we compare responses of the 
Kolakoski and two-defects MPCs with the same number of 
layers, N=125. As shown in Fig. 5a, the transmission of the 
second defect mode in the defective MPC decreased signifi-
cantly, which makes it practically useless. However, in the 
Kolakoski-based MPC similar to previous cases in Fig. 2, 
not only edge modes’ transmittance at higher frequencies 

has not decreased, but the Faraday rotation of these modes 
has increased, which makes them an excellent candidate for 
fabricating multicolor filters.

Transmission

Fig. 4  a The response to the normal incident linearly polarized light: The reflection coefficient R (blue-solid line), Faraday � (red-solid line), and 
� ellipticity (red dashed-dotted line) vs the normalized frequency for a–d N=60, and e–h N=85

(a)

(b)

Fig. 5  The response to the normal incident linearly polarized light: 
The transmission coefficient T (blue solid line), Faraday � (red solid 
line), and ellipticity � (pink dashed-dotted line) vs the normalized 
frequency for a two-defect [42] and b Kolakoski-based MPC with N
=125
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In order to better understand the physical mechanisms for 
the transmission properties and enhancement of the Faraday 
rotation, we calculate the distribution of intensities of the 
electric field |E|2 in aperiodic MPCs with N=60 and N=85 
at the frequency of the tunneling modes �D∕(2�c) = 0.798 
and �D∕(2�c) = 0.801 , respectively. As shown in Fig. 6, 
strongly localized electric fields of the tunneling modes are 
formed inside the structures. This enhancement originates 
basically from the fact that the strong scattering of light 
waves due to the high inhomogeneity of the Kolakoski mul-
tilayer leads to the formation of resonant cavities. Therefore, 
the local field will be intensively enhanced and localized in 
the magnetic optical layers, which can realize high trans-
mission and a large Faraday rotation angle of the designed 
frequency simultaneously.

At last, since new magnetooptical properties appear 
when light is incident on the MPCs at an oblique angle, we 
study the influence of incident angle � on the magnetoptical 
response of designed aperiodic MPCs. The dependence of 

the transmission and Faraday rotation on the incident angle 
and normalized frequency for different polarization of inci-
dent light is shown in Fig. 7. By taking advantage of the 
oblique geometry, polarization degeneracy between TE and 
TM which exists at normal incidence is removed. Besides, 
as the incident angle increases, all the resonant features as 
edges of the bandgaps and resonant peaks experience a sig-
nificant “blue” shift. This blue shift shows the possibility 
of using Kolakoski-based MPCs as tunable magnetoopti-
cal devices such as filters, polarizers, and shutters. For TM 
polarization, the bandgaps (1–4) in Fig. 2 become slightly 
wider when the angle increases, but are drastically reduced 
to zero for TE polarization. Practically speaking, this effect 
is significant.

4  Conclusion

In conclusion, in this paper, we have studied the magne-
tooptical properties of the novel type of one-dimensional 
aperiodic multilayered structures formed according to the 
generalized Kolakoski sequence generation rules. On the 
basis of the 4 ×4-block-representation transfer matrix for-
mulation, the expressions for calculating the reflection and 
transmission coefficients and related Faraday and ellipticity 
angles are obtained. The results reveal that high transmit-
tance and large Faraday rotation angle can be simultaneously 
realized in the aperiodic 1D-MPCs based on Kolakoski 
sequences. We have shown that the magnetooptical proper-
ties are sensitive to a change in incident angle, polarization, 

Fig. 6  Distribution of electric field intensity in the aperiodic 
MPCs with a N=60 and b N=85 at the normalized frequency 
�D∕(2�c) = 0.798 and �D∕(2�c) = 0.801 , respectively. The dashed 
lines show the border between different layers

TE-Wave

[ . ]

Angle of incidence[Rad.]

0.50.5 1.01.0

1.2

0.8

0.4

1.2

0.8

0.4

/
/

Fig. 7  Two-dimensional plots of Faraday rotation and transmissivity 
evolution with the incidence angle � and normalized frequency for TE 
and TM incidence wave in aperiodic MPC with N=60
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and frequency of light as well as the number of layers. Con-
sequently, tunability of frequency range and the width of 
the bandgaps of transmission and reflection spectra, as well 
as high Faraday rotation, have exposed these devices as 
effective candidate for designing spectral- and polarization-
selective optical components and Faraday rotators.
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