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A B S T R A C T 

We investigate the dynamics of clumps that coexisted with/in advection-dominated accretion flows (ADAFs) by considering 

thermal conductivity. Thermal conduction can be one of the effective factors in the energy transportation of ADAFs; hence it 
may indirectly affect the dynamics of clumps by means of a contact force between them and their host medium. We first study 

the ensemble of clumps by assuming them as collisionless particles, and secondly we find the orbital motion of these clouds 
as individuals. For both parts, clumps are subject to the gravity of the central object and a drag force. The strong coupling 

between clumps and ADAF leads to equality between the average treatment of the clumps and the dynamics of their background. 
By employing the collisionless Boltzmann equation, we calculate the velocity dispersion of the clumps, which turns out to be 
approximately one order of magnitude higher than the ADAF. In fact, involving drag force in such a system causes the angular 
momentum of the clumps to be transported outwards by the ADAF, and hence the clouds eventually will be captured at the tidal 
radius. The results show that the presence of thermal conduction increases the root of the averaged radial velocity square, and 

this, in turn, speeds up the process of capturing the clouds through the tidal force. In the end, we focus on a typical individual 
cloud; the spiral orbits appear only due to the toroidal component of friction force. The parametric study again pro v es that the 
operation of thermal conduction helps in decreasing the lifetime of clumps. 

Key words: accretion, accretion disc – conduction – methods: analytical. 
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 I N T RO D U C T I O N  

owadays, we have a lot of valuable information at different
avelengths, which enable us to study visible celestial objects

ike planets, stars, and galaxies as long as some non-visible active
stronomical objects such as black holes and neutron stars exist. It
s widely believed that the main engine of these invisible objects is
he accretion process. In fact, accretion discs include a wide range of
cales: millions of kms in low-mass X-ray binaries and cataclysmic
ariables, solar radius-to-au scale discs in protostellar objects, and
u-to-parsec scale discs in active galactic nuclei (AGN; Spruit 2010 ).

Since 1952, the simplest model for accreting systems with
pherical symmetry was proposed by Bondi, and several models
f accretion have been introduced to describe the basic features of
mergent spectrum arising from the rotating medium around compact
bjects. The main types of black hole accretion flows are classified
ased on their apparent shapes and the transportation mechanism of
iscously dissipated energy (Frank, King & Raine 1992 ; Narayan,
ahade v an & Quataert 1998 ; Yuan & Narayan 2014 ). In the earliest

lass, the flow forms a geometrically thin (but optically thick) disc
ith relatively low temperature and the internal pressure support is

mall (e.g. Frank et al. 1992 ). In the standard thin disc model, ions
nd electrons have equal temperatures ( T i = T e ), and also the heating
nd cooling rates are balanced ( Q 

− = Q 

+ ). In the second class, flow is
pecified with two temperatures, one for ions and an equal or smaller
ne for electrons. These flows are thermally unstable although both
ates of cooling and heating are equal (Piran 1978 ; cf. Rees et al.
 E-mail: abbassi@um.ac.ir 
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982 ). The third class is a slim disc or optically thick hot accretion
ow that occurs when the cooling rate becomes less than the heating
ate ( Q 

− < Q 

+ ), and ion temperature becomes equal to electron
emperature ( T i = T e ). The other important class is advection-
ominated accretion flow (ADAF), which is mainly optically
hin. Like the second class, the ions’ temperature differs from the
lectrons in this solution. The main factor of this type, which remarks
t, is the photon trapping and carrying viscously dissipated energy
owards the disc’s centre. This inner mo v ement of energy makes the
ow stable (Narayan & Yi 1995 ). Finally, the model of luminous
ot accretion flow is another solution (proposed by Yuan 2003 ) that
he cooling process provides by radiation and decrease of entropy. 

In all models mentioned abo v e, the fluid is assumed to be
ontinuous and homogeneous, but this is just valid in the limit of
ow-mass accretion rates. In luminous hot accretion flows and slim
iscs, the mass accretion rate is large, even larger than the critical
alue, so it causes thermal instability and leads to the form of cold
ense clumps, and hence, multiphase accretion flow (Yuan 2003 ).
he existence of such cold clouds embedded in hot accretion discs is
ow confirmed as the broad-line region (BLR), which successfully
xplains some of the observational evidence. Gillessen et al. 2012 ;
urkert et al. 2012 have shown that even near the Galactic Centre,

here are some clouds in orbit around the central supermassive black
ole. On the other hand, some numerical simulation clearly shows the
ormation of cold, dense clumps, likely due to thin-shell instabilities
n the shocks formed by the stellar winds (e.g. Vishniac 1994 ). Our
alactic Centre, Sgr A ∗, is surrounded by young, massive stars.
ome of these stars are in the Wolf–Rayet phase and have mass-

oss rates that could be as high as 10 −4 M � yr −1 . One of these
lumps could correspond to the G2 cloud, which was disco v ered
© 2022 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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n its way to being tidally sheared by Sgr A ∗ (Gillessen et al. 2012 ,
013 ). Furthermore, there is strong evidence from both theoretical 
nd observational works that imply accretion on to some black hole 
-ray binaries (BHXB; Malzac & Celotti 2002 ; Merloni et al. 2006 ),
GN (Kuncic, Blackman & Rees 1996 ; Kumar 1999 ), including low-

uminosity AGNs (Celotti & Rees 1999 ), and ultra-luminous X-ray 
ources are clumpy rather than homogeneously continuous. Several 
nstabilities driven by thermal (Krolik 1998 ), magnetorotational 
Blaes & Socrates 2001 , 2003 ), and photon bubble (Gammie 1998 )
ave been reported in accreting systems. In the innermost region 
f BHXBs, the hard X-ray includes broad iron lines and thermal 
adiation, which are unusual for such a hot fully ionized gas. This
trange spectrum can be explained by the existence of cold clumps 
Yu et al. 2018 ). Recent infrared observations have identified low- 
ass gas clouds, G1 and G2, moving through this e xact re gion.
easuring their interaction with the background gas could, therefore, 

rovide important information about black hole accretion physics 
e.g. Narayan, Ozel & Sironi 2012 ). 

Current attempts to study these clumpy systems concentrate on 
nswering these main aspects: Understanding the processes that may 
ead to the formation of BLR clouds is an active research field (e.g.
romerth & Melia 2001 ; Pittard et al. 2003 ). Moreo v er, there are
oticeable uncertainties about the stability of these clouds and the 
onfinement mechanisms in the light of theoretical arguments and 
ecent numerical simulations (Rees 1987 ; Krause, Schartmann & 

urkert 2012 ; Namekata, Umemura & Hase ga wa 2014 ). Re gardless
f any current uncertainty over the nature of the confinement 
echanisms, the orbital motion of BLR clouds and their radiated 

mission allow us to estimate the mass of the central black hole (e.g.
arconi et al. 2008 ; Netzer & Marziani 2010 ). 
So far, the spectral properties of clumpy accretion flows are 

nvestigated by some authors like Guilbert & Rees ( 1988 ), Malzac &
elotti ( 2002 ), Merloni et al. ( 2006 ), and Krolik ( 1998 ). The
ynamics of cold clumps inside ADAFs between the tidal disruption 
adius and the transition radius are studied by Wang, Cheng & 

i ( 2012 ) (WCL12). They could find analytical solutions for both
trong and weak coupling between clumps and ADAF. Ghayuri 
 2016 ) studied the BLRs by using Jean’s equations in cylindrical
oordinates. He obtained the distributions of cold clumps that can 
e found in three configurations of non-disc, disc-wind, and pure 
isc. Khajenabi, Rahmani & Abbassi ( 2014 ), followed WCL12 and 
ook into account the magnetic field effects on clumps’ dynamics 
ue to clumps’ strong coupling to their ambient medium. In fact, the
agnetic field is very important to keep clumps close to the central

egion of AGNs (Rees 1987 ). 
One of the main ingredients of previous theoretical (or simu- 

ation) studies is the true nature of the intercloud medium. The 
omplete physics of these clouds is highly complex and involves 
everal physical processes such as pressure, radiative, centrifugal, 
ravitational, and magnetic forces; consequently, our knowledge 
bout the intercloud medium is still poor. Most of the previous 
nalytical studies of BLR clouds are based on a few certain sim-
lifying approximations. Recently, it has been suggested by Krause, 
chartmann & Burkert ( 2011 ) that one of the plausible candidates to
escribe the intercloud medium is ADAFs, where the pressure of the 
as varies in proportion to a power-law function of the radial distance
e.g. Narayan & Yi 1994 ). Das & Sharma ( 2013 ) and Bu & Gan
2018 ) have found that cold clumps can coexist with hot accretion
ow. Simulation performed by Bu & Gan ( 2018 ) has shown that the
ccretion rate increases to a value at which the radiative cooling rate
s roughly equal to or slightly larger than the viscous heating rate,
nd cold clumps can form around the equatorial plane. On the other
and, Burkert et al. ( 2012 ) performed numerical simulations of a
lumpy cloud with properties similar to G2, which is moving within
he ambient gaseous medium and is modelled as an ADAF. They
ound that despite the variations of the cloud due to its interactions
ith the ambient gaseous medium the cloud preserves its pressure 

quilibrium with the surrounding medium (also see, Scharmann 
t al. 2008 ). Cloud stability and confinement require them to be
n rough pressure equilibrium with their environment (e.g. Krolik, 

cKee & Tarter 1981 ; Krolik 1988 ). To reach the required pressure
f p ≈ 10 −2 dyne cm 

−2 , the intercloud medium needs either a high
emperature ( ≈10 7 K; Krolik 1988 ), following the abo v e-mentioned
apers, here we also describe intercloud medium using an analytical 
odel of ADAFs. In an extremely low-accretion rate, the collisional 
ean free path of electrons is large compared with the length-scale of

he system, thus thermal conduction can have a significant influence 
n the dynamics of the accretion flow. On the other hand, in ADAFs,
he temperature of the flow is near-virial, and the internal energy
f particles is v ery large. Therefore, the e xtra heat which could
ot be transported outwards via radiation cooling should be carried 
hrough other ways like advection. Besides advection, conduction 
an transport heating in the radial direction. Tanaka & Menou ( 2006 )
nvestigated the effect of thermal conduction in ADAFs for the 
rst time. Their work was followed by Shadmehri ( 2008 ), Abbassi,
hanbari & Najjar ( 2008 ), and Abbassi, Ghanbari & Ghasemnezhad 

 2010 ) to find how the dynamics of flow change in the presence of
onduction. 

In the paper on WCL12, the clumps are treated as stable long-
ived objects and because of that the time dependency of quantities
s ignored. Ho we ver, besides the stationary configuration of clumps,
nother approach can be followed based on the transient nature of
old clouds. In fact, time e v aluation of clumps is an ef fecti ve tool
or finding the population properties of BLRs of AGN. BLRs are
elieved to consist of dense clumps of hot gas in a much hotter diluted
edium such as ADAFs and the motion of clouds has the main role in

roadening their emission lines. Moreo v er, the e xistence of clumps in
LR has been pro v ed by spect-polarimetric observations, too (Smith
t al. 2005 ; Ghayuri 2016 ). 

In order to obtain precious information about the structure of 
GN and provide an estimation for the mass of the central black
ole (e.g. Marconi et al. 2008 ; Netzer & Marziani 2010 ), orbital
nalysis of BLR clouds has attracted some author’s attention (Krause 
t al. 2011 ; Plewa, Schartmann & Burkert 2013 ; Shadmehri 2015 ;
hajenabi 2015 , 2016 ). To study BLR clouds, it is common to

ssume the clumps have balanced interior pressure with their ambient 
ressure. Therefore, a cloud with a fixed mass that is subject to
he gravity of the central black hole and the friction force can be
reated in the format of a classical two-body problem. Some works,
uch as Mittleman & Jezewski ( 1982 ), Mavraganis & Michalakis
 1994 ), Humi & Carter ( 2002 ), Shadmehri (2015) , and Khajehnabi
 2016 ) have been done by following this approach. In these papers, a
ower-law pressure distribution for the inter-clouds medium has been 
pplied. The common result of all these works is that irrespective of
nitial conditions or the form of friction force orbital decay occurs
n such systems because of considering the drag force. Shadmehri 
 2015 ) has introduced the time-of-flight as the estimated time for a
loud needs to fall on to the central region. He found that the drag
orce coefficients are important in the flight time of a BLR cloud and
hange it linearly. 

Now in this paper, we first work on the ensemble of clumps
nd employ the collision-less Boltzman equations to describe their 
ynamics. In Section 2 , we write the basic equations in cylindrical
oordinates and simplify them by assuming ignorable vertical move- 
MNRAS 517, 5090–5103 (2022) 
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ent for both clumps and the ambient medium. As we know (from
CL12) in the case of strong coupling, the averaged properties of

lumps follow the ADAF dynamics. Therefore, both the average
elocity of clumps and drag force will be affected by thermal
onductivity in the intercloud gas. That is why we pay special
ttention to the characteristics of an ADAF possessing thermal
onductivity in Section 3 . The result of sections 2 and 3 are combined
n Section 4 for finding the velocity dispersion between the clumps
nd the ADAF. For the second part of this work and in Section 5 ,
e study the dynamics of clumps individually just like the two-body
roblem, and write the momentum equation for two directions (radial
nd azimuthal) at the equatorial plane. We will use the same formula
or drag force as the first part, and see how much the trajectory of a
LR cloud changes by adding thermal conduction. And finally, the

ummary and conclusion are presented in Section 6 . 

 BA SIC  E QUAT I O N S  A N D  ASSUMPTIONS  

s we stated in the introduction existence of cold clouds embedded in
ot accretion discs is now confirmed as the BLR, which successfully
xplains the observ ational e vidence. The formation of cold clouds can
e simply justified by thermal instability (TI). Although the detailed
alculation of thermal instability is beyond the scope of this paper,
e may use simplified arguments to grasp some essential properties
f cold clouds. The Maximum size of the cold clump is specified by
rossing the distance of a sound wave within one Keplerian time-
cale. Typical values for mass and radius of clump, m cl = 4 × 10 24 g
nd R cl = 10 11 cm , in the case, we have a supermassive central black
ole with 10 8 M � (table 1, WCL12). We may expect that the size
nd mass of the clumps change with the radial distances to the black
ole. On the other hand, the energy transport (cooling and heating of
he clump) will specify the minimum size of the clump, below which
he clump will be e v aporated (WCL12). Furthermore, Sutherland &
opita (1993 ) have shown that due to efficient line cooling clump

emperature could retain a constant value around T = 10 4 K. 
One more concern is whether this clump can remain unchanged

nd survive in an ADAF. Actually, turbulence in the accretion disc
an not destroy these clumps. MRI or any other mechanism for
urbulence in the discs is only a small disturbance to the clump, since
he clump size is much smaller than the typical length of turbulence.

oreo v er, the small turbulence eddies whose size is comparable to
he clump hav e v ery small kinetic energy according to Kolmogorov’s
aw (Landau & Lifshitz 1959 ). Considering all of these arguments,
t would be an acceptable approximation that clumps are simplified
s particles. Furthermore, if we assume a specific volume for any
ndividual clump, we need to take the tidal force into the account
specially close to the black hole, which may disrupt the clumps. As
n approximation for simplifying the complexity of the problem in
his study, we assume BLR clouds as a system of point-like particles.
o, we may ignore the effect of tidal interactions. WCL12 has shown

hat in clumpy-ADAF system collision, the clumps can be neglected.
o it is worth assuming the clumps as a system of collision-less
articles were moving inside the ADAFs. Therefore, we need to
pply the Boltzmann equation. 

Boltzmann equation works with the state of the gas statistically.
irst, we define the distribution function, f ( x , v , t ) such that f d 3 x d 3 v,
hich is the average number of particles contained in a volume

lement d 3 x about x , and a velocity-space element d 3 v about v at
ime t . Macroscopic properties of the gas such as the number density
f the particles, n , and the av erage v elocity of an element of gas u
 = macroscopic flow velocity) can be e v aluated from this function
s: 
NRAS 517, 5090–5103 (2022) 
 ( x , t) = 

∫ +∞ 

−∞ 

f ( x , v , t) d 3 v, (1) 

 ( x , t) = n −1 
∫ +∞ 

−∞ 

f ( x , v , t) v d 3 v = 〈 v 〉 , (2) 

The distribution function in the absence of collisions is invariant,
o we recast the Boltzmann equation as: 

 = 

∂f 

∂t 
+ v i 

∂f 

∂x i 
+ a i 

∂f 

∂v i 
= 0 , (3) 

here a i is the i -component of the acceleration vector (due to the
xternal force F ( x , t ), such that a ( x , t ) = F ( x , t )/ m , where m is the
ass of a single particle). Equation ( 3 ) is known as the collision-less
oltzmann equation, or Vlasov’s equation. The equations of fluid
ynamics can be derived by calculating moments of the Boltzmann
quation for quantities that are conserved in collisions of the particles.
egarding clumps which are assumed to be collision-less, we require

he moments of the Boltzmann equation obtained from equation ( 3 )
nd simplifying 

∫ 
n F d 3 v = 0 that yield: 

the zero moments: 

∂n 

∂t 
+ 

∂ 

∂x i 
( n 〈 v i 〉 ) = 0 , (4) 

nd the first moment: 

∂ 

∂t 
( n 〈 v i 〉 ) + 

∂ 

∂x i 

(
n 
〈
v i v j 

〉) − n 
〈
a j 
〉 = 0 . (5) 

ow converting the Cartesian coordinates to cylindrical coordinates,
quations ( 4 ) becomes: 

∂n 

∂t 
+ 

1 

R 

∂ 

∂R 

( Rn 〈 v R 〉 ) + 

1 

R 

∂ 

∂φ
( n 〈 v φ〉 ) + 

∂ 

∂z 
( n 〈 v z 〉 ) = 0 , (6) 

nd the three components of vectorial equation ( 5 ) are found as: 

∂ 

∂t 
( n 〈 v R 〉 ) + 

1 

R 

∂ 

∂R 

(
R n 

〈
v 2 R 

〉) + 

1 

R 

∂ 

∂φ

(
n 
〈
v R v φ

〉)

+ 

∂ 

∂z 
( n 〈 v R v z 〉 ) − n 〈 a R 〉 − n 

〈
v 2 φ

〉
R 

= 0 , (7) 

∂ 

∂t 

(
n 
〈
v φ
〉) + 

1 

R 

2 

∂ 

∂R 

(
R 

2 n 
〈
v R v φ

〉)
+ 

1 

R 

∂ 

∂φ

(
n 
〈
v 2 φ

〉) + 

∂ 

∂z 
( n 〈 v φv z 〉 ) − n 

〈
a φ
〉 = 0 , (8) 

∂ 

∂t 
( n 〈 v z 〉 ) + 

1 

R 

∂ 

∂R 

( Rn 〈 v R v z 〉 ) 

+ 

1 

R 

∂ 

∂φ
( n 〈 v R v z 〉 ) + 

∂ 

∂z 

(
n 
〈
v 2 z 

〉) − n 〈 a z 〉 = 0 , (9) 

fter applying assumptions of ∂ / ∂ t = ∂ / ∂ φ = 0 and also neglecting
he terms including: 〈 v z 〉 , 〈 v R v z 〉 , and 〈 v φv z 〉 , we have: 

1 

R 

∂ 

∂R 

( Rn 〈 v R 〉 ) = 0 , (10) 

1 

R 

∂ 

∂R 

(
R n 

〈
v 2 R 

〉) − n 〈 a R 〉 − n 

〈
v 2 φ

〉
R 

= 0 , (11) 

1 

R 

2 

∂ 

∂R 

(
R 

2 n 
〈
v R v φ

〉) − n 
〈
a φ
〉 = 0 , (12) 

∂ 

∂z 

(
n 
〈
v 2 z 

〉) − n 〈 a z 〉 = 0 , (13) 

In equations ( 11 )–( 13 ), we see the acceleration’s components,
 i , which are specified by two factors: first, gravitational potential
 = −GM /( R 

2 + z 2 ) 1/2 and secondly drag force, D i = −f i ( v i −
 i ) | v i − V i | , where V i and f i ( > 0) are ADAF velocity component
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Figure 1. Critical value of rotational drag force coefficient with respect to 
the polytropic parameter with different f ’s. 
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� φ = ±5 × 10 −3 , where R Sch = 2 . 95 × 10 5 m ∗ ( cm ) is the Schwarzschild 
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Figure 3. Variation of the radial velocity squared as a function of radius, 
R . In this figure, the parameters are: f = 0.9, α = 0.1, γ = 1.4, f R , φ R Sch = 

� R , φ = ±5 × 10 −3 . 
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nd coefficient of drag force per unit mass, respectively. Here, it is
ecessary to determine the sign of drag force: 

 i = 

{+ f i ( v i − V i ) 2 > 0 if v i < V i 

−f i ( v i − V i ) 2 < 0 if v i > V i 
. (14) 

s we mentioned before in the current work, we assume that clumps
ave been strongly coupled with their hot medium. Accordingly, the 
veraged value of D i is estimated by applying this approximation: 
 v i 〉 = V i , and thus the averaged acceleration of drag force can be
implified as: 

 D i 〉 = −f i 
(〈

v 2 i 

〉 − V 

2 
i 

)
. (15) 

otice that we use the abo v e formula for both cases of v i < V i and
 i > V i . To explain equation ( 15 ), first, according to equation ( 14 ),
 i can be ne gativ e (if v i > V i ) or positive (if v i < V i ), hence it

ounds logical not to expect the sign of 〈 D i 〉 becomes different from
 i itself (since in strong coupling, most of clumps must rotate in the

ame direction of ADAF and mo v es inwards to join the accretion
rocess), and secondly it seems reasonable to consider v 2 i < V 

2 
i for

he first case and v 2 i > V 

2 
i for the second case (again because of their

imilar direction of mo v ements for strong coupling). Consequently, 
o estimate the approximate value of 〈 D i 〉 , we need to note that: 

〈
( v i − V i ) 

2 
〉 ≈

{
V 

2 
i − 〈

v 2 i 

〉
if v i < V i 〈

v 2 i 

〉 − V 

2 
i if v i > V i 

. 

ow we are able to achieve the average value of total acceleration
omponents: 

 a R 〉 = −v 2 K 

R 

− f R 
(〈

v 2 R 

〉 − V 

2 
R 

)
, (16) 

 a φ〉 = −f φ
(〈

v 2 φ

〉 − V 

2 
φ

)
, (17) 

 a z 〉 = − z 

R 

2 
v 2 K 

− f z 
〈
v 2 z 

〉
, (18) 

here v 2 K 

= GM/ ( R 

2 + z 2 ) 1 / 2 ≈ GM/R 

3 , and we have assumed
hat V z = 0, V R = 〈 v R 〉 , and V φ = 〈 v φ〉 . 

Let us back to equation ( 10 ), using the approximation of 〈 v R 〉 =
 R , we can find the radius dependency of clumps’ density as: 

 = n 0 

(
R 

R 0 

)−3 / 2 

, (19) 

here n 0 is the density of clumps estimated in the typical radius
f R 0 . Notice that NY94 solved the height-averaged equations of
DAFs, the same result is seen here by integrating the differential 

quation ( 19 ) along vertical direction of z and assuming H ∝ R , or
lse, we would find n ∝ R 

−1/2 like Ghayuri ( 2016 , see equation 22 of
is paper). The height integrated version of continuity equation yields 
he constant mass accretion rate for clumps as: 

˙
 cl = −2 πRH nm cl 〈 v R 〉 , (20) 

here m cl is the average mass of individual clumps, and H is the half-
hickness of medium in R radius, which can be approximated by R
or an ADAF, i.e. H ∼ R . Substituting 〈 a φ〉 and n from equations ( 17 )
nd ( 19 ) in the second equation of momentum and approximating
 v R v φ〉 ≈ V R V φ , equation ( 12 ) gives: 

〈
v 2 φ

〉 = V φ

(
V φ + 

V R 

2 Rf φ

)
. (21) 

ince V R < 0, we might expect 〈 v 2 φ〉 < V 

2 
φ (see Fig. 2 , compare two

urves marked by dashed and solid lines). In addition, we should
otice that 〈 v 2 φ〉 becomes smaller towards the centre, and somewhere
t might become zero with a critical value of f φ : 

 φc = − V R 

2 r in V φ

= 

3 α

2 
√ 

2 ε′ (5 + 2 ε′ ) r in 
, (22) 
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here � φc = f φc R Sch , ( R Sch is the Schwarzschild radius), and like
Y94 for convenience, we have defined the parameter of ε′ instead
f (5/3 − γ )/[ f ( γ − 1)], and also scaled inner radius as: r in = R in / R Sch .
This critical value of � φ is similar to equation ( 26 ) of WCL12,

ut independent of the radius and only changes by previously known
arameters of this problem, i.e. α, γ , f , and r in . In Fig. 1 , we have
hown � φc as a function of γ for different f ’s and a constant α ( =
.1). 
The last achie v able quantity here is 〈 v 2 R 〉 appeared in equation ( 11 ).

n Fig. 3 the variation of the radial velocity squared as a function of
adius, R have been illustrated. This equation can be simplified by
ubstituting 〈 a R 〉 and 〈 v 2 φ〉 from equations ( 16 ) and ( 21 ). So we have: 

d 
〈
v 2 R 

〉
d R 

− 1 

2 R 

〈
v 2 R 

〉 + 

v 2 K 

R 

+ f R 
(〈

v 2 R 
〉 − V 2 R 

) − V φ

R 

(
V φ + 

V R 

2 Rf φ

)
= 0 . 

t will be more convenient, if we use R Sch as a length-scale and
onvert R to r ( = R / R Sch ). So by multiplying the abo v e equation by
 Sch , and applying the definition of � i = f i R Sch , we find: 

d 
〈
v 2 R 

〉
d r 

−
〈
v 2 R 

〉
2 r 

+ 

v 2 K 

r 
+ � R 

(〈
v 2 R 

〉 − V 2 R 

) − V φ

r 

(
V φ + 

V R 

2 r� φ

)
= 0 . (23) 

f we write the velocity components of ADAF as: V i = c i v K ( r ), we
an obtain the following result by solving the abo v e equation: 
〈
v 2 R 

〉 = c 2 K r 
1 / 2 e −� R r 

{
C 1 + c 2 R � R 

∫ r f 

r 

r −3 / 2 e � R r d r 

− (
1 − c 2 φ

) ∫ r f 

r 

r −5 / 2 e � R r d r + 

c R c φ

2 � φ

∫ r f 

r 

r −7 / 2 e � R r d r 

}
, (24) 

here c 2 K 

= GM/R Sch ( = c 2 / 2) and C 1 is a constant value, which
an be obtained from this boundary condition: 

〈
v 2 R 

〉 | r f = V 

2 
R | r f 

 r f = 1000 R Sch ) is the outer boundary where the ADAF solutions
re satisfied) then we find, 

 1 = c 2 R r 
−3 / 2 
f e � R r f , 

ith using c R , c φ , and c K , equation ( 21 ) changes as below: 

〈
v 2 φ

〉 = c φ

(
c φ + 

c R 

2 r� φ

)
c 2 K 

r −1 . (25) 

In the next section, we will find the constants of c R and c φ for an
DAF with thermal conduction. 

 A DA F  S O L U T I O N S  WITH  T H E R M A L  

O N D U C T I O N  

e are interested in analysing the structure of ADAF, where thermal
onduction plays an important role in energy transportation. Here,
e write the basic conservation equations for an ADAF with the

ame assumptions as NY94, and involve the thermal conduction
erm in energy equation (Tanaka & Menou 2006 ). We assumed a
teady axisymmetric accretion flow, ∂ 

∂t 
= 

∂ 
∂φ

= 0. We can write the
tandard equations in the cylindrical coordinates ( r , φ, z). In addition,
e vertically integrate the flow of equations, and therefore, all the
hysical variables become only the functions of radial distance r .
oreo v er, relati vistic ef fects are neglected and Ne wtonian gravity

n the radial direction is taken into account. The simplified form of
adial and azimuthal components of momentum equation and energy
quation are presented in the three following equations: 

 R 

d V R 

d R 

= 

V 

2 
φ − v 2 k 

R 

− 1 

ρ

d 
(
ρC 

2 
s 

)
d R 

, (26) 

 R 

d( RV φ) 

d R 

= 

1 

ρRH 

d 

d R 

[
αρC 

2 
s R 

4 H 

v k 

d 

d R 

(
V φ

R 

)]
, (27) 

 H ρV R T 
d s 

d R 

= f 
2 αρC 

2 
s R 

3 H 

v k 

[
d 

d R 

(
V φ

R 

)]2 

− 2 H 

R 

d( RF s ) 

d R 

, (28) 
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here T , s , and f are the temperature, entropy, and advection
arameter, respectively; and H = RC s / v K is the vertical thickness
f hot accretion flow, F s = 5 � s ρC 

3 
s is the saturated conduction flux

Cowie & McKee 1977 ), and � s is the saturation constant, respec-
ively. According to the self-similar method for the radial direction,
ll quantities with velocity dimension should be proportional to R 

−1/2 

nd density is assumed to be proportional to R 

−3/2 . Consequently,
quations ( 26 )–( 28 ) give us, 

 

2 
φ = 1 − 1 

2 
c 2 R −

5 

2 
c 2 s , (29) 

 R = −3 

2 
αc 2 s , (30) 

9 

8 
α2 c 4 s + 

[
5 

2 
+ 

5 − 3 γ

3 f ( γ − 1) 

]
c 2 s −

40 � s 

9 αf 
c s − 1 = 0 (31) 

here c R , φ = V R , φ / v K and c s = C s / v K . As seen, there are three
nkno wn v ariables, i.e. c R , c φ , and c 2 s in the abo v e equations, which
an be found numerically . Now , we first solve the algebraic equa-
ion ( 31 ) in order to find c 2 s , and secondly we substitute the solution of
 

2 
s in equation ( 29 ), which has been simplified as below by applying
quations ( 30 ) and ( 31 ): 

 

2 
φ = 

5 − 3 γ

3 f ( γ − 1) 
c 2 s −

40 � s 

9 αf 
c s . 

otice that substituting some values of � s in the solutions yields
 

2 
φ < 0 (this issue has been discussed in Ghasemnezhad, Khajavi &
bbassi 2012 ). This point will be clarified better by looking at the

ontour plots in Fig. 4 . This figure shows the variation of c 2 φ with
espect to � s , and one of three other input parameters: α, f , γ in each
ubplot. In the first row panels of Fig. 4 , the unacceptable region for
 

2 
φ is located between two radial lines in the α − φs plane, and it gets
arger as the advection (in panel b) or polytropic parameter (in panel
) increases. The second three panels displays contour plots of c 2 φ in
− φs plane. The boundaries between ne gativ e and positive values

f rotational velocity squared in the middle row panels are arc-shaped
nd placed on the right-upper side of panels (d)–(f). Comparing panel
d) with panel (e), a rise in advection causes an upward shift in the
orbidden region. On the other hand, when comparing (d) with panel
f), we found out that when viscosity becomes stronger, the curved
ine of zero rotation seems flattered and mo v es to higher values of the
hermal conduction parameter. Finally, the bottom panels of Fig. 4
resent the behaviour of c 2 φ by colours with changing φs and f . As
een, in each panel there is a vertical line with zero labels, which
eclares that choices of two input parameters of φs and f from the
ight of this line cannot result in a reasonable solution. Furthermore,
he rectangular unacceptable part shrinks by greater viscosity (seen
n panel i) but extends by growing γ . Consequently, in the light of
his figure, we can find a proper value of φs for each certain set of
nput parameters ( α, f , γ ) to a v oid forbidden areas. 

In the following section, we will use these obtained solutions
f the components of ADAF’s velocity for finding drag force and
alculating the root of the averaged radial and rotational velocities
quare. 

 T H E  EFFECT  O F  T H E R M A L  C O N D U C T I O N  

N  CLUMPY  DI SKS  

n two previous sections, we reviewed momentum equations of
lumpy ADAFs with different signs of drag force, and solved the
implified first-order differential equation of 

〈
v 2 R 

〉
with respect to

adial coordinate. The final result in equation ( 24 ) as a function of
 R and c φ , i.e. coefficients of ADAF’s velocity components in radial
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Variation of c 2 φ showed by colours with the parameter of thermal conduction � s , and one of three input parameters: α (a–c), f (d–f), γ (g–i). In this 

figure, the ne gativ e values of c 2 φ are not physical, and we should carefully pick up a proper value of φs for each certain set of input parameters ( α, f , γ ) to a v oid 
forbidden areas. 
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nd azimuthal directions. Now, it is time to substitute the numerical 
DAF solutions from equations ( 29 )–( 31 ) in equations (24) and

 25 ). The results are illustrated in Figs 5 and 6 . In these two figures,
e hav e inv estigated the influence of thermal conduction on the
ynamics of clumps for a different set of input parameters: ( α, f , γ )
n Fig. 5 and ( � R , � φ) in Fig. 6 . In these panels, we have considered
 s = 0.0005, 0.002, and 0.004, remarked by dotted, dashed, and 

olid lines, respectively. In order to have an easier comparison, both 
elocity components of ADAF and clumps are presented in Figs 5 
nd 6 . The velocity dispersion of clumps is presented in the main
arger plots, and the small plots inside the main plots demonstrate the
elocity of ADAF. Comparing the small and large plots declares that 
hermal conduction plays a similar role in changing the behaviour of
lumps and ADAF. 

The upper row panels of Figs 5 , 6 show the behaviour of ADAFs
or equi v alently approximated clumps’ azimuthal velocity in small 
ubplots inside the main plots) as well as the average rotational
elocity square of clumps (in the bigger main plots). In all upper
lots, gre y curv es show Keplerian velocity and assure us that the
elocity dispersion in the azimuthal direction remains sub-Keplerian 
ven after adding � s . In this figure and Fig. 6 , besides � s , we
ave also examined two different values of each parameter, and 
e would like to investigate, in which circumstances, the effect of

hermal conduction on the dynamics of the system becomes more 
ignificant. In Figs 5 and 6 , we can easily see that the maximum
ariation of both components of velocity dispersion under the effect 
f thermal conduction occurs at the inner boundary of the ADAF (or
qui v alently at the captured radius of clumps) with each of these input
arameters: α, γ , and f . Regardless of the value of each parameter, all
hese plots reveal that an increase of � s reveals that the rotation of the
ot medium will decrease as long as at the same time. It is also clear
hat this change in thermal conduction results in decreasing of the
MNRAS 517, 5090–5103 (2022) 
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M

Figure 5. Solution of the clumpy-ADAF disc in the presence of thermal conduction: � s = 0.0005 (solid line), � s = 0.0020 (dashed line), � s = 0.0040 (dotted 
line). The three panels show the dependence of the solution on the three parameters α (panel a), f (panel b), and γ (panel c). All of these panels was set up for 
� R = 0.005, � φ = 0.01. 

Figure 6. Solution of the clumpy-ADAF disc in the presence of thermal conduction: � s = 0.0005 (solid line), � s = 0.0020 (dashed line), � s = 0.0040 (dotted 
line). The three panels show the dependence of the solution on the three-parameter � R (panel a), in this panel we take � φ = 0.01, � φ (panel b) when � R = 

0.007 and γ (panel c). All of this panels was set up for γ = 1.45, f = 0.1. 
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v erage rotational v elocity square of clumps. Comparing upper right-
and panels with left ones leads us to know that 

〈
v 2 φ

〉1 / 2 
remarkably 

ecreases with increasing advection parameter and polytropic index, 
ut does not behave uniformly with changing the viscosity parameter. 
urthermore, according to Fig. 6 (two upper right-hand panels), an 
nhancement of the coefficient of drag force in φ-direction causes a 
it increase in this quantity whereas changing of drag force in the
adial direction (as we had seen in equation 25 ) does not have any
irect effect on the average azimuthal velocity square of clumps. 
ne more point to consider, if we look at the numbers of vertical

xes of the main plots with ones in small plots, we realize that
he velocity dispersion of clumps in the azimuthal direction and 
otational velocity of ADAF possess the same order of magnitude. 

The lower panels of Figs 5 and 6 display directly the role of
hermal conduction in a variation of 

〈
v 2 R 

〉1 / 2 
(presented in main 

igger plots), and also in changing of V R or 〈 v R 〉 (presented in small
ubplots). According to these plots, we can find out unlike the � s 

ffect on velocity in the azimuthal direction, the total effect of � s 

n the radial direction is positive on 
〈
v 2 R 

〉1 / 2 
and also on 〈 v R 〉 . Here

gain, we catch our attention to the scale of v ertical ax es numbers:
0 9 for main plots and 10 8 for small subplots, so the radial velocity
ispersion of clumps is about 10 times greater than V R of ADAFs,
his result is consistent with WLC12. Moreo v er, if we compare right-
and and left-hand panels in the bottom rows of each four-subplot
hape, we notice that the difference between plots with the various 
alue of � s is more visible with smaller α and f but bigger γ and
 R . Finally, according to the four subplot shapes in the right-hand
f Fig. 6 , 

〈
v 2 R 

〉1 / 2 
is not v ery sensitiv e to changing � φ , which was

ointed out in WLC12 too. 

 T H E R M A L  C O N D U C T I O N  EFFECT  O N  T H E  

ROJECTION  O F  CLUMPS  

p to now, we have been studying semi-analytically, the dynamical 
otion of clouds through the hot medium of ADAFs by adopting 

ollision-less Boltzmann equation for the ensemble of clouds. Con- 
idering a more realistic picture, we may study the time-dependent 
rbits of such clouds as individual particles. In fact, the e v aluation
f the time-dependent trajectory of clumps informs us about the 
opulation properties of BLRs distributed around AGN. Therefore, 
or the rest of this paper, we work on the time-dependent dynamics
f a simplified single-cloud model of clumps in the central vicinity 
f AGN. We aim to involve the thermal conduction term in the
omentum equation. But for simplicity, we neglect the non-isotropic 

orce due to the radiation of a central accretion disc. In this problem,
e consider just two forces: the gravitational force of a central black
ole with mass M , and a drag force involve between the clump and
DAF. This drag force is in the opposite direction of the cloud

nd its amplitude is proportional to square its relative velocity with 
espect to the ambient medium, i.e. ADAF. Thus, we can write the
quations of the orbital motion as follows: 

¨
 − R ̇φ2 = −GM 

R 

2 
− f R ( ̇R − V R ) | ̇R − V R | , (32) 

 ̈φ − 2 ̇R ̇φ = −f φ( R ̇φ − V φ) | R ̇φ − V φ | , (33) 

here Ṙ = d R/ d t( = v R ), R̈ = d 2 R/ d t 2 ( = d v R / d t), φ̇ = d φ/ d t( =
 φ/R), and φ̈ = d 2 φ/ d t 2 . Like before, we hav e specified the v elocity
omponents of ADAF by V R and V φ , and we have also employed
onstant coefficients, f R and f φ for the components of drag force. For
umerical e v aluations, it seems more convenient to work with non-
imensional quantities, hence we convert equations ( 32 ) and ( 33 ) to
he non-dimensional forms by introducing r and τ as: 

 = 

R 

R 0 
, 

= 

t 

t 0 
, 

here R 0 and t 0 are the typical lengths and time-scales. We can take
 0 equal to the radial size of the background medium of BLR, that

s the outer boundary of ADAF: R 0 = 1000 R Sch 
1 

Thus, the equations ( 32 ) and ( 33 ) become: 

 

′′ − r φ′ 2 = − 1 

r 2 
− � R 

R 0 

R Sch 

(
r ′ − c R √ 

r 

)∣∣∣∣r ′ − c R √ 

r 

∣∣∣∣, (34) 

 φ′′ − 2 r ′ φ′ = −� φ

R 0 

R Sch 

(
r φ′ − c φ√ 

r 

)∣∣∣∣r φ′ − c φ√ 

r 

∣∣∣∣, (35) 

here r ′ = d r /d τ , r ′′ = d 2 r /d τ 2 , φ′ = d φ/d τ , and φ′′ = d 2 φ/d τ 2 ,
he two constants of c R and c φ refer to the radial and azimuthal
omponents of the velocity vector of ADAF. Also in the two abo v e
quations, we have removed the factor of GM in the gravitational term

y choosing t 0 = 

√ 

R 

3 
0 /GM . Moreo v er, we hav e substituted � R / R Sch 

nd � φ / R Sch instead of f R and f φ . Now, we need to specify appropriate
nitial conditions for solving numerically the last two equations. In 
he absence of radiation force from the central object and neglecting
he vertical component of the velocity vector of the ambient medium,
.e. ADAF, v z = 0, we may expect the plane of motion to be fixed
t the equatorial plane. Ho we ver, under the influence of drag force,
he cloud’s angular momentum cannot remain constant (during flight 
ime). So we expect a spiral trajectory for the cloud’s motion. 

Regarding boundary conditions, we assume that our single cloud 
egins its journey from the initial point with these dimensionless 
oordinates: ( r = 1, φ = 0) with an initial velocity vector equals to
DAF’s one, i.e. ( r ′ = c R , φ′ = c φ). Knowing the initial conditions

or r , φ, r ′ , and φ′ , we can solve equations ( 34 ) and ( 35 ) numerically
ith respect to the dimensionless time, τ , and obtain r ( τ ), φ( τ ), r ′ ( τ ),

nd φ′ ( τ ). In Fig. 7 , we hav e dra wn the orbit of a sample cloud at
he equatorial plane for three values of φs . The black dot–dashed,
lue dashed, and red solid lines correspond to φs = 0, 0.002, and
.004, respectively, and the other input parameters for panels (a)–(c) 
re α = 0.2, f = 0.1, and γ = 1.4; for panels (d)–(f): α = 0.1, � φ =
 R = 0.001. Regarding the two remained parameters, one of them is
ariable and the other one is common for two adjacent panels. The
abel of τ f in each panel (exception for panel f) is a dimensionless
ime that the BLR cloud needs for one rotation around the centre in
he case of φs = 0. For panel (f), this duration is too long for the
loud in a medium with φs = 0.004, since during a smaller time, it
rrives at the capture radius, hence in the case (i.e. φs = 0.004), we
ave used the total flight time of the cloud, i.e. τT ( = 1.56) instead
f τ f ( = 2.03). 
As it is seen in all panels of this figure, the motion of the cloud

s a spiral around the centre, and this common feature appears due
o the influence of drag force in this problem. Moreo v er, we see in
ll panels that thermal conduction apparently causes the clump to 
otate and accrete faster. In Fig. 8 , we have adopted the same input
arameters, and for a better and easier comparison, we have chosen
he same time flight for all cases (except for a grey line of panel c), and
eparated curves with equal values for φs . The effect of parameters
ther than φs can be studied more conveniently in this figure. By
MNRAS 517, 5090–5103 (2022) 
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Figure 7. The effect of thermal conduction on the orbital motion of a clump embedded in an ADAF. In this figure, we hav e ne glected the radiation force from 

the central object, thus the BLR cloud here mo v es only at the equatorial plane. In each panel, we hav e fix ed the set of input parameters and examined three 
dif ferent v alues of the thermal conduction parameter, i.e. φs = 0, 0.002, 0.004. In the upper panels, we have used: α = 0.2, f = 0.1, γ = 1.4, and in the bottom 

panels: α = 0.1, � R = � φ = 0.001. Initial conditions are: r | t = 0 = 1 (or R | t = 0 = 1000 R Sch ), φ| t = 0 = 0, ṙ | t= 0 = c R (or Ṙ | t= 0 = V R ), and φ̇| t= 0 = c φ (or 
R ̇φ| t= 0 = V φ ). As it is seen, the trajectory of cloud varies with � φ [compare panel (a) with (b)], � R [look at panels (b) and (c)], α [panel (c): α = 0.2 and panel 
(d): α = 0.1], f [compare panel (d) with (e)], and γ [see panel (e) and (f)]. The final time, τ f in panels (a)–(e) is equal to the time required for one round of 
rotation in the case of φs = 0, but τ f = 1.56 in panel (f) is the total flight time of cloud to reach the inner boundary of ADAF, or captured radius of clumps in 
the case of φs = 0.004. 
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ariation of φs , the most change in the pattern of spiral motion
appens for curves with different α, because we see a green dotted
urve (with α = 0.2) in panel (a) o v erlaps with a red dot–dashed one
with α = 0.2), whereas in panel (b) and (c) when φs is not zero,
hese two curves remarkably different from each other. Moreover, the
anels of this figure declare that time-averaged rotational velocity
 

¯rφ′ ) of BLR clumps is greater with larger values of � φ , f , and
, but smaller � R and α. Similar behaviour can be deduced for

he time-averaged radial velocity, i.e. r̄ ′ , too (except for the cases
ith different α’s without thermal conduction as we mentioned
efore). 
It can be interesting to know about the treatment of velocity

omponents of BLR clouds during their flight time and compare
t with the pattern of the velocity field of clumps in the first part of
his paper. On the other hand, the estimation of BLR’s velocity is
ital for calculating emission-line width full width at half-maximum
FWHM), thus we have presented the instantaneous velocity of our
ypical cold cloud in Figs 9 , 10 , and 11 . Each panel of these three
gures is corresponding to one in Fig. 7 . We have also added the
NRAS 517, 5090–5103 (2022) 
elocity components of ADAF (marked by red colour) to these panels
nd also the Keplerian velocity (blue) in Fig. 11 . Notice that Figs 9
nd 10 both illustrate the radial velocity but for two regions; outer
art, 100 < R / R Sch < 1000 in Fig. 9 and the inner part, 10 < R / R Sch 

 100 in Fig. 10 . The solutions in the duration of 0 ≤ τ ≤ 2.5 are
pecified by black colour, and beyond this time are drawn by blue
olour in Figs 9 and 10 (see Table 1 for the total flight time of each
ase). As clearly seen, these figures are very different from those in
igs 5 and 6 , unlike clumps in steady-state condition, here clouds
an have a positive radial velocity in some parts of their eventual
ath towards the centre (ref. Figs 9 c–f and 10 f). In the absence of
he drag force, the orbital motion of clouds would be Keplerian,
nd they could passes a point many times, but here they cross a
oint up to twice (and three times in the case of panel f), but not
ith the same velocity or even with the same direction (look at
anels c–f of Fig. 9 ). Comparing red and black curves (of Fig. 9 )
mplies that the radial velocity of clouds at outer part may grow
bout one order of magnitude larger than ADAFs in the middle of
heir path, but their rotation does not show this much difference
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Figure 8. Spiral motion of a BLR cloud in the non-static medium like an ADAF. The input parameters of this figure are similar to Fig. 7 , but we have selected 
τ f = 2.5 for all curv es e xcept for that one in panel (c) with grey colour ( τ f = 1.56). In each panel, we have used: (1) black solid line for orbital motion by 
applying the same parameters as Fig. 7 (a), (2) blue dashed line → Fig. 7 (b), (3) green dotted line → Fig. 7 (c), (4) red dot–dashed line → Fig. 7 (d), (5) white 
line → Fig. 7 (e), (6) grey line → Fig. 7 (f). Therefore, (1) black curves have larger � φ , comparing with blue dashed ones, (2) green dotted lines have smaller 
� R in comparison with blue ones, but it has larger α relative to red dot–dashed curves ( α = 0.1), and (3) finally white curves have larger f comparing with red 
ones, but smaller γ if we compare them with grey curves ( γ = 1.5). 

(a) (b) (c)

(f) (e) (d)

Figure 9. Time-dependent variation of the radial velocity of a BLR cloud with respect to radius. Input parameters of each panel are the same as the ones in 
Fig. 7 , so comparing every pair of adjacent subplots yields information about the effect of a certain parameter other than φs . In each panel, the solid dashed and 
dotted lines refer to solutions with φs = 0, 0.002, 0.004, respectiv ely. Two colours hav e been used in this figure; the black curves represent Ṙ and the red ones 
show V R of the ADAF. 
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according to Fig. 11 ). Very different behaviour of radial velocity 
s seen in Fig. 10 (exception for the case of panels e, f), here there
re not that many fluctuations in the magnitude of Ṙ that was in
uter part. Moreo v er, clouds pass much more slowly in the inner
art of a hot background medium with γ = 1.4 and f = 0.1. The
mall plots inside the main large plots of Fig. 11 display the angular
omentum of clouds with respect to the radius (red colour curves 

how the ADAF’s angular momentum). According to these curves, 
e can see like each element of hot gas, the angular momentum
f individual clumps decreases towards the centre, thus they can 
articipate in the transportation of the total angular momentum of the
isc outwards and consequently cause enhancing the accretion rate 
f fecti vely. 

The effect of thermal conduction on the clouds’ and ADAF’s 
elocity is apparently similar as seen in Figs 9 –11 . Nevertheless, we
hould remember that time is important for clouds. For instance, if
MNRAS 517, 5090–5103 (2022) 
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(a) (b) (c)

(f) (e) (d)

Figure 10. Time-dependent variation of the radial velocity of a BLR cloud with respect to radius. Input parameters of each panel are the same as the ones in 
Fig. 7 , so comparing every pair of adjacent subplots yields information about the effect of a certain parameter other than φs . In each panel, the solid dashed and 
dotted lines refer to solutions with φs = 0, 0.002, 0.004, respectiv ely. Two colours hav e been used in this figure; the black curves represent Ṙ and the red ones 
show V R of the ADAF. 

(a) (b) (c)

(f) (e) (d)

Figure 11. Time-dependent variation of the rotational velocity of a BLR cloud with respect to radius. In each panel, the solid dashed and dotted lines refer to 
solutions with φs = 0, 0.002, 0.004, respectively. Similar to Fig. 8 , the black curves represent R ̇φ and the red ones show V φ of the ADAF. The set of input 
parameters is common to the ones in Figs 7 and 8 , thus we can find out the role of each parameter by comparing two related adjacent subplots. In this figure, 
we have also drawn plots of the angular momentum of both clumps (black curves) and ADAF (red curves) inside the main larger plots. The same line style has 
been used for different values of φs in smaller plots too. 
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Table 1. The dimensionless total flight time ( τT ) of a BLR cloud with: 
� R , φ = 0.001, 0.005, f = 0.1, 0.2, α = 0.1, 0.2, γ = 1.4, 1.5. 

φs 0 0.002 0.004 

τT ( � φ > ) 8.41 6.41 4.95 
τT ( � φ < , � R > ) 35.33 25.11 17.77 
τT ( � R < , α> ) 35.05 24.86 17.52 
τT ( α< , f < ) 35.28 17.69 8.73 
τT ( f > , γ < ) 11.99 7.56 4.73 
τT ( γ > ) 5.11 2.872 1.565 
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e choose a certain time, and at that time, we compare the rotational
elocity of two clouds embedded in mediums with different φs and 
rossing two points (with different spatial coordinates), one with 
arger φs has a larger R ̇φ (look at Fig. 11 , compare the inner last
oint of each curve with that of other curves); this point can be
nderstood better by looking at Fig. 12 . In Fig. 12 , we have shown the
ariation of the two components of velocity with respect to the flight
ime of clumps with applying the same sets of input parameters as
ig. 8 . Here again we can see how the presence of thermal conduction
hanges the other parameters effect on the velocity of BLR clouds 
uring a certain time. 
In Fig. 13 , we have calculated the total flight time ( τT ) of a BLR

loud as a function of the thermal conduction parameter, φs . The time-
cale of this figure has been e v aluated by assuming r 0 = 1000 R Sch 

0.01 pc, M = 10 8 M �: t 0 ≈ 4.42 × 10 7 s, which is about 511.5 d
r 1.4 yr. Black colour curves refer to clumps in different mediums,
nd also red curves show the total time needed for an element of gas
(a) (b)

Figure 12. Variation of velocity components of a BLR cloud with respect to 
o v es between outer and inner boundaries of ADAF, i.e. 

 A = −
∫ R out 

R in 

d R 

V R 

= 

2 

3 c R 

[ 

1 −
(

R in 

R out 

)3 / 2 
] 

t 0 , 

here t 0 = 

√ 

R 

3 
out /GM . In panel (a), we have plotted the total

ight time for four different sets of � φ , � R , and α with fixed
alues for γ ( = 1.4) and f ( = 0.1). As we know with larger � R 

nd � φ clumps experience stronger drag force, but evidently the 
ame variation in their magnitude cause different change in τT ; 
pparently in dynamics of BLRs, � φ acts more ef fecti ve than � R 

look at Fig. 14 ). Regarding the role of φs in the stability of clumpy
LR systems, we see in both panels of Fig. 13 , increasing φs has
 ne gativ e effect on τT and makes it shorter. On the other hand,
ecreasing f and γ result shorter lifetime for clouds. Now, if we
ompare red curves with black ones, we can find out those clumps
ith smaller � φ (black dashed and dotted curves in panel a) can be as

table as or even more stable than their host medium (or background 
DAF). 
In order to clarify the role of each component of drag force

eparately in Fig. 14, we hav e dra wn the projection of a typical
LR cloud for three different cases: a drag force (1) with two
ero components, � R = � φ = 0 (black dot–dashed line), (2) with
ne zero component at the azimuthal direction, � φ = 0, and (3)
ith one zero component at the radial direction, � R = 0. As we

xpect the first curve without drag force illustrates a Kepler orbit
ith an elliptic shape. On the other hand, although the second

urve is at first elliptical, after a few moments, it converts to
pherical under the influence of drag force in the radial direction,
hus it becomes as stable as the first case. In contrast with first and
econd cases, the motion of the clump deviates significantly from 
MNRAS 517, 5090–5103 (2022) 

(c)

the flight time. The setting of input parameters is the same as in Fig. 8 . 
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M

(a) (b)

Figure 13. The total flight time of a typical BLR cloud as a function of the thermal conduction parameter with a different set of other input parameters. In panel 
(a), we have examined two different values of the azimutial coefficient of drag force: � φ = 0.005 (solid line, labeled by � φ > ), � φ = 0.001 (dashed line, � φ < ), 
both presented in black colour and other parameters are the same as panels (a) and (b) of Fig. 7 . The other curves in panels (a) and (b) here have been drawn to 
study the effect of: (1) � R by trying � R > = 0.005, (presented by dashed line in panel a, other parameters are the same as Fig. 7 b); � R < = 0.001 (dotted line in 
panel a, others equal to ones in Fig. 7 c); (2) α with choosing α> = 0.2 (dotted) and α> = 0.1 (dot–dashed; others like Fig. 7 d); (3) f with two values of f < = 0.1 
(solid line in panel b; others like Fig. 7 d) and f > = 0.2 (dashed line in panel b; others like Fig. 7 e); (4) γ with trying γ < = 1.4 (dashed) and γ > = 1.5 (dotted 
line in panel b; other parameters are the same as Fig. 7 f). In this figure, the curves in red colour represent the total dimensionless time required for an element 
in ADAF reach the inner boundary (i.e. 10 R Sch ) from the outer boundary (1000 R Sch ). In panel (a), for all values of � R and � φ , V R does not change, hence just 
red solid line is corresponding to all three set of input parameters: ( � φ = � R = 0.005), ( � φ = 0.001, � R = 0.005), and ( � φ = � R = 0.001). 

Figure 14. The trajectory of a BLR cloud with three different drag forces. 
The black dot–dashed line corresponds to � R = � φ = 0, the blue dashed line 
is related to � R = 0.005, � φ = 0, and red solid line is e v aluated by choosing 
� R = 0, � φ = 0.005. The other parameters are: α = 0.2, f = 0.1, and γ = 

1.4. The used fight times in this figure are τ f = 5, 10, and 5.5 for the cases 
with � R , φ = 0, � φ = 0, and � R = 0, respectively. 
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eplerian in the light of a drag force with a single component in φ
irection. 

 SUMMARY  A N D  C O N C L U S I O N  

n this paper, we investigated the effect of thermal conduction
n the dynamics of cold clouds (or clumps) embedded in a hot
ccretion flow (ADAF) which experiences a drag force. We took
wo different approaches to this problem: first, we supposed the
louds behave like collision-less particles and mo v e with a velocity
ector whose averaged value equals their host medium velocity, and
econdly, we concentrated on clouds individually to find the position
NRAS 517, 5090–5103 (2022) 
nd instantaneous velocity of a typical cloud. In all parts of this
tudy, we presumed axisymmetric and steady-state configuration
or the background medium of clumps as long as we supposed
hat all particles hav e ne gligible v ertical motions. The effect of
hermal conduction appeared in this problem due to involving drag
orce between clouds and ADAF. We employed ADAF solutions
ncluding thermal conduction presented by Tanaka & Menou ( 2006 ).
or the first part, we followed Wang et al. ( 2012 ) and applied
oltzmann equations in order to obtain the root mean velocity

quare of the clumps (or two components of velocity dispersion),
.e. 

〈
v 2 R 

〉1 / 2 
and 

〈
v 2 φ

〉1 / 2 
. The value of 

〈
v 2 R 

〉1 / 2 
is important since

he capture rate of the clumps at the inner edge of the disc is
irectly proportional to the ratio of 

〈
v 2 R 

〉1 / 2 
/ 〈 v R 〉 (ref. equation 34

f WCL12). We should mention that our results were a bit different
ven in the absence of thermal conduction with ones presented by

CL12, because of the opposite direction of our drag force; we
atiocinated that after applying the approximation of equal average
elocity with ADAF’s one, an average value of drag force must
emain at the same sign as majority particles drag force sign (in
he opposite direction of their relative velocity with ADAF). This
iny change in the drag force formula led to clumps with 

〈
v 2 φ

〉1 / 2 

maller than the rotational velocity of ADAF that was e v aluated as
arger in the previous work. Furthermore, our adopted drag force
ad an effect on a critical (or minimum) value for the drag force
oefficient in the azimuthal direction instead of the radial direction in

CL12. 
For the second part, we found the trajectory of a single clump in

he same way as a classical two-body problem. The similar results for
he influence of thermal conduction were achieved from both parts;
hen we added a larger permissible (ref. Fig. 4 ) value for the thermal

onduction parameter, φs , the solutions changed to reduce velocity
n the azimuthal direction but growing it in the radial direction.
o we ver, we found out the function of rotational velocity of a cloud
ehaves in opposite way with time; it may become larger with a
reater φs (ref. Fig. 12 ). Furthermore, we compared the total flight
ime (needed a clump to mo v e from outer region of ADAF to the
apture radius) of BLR clouds with the total dynamical time of a
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olume element of ADAF. We faced to this point: if clouds mo v e with
 very small or even zero friction in the azimuthal direction, they can
urvive from the central captured region of ADAF. On the other hand,
e saw the existence of a little friction along φ-direction modifies a
epler orbit of clumps to a spiral one and can make it a short-lived
bject. The similar works had been done by Shadmehri ( 2015 , who
tudied clouds in a laminar flow) and Khajenabi ( 2016 ; who w ork ed
n BLRs in a turbulent flow); both considered drag force and also
epulsive radiation force from the central object. For simplicity and 
aving the similar condition as the first part of our work, we did
ot take into account radiation force on this problem and assumed 
lumps mo v ed at the equatorial plane under the influence of central
ravity and drag force. We found out how much the stability of a
LR system can be changed by characteristic parameters (that is, α,

 , and γ ) of their hot host medium. 
To impro v e this work, it is good for both parts to write equations in

pherical coordinates and apply 2D ( r − θ ) solutions of ADAFs, 
hich included v θ and let us study the vertical motion of clumps

oo. For little improvement, we can use a formula composed of both
inear and quadratic relative velocity (between the clumps and the 
as) with two optional coefficients (0, 1) set by the Reynolds number.
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