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Abstract 

 
Myostatin (MSTN) is primarily expressed in skeletal muscle tissue and acts as a negative regulator of skeletal 

muscle growth by inhibiting differentiation and proliferation of myoblasts. Inhibition of MSTN expression could result 

in muscular hypertrophy. An effective therapeutic approach based on specific silencing of a target gene is provided by 

RNA interference. The distribution of biologically active small interfering RNAs (siRNAs) inside the target cells/ tissue, 

is a significant problem due to the limited stability and delivery of siRNAs. Strategies depending on vector delivery have 

also a limited clinical utility due to safety concerns. Thus direct application of active siRNAs in vivo is the preferred 

strategy. We described the efficiency of intramuscular and intraperitoneal injections of MSTN-siRNA conjugated with 

cholesterol into the skeletal muscle of mice. The designed siRNA molecule was complementary to the exon II of the 

mouse MSTN gene. Mice were injected with a weekly dose of 10 μg/kg conjucated siRNA-cholestrol intraperitoneally 

or intramuscularly. Our findings suggested that within a few weeks of application, siRNA-treated mice showed a 

significant increase in muscle mass and suppressed MSTN gene expression. Even though both types of injections 

increased muscle weight, intramuscular siRNA injections suppressed the MSTN gene more effectively, whereas 

intraperitoneal RNA injections had a more significant impact on total body weight. The cholesterol-conjugated siRNA 

platform discussed here may hold promise for treating several skeletal muscle-related diseases, such as atrophic muscle 

disease, muscular dystrophy, and type II diabetes. 
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Introduction1∗ 

 

Myostatin (MSTN; formerly known as 

GDF-8) was discovered in a search for novel 

mammalian members of the TGF- β (transforming 

growth factor- β) group of growth and differentiation 

proteins (McPherron et al., 1997). It is mainly 

expressed in skeletal muscle and functions as a 

negative regulator of skeletal muscle growth by 

inhibiting myoblast differentiation and proliferation 

(Soleimani, 2019). Because of a combination of 

muscle fiber hypertrophy and hyperplasia , mice 

with knockout MSTN gene had nearly a doubling of 

skeletal muscle mass across the body (McPherron 

and Lee, 1997). Natural MSTN gene mutations have 

also been found in cattle (Grobet et al., 1997), dogs 

(Mosher et al., 2007), sheep (Clop et al., 2006), pigs 

(Ji et al., 1998) and humans (Schuelke et al., 2004). 

                                                 
*
Corresponding author’s e-mail address: 

javadmanesh@um.ac.ir 

RNA interference (RNAi) has already become a 

standard approach for gene targeting. It is becoming 

increasingly important for therapeutic knockdown of 

pathologically important genes due to its 

considerable effectiveness and specificity. RNA-

based gene silencing techniques can be used for 

various purposes, from validating targets to 

therapeutic implementations. It offers a viable option 

to pharmacological drugs, which are frequently 

associated with toxicity and off-target effects, as 

well as access to genes that were previously thought 

to be difficult to target or "undruggable" by 

pharmacologists. Since the discovery in 2001 

showing that small interfering RNAs (siRNA) can be 

utilized for specific gene downregulation in 

mammalian cells (Elbashir et al., 2001), numerous 

researchers have effectively used this technology to 

knock down genes in vivo and in vitro (Martin and 
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Caplen, 2007. Scherr and Eder, 2007). In cell lines 

and animal models, siRNAs are considered as 

practical tools for gene silencing. siRNAs are 

double-stranded RNAs with a length of 21–23 

nucleotides that cause RNA-induced silencing 

complex (RISC) recruitment, cleavage, and 

breakdown of target mRNA molecules when they 

engage with a RISC (Bakhtiyari et al., 2013). 

Because RNAi works by limiting the expression of a 

specific target gene, it could be a safer approach for 

treating a wide range of hereditary and clinical 

illnesses. RNA interference (RNAi) allows 

researchers to investigate the consequences of 

shutting down a gene under controlled settings. 

Similarly, biologists were inspired to develop 

plasmids expressing short hairpins to target genes 

because of the function and structure of miRNAs, 

which are naturally expressed in form of short 

hairpins and processed into inhibitory molecules 

(Zeng et al., 2002. McManus, et al., 2002). Many 

genes have been effectively targeted using this 

strategy, including those in skeletal muscle cell lines 

and muscle tissue (Magee et al., 2006; Payande et 

al., 2019. Riasi et al., 2022).  

On the other hand, recent developments in chemical 

modification of oligonucleotides led to invention of 

oligos with improved nuclease resistance, 

pharmacokinetics, gene specificity, and reduced 

immunostimulatory effects (Lares et al., 2010). 

Despite of significant advances and a few studies 

demonstrating systemic and targeted siRNA 

delivered in vivo, siRNA transport to the most tissues 

remains a crucial hurdle. Systemic delivery of 

siRNA has been used for  liver, tumor, spleen, and 

jejunum (Kawakami et al., 2011. Kinouchi et al., 

2008). A crucial requirement for successful delivery 

of systemic RNAi in vivo is the introduction of 

“drug-like” charachteristics, such as longer half-life, 

tissue bioavailability and cellular delivery, into 

chemically synthesized siRNAs. In inspecting the 

potential of synthetic siRNAs to silence desired 

genes, chemically modified siRNAs, including 

cholesterol conjugated, 2’-O-methyl sugar modified 

and antibody-linked siRNAs, have been found to 

improve pharmacological properties in vitro and in 

vivo markedly (Morrissey et al., 2005. Song et al., 

2005). Covalent conjugation of cholesterol to siRNA 

improves the resistant activity of free siRNA to 

nucleases and facilitates cellular import, which 

results in the efficient silencing of target genes in 

vivo (Lorenz et al., 2004. Soutschek et al., 2004). 

In the current study, we tried to investigate the effect 

of the type of injection (intraperitoneal or 

intramuscular) of siRNA on the inhibitory function 

of MSTN gene expression in a mouse model. 

Materials and Methods 

Design of siRNA molecule 

     The mouse MSTN gene sequence with accession 

number NC-000067.6 was achieved from NCBI 

database (National Center for Biotechnology 

Information). The siRNA was designed using the E-

RNAi program. The non-specific target was made 

sure of using the siRNA-Blast online program. 

Microsynth conjugated RNA with cholesterol in 

three heads to improve its stability against the 

endonuclease enzyme (Syntech Co., Switzerland). 

Myostatin gene expression inhibition was monitored 

and measured using a negative control (siRNA 

negative; Sigma, Germany) . This negative control 

does not complement any part of the mouse genome 

(Table 1). 

 

Experiment design and tissue preparation 

     Twenty-four male BALB/c mice were divide into 

two experimental and two control groups. Animals 

in this experiment conformed to all relevant animal 

testing and ethical research requirements. 

Experiments were carried out with the ethical 

approval of Ferdowsi University of Mashhad 

(Approval number 3/52696). The temperature was 

22±1°C, with a 12-hour light-dark cycle and free 

access to water and food (Roozbeh et al., 2019). The 

experimental group 1 (n=6) received a weekly dose 

of RNAi of 10 μg/kg intraperitoneally. The same 

dose of RNAi was administered intramuscularly to 

the experimental group 2 (n=6). The scramble-RNAi 

was given intraperitoneally and intramuscularly to 

the control groups (n=12). Finally, the animals were 

quickly killed by exposing them to an increasing 

CO2 concentration. Then muscles of the right biceps 

were removed. The tissue was sliced, and the upper 

half was immediately frozen in RNA shield (Dena 

Zist Asia, Iran) for RNA extraction, while the lower 

half was fixed in 10% formaldehyde for histological 

investigation. Until RNA extraction, all samples 

were stored at -80 °C. After the tissue was  fixed in 

paraformaldehyde 10%, the biceps muscle was 

embedded in paraffin. On sections (7mm) cut and 

mounted on silanized glass slides, hematoxylin and 

eosin (H&E) staining was utilized (McKinnell et al., 

2008). MyoVision software was used to count the 

cells (Wen et al., 2018). 
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Table 1. siRNA sequences selected to inhibit MSTN gene  

 

 Sequence Strand 

SiRNA 5' UCAACAGUGUUUGUGCAAAUATT 3' Sense 

SiRNA 5' AAUAUUUGCACAAACACUGUUGA 3' Antisense 
 

RNA extraction and quantitative PCR  

     In 2 ml screw-cap tubes containing ten glass 

beads (3mm), 20-40 mg of biceps tissue was added. 

The Bioprep-24 Homogenizer homogenized the 

samples at 3500 g for two 15-second cycles with a 

15-second pause period (Allsheng, China). Then, 

according to the manufacturer's recommendations, 

total RNA extraction and cDNA synthesis were 

carried out with the total RNA extraction kit and 

Easy cDNA synthesis kit (ParsTous, Iran) utilizing 

oligo d(t) and random hexamers. DNase I (Thermo 

Fisher Scientific, Austin, TX, USA) was used to treat 

RNA samples before cDNA synthesis, as directed by 

the manufacturer. The MIQE (Minimum 

information for publication of qPCR 

 experiments) guidelines were followed for all qPCR 

reaction settings (Bustin et al., 2009). In a BioRad 

CFX96 TouchTM real-time PCR instrument, 2 μl of 

cDNA, 10 μl of 2X SYBR Green PCR Master Mix 

(Ampliqon, Odense, Denmark), and 5 pM of each 

primer were mixed in 0.1-ml 8-strip tubes (Gunster 

Biotech, Viluppuram, Taiwan) in a final volume of 

20 μl. (Bio-Rad Laboratories Inc., Singapore). The 

experiment performs under the following condition: 

an initial denaturation step (95°C for 3min); 45 

cycles of amplification, including (95°C for 30s, 

58°C for 25s, and 72°C for 20s). The specificity of 

amplicons was validated using  melting curve 

analysis (60 to 95 °C). The slope of the standard 

curve was used to compute the reaction efficiency 

(efficiency = (10 (1/slope) – 1) 100). The R2 

correlation coefficients were used to make the 

decision. The geometric average of the GAPDH and 

B-actin reference genes was used to normalize the 

relative replication of MSTN transcript (Ruan and 

Lai, 2007. Ghanipour-Samami et al., 2018. Danesh 

Mesgaran et al., 2021). Primer sequences are shown 

in Table 2. 

Statistical analyses 

     Student’s t-test (SAS,v 9.4, SAS Institute Inc., 

Cary, USA) was used to evaluate the statistical 

significance of the data, and P-values less than 0.05 

were considered statistically significant. All data 

were presented as mean ± standard error (SE). 

 

Results 

Relative leg weights  

     The results of body weight measurement in the 

fourth week before killing the mice in group 1 

showed a 10% difference between the treatment and 

control groups. In contrast, intramuscular injection 

(group 2) had no significant effect on increasing 

body weight. The efficiency of the MSTN-

siRNA/cholesterol conjugation molecule and its 

impact on increasing muscle growth was therefore 

assessed using the muscle weight/body index 

(Figure 1). 

Histological analysis 

     Histology images were prepared as 

previously described. The results of myonuclear 

counting showed that there was a significant 

difference at 95% and 99% between groups 

which received RNAi interaperitoneally and 

interamuscularly in comparsion to the control 

group, respectively (Table 3) (Figure 2). The 

results demonstrated that intramuscular 

injection of the conjugated MSTN-

siRNA/cholestrol induced muscle enlargement 

by suppressing the MTSN gene expression. 
 

 

 

Table 2. Primers used in the quantitative RT-PCR experiments 

Gene name Sequence Amplicon 

length (bp) 

Accession number 

MSTN F:5' TCCAGAGGGATGACAGCAGT 3' 

R: 5' GGGCTTTTACTACTTTGTTGTACTGT 3' 

177 NM_010834 

GAPDH F: 5' GAGAAACCTGCCAAGTATGATG 3' 

R:5' CATACCAGGAAATGAGCTTGACA 3' 

196 NM_001289726 

 

B-actin F: 5'CTCTGGCTCCTAGCACCATGAAGA3' 

R: 5' GTAAAACGCAGCTCAGTAACAGTCC 3' 

200 NM_028135 
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Figure 1. Intramuscular and intraperitoneal administration of the MSTN-siRNA/cholesterol conjugation induces 

muscle enlargement in the mouse by blocking of MSTN gene expression. After three weeks, the body weight of mice 

in each group was measured and compared to the control. (a) Body weight change after intramuscular injection, (b) 

body weight change after intraperitoneal injection, (c) comparison of muscle weight/body weight index between the 

MSTN-siRNA/cholesterol conjugation and control mice (group 2 0.094±0.038 versus 0.041±0.024g). Graphical 

representation of data uses the following convention: mean±s.d.; treated muscles in green; control muscles in red. 
 

 
Figure 2. Muscle fiber density in biceps (a) control (b) right biceps muscles injected with MSTN-siRNA/cholesterol 

conjugation interaperitoneally (c) right biceps muscles injected with MSTN-siRNA/cholesterol conjugation 

intramuscularly. Serial sections (7 mm thickness) were cut and stained. (Scale bar, 100 μm) 
 

Table 3. Results of cell counting in biceps muscle 

tissue of control and treated legs.  

 

Group  mean P-value 

RNAi- IP 261 0.0296* 

Control- IP 117 

RNAi- IM 360 0.010** 

Control- IM 123 
 

 

Gene expression 

     The qPCR reaction results were confirmed by 

melt curve analysis and agarose gel electrophoresis 

(Supplementary Figures 1 and 2). The qPCR showed 

a 66% and 90% decrease in MSTN expression in 

muscle tissue treated with Mstn-siRNA/cholesterol 

conjugation interaperitoneally and interamuscular 

compared to the control (Figure 3). We observed a 

significant difference in MSTN gene expression 

when MSTN-siRNA was injected interamuscularlly 

in mice.  
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Figure 3. MSTN gene expression: MSTN mRNA 

expression in groups treated by MSTN-

siRNA/cholesterol conjugation interaperitoneally, 

MSTN-siRNA/cholesterol conjugation 

intramuscularly and the control. MSTN expression 

was normalized using the geometric averages of 

GAPDH and b-actin. **p < 0.01 
 

Discussion 

     A promising tool for the suppressing of particular 

disease pathways is the gene-silencing methodology 

based on RNAi. Due to the possibility of more 

excellent selectivity and decreased toxicity and side 

effects, it has the potential to be more effective than 

conventional pharmacological medications. Skeletal 

muscles are essential for morphofunctional function, 

and their atrophy results in severe illnesses like 

muscular dystrophy. One in every 3500 male births 

is affected by Duchenne muscular dystrophy 

(DMD), a severe condition that causes muscle 

atrophy (Laws et al., 2008). Although there is no 

treatment at the moment, gene therapy techniques 

are promising new directions for the creation of 

medications(Foster et al., 2006). Anti-myostatin-

blocking antibodies are one of the therapeutic 

strategies used to improve muscle mass. These 

antibodies suppress MSTN (Bogdanovich et al., 

2002). However, it requires a considerable amount 

of time and effort to produce antibodies against 

recombinant target proteins. MSTN suppression 

caused by overexpression of the MSTN 

prodomain12 in mice used as models for limb-girdle 

muscular dystrophy 1C was demonstrated to 

minimize muscle atrophy and correct intracellular 

MSTN signaling (Ohsawa et al., 2006). On the other 

hand, Magee et al. showed that increasing local 

skeletal muscle mass by electroporating a plasmid 

carrying a short-hairpin interfering RNA (shRNA) 

against MSTN could downregulate MSTN 

production (Magee et al., 2006). However, 

techniques based on vector administration may only 

have limited therapeutic utility due to safety 

concerns. Applying active siRNAs in vivo directly is 

the preferred strategy. We looked for a more suitable 

application with higher cholesterol-conjugated 

siRNAs effectiveness as one of the feasible 

platforms delivery of siRNA. Other in vivo 

investigations have used cholesterol-conjugated 

siRNAs to show uptake into the heart, kidney, 

adipose, liver, small intestine, and lung. Few 

published studies on the distribution of chol-siRNA 

to the muscle by systemic dose exist (Soutschek et 

al., 2004; Wolfrum et al., 2007; Soutschek et al., 

2004). Therefore, in the current research, we 

evaluated local and systematic injections to 

determine whether the method of administration of 

DNAi could affect the efficiency of MSTN 

inhibition. 

     We made use of the siRNA sequences that were 

mentioned in previous research by Payande. 

(Payande, 2019) at Ferdowsi University in Mashhad. 

They transfected it into C2C12 cell line (a mouse 

myoblast cell line) that had been induced to express 

MSTN to demonstrate in that work that the present 

MSTN-siRNA/cholesterol conjugation could 

effectively downregulate the MSTN expression. The 

findings of this study demonstrated the remarkable 

efficacy of siRNA sequences in reducing gene 

expression while having no detrimental changes in 

cell morphology. Then we injected MSTN-

siRNA/cholesterol conjugation in mice, as 

mentioned earlier. 

     Our weight findings validated the decrease in the 

muscles treated with MSTN cholesterol-conjugated 

siRNAs (Figure 1). The muscles in the treated legs 

are noticeably larger than the controls, although the 

body weights for the group 1 and its control were 

37.20±0.7 and 33.19±0.4 g and for group 2 and its 

control were 33.45±0.2 and 31.85±0.5, respectively. 

Khan et al. conducted a study on the systemic 

administration of cholesterol-conjugated siRNA 

targeting the muscle-specific MSTN gene. They 

measured the expression of MSTN in several mouse 

muscles (Khan et al., 2016). Their findings indicate 

that MSTN cholesterol-conjugated siRNAs raise 

body weight by 10% while also increasing leg 

muscle size by up to 20%. When they measured the 

shape of the cell, they saw hypertrophy rather than 

hyperplasia. These confirmed all the results obtained 

in our research at the time of MSTN-

siRNA/cholesterol conjugation intraperitoneal 

injection. On the other hand, no increase in body 

weight was seen in the treated mice in group 2, most 

likely, since the gain in muscle weight offset the 

reduction in fat formation (McPherron and Lee, 
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2002). When the body weight varied, we considered 

the muscle weight/body weight ratio to demonstrate 

a gain in muscle, similar to a research performed by 

Kinouch et al. (Kinouchi, et al., 2008). They 

administered the Mst-siRNA/ATCOL complex 

intramuscularly to 20-week-old male mdx mice, into 

the tibial and masseter muscles on the left side. An 

enormous increase in muscle mass was seen two 

weeks following the single injection. Morphometric 

measurements show both hypertrophy and 

hyperplasia in muscle. These findings from our 

investigation, comparable to those from the previous 

study, demonstrated the value of intramuscular 

injections for promoting muscle growth.  

     In our model, fiber size analysis and H&E 

staining of histological preparations reveal both 

hyperplasia and hypertrophy in the treatment group 

compared to the control group. Even though, MSTN 

knockout mice exhibit both muscle hypertrophy and 

hyperplasia, the differences between our model and 

the MSTN-knockout model were most likely caused 

by the nearly complete absence of MSTN throughout 

the entire development of MSTN knockout mice as 

opposed to "acute" MSTN inhibition in adult 

animals for siRNA targeting (Lee and McPherron, 

2001). Our findings from siRNA injections into the 

intramuscular space are in line with several gene 

knockdown and MSTN inhibition or studies, which 

also demonstrate only increased muscle growth 

(Whittemore et al., 2003). 

     Gene expression data in our study showed that 

intramuscular injection of RNA into the target tissue 

was able to silence the gene with a better 

performance of about 80%. In comparison, 

intraperitoneal injection inhibited the expression 

with 60% efficiency. Our gene expression result of 

interamuscular injection of siRNA was in line with 

the Khan study. They observe 80-90% MSTN 

suppression in soleus muscle. It was possible that we 

would get more similar results if we used different 

muscle tissues in our study. Alternatively, if we used 

higher doses of siRNA, the rate of inhibition of gene 

expression in systemic injection would be higher. In 

Khan's study, it was noted that using higher doses of 

siRNA was more effective in inhibiting gene 

expression. On the other hand, in Kinouchi 

experiment, systematic delivery of siRNA 

knockdown MSTN gene by 25% during three weeks. 

Since the MSTN chol-siRNA used in the current 

investigation was a simple conjugate that could be 

injected intramuscularly and interaperitoneally, 

there is no need for a technically challenging 

delivery mechanism or complex formulations. The 

cholesterol conjugate can deliver to skeletal muscles 

and silence genes there as well. In mice, it 

demonstrates long-lasting silencing after a single 

dosage. The cholesterol-siRNA conjugates used in 

our study were a helpful tool for in vivo target 

validation studies. They may one day be 

therapeutically effective for treating some of skeletal 

muscle disorders. 

 

Conclusion 

Finally, the results of the current study 

demonsterated that the use of cholesterol-conjugated 

siRNA could effectively suppress the MSTN gene in 

mice within three weeks. However, both types of 

intramuscular and peritoneal injection led to an 

increase in skeletal muscle weight and significant 

inhibition of gene expression. However, it appears 

that future studies with greater injection doses and 

more frequent injections are required in order to 

precisely recommend one of the two methods of 

intramuscular and peritoneal injection.  
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Figure S1. Agarose electrophoresis of qPCR products from GAPDH, MSTN and B-actin genes. 

 

 
Figure S2. Melt curve analysis of mouse MSTN transcript (standard: red lines, samples: blue lines and negative 

control: green) 

 

 

 

 


