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ABSTRACT

We investigate the dynamics of clumps that coexisted with/in advection-dominated accretion flows (ADAFs) by considering
thermal conductivity. Thermal conduction can be one of the effective factors in the energy transportation of ADAFs; hence it
may indirectly affect the dynamics of clumps by means of a contact force between them and their host medium. We first study
the ensemble of clumps by assuming them as collisionless particles, and secondly we find the orbital motion of these clouds
as individuals. For both parts, clumps are subject to the gravity of the central object and a drag force. The strong coupling
between clumps and ADAF leads to equality between the average treatment of the clumps and the dynamics of their background.
By employing the collisionless Boltzmann equation, we calculate the velocity dispersion of the clumps, which turns out to be
approximately one order of magnitude higher than the ADAF. In fact, involving drag force in such a system causes the angular
momentum of the clumps to be transported outwards by the ADAF, and hence the clouds eventually will be captured at the tidal
radius. The results show that the presence of thermal conduction increases the root of the averaged radial velocity square, and
this, in turn, speeds up the process of capturing the clouds through the tidal force. In the end, we focus on a typical individual
cloud; the spiral orbits appear only due to the toroidal component of friction force. The parametric study again proves that the

operation of thermal conduction helps in decreasing the lifetime of clumps.

Key words: accretion, accretion disc —conduction —methods: analytical.

1 INTRODUCTION

Nowadays, we have a lot of valuable information at different
wavelengths, which enable us to study visible celestial objects
like planets, stars, and galaxies as long as some non-visible active
astronomical objects such as black holes and neutron stars exist. It
is widely believed that the main engine of these invisible objects is
the accretion process. In fact, accretion discs include a wide range of
scales: millions of kms in low-mass X-ray binaries and cataclysmic
variables, solar radius-to-au scale discs in protostellar objects, and
au-to-parsec scale discs in active galactic nuclei (AGN; Spruit 2010).

Since 1952, the simplest model for accreting systems with
spherical symmetry was proposed by Bondi, and several models
of accretion have been introduced to describe the basic features of
emergent spectrum arising from the rotating medium around compact
objects. The main types of black hole accretion flows are classified
based on their apparent shapes and the transportation mechanism of
viscously dissipated energy (Frank, King & Raine 1992; Narayan,
Mahadevan & Quataert 1998; Yuan & Narayan 2014). In the earliest
class, the flow forms a geometrically thin (but optically thick) disc
with relatively low temperature and the internal pressure support is
small (e.g. Frank et al. 1992). In the standard thin disc model, ions
and electrons have equal temperatures (7; = T,), and also the heating
and cooling rates are balanced (Q~ = Q™). In the second class, flow is
specified with two temperatures, one for ions and an equal or smaller
one for electrons. These flows are thermally unstable although both
rates of cooling and heating are equal (Piran 1978; cf. Rees et al.
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1982). The third class is a slim disc or optically thick hot accretion
flow that occurs when the cooling rate becomes less than the heating
rate (Q~ < Q7), and ion temperature becomes equal to electron
temperature (7; = T.). The other important class is advection-
dominated accretion flow (ADAF), which is mainly optically
thin. Like the second class, the ions’ temperature differs from the
electrons in this solution. The main factor of this type, which remarks
it, is the photon trapping and carrying viscously dissipated energy
towards the disc’s centre. This inner movement of energy makes the
flow stable (Narayan & Yi 1995). Finally, the model of luminous
hot accretion flow is another solution (proposed by Yuan 2003) that
the cooling process provides by radiation and decrease of entropy.
In all models mentioned above, the fluid is assumed to be
continuous and homogeneous, but this is just valid in the limit of
low-mass accretion rates. In luminous hot accretion flows and slim
discs, the mass accretion rate is large, even larger than the critical
value, so it causes thermal instability and leads to the form of cold
dense clumps, and hence, multiphase accretion flow (Yuan 2003).
The existence of such cold clouds embedded in hot accretion discs is
now confirmed as the broad-line region (BLR), which successfully
explains some of the observational evidence. Gillessen et al. 2012;
Burkert et al. 2012 have shown that even near the Galactic Centre,
there are some clouds in orbit around the central supermassive black
hole. On the other hand, some numerical simulation clearly shows the
formation of cold, dense clumps, likely due to thin-shell instabilities
in the shocks formed by the stellar winds (e.g. Vishniac 1994). Our
Galactic Centre, Sgr A, is surrounded by young, massive stars.
Some of these stars are in the Wolf—Rayet phase and have mass-
loss rates that could be as high as 107*Mg yr~!. One of these
clumps could correspond to the G2 cloud, which was discovered
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on its way to being tidally sheared by Sgr Ax (Gillessen et al. 2012,
2013). Furthermore, there is strong evidence from both theoretical
and observational works that imply accretion on to some black hole
X-ray binaries (BHXB; Malzac & Celotti 2002; Merloni et al. 2006),
AGN (Kuncic, Blackman & Rees 1996; Kumar 1999), including low-
luminosity AGNs (Celotti & Rees 1999), and ultra-luminous X-ray
sources are clumpy rather than homogeneously continuous. Several
instabilities driven by thermal (Krolik 1998), magnetorotational
(Blaes & Socrates 2001, 2003), and photon bubble (Gammie 1998)
have been reported in accreting systems. In the innermost region
of BHXBs, the hard X-ray includes broad iron lines and thermal
radiation, which are unusual for such a hot fully ionized gas. This
strange spectrum can be explained by the existence of cold clumps
(Yu et al. 2018). Recent infrared observations have identified low-
mass gas clouds, G1 and G2, moving through this exact region.
Measuring their interaction with the background gas could, therefore,
provide important information about black hole accretion physics
(e.g. Narayan, Ozel & Sironi 2012).

Current attempts to study these clumpy systems concentrate on
answering these main aspects: Understanding the processes that may
lead to the formation of BLR clouds is an active research field (e.g.
Fromerth & Melia 2001; Pittard et al. 2003). Moreover, there are
noticeable uncertainties about the stability of these clouds and the
confinement mechanisms in the light of theoretical arguments and
recent numerical simulations (Rees 1987; Krause, Schartmann &
Burkert 2012; Namekata, Umemura & Hasegawa 2014). Regardless
of any current uncertainty over the nature of the confinement
mechanisms, the orbital motion of BLR clouds and their radiated
emission allow us to estimate the mass of the central black hole (e.g.
Marconi et al. 2008; Netzer & Marziani 2010).

So far, the spectral properties of clumpy accretion flows are
investigated by some authors like Guilbert & Rees (1988), Malzac &
Celotti (2002), Merloni et al. (2006), and Krolik (1998). The
dynamics of cold clumps inside ADAFs between the tidal disruption
radius and the transition radius are studied by Wang, Cheng &
Li (2012) (WCL12). They could find analytical solutions for both
strong and weak coupling between clumps and ADAF. Ghayuri
(2016) studied the BLRs by using Jean’s equations in cylindrical
coordinates. He obtained the distributions of cold clumps that can
be found in three configurations of non-disc, disc-wind, and pure
disc. Khajenabi, Rahmani & Abbassi (2014), followed WCL12 and
took into account the magnetic field effects on clumps’ dynamics
due to clumps’ strong coupling to their ambient medium. In fact, the
magnetic field is very important to keep clumps close to the central
region of AGNs (Rees 1987).

One of the main ingredients of previous theoretical (or simu-
lation) studies is the true nature of the intercloud medium. The
complete physics of these clouds is highly complex and involves
several physical processes such as pressure, radiative, centrifugal,
gravitational, and magnetic forces; consequently, our knowledge
about the intercloud medium is still poor. Most of the previous
analytical studies of BLR clouds are based on a few certain sim-
plifying approximations. Recently, it has been suggested by Krause,
Schartmann & Burkert (2011) that one of the plausible candidates to
describe the intercloud medium is ADAFs, where the pressure of the
gas varies in proportion to a power-law function of the radial distance
(e.g. Narayan & Yi 1994). Das & Sharma (2013) and Bu & Gan
(2018) have found that cold clumps can coexist with hot accretion
flow. Simulation performed by Bu & Gan (2018) has shown that the
accretion rate increases to a value at which the radiative cooling rate
is roughly equal to or slightly larger than the viscous heating rate,
and cold clumps can form around the equatorial plane. On the other
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hand, Burkert et al. (2012) performed numerical simulations of a
clumpy cloud with properties similar to G2, which is moving within
the ambient gaseous medium and is modelled as an ADAF. They
found that despite the variations of the cloud due to its interactions
with the ambient gaseous medium the cloud preserves its pressure
equilibrium with the surrounding medium (also see, Scharmann
et al. 2008). Cloud stability and confinement require them to be
in rough pressure equilibrium with their environment (e.g. Krolik,
McKee & Tarter 1981; Krolik 1988). To reach the required pressure
of p ~ 1072 dyne cm™2, the intercloud medium needs either a high
temperature (~107 K; Krolik 1988), following the above-mentioned
papers, here we also describe intercloud medium using an analytical
model of ADAFs. In an extremely low-accretion rate, the collisional
mean free path of electrons is large compared with the length-scale of
the system, thus thermal conduction can have a significant influence
on the dynamics of the accretion flow. On the other hand, in ADAFs,
the temperature of the flow is near-virial, and the internal energy
of particles is very large. Therefore, the extra heat which could
not be transported outwards via radiation cooling should be carried
through other ways like advection. Besides advection, conduction
can transport heating in the radial direction. Tanaka & Menou (2006)
investigated the effect of thermal conduction in ADAFs for the
first time. Their work was followed by Shadmehri (2008), Abbassi,
Ghanbari & Najjar (2008), and Abbassi, Ghanbari & Ghasemnezhad
(2010) to find how the dynamics of flow change in the presence of
conduction.

In the paper on WCL12, the clumps are treated as stable long-
lived objects and because of that the time dependency of quantities
is ignored. However, besides the stationary configuration of clumps,
another approach can be followed based on the transient nature of
cold clouds. In fact, time evaluation of clumps is an effective tool
for finding the population properties of BLRs of AGN. BLRs are
believed to consist of dense clumps of hot gas in a much hotter diluted
medium such as ADAFs and the motion of clouds has the main role in
broadening their emission lines. Moreover, the existence of clumps in
BLR has been proved by spect-polarimetric observations, too (Smith
et al. 2005; Ghayuri 2016).

In order to obtain precious information about the structure of
AGN and provide an estimation for the mass of the central black
hole (e.g. Marconi et al. 2008; Netzer & Marziani 2010), orbital
analysis of BLR clouds has attracted some author’s attention (Krause
et al. 2011; Plewa, Schartmann & Burkert 2013; Shadmehri 2015;
Khajenabi 2015, 2016). To study BLR clouds, it is common to
assume the clumps have balanced interior pressure with their ambient
pressure. Therefore, a cloud with a fixed mass that is subject to
the gravity of the central black hole and the friction force can be
treated in the format of a classical two-body problem. Some works,
such as Mittleman & Jezewski (1982), Mavraganis & Michalakis
(1994), Humi & Carter (2002), Shadmehri (2015), and Khajehnabi
(2016) have been done by following this approach. In these papers, a
power-law pressure distribution for the inter-clouds medium has been
applied. The common result of all these works is that irrespective of
initial conditions or the form of friction force orbital decay occurs
in such systems because of considering the drag force. Shadmehri
(2015) has introduced the time-of-flight as the estimated time for a
cloud needs to fall on to the central region. He found that the drag
force coefficients are important in the flight time of a BLR cloud and
change it linearly.

Now in this paper, we first work on the ensemble of clumps
and employ the collision-less Boltzman equations to describe their
dynamics. In Section 2, we write the basic equations in cylindrical
coordinates and simplify them by assuming ignorable vertical move-
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ment for both clumps and the ambient medium. As we know (from
WCLI12) in the case of strong coupling, the averaged properties of
clumps follow the ADAF dynamics. Therefore, both the average
velocity of clumps and drag force will be affected by thermal
conductivity in the intercloud gas. That is why we pay special
attention to the characteristics of an ADAF possessing thermal
conductivity in Section 3. The result of sections 2 and 3 are combined
in Section 4 for finding the velocity dispersion between the clumps
and the ADAF. For the second part of this work and in Section 5,
we study the dynamics of clumps individually just like the two-body
problem, and write the momentum equation for two directions (radial
and azimuthal) at the equatorial plane. We will use the same formula
for drag force as the first part, and see how much the trajectory of a
BLR cloud changes by adding thermal conduction. And finally, the
summary and conclusion are presented in Section 6.

2 BASIC EQUATIONS AND ASSUMPTIONS

As we stated in the introduction existence of cold clouds embedded in
hot accretion discs is now confirmed as the BLR, which successfully
explains the observational evidence. The formation of cold clouds can
be simply justified by thermal instability (TT). Although the detailed
calculation of thermal instability is beyond the scope of this paper,
we may use simplified arguments to grasp some essential properties
of cold clouds. The Maximum size of the cold clump is specified by
crossing the distance of a sound wave within one Keplerian time-
scale. Typical values for mass and radius of clump, mq = 4 x 10%* g
and R, = 10" cm, in the case, we have a supermassive central black
hole with 10% M (table 1, WCL12). We may expect that the size
and mass of the clumps change with the radial distances to the black
hole. On the other hand, the energy transport (cooling and heating of
the clump) will specify the minimum size of the clump, below which
the clump will be evaporated (WCL12). Furthermore, Sutherland &
Dopita (1993) have shown that due to efficient line cooling clump
temperature could retain a constant value around T = 10* K

One more concern is whether this clump can remain unchanged
and survive in an ADAF. Actually, turbulence in the accretion disc
can not destroy these clumps. MRI or any other mechanism for
turbulence in the discs is only a small disturbance to the clump, since
the clump size is much smaller than the typical length of turbulence.
Moreover, the small turbulence eddies whose size is comparable to
the clump have very small kinetic energy according to Kolmogorov’s
law (Landau & Lifshitz 1959). Considering all of these arguments,
it would be an acceptable approximation that clumps are simplified
as particles. Furthermore, if we assume a specific volume for any
individual clump, we need to take the tidal force into the account
especially close to the black hole, which may disrupt the clumps. As
an approximation for simplifying the complexity of the problem in
this study, we assume BLR clouds as a system of point-like particles.
So, we may ignore the effect of tidal interactions. WCL12 has shown
that in clumpy-ADAF system collision, the clumps can be neglected.
So it is worth assuming the clumps as a system of collision-less
particles were moving inside the ADAFs. Therefore, we need to
apply the Boltzmann equation.

Boltzmann equation works with the state of the gas statistically.
First, we define the distribution function, f(x, v, #) such that fd>x d>v,
which is the average number of particles contained in a volume
element d3x about x, and a velocity-space element d*v about v at
time 7. Macroscopic properties of the gas such as the number density
of the particles, n, and the average velocity of an element of gas u
(= macroscopic flow velocity) can be evaluated from this function
as:
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+o00
nx, t) = fx, v, 0)d%, e))
- +00
ux, 1) =n"" fx, v, Hvdiv = (v), (2)

The distribution function in the absence of collisions is invariant,

so we recast the Boltzmann equation as:
af i 9f

P TV o o ®
where d' is the i-component of the acceleration vector (due to the
external force F (X, f), such that a (x, t) = F (X, t)/m, where m is the
mass of a single particle). Equation (3) is known as the collision-less
Boltzmann equation, or Vlasov’s equation. The equations of fluid
dynamics can be derived by calculating moments of the Boltzmann
equation for quantities that are conserved in collisions of the particles.
Regarding clumps which are assumed to be collision-less, we require
the moments of the Boltzmann equation obtained from equation (3)
and simplifying [n Fd*v = 0 that yield:

the zero moments:
Z)n

8[

and the first moment:

d 0
% (n (vi) + I (n <v,~v_,->) —n

(i) = S

{a;) =0. 5)
Now converting the Cartesian coordinates to cylindrical coordinates,
equations (4) becomes:
o e L2 R (or) + (o)) A (1 0 =0, (6)
—+ ——(Rn —— (v — (n(v,)) =0,

3t ' RIR VRDT R o) g v

and the three components of vectorial equation (5) are found as:

3 19 19
3 v+ 2o (Rn (vz)) + R 0 (n (vrvy))

+ 2 (0 (oge) = a) —n<l;;2’> =0, (M
o (1(00)) + o (R (orvy)

+ %% (n (12)) + —<n<ud)vz>> —n{az) =0, ®)
Lo ))+%ﬁ(Rn<vRv))

+%% (v + 2= (1 (02)) = a: ©)

after applying assumptions of d/d¢t = 9/d¢ = 0 and also neglecting
the terms including: ( v;), { vgv;), and ( vyv.), we have:

Ile T (Rntve)) = (10)
%%(Rn@@)_n(m_n@:o, (11
e (R (k) — n {ag) =0, (12
2 (n(2) —n =0, (13)

In equations (11)—(13), we see the acceleration’s components,
a;, which are specified by two factors: first, gravitational potential
Y = —GM/(R* + z*)"? and secondly drag force, D; = —f; (v; —
Volv; — Vi|, where V; and f; (> 0) are ADAF velocity component
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Figure 1. Critical value of rotational drag force coefficient with respect to
the polytropic parameter with different fs.

and coefficient of drag force per unit mass, respectively. Here, it is
necessary to determine the sign of drag force:

b= [ A=V >0
TS = Vi <0

if Ui<Vl-

if v, >V a4

As we mentioned before in the current work, we assume that clumps
have been strongly coupled with their hot medium. Accordingly, the
averaged value of D; is estimated by applying this approximation:
(v;) = Vi, and thus the averaged acceleration of drag force can be
simplified as:

(D) =i ((2) = V?). 15)

Notice that we use the above formula for both cases of v; < V; and
v; > V;. To explain equation (15), first, according to equation (14),
D; can be negative (if v; > V;) or positive (if v; < V;), hence it
sounds logical not to expect the sign of (D;) becomes different from
D, itself (since in strong coupling, most of clumps must rotate in the
same direction of ADAF and moves inwards to join the accretion
process), and secondly it seems reasonable to consider v} < V? for
the first case and v? > V;? for the second case (again because of their
similar direction of movements for strong coupling). Consequently,
to estimate the approximate value of (D;), we need to note that:

U,’<Vi

vi—(v}) if
2\ ~ i i
<(vi—Vi)>~{<viz>_Viz it o>V

Now we are able to achieve the average value of total acceleration
components:
2

(ar) = = = Fr () = V). (16)
(a )——f¢(< o) = Vo) (17
(a;) =— R2 vg — fo(v2), (18)

where v} = GM/(R> + z2)!/? ~ GM/R?, and we have assumed
that Vz = 0, Ve = < UR>, and V¢ = ( ‘U¢>.

Let us back to equation (10), using the approximation of (vg) =
Vg, we can find the radius dependency of clumps’ density as:

R\ 32
n=no| o ) (19)
0

where ny is the density of clumps estimated in the typical radius
of Ry. Notice that NY94 solved the height-averaged equations of
ADAFs, the same result is seen here by integrating the differential
equation (19) along vertical direction of z and assuming H « R, or
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Figure 2. Variation of the rotational velocity squared as a function of radius,
r. In this figure, the parameters are: f= 0.9, « = 0.1, y = 1.4, and f Rsch =
I'y = 5 x 1073, where Rseh = 2.95 x 10%m, (cm) is the Schwarzschild
radius.
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Figure 3. Variation of the radial velocity squared as a function of radius,
R. In this figure, the parameters are: f= 0.9, a« = 0.1, y = 1.4, fg ¢ Rsch =
Tpe==+5x 1073

else, we would find n o« R~ like Ghayuri (2016, see equation 22 of
his paper). The height integrated version of continuity equation yields
the constant mass accretion rate for clumps as:

My = =2 RHnmg (vg), (20)

where m, is the average mass of individual clumps, and H is the half-
thickness of medium in R radius, which can be approximated by R
for an ADAF, i.e. H ~ R. Substituting (a,) and n from equations (17)
and (19) in the second equation of momentum and approximating
(vrvg) & VRV, equation (12) gives:

(v5) =V (w + Zlvef ) 1)

Since Vi < 0, we might expect (v;) < V; (see Fig. 2, compare two
curves marked by dashed and solid lines). In addition, we should
notice that (vi) becomes smaller towards the centre, and somewhere
it might become zero with a critical value of f;, :

VR 3a
Tge = — = : 22)
Zrm V¢ 2«/ 26,(5 + 26/)rin
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where Iy = fyc Rseh, (Rsen 18 the Schwarzschild radius), and like
NY94 for convenience, we have defined the parameter of €’ instead
of (5/3 — y)/[f(y — 1)], and also scaled inner radius as: ri, = Rin/Rsch-

This critical value of I'y is similar to equation (26) of WCL12,
but independent of the radius and only changes by previously known
parameters of this problem, i.e. «, y, f, and ry,. In Fig. 1, we have
shown I'y4. as a function of y for different s and a constant « (=
0.1).

'1)"he last achievable quantity here is (v%) appeared in equation (11).
In Fig. 3 the variation of the radial velocity squared as a function of
radius, R have been illustrated. This equation can be simplified by
substituting (ag) and (vi) from equations (16) and (21). So we have:

d(vg) L5 vk 2 2 Vo Ve O\ _

ol - S R+ e (0B - VD - (Ve g ) =0
It will be more convenient, if we use Rsq, as a length-scale and
convert R to r (= R/Rsc,). So by multiplying the above equation by
Rsch, and applying the definition of I'; = f; Rsch, we find:

d <"?€> <“%€> vk 2 2 Ve Vi
T*7+?+Fk(<vk>ka)f7<V¢+2rr¢>—0. (23)
If we write the velocity components of ADAF as: V; = c;vg (1), we
can obtain the following result by solving the above equation:

_ T -
<v§> = &1/ Twr {Cl +C§FR/ 326tk gy
r

2 T sp Trr crey [T _qp Crr
*(lfc(,,)/r r=%e dr+m/’ r e dr}, (24)
where ¢2 = GM /Rsen(= ¢*/2) and C) is a constant value, which
can be obtained from this boundary condition: (v}) |, ;= Vil
(rr = 1000Rsc) is the outer boundary where the ADAF solutions
are satisfied) then we find,

_ 2,.73/2 Tgr
Cy=cyry e ',

with using cg, ¢4, and ck, equation (21) changes as below:

2 CR 2 -1
= — . 25
(v5) = (C¢+ er¢) cxr (25)

In the next section, we will find the constants of cg and ¢, for an
ADAF with thermal conduction.

3 ADAF SOLUTIONS WITH THERMAL
CONDUCTION

We are interested in analysing the structure of ADAF, where thermal
conduction plays an important role in energy transportation. Here,
we write the basic conservation equations for an ADAF with the
same assumptions as NY94, and involve the thermal conduction
term in energy equation (Tanaka & Menou 2006). We assumed a
steady axisymmetric accretion flow, % = ai = 0. We can write the
standard equations in the cylindrical coordinates (7, ¢, z). In addition,
we vertically integrate the flow of equations, and therefore, all the
physical variables become only the functions of radial distance r.
Moreover, relativistic effects are neglected and Newtonian gravity
in the radial direction is taken into account. The simplified form of
radial and azimuthal components of momentum equation and energy

equation are presented in the three following equations:

dvg  VZ—vl  1d(pC?
v Ve Yo v 140G (26)
dR R p dR
d(RYV, 1 d C?R*H d [V,
Vi (RVyp) _ d JapCy a4 (Ve ’ @7
dR oRH dR w  dR\ R
ds 20pC2R*H [ d (V,\]* 2H d(RF,)
QHpVRT — = f 0o 2| — (22 - 22 , (28
PVRT G =T, dR \ R R ar = ®
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where 7, s, and f are the temperature, entropy, and advection
parameter, respectively; and H = RC/vk is the vertical thickness
of hot accretion flow, Fy; = 50, ,0C3 is the saturated conduction flux
(Cowie & McKee 1977), and ®; is the saturation constant, respec-
tively. According to the self-similar method for the radial direction,
all quantities with velocity dimension should be proportional to R~'/?
and density is assumed to be proportional to R~¥2. Consequently,
equations (26)—(28) give us,

1 5
cp=1- ici -3 2 (29
3
e = —Sact, (30)
9 ,, [5 5-3y 1, 400,
- -~ — s —1=0 31
8acs+{2+3f(y—1) cy 90[fc 31)

where cg 4 = Vg y/vx and ¢, = Cy/vg. As seen, there are three
unknown variables, i.e. cg, ¢4, and cf in the above equations, which
can be found numerically. Now, we first solve the algebraic equa-
tion (31) in order to find cf, and secondly we substitute the solution of
¢? in equation (29), which has been simplified as below by applying
equations (30) and (31):

5-3y , 409,
3 -0 Saf
Notice that substituting some values of ®; in the solutions yields
cé < 0 (this issue has been discussed in Ghasemnezhad, Khajavi &
Abbassi 2012). This point will be clarified better by looking at the
contour plots in Fig. 4. This figure shows the variation of cfb with
respect to @, and one of three other input parameters: «, f, y in each
subplot. In the first row panels of Fig. 4, the unacceptable region for
cé is located between two radial lines in the @ — ¢, plane, and it gets
larger as the advection (in panel b) or polytropic parameter (in panel
¢) increases. The second three panels displays contour plots of cé in
y — ¢, plane. The boundaries between negative and positive values
of rotational velocity squared in the middle row panels are arc-shaped
and placed on the right-upper side of panels (d)—(f). Comparing panel
(d) with panel (e), a rise in advection causes an upward shift in the
forbidden region. On the other hand, when comparing (d) with panel
(f), we found out that when viscosity becomes stronger, the curved
line of zero rotation seems flattered and moves to higher values of the
thermal conduction parameter. Finally, the bottom panels of Fig. 4
present the behaviour of cé by colours with changing ¢, and f. As
seen, in each panel there is a vertical line with zero labels, which
declares that choices of two input parameters of ¢, and f from the
right of this line cannot result in a reasonable solution. Furthermore,
the rectangular unacceptable part shrinks by greater viscosity (seen
in panel i) but extends by growing y. Consequently, in the light of
this figure, we can find a proper value of ¢, for each certain set of
input parameters («, f, ) to avoid forbidden areas.

In the following section, we will use these obtained solutions
of the components of ADAF’s velocity for finding drag force and
calculating the root of the averaged radial and rotational velocities
square.

ci = Cs.

4 THE EFFECT OF THERMAL CONDUCTION
ON CLUMPY DISKS

In two previous sections, we reviewed momentum equations of
clumpy ADAFs with different signs of drag force, and solved the
simplified first-order differential equation of <v§> with respect to
radial coordinate. The final result in equation (24) as a function of
cg and ¢y, i.e. coefficients of ADAF’s velocity components in radial
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Figure 4. Variation of c‘% showed by colours with the parameter of thermal conduction ®;, and one of three input parameters: « (a—c), f (d—f), y (g—i). In this

figure, the negative values of cé are not physical, and we should carefully pick up a proper value of ¢ for each certain set of input parameters («, f, y) to avoid

forbidden areas.

and azimuthal directions. Now, it is time to substitute the numerical
ADAF solutions from equations (29)-(31) in equations (24) and
(25). The results are illustrated in Figs 5 and 6. In these two figures,
we have investigated the influence of thermal conduction on the
dynamics of clumps for a different set of input parameters: («, f, y)
in Fig. 5 and (I'g, I') in Fig. 6. In these panels, we have considered
o, = 0.0005, 0.002, and 0.004, remarked by dotted, dashed, and
solid lines, respectively. In order to have an easier comparison, both
velocity components of ADAF and clumps are presented in Figs 5
and 6. The velocity dispersion of clumps is presented in the main
larger plots, and the small plots inside the main plots demonstrate the
velocity of ADAF. Comparing the small and large plots declares that
thermal conduction plays a similar role in changing the behaviour of
clumps and ADAF.

The upper row panels of Figs 5, 6 show the behaviour of ADAFs
(or equivalently approximated clumps’ azimuthal velocity in small

subplots inside the main plots) as well as the average rotational
velocity square of clumps (in the bigger main plots). In all upper
plots, grey curves show Keplerian velocity and assure us that the
velocity dispersion in the azimuthal direction remains sub-Keplerian
even after adding ®;. In this figure and Fig. 6, besides &, we
have also examined two different values of each parameter, and
we would like to investigate, in which circumstances, the effect of
thermal conduction on the dynamics of the system becomes more
significant. In Figs 5 and 6, we can easily see that the maximum
variation of both components of velocity dispersion under the effect
of thermal conduction occurs at the inner boundary of the ADAF (or
equivalently at the captured radius of clumps) with each of these input
parameters: «, y, and f. Regardless of the value of each parameter, all
these plots reveal that an increase of ®; reveals that the rotation of the
hot medium will decrease as long as at the same time. It is also clear
that this change in thermal conduction results in decreasing of the
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average rotational velocity square of clumps. Comparing upper right-
hand panels with left ones leads us to know that (v7) '/ remarkably
decreases with increasing advection parameter and polytropic index,
but does not behave uniformly with changing the viscosity parameter.
Furthermore, according to Fig. 6 (two upper right-hand panels), an
enhancement of the coefficient of drag force in ¢-direction causes a
bit increase in this quantity whereas changing of drag force in the
radial direction (as we had seen in equation 25) does not have any
direct effect on the average azimuthal velocity square of clumps.
One more point to consider, if we look at the numbers of vertical
axes of the main plots with ones in small plots, we realize that
the velocity dispersion of clumps in the azimuthal direction and
rotational velocity of ADAF possess the same order of magnitude.

The lower panels of Figs 5 and 6 display directly the role of
thermal conduction in a variation of <v§>1/ : (presented in main
bigger plots), and also in changing of Vi or (vg) (presented in small
subplots). According to these plots, we can find out unlike the &g
effect on velocity in the azimuthal direction, the total effect of &g
in the radial direction is positive on <vfe>l/2 and also on (vg). Here
again, we catch our attention to the scale of vertical axes numbers:
10° for main plots and 10® for small subplots, so the radial velocity
dispersion of clumps is about 10 times greater than Vi of ADAFs,
this result is consistent with WLC12. Moreover, if we compare right-
hand and left-hand panels in the bottom rows of each four-subplot
shape, we notice that the difference between plots with the various
value of @, is more visible with smaller « and f but bigger y and
I'g. Finally, according to the four subplot shapes in the right-hand
of Fig. 6, <v§>1/2 is not very sensitive to changing T'y, which was
pointed out in WLC12 too.

5 THERMAL CONDUCTION EFFECT ON THE
PROJECTION OF CLUMPS

Up to now, we have been studying semi-analytically, the dynamical
motion of clouds through the hot medium of ADAFs by adopting
collision-less Boltzmann equation for the ensemble of clouds. Con-
sidering a more realistic picture, we may study the time-dependent
orbits of such clouds as individual particles. In fact, the evaluation
of the time-dependent trajectory of clumps informs us about the
population properties of BLRs distributed around AGN. Therefore,
for the rest of this paper, we work on the time-dependent dynamics
of a simplified single-cloud model of clumps in the central vicinity
of AGN. We aim to involve the thermal conduction term in the
momentum equation. But for simplicity, we neglect the non-isotropic
force due to the radiation of a central accretion disc. In this problem,
we consider just two forces: the gravitational force of a central black
hole with mass M, and a drag force involve between the clump and
ADAF. This drag force is in the opposite direction of the cloud
and its amplitude is proportional to square its relative velocity with
respect to the ambient medium, i.e. ADAF. Thus, we can write the
equations of the orbital motion as follows:
GM

R—Rq’>2=—7—.fR(R—VR)|R—vR|, (32)

R$ — 2R = — f4(Rp — V)| R — V), (33)

where R = dR/dt(= vg), R = d*R/dt*(= dvg/dt), ¢ = d¢/dt(=
vs/R), and ¢ = d*¢/dr>. Like before, we have specified the velocity
components of ADAF by Vi and Vj, and we have also employed
constant coefficients, fx and f for the components of drag force. For
numerical evaluations, it seems more convenient to work with non-
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dimensional quantities, hence we convert equations (32) and (33) to
the non-dimensional forms by introducing » and t as:

R
r=—,
Ry
t
T=—,
fo

where R( and 7 are the typical lengths and time-scales. We can take
Ry equal to the radial size of the background medium of BLR, that
is the outer boundary of ADAF: Ry = 1000Rs,

Thus, the equations (32) and (33) become:

1 R c c
"_ /2=_7_1- 0 r_ R /_i’ 34
" —r =R Uy -3 14 NG (34)
” Y RU ( ’ C¢>‘ ’ Co
r¢”" =2r'¢' = —Ty—\r¢' — — | |r/ — —|, (35)
¢ ¢ ? Rsen ¢ Jr ¢ NG

where ¥ = dr/dt, ' = d*r/d7?, ¢’ = d¢/dr, and ¢” = d>¢/dr?,
the two constants of cx and ¢, refer to the radial and azimuthal
components of the velocity vector of ADAF. Also in the two above
equations, we have removed the factor of GM in the gravitational term

by choosing #p = 4/ RS /G M . Moreover, we have substituted I"g/Rscp
and I"4/Rs., instead of f and f,,. Now, we need to specify appropriate
initial conditions for solving numerically the last two equations. In
the absence of radiation force from the central object and neglecting
the vertical component of the velocity vector of the ambient medium,
i.e. ADAF, v, = 0, we may expect the plane of motion to be fixed
at the equatorial plane. However, under the influence of drag force,
the cloud’s angular momentum cannot remain constant (during flight
time). So we expect a spiral trajectory for the cloud’s motion.

Regarding boundary conditions, we assume that our single cloud
begins its journey from the initial point with these dimensionless
coordinates: (r = 1, ¢ = 0) with an initial velocity vector equals to
ADAF’s one, i.e. (' = cg, ¢’ = cy). Knowing the initial conditions
for r, ¢, r, and ¢', we can solve equations (34) and (35) numerically
with respect to the dimensionless time, t, and obtain (1), ¢(t), ¥’ (1),
and ¢’ (7). In Fig. 7, we have drawn the orbit of a sample cloud at
the equatorial plane for three values of ¢,. The black dot—dashed,
blue dashed, and red solid lines correspond to ¢, = 0, 0.002, and
0.004, respectively, and the other input parameters for panels (a)—(c)
arex = 0.2, f=0.1, and y = 1.4; for panels (d)—(f): « = 0.1, 'y =
I'r = 0.001. Regarding the two remained parameters, one of them is
variable and the other one is common for two adjacent panels. The
label of 7, in each panel (exception for panel f) is a dimensionless
time that the BLR cloud needs for one rotation around the centre in
the case of ¢, = 0. For panel (f), this duration is too long for the
cloud in a medium with ¢, = 0.004, since during a smaller time, it
arrives at the capture radius, hence in the case (i.e. ¢, = 0.004), we
have used the total flight time of the cloud, i.e. 1 (= 1.56) instead
of 7 (=2.03).

As it is seen in all panels of this figure, the motion of the cloud
is a spiral around the centre, and this common feature appears due
to the influence of drag force in this problem. Moreover, we see in
all panels that thermal conduction apparently causes the clump to
rotate and accrete faster. In Fig. 8, we have adopted the same input
parameters, and for a better and easier comparison, we have chosen
the same time flight for all cases (except for a grey line of panel c¢), and
separated curves with equal values for ¢;. The effect of parameters
other than ¢, can be studied more conveniently in this figure. By

!'Notice that the dimensionless radius of r is three orders of magnitude larger
than the previous quantity of r used in equations (23)—(25).
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Figure 7. The effect of thermal conduction on the orbital motion of a clump embedded in an ADAF. In this figure, we have neglected the radiation force from
the central object, thus the BLR cloud here moves only at the equatorial plane. In each panel, we have fixed the set of input parameters and examined three
different values of the thermal conduction parameter, i.e. ¢; = 0, 0.002, 0.004. In the upper panels, we have used: « = 0.2, f = 0.1, y = 1.4, and in the bottom
panels: o = 0.1, ' = I'y, = 0.001. Initial conditions are: r|;—o = 1 (or R|;=¢ = 1000Rsch), ¢lr=0 = 0, 7|;=0 = cg (or Rli—o = Vg), and ¢|,—¢ = cg (or
R}|i—g = V). As it is seen, the trajectory of cloud varies with I' [compare panel (a) with (b)], I'z [look at panels (b) and (c)], « [panel (c): « = 0.2 and panel
(d): o = 0.1], f [compare panel (d) with (e)], and y [see panel (e) and (f)]. The final time, 7 in panels (a)—(e) is equal to the time required for one round of
rotation in the case of ¢y = 0, but T = 1.56 in panel (f) is the total flight time of cloud to reach the inner boundary of ADAF, or captured radius of clumps in

the case of ¢y = 0.004.

variation of ¢, the most change in the pattern of spiral motion
happens for curves with different «, because we see a green dotted
curve (with @ = 0.2) in panel (a) overlaps with a red dot—dashed one
(with @ = 0.2), whereas in panel (b) and (c) when ¢; is not zero,
these two curves remarkably different from each other. Moreover, the
panels of this figure declare that time-averaged rotational velocity
(r¢’) of BLR clumps is greater with larger values of 'y, f, and
y, but smaller 'y and «. Similar behaviour can be deduced for
the time-averaged radial velocity, i.e. 7/, too (except for the cases
with different «’s without thermal conduction as we mentioned
before).

It can be interesting to know about the treatment of velocity
components of BLR clouds during their flight time and compare
it with the pattern of the velocity field of clumps in the first part of
this paper. On the other hand, the estimation of BLR’s velocity is
vital for calculating emission-line width full width at half-maximum
(FWHM), thus we have presented the instantaneous velocity of our
typical cold cloud in Figs 9, 10, and 11. Each panel of these three
figures is corresponding to one in Fig. 7. We have also added the

MNRAS 517, 5090-5103 (2022)

velocity components of ADAF (marked by red colour) to these panels
and also the Keplerian velocity (blue) in Fig. 11. Notice that Figs 9
and 10 both illustrate the radial velocity but for two regions; outer
part, 100 < R/Rsep, < 1000 in Fig. 9 and the inner part, 10 < R/Rsch
< 100 in Fig. 10. The solutions in the duration of 0 < t < 2.5 are
specified by black colour, and beyond this time are drawn by blue
colour in Figs 9 and 10 (see Table 1 for the total flight time of each
case). As clearly seen, these figures are very different from those in
Figs 5 and 6, unlike clumps in steady-state condition, here clouds
can have a positive radial velocity in some parts of their eventual
path towards the centre (ref. Figs 9c—f and 10f). In the absence of
the drag force, the orbital motion of clouds would be Keplerian,
and they could passes a point many times, but here they cross a
point up to twice (and three times in the case of panel f), but not
with the same velocity or even with the same direction (look at
panels c—f of Fig. 9). Comparing red and black curves (of Fig. 9)
implies that the radial velocity of clouds at outer part may grow
about one order of magnitude larger than ADAFs in the middle of
their path, but their rotation does not show this much difference

220z J9qWenoN || o 1senb Aq 9/1€8/9/060G//. | G/910E/SEuW/WOo0"dNO"dILUSPEOE/:SAJIY WOI) POPEOJUMOQ


art/stac2964_f7.eps

270° T2

(@) ¢;=0

(b) ¢ =0.002

5099

Thermal conduction in clumpy discs

70° 270°

() ¢:=0.004
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Figure 9. Time-dependent variation of the radial velocity of a BLR cloud with respect to radius. Input parameters of each panel are the same as the ones in
Fig. 7, so comparing every pair of adjacent subplots yields information about the effect of a certain parameter other than ¢;. In each panel, the solid dashed and
dotted lines refer to solutions with ¢ = 0, 0.002, 0.004, respectively. Two colours have been used in this figure; the black curves represent R and the red ones

show Vj of the ADAF.

(according to Fig. 11). Very different behaviour of radial velocity
is seen in Fig. 10 (exception for the case of panels e, f), here there
are not that many fluctuations in the magnitude of R that was in
outer part. Moreover, clouds pass much more slowly in the inner
part of a hot background medium with y = 1.4 and f = 0.1. The
small plots inside the main large plots of Fig. 11 display the angular
momentum of clouds with respect to the radius (red colour curves
show the ADAF’s angular momentum). According to these curves,

we can see like each element of hot gas, the angular momentum
of individual clumps decreases towards the centre, thus they can
participate in the transportation of the total angular momentum of the
disc outwards and consequently cause enhancing the accretion rate
effectively.

The effect of thermal conduction on the clouds’ and ADAF’s
velocity is apparently similar as seen in Figs 9—11. Nevertheless, we
should remember that time is important for clouds. For instance, if
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Figure 11. Time-dependent variation of the rotational velocity of a BLR cloud with respect to radius. In each panel, the solid dashed and dotted lines refer to
solutions with ¢5 = 0, 0.002, 0.004, respectively. Similar to Fig. 8, the black curves represent R¢ and the red ones show Vy of the ADAF. The set of input
parameters is common to the ones in Figs 7 and 8, thus we can find out the role of each parameter by comparing two related adjacent subplots. In this figure,
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been used for different values of ¢; in smaller plots too.
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Table 1. The dimensionless total flight time (z1) of a BLR cloud with:
g, ¢ =0.001,0.005, f=0.1,02,0 =0.1,02, y = 1.4, L.5.

b 0 0.002 0.004
1 (Mg ) 8.41 6.41 495
7Ty <, Tr>) 35.33 25.11 17.77
1 (T, as) 35.05 24.86 17.52
1 (0<, f<) 35.28 17.69 8.73
(s, v <) 11.99 7.56 4.73
1 (y=) 5.11 2.872 1.565

we choose a certain time, and at that time, we compare the rotational
velocity of two clouds embedded in mediums with different ¢, and
crossing two points (with different spatial coordinates), one with
larger ¢, has a larger R¢ (look at Fig. 11, compare the inner last
point of each curve with that of other curves); this point can be
understood better by looking at Fig. 12. In Fig. 12, we have shown the
variation of the two components of velocity with respect to the flight
time of clumps with applying the same sets of input parameters as
Fig. 8. Here again we can see how the presence of thermal conduction
changes the other parameters effect on the velocity of BLR clouds
during a certain time.

In Fig. 13, we have calculated the total flight time (r1) of a BLR
cloud as a function of the thermal conduction parameter, ¢,. The time-
scale of this figure has been evaluated by assuming rp = 1000Rscp
~ 0.01pc, M = 108 My: tg &~ 4.42 x 107s, which is about 511.5d
or 1.4 yr. Black colour curves refer to clumps in different mediums,
and also red curves show the total time needed for an element of gas

1e8 (@) ¢s=0 1e9

R(cm.s™!)

0 1 2 3 0 1

t(year)

Re(cm.s™1)

0 1 2 3 0 1
t(year)

(b) ¢s = 0.002 160

t(year)

t(year)
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moves between outer and inner boundaries of ADAF, i.e.

Rw dp 2 [ Rin 3/2]
e IR

Rin Vr 3cr Rout
where fy = \/R3,/GM. In panel (a), we have plotted the total
flight time for four different sets of T'y, I'g, and o with fixed
values for y (= 1.4) and f (= 0.1). As we know with larger I'g
and 'y clumps experience stronger drag force, but evidently the
same variation in their magnitude cause different change in tr;
apparently in dynamics of BLRs, I'y acts more effective than I'g
(look at Fig. 14). Regarding the role of ¢, in the stability of clumpy
BLR systems, we see in both panels of Fig. 13, increasing ¢ has
a negative effect on 71 and makes it shorter. On the other hand,
decreasing f and y result shorter lifetime for clouds. Now, if we
compare red curves with black ones, we can find out those clumps
with smaller Iy (black dashed and dotted curves in panel a) can be as
stable as or even more stable than their host medium (or background
ADAF).

In order to clarify the role of each component of drag force
separately in Fig. 14, we have drawn the projection of a typical
BLR cloud for three different cases: a drag force (1) with two
zero components, 'y = I'y = 0 (black dot—dashed line), (2) with
one zero component at the azimuthal direction, I'y = 0, and (3)
with one zero component at the radial direction, I'y = 0. As we
expect the first curve without drag force illustrates a Kepler orbit
with an elliptic shape. On the other hand, although the second
curve is at first elliptical, after a few moments, it converts to
spherical under the influence of drag force in the radial direction,
thus it becomes as stable as the first case. In contrast with first and
second cases, the motion of the clump deviates significantly from

(c) ¢s = 0.004

2 3

2 3
t(year)

Figure 12. Variation of velocity components of a BLR cloud with respect to the flight time. The setting of input parameters is the same as in Fig. 8.
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T+(year)

Tr(year)

Figure 13. The total flight time of a typical BLR cloud as a function of the thermal conduction parameter with a different set of other input parameters. In panel
(a), we have examined two different values of the azimutial coefficient of drag force: I'g = 0.005 (solid line, labeled by Iy . ), 'y = 0.001 (dashed line, Iy -),
both presented in black colour and other parameters are the same as panels (a) and (b) of Fig. 7. The other curves in panels (a) and (b) here have been drawn to
study the effect of: (1) I'g by trying 'z = = 0.005, (presented by dashed line in panel a, other parameters are the same as Fig. 7b); I'r = = 0.001 (dotted line in
panel a, others equal to ones in Fig. 7c); (2) a with choosing o~ = 0.2 (dotted) and «~. = 0.1 (dot—dashed; others like Fig. 7d); (3) f with two values of f- = 0.1
(solid line in panel b; others like Fig. 7d) and f> = 0.2 (dashed line in panel b; others like Fig. 7e); (4) y with trying y - = 1.4 (dashed) and y. = 1.5 (dotted
line in panel b; other parameters are the same as Fig. 7f). In this figure, the curves in red colour represent the total dimensionless time required for an element
in ADAF reach the inner boundary (i.e. 10Rscp) from the outer boundary (1000Rscp). In panel (a), for all values of I'g and I'y, Vg does not change, hence just
red solid line is corresponding to all three set of input parameters: (I'y = I'g = 0.005), (I'y = 0.001, ' = 0.005), and (I'y = I'r = 0.001).

90°

—. Tr=Ty=0 T
—— TR=0.005,T,=0 -
—— Mr=0,T,=0.005 — _ .
R ) “/
s

4

0°

Figure 14. The trajectory of a BLR cloud with three different drag forces.
The black dot—dashed line corresponds to I'g = I'y = 0, the blue dashed line
is related to ' = 0.005, 'y = 0, and red solid line is evaluated by choosing
I'r =0, 'y = 0.005. The other parameters are: &« = 0.2, f= 0.1, and y =
1.4. The used fight times in this figure are 77 = 5, 10, and 5.5 for the cases
with g ¢ =0,y =0, and I'g = 0, respectively.

Keplerian in the light of a drag force with a single component in ¢
direction.

6 SUMMARY AND CONCLUSION

In this paper, we investigated the effect of thermal conduction
on the dynamics of cold clouds (or clumps) embedded in a hot
accretion flow (ADAF) which experiences a drag force. We took
two different approaches to this problem: first, we supposed the
clouds behave like collision-less particles and move with a velocity
vector whose averaged value equals their host medium velocity, and
secondly, we concentrated on clouds individually to find the position
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and instantaneous velocity of a typical cloud. In all parts of this
study, we presumed axisymmetric and steady-state configuration
for the background medium of clumps as long as we supposed
that all particles have negligible vertical motions. The effect of
thermal conduction appeared in this problem due to involving drag
force between clouds and ADAF. We employed ADAF solutions
including thermal conduction presented by Tanaka & Menou (2006).
For the first part, we followed Wang et al. (2012) and applied
Boltzmann equations in order to obtain the root mean velocity
square of the clumps (or two components of velocity dispersion),
ie. (v2)"* and <vé>1/2. The value of (v3)'""? is important since
the capture rate of the clumps at the inner edge of the disc is
directly proportional to the ratio of (v%) "2/ (vg) (ref. equation 34
of WCL12). We should mention that our results were a bit different
even in the absence of thermal conduction with ones presented by
WCLI12, because of the opposite direction of our drag force; we
ratiocinated that after applying the approximation of equal average
velocity with ADAF’s one, an average value of drag force must
remain at the same sign as majority particles drag force sign (in
the opposite direction of their relative velocity with ADAF). This
tiny change in the drag force formula led to clumps with <v§,>1/2
smaller than the rotational velocity of ADAF that was evaluated as
larger in the previous work. Furthermore, our adopted drag force
had an effect on a critical (or minimum) value for the drag force
coefficient in the azimuthal direction instead of the radial direction in
WCLI12.

For the second part, we found the trajectory of a single clump in
the same way as a classical two-body problem. The similar results for
the influence of thermal conduction were achieved from both parts;
when we added a larger permissible (ref. Fig. 4) value for the thermal
conduction parameter, ¢;, the solutions changed to reduce velocity
in the azimuthal direction but growing it in the radial direction.
However, we found out the function of rotational velocity of a cloud
behaves in opposite way with time; it may become larger with a
greater ¢ (ref. Fig. 12). Furthermore, we compared the total flight
time (needed a clump to move from outer region of ADAF to the
capture radius) of BLR clouds with the total dynamical time of a
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volume element of ADAF. We faced to this point: if clouds move with
a very small or even zero friction in the azimuthal direction, they can
survive from the central captured region of ADAF. On the other hand,
we saw the existence of a little friction along ¢-direction modifies a
Kepler orbit of clumps to a spiral one and can make it a short-lived
object. The similar works had been done by Shadmehri (2015, who
studied clouds in a laminar flow) and Khajenabi (2016; who worked
on BLRs in a turbulent flow); both considered drag force and also
repulsive radiation force from the central object. For simplicity and
having the similar condition as the first part of our work, we did
not take into account radiation force on this problem and assumed
clumps moved at the equatorial plane under the influence of central
gravity and drag force. We found out how much the stability of a
BLR system can be changed by characteristic parameters (that is, o,
/, and y) of their hot host medium.

To improve this work, it is good for both parts to write equations in
spherical coordinates and apply 2D (r — 6) solutions of ADAFs,
which included vy and let us study the vertical motion of clumps
too. For little improvement, we can use a formula composed of both
linear and quadratic relative velocity (between the clumps and the
gas) with two optional coefficients (0, 1) set by the Reynolds number.
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