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a b s t r a c t

One of the challenges of digital forensics is the high volume of investigative cases. To address this
problem, researchers have proposed various triage methods. Detecting the applications that have run on
the compromised system under inspection can be an excellent triage method that gives the investigator
an overview of the system. In this paper, we construct the signature of software usage on a system using
file path artifacts. We propose a software signature detection engine (SSDE) to identify the usage of the
software on the system under investigation. The SSDE consists of two subsystems: the signature con-
struction subsystem, which builds the software signature using the TF-IDF weighting scheme, and the
signature detection subsystem, which identifies the executed set of software on the target system. We
consider several parameters with different values in the design of SSDEs, leading to more than 500 SSDE
models. We test the SSDE models against 14 pseudo-real systems from the M57 Patents scenario and
evaluate their performance. The experimental results show that about 38% of SSDE models achieve near-
perfect Precision, and about 18% of them achieve near-perfect Recall. We introduce the top models and
determine which parameter values lead to the superior models. Besides, we compare the SSDE models
with some doc2vec-based models. The results show that SSDE models have higher average Precision,
slightly lower average Recall, and much less computational time.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction reconstruction is quite time-consuming, and finally, human errors
The rapid growth of the Internet and cyberspace has led to the
growth of malicious activities. Digital forensics helps discover the
events that have occurred on a compromised system. It comprises
three main phases, namely acquisition, analysis, and presentation.
The challenges facing digital forensic analysis are the large volume
of data collected and the lack of automated analysis methods. In
some cases, the analysis of the collected data may take days to
weeks (Scanlon, 2016; Casey and Zehnder, 2020; Lillis et al., 2016;
Du et al., 2020; Vidas et al., 2014).

Current digital forensic tools show a list of extracted artifacts
from digital media (Bunting, 2012; Sammons, 2016; Ghazinour
et al., 2017). However, they do not reveal the events that cause
the creation of the artifacts. Usually, the investigator manually tries
to find this relationship (Du et al., 2020; Shaw and Browne, 2013;
Studiawan et al., 2020). Manually reconstructing the events using
the artifacts creates some problems. First, the investigator can only
retrieve the events that he knows. Therefore, the retrieval rate is
limited to the investigator's experience. Second, manual event
Soltani).
may occur.
Several triage solutions have been proposed in the literature.

Triage in digital forensics deals with prioritizing some pieces of
evidence to start the forensic analysis quickly. In particular, some
digital forensic triage methods identify devices containing valuable
forensic information among the many devices found at the crime
scene (Jusas et al., 2017; Gentry et al., 2019; Lim and Jones, 2020).
Besides, the triage methods for multimedia forensics speed up
image/video analysis (Quick and Choo, 2017; Hales and Bayne,
2019). Moreover, some triage methods detect the set of software
executed on the system as a preprocessing step. Identifying the
running software on the system during the incident presents an
overview of the system (Nelson, 2016; Jones et al., 2016;
Adegbehingbe and Jones, 2019; James and Gladyshev, 2015; Al-
Sharif et al., 2019). It can also provide the examiner with a clue to
the types of data that can be detected.

Running an application leaves its traces on the system. We can
process these traces to build the signature of the software. The
digital forensic investigator could use these signatures to deter-
mine what applications have run on the examined system. Several
research efforts have built signatures for various events or appli-
cations (Nelson, 2016; Jones et al., 2016; Adegbehingbe and Jones,
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2019; James and Gladyshev, 2015; Soltani et al., 2019; Latzo, 2020;
Hargreaves and Patterson, 2012; K€alber et al., 2013; Roussev and
Quates, 2012; Khader et al., 2018; Jeong and Lee, 2019; Mistry
and Dahiya, 2019; Song et al., 2018; Chang et al., 2019). Some of
these methods use a few limited items to create a software signa-
ture (James and Gladyshev, 2015; Hargreaves and Patterson, 2012;
K€alber et al., 2013). They also use a precise matching approach to
check the signatures against an examined system. Therefore, they
may easily be subverted by adversaries. Moreover, building signa-
tures are not automated in some methods (Hargreaves and
Patterson, 2012; Khader et al., 2018; Jeong and Lee, 2019). Also,
some methods which use similarity digests are computationally
time-consuming (Roussev and Quates, 2012; Chang et al., 2019;
Moia and Henriques, 2017). For example, Roussev and Quates
(2012) construct the hash for all executable files of the hard disk
and the hash of the memory image. Finally, memory-based event
reconstructionmethods (Mistry and Dahiya, 2019; Song et al., 2018;
Mohanta and Saldanha, 2020) are not reliable enough, as the
memory content changes over time and clears totally when the
system shuts down.

In this study, we present a software signature detection engine
(SSDE) that consists of two subsystems. The signature construction
subsystem builds the software signature using the software
execution tracks on the file system. The signature detection sub-
system takes the created signature database and the disk copy of
the system under investigation as input and determines what
software has been run on it. We have considered various design
parameters with different values to build the software signature
detection engine. Selecting different values leads to a variety of
SSDE models. To evaluate these models and select the top ones, we
have given 14 quasi-real systems from the M57 Patents scenario as
the target system for each model.1

In our previous study (Soltani et al., 2021), we built software
signature search engines (S3Es) for digital forensics purposes. In
that paper, we used the word embedding model to construct the
software signature vector, and by selecting different values for the
design parameters, we designed 120 separate S3E models. In this
work, we use the TF-IDF frequency-based weighting method to
construct the software signature vectors. TF-IDF, short for term
frequency-inverse document frequency, is a statistical measure that
reflects how important a term (word) is to a document in a corpus
(Rajaraman and Ullman, 2011). In TF-IDF, term frequency is the
number of times a word occurs in a document, and IDF is inversely
proportional to the number of times a word appears in the corpus.
The IDF tends to reduce the weight of very frequent words in the
corpus and increase theweight of rarewords. An advantage of word
embedding methods over frequency-based methods is that they
care about the context and meaning of words. However, the
downside of word embedding methods against frequency-based
ones is that they are more complex and time-consuming. Section
4.3 will compare the SSDE models with the S3E models regarding
Precision and Recall rates and time costs.

This research work has various contributions in the domain of
digital forensics, as follows.

� Software signature detection engines that assist the digital
investigator in detecting software usage on the target system
have been designed.

� More than 500 SSDE models have been designed by considering
eight design parameters.
1 The M57 Patents data set is freely available at https://digitalcorpora.org/
corpora/scenarios/m57-patents-scenario/.
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� The superior models and the appropriate values of the design
parameters are determined.

� Finally, the TF-IDF-based SSDE models are compared with
doc2vec-based S3E models (Soltani et al., 2021).

The rest of the paper is organized as follows. Section 2 reviews
some related works in digital forensic triage. Section 3 explains the
proposed software signature detection engine. Section 4 describes
the experiments and results, and finally, Section 5 concludes the
paper and gives some recommendations for future work.

2. Related work

There are several digital forensic triage methods in the litera-
ture. Some methods visualize a timeline of events, and some find
correlations among pieces of digital evidence. Also, several
methods find the signatures of various actions or applications.

2.1. Digital forensics timeline

CyberForensics TimeLab (CFTL) (Olsson and Boldt, 2009) shows
timing information of file system, Registry, and link files. Log2ti-
meline (Guðj�onsson, 2010; Metz and Guðj�onsson, 2021) displays a
timeline of timing information extracted from different file types;
timing information from various parts of the hard disk such as file
system, Registry, log files, prefetch files, browser history, and sys-
tem memory are displayed chronologically. Although log2timeline
itself cannot reconstruct high-level events, it is used in several
research projects (Chabot et al., 2015; Du and Scanlon, 2019;
Bhandari and Jusas, 2020; Good and Peterson, 2017). Timeline2GUI
(Debinski et al., 2019) is a graphical interface that reads CSV files
generated by log2timeline and performs several operations,
including filtering, sorting, searching, and highlighting text. Time-
sketch (Google, 2021) is a timeline tool that helps investigators
analyze event logs using tabular and graph-based views.

While a timeline of extracted artifacts provides an investigator
with a visual view, it cannot assist in the automatic reconstruction
of events. However, having a timeline can be helpful in addition to a
signature-based method (such as our proposed method). For
example, it can very quickly specify the time interval in which to
search for software signature traces.

2.2. Ontology-based event analysis

Chabot et al. (2015) introduced an approach based on a three-
layered ontology called ORD2I. They used log2timeline to popu-
late the ontology. The Common Knowledge layer stores shared in-
formation about what happened during the incident. This layer
contains a public Entity class and three derived classes, Event,
Subject, and Object. The Specialized Knowledge layer has classes for
many objects such as File, Account, Web, Communication, and
Registry Key. Finally, the Traceability Knowledge layer stores in-
formation about the investigation process.

Arshad et al. (2019) provided a multi-layered framework for
collecting and correlating evidence from various social media. The
central component of the framework is a hybrid ontology. Karie and
Kebande (2016) provided an ontology for digital forensics to help
investigators understand various technical and non-technical ter-
minologies. Their approach has four components: 1) digital forensic
terminology database, 2) terminology semantic annotation, 3)
reasoning engine, and 4) terminology semantic repository.
Bhandari and Jusas (2020) proposed an ontological approach based
on the abstraction concept to analyze the timeline of artifacts. The
abstraction concept helps investigators resolve the meaning of new
digital forensic terminologies.

https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario/
https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario/


2 Fiwalk processes a disk image and produces an XML file, which includes in-
formation such as file path, file size, MD5 and SHA1 digests, and MACB timestamps.
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We should mention here that ontology-based methods cannot
automatically reconstruct events. These methods help the investi-
gator find correlations between low-level pieces of evidence. An
ontology-based technique alongside a signature-based one can
help the inspector reconstruct events.

2.3. Creating and detecting signatures for applications or actions

Several research studies built the signature of various actions
and applications. Using these signatures, they estimated what
events had occurred on the system. To build application finger-
prints, Kalber et al. (K€alber et al., 2013) used MACB timestamps of
filesystem metadata. To determine the actions performed on the
system, they used an exact matching paradigm. James and
Gladyshev (2015) built the signature of user actions using the fil-
esystem timestamps. They can detect the most recent as well as
past action instance approximations. The weakness of these two
methods is that they used a few modified timestamps as the
fingerprint of actions, which can easily be subverted.

Hargreaves et al. (Hargreaves and Patterson, 2012) created a
timeline of low-level events, including filesystem timestamps and
timing information inside some complex files such as Chrome
history, Skype, Link files, and Registry. They also designed specific
analyzers for high-level events such as Windows installation,
Google search, Skype call, and USB connection. The analyzers
searched for patterns of high-level events in the low-level timeline
based on some pre-determined rules. Making specific rules for each
event is hard, and this method cannot be easily generalized to
include analyzers for other high-level events.

To build signatures for different applications, Khan (2012) pro-
posed a neural network and a Bayesian belief network. However, a
constraint of this methodology is that for each application, a
separate network needs to be trained. Khader et al. (2018)
attempted to find fingerprints for the Hadoop Distributed File
System (HDFS) operations, including creation, append, rename, and
deletion. However, they did not reconstruct high-level events on
the distributed file system.

Roussev and Quates (2012) tried to specify the applications that
run on M57 computers (Woods et al., 2011) using a fuzzy hashing
scheme (Roussev, 2010). They first built the hash of all executables
of the disk images and then compared the memory image against
the sdbf hashes of the. exe or. dll files on the disk image. This
method is time-consuming and needs both hard disk image and
memory image.

To identify uninstalled applications on a system, Adegbehingbe
and Jones (2019) built a catalog for each application using the ap-
plication's Diskprint (NIST, 2021). The application's Diskprint in-
cludes snapshots of a virtual machinewhile installing, running, and
uninstalling the application. Adegbehingbe and Jones extracted the
created and modified files between snapshots. The application's
catalog includes the name of these files and the sectors' hashes
containing the files.

Nelson (2016) provided a forensic search engine in which the
input documents are the signatures of the software, and the query
is the target disk Registry. Software signatures are obtained by
processing the differences between Registry snapshots of the sys-
tem. He used NIST's Diskprint project (NIST, 2021) in his work.

Jeong and Lee (2019) identified storage devices connected to a
computer system. They built the connection signature of a storage
device using the fingerprints found in the Registry, the main boot
record (MBR), logs (Operational.evtx and diagnostic. evtx files), and
NVAR variables.

M57 Patents (Woods et al., 2011) is a digital forensic training
scenario developed by the US Naval Postgraduate School. This
scenario captures the activities of the first four weeks of the
3

fictitious m57. biz patents research company. At the end of each
workday, the computers of four employees (named Charlie, Jo, Pat,
and Terry) are captured, and their physical memory and hard disks
are imaged. In this paper, wewill use 14 disk images of M57 Patents
computers as our test systems.

3. The software signature detection engine

In this paper, to detect software on a system, we design a soft-
ware signature detection engine. The SSDE consists of two sub-
systems: 1) signature construction and 2) signature detection.
Creating the signature for each software is done using the traces left
by running the software on the file system. In the signature
detection phase, a target file system is examined to find traces of
various software. Fig. 1 shows an overall view of an SSDE.

3.1. Software signature construction

As mentioned, we create the signature of each software using
the effect of the software on the underlying file system. To build the
software signature, we compare the disk copies before and after
running the software to get a list of files and folders created,
deleted, or changed during the software run. However, we should
note that we build software signatures using only the created files
and folders. The reason behind this decision is that we found in our
experiments that most deleted or modified files were not related to
the software execution but were the results of OS execution.

For example, to create a signature for Microsoft Word 2013, we
compared disk copies before and after running it. In the output list,
we have 485 created files and folders, 148 modified files and
folders, and 542 deleted files and folders. However, most modified
files and folders were not related to Microsoft Word. For example,
some irrelevant files and folders that are modified include $LogFile,
$MFT, $Bitmap, $Secure, ProgramData/Microsoft/Diagnosis/ETL-
Logs/AutoLogger, ProgramData/Microsoft/RAC/PublishedData, and
Users/Somayeh/AppData/Local/Microsoft/Windows/Explorer/
thumbcache_idx.db. Only 34 of the changed files and folders were
related to running Microsoft Word, some of which include: Pro-
gram Files/Microsoft Office/Office14/WORDIRMV.XML, Program
Files/Microsoft Office/Office14/WINWORD.EXE, ProgramData/
Microsoft Help/MS. WINWORD.DEV.14.1033. hxn, and Windows/
assembly/tmp/5D1YG5NO/Microsoft.Office.Interop.Word.dll. The
same is true for deleted files and folders.

Suppose we want to create a signature for software SW on
operating system O. To do this, we first install the OS O on a virtual
machine, then we install the software SW on this recently installed
OS, and we convert the hard disk of this virtual machine to E01
forensic disk image format. Next, we run the software SW and take
the E01 hard disk. Then we use Fiwalk2 (Garfinkel, 2009) to get the
list of files and folders on each disk copy. Next, we compare two
Fiwalk outputs to identify files and folders affected by the software
run. Then we filter this list and remove the deleted and modified
files and folders. Finally, we consider the created files and folders
during the software execution as the Difference-Set of the software
run. Fig. 2 describes the process of creating a Difference-Set for
software execution.

Simplistically, we can consider this Difference-Set as the soft-
ware signature. However, different scenarios for running an
application may cause partly different Difference-Sets. A piece of
software can be executed in different ways. For example, it can be
launched by clicking on its icon on the desktop or by using the Start



Fig. 1. An overall view of the SSDE.

Fig. 2. The process of creating the Difference-Set for the software.

Fig. 3. Creating the software signature.
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menu. After the software is opened, depending on its type, the user
can have different interactions with it. For example, a user can open
Firefox by clicking its icon on the desktop, taskbar, or Start menu.
The user can then do various things with Firefox: visit awebsite and
click multiple links, check his email and download an attachment,
login to an online retail website, and so on. As another example, a
user can open Microsoft Word by clicking its icon on the desktop,
taskbar, or Start menu. Also, he can double-click a. docx file or right-
click a window and select New / Microsoft Word Document. The
user can do various things with Microsoft Word, and after making
the desired changes on a document, save it or save it with a
different name.

Each of these scenarios may cause minor changes in the list of
files and folders created during software execution. As Fig. 3 shows,
to build the software signature, we should consider combining
various Difference-Sets obtained from different scenarios of soft-
ware runs.
4

3.1.1. Design parameters of software signatures
We consider three parameters in building software signatures

which are listed in Table 1. The parameters include 1) Composition
of Difference-Sets, 2) n-gram types, and 3) stop list. We design two
values for Difference-Set composition: Intersection (tagged with
A1) and Union (taggedwith A2). Moreover, we consider four distinct
n-gram types tagged with B1, B2, B3, and B4. Also, we have two
values for the stop list (C1 and C2). Different values of the param-
eters result in distinct software signature models.

To combine Difference-Sets and build signatures, we can
compute either union or intersection of them. While union com-
bination (A2) builds software signature using all terms in all rele-
vant Difference-Sets, intersection combination (A1) only considers
the common terms.

The second parameter determines the type of n-gram. The value
B1 of this parameter considers the entire file path as a term. For
example, consider the path Program Files/Mozilla Firefox/uninstall/
shortcuts_log.ini. B1 considers the entire path as a term. B2 takes
four terms for this file path: Program Files, Mozilla Firefox, uninstall,
and shortcuts_log.ini. B3 considers the shortcuts_log.ini component
as a term. Finally, B4 introduces uninstall/shortcuts_log.ini as a term.

The third parameter determines whether to consider a stop list
and filter the software signatures or not. The use of a stop list is
inspired by natural language processing (NLP). The idea is to
remove common natural language words (such as the, is, you, and
for) from the text. The reason is that stop words are low-value
words and do not add much meaning to a sentence. By removing
them from the text, the size of the dataset is reduced, and the
training time of the model is decreased. In this work, we consider
the stop list equal to the files and folders in the base operating
system (a newly installed OS on which no software has been
installed yet).



Table 1
Design parameters of software signatures.

Parameter Tag Value Description

1 Difference-Set composition A1 Intersection The Difference-Sets are combined using the intersection of their elements.
A2 Union The Difference-Sets are combined using the union of their elements.

2 n-gram type B1 All The full file path is used as a term.
B2 Unigram The file path is broken into its components, and each component will be a term.
B3 Last The last component of the file path is considered as a term.
B4 Two Last The last two components of the file path constitute a term.

3 Stop list C1 No Stop List There is no stop list for common terms.
C2 Stop List The stop list for common terms includes the file paths in the disk copy of the base OS.
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C2 models (models that contain the C2 value for the third
parameter) define a stop list containing the file paths of the base
OS. All the file paths in the stop list are removed from the software
signatures. We should note that the n-gram type affects the type of
stop list. It means that the stop list for B1 models includes file paths
extracted from the base OS. For B2 models, the stop list contains all
the components of these file paths. The stop list of B3 models in-
cludes the last component of these file paths. Finally, for B4 models,
the stop list contains the last two components of the file paths of
the base OS.
3.1.2. A forensic differential analysis model for building software
signatures

In this section, we formally describe the software signature
creation process. We propose a forensic differential analysis model
to build the software signature. Suppose we have two disk copies, A
(taken after software execution) and B (taken before software
execution). Assume disk copies A and B have NA and NB files and
folders, respectively. Also, suppose that each file or folder has M
different forensic features. The function E extracts the features from
each disk copy:

E : D/FD (1)

where D ¼ fA;Bg, and FD is the set of features of files and folders of
disk copy D; In other terms:

FD ¼
n
fDi;j

i2 f1;/;NDg; j2 f1;/;Mg
o

(2)

where fDi;j
is the value of the j th feature of the i th file or folder of

disk copy D. We consider three valuable features of files and folders,
including path, modification timestamp, and hash value. The dif-
ferential analysis of A and B is reduced to the differential analysis of
the feature sets FA and FB, as defined in (3).
DAðFA; FBÞ¼
[

i2f1;/;NAg

n
ðA; i; pÞ:dk2 f1;/;NBg : fAi;p

¼ fBk;p

o
∪

[
i2f1;[

i2f1;/;NAg

n
ðA; i; pÞdk2 f1;/;NBg : fAi;p

¼ fBk;p
∧fAi;t

s fBk

[
i2f1;/;NAg

n
ðA; i; pÞdk2 f1;/;NBg : fAi;p

¼ fBk;p
∧fAi;t

¼ fBk

[
i2f1;/;NAg

n
ðA; i; pÞdk2 f1;/;NBg : fAi;p

¼ fBk;p
∧fAi;t

s fB

5

where p, t, and h, are path, the modification timestamp, and the
hash value, respectively.

The first part of (3) lists the created files and folders during
software execution. The second part lists the paths of deleted files
and folders during software execution. The next parts list the
modified files during software execution. In particular, the third
part lists files whose content has changed. The fourth part lists files
whose content has changed, but the modification timestamp has
not changed. For example, an anti-forensic technique to hide event
traces does not change the modification timestamps of some files.
Also, software errors or failure to save modified files when copying
the disk can be the reason for this type of modification. Finally, the
fifth part lists files whose modification timestamp has changed, but
their content has not changed. For example, undoing the changes in
a text file may cause this modification.

While the differential function in (3) lists the created, deleted,
and modified files and folders, we build software signatures using
only the created files and folders. Therefore, we use a simplified
version of the differential function, as defined in (4).

SimDAðFA; FBÞ¼
[

i2f1;/;NAg

n
ði; pÞ:dk2 f1;/;NBg : fAi;p

¼ fBk;p

o
:

(4)

The differential analysis function as a result of executing the
software SW is defined in (5).
/;NBg

n
ðB; i; pÞ:dk2 f1;/;NAg : fBi;p

¼ fAk;p

o
∪

;t
∧fAi;h

s fBk;h

o
∪

;t
∧fAi;h

s fBk;h

o
∪

k;t
∧fAi;h

¼ fBk;h

o
; (3)



SimDA
�
FPreðSWÞ; FPostðSWÞ

�
¼

[
i2f1;/;NPostðSWÞg

n
ði; pÞ:dk2

n
1;/;NPreðSWÞ

o
: fPostðSWÞi;p ¼ fPreðSWÞk;p

o
; (5)
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where preðSWÞ is the disk copy taken immediately before SW
execution and postðSWÞ is the disk copy taken immediately after
SW execution. The simplified differential analysis function in (5)
gives ordered pairs representing the files and folders created dur-
ing the software execution. The Difference-Set of software execu-
tion is composed of the second element of these ordered pairs, as
represented by (6).

DiffSetðSWÞ¼
n
pði; pÞ2 SimDA

�
FPreðSWÞ; FPostðSWÞ

�o
: (6)

We should note that the Difference-Set in (6) is used when the
whole file path is considered an n-gram. As we explained, different
parts of the file path can be considered n-grams. If p consists of Q
components, then p can be represented in two ways. A represen-
tation in which the order of the constituent components does not
matter:

p¼fwi1� i�Qg¼�
w1;w2;/;wQ

�
; (7)

where wi is the i th component of p.
A form in which the order of the components is important:

p¼w1
�
w2

�
/

�
wQ�1

�
wQ : (8)

When n-grams are the whole file paths (B1 models), the
Difference-Set is defined as (9).

DiffSetðSWAllÞ¼DiffSetðSWÞ: (9)

When n-grams are all components of file paths (B2 models), the
Difference-Set is defined as (10).

DiffSet
�
SWUnigram

�¼�
wiwi 2p¼ �

w1;w2;/;wQ
�
;

p2DiffSetðSWÞ�: (10)

When n-grams are the last components of file paths (B3models),
the Difference-Set is defined in (11).

eqalignDiffSetðSWLastÞ¼
�
wQwQ 2p;p¼w1

�
w2

�
/

�
wQ�1

�
wQ ;

p2DSðSWÞ�: (11)

When n-grams are the two last components of file paths (B4
models), the Difference-Set is defined in (12).

DiffSetðSWTwo LastÞ¼
�
wQ�1

�
wQwQ�1;wQ 2 p; p¼w1

�
w2

�
/

�
wQ�1

�
wQ ;p2DSðSWÞ�: (12)

Running software with different scenarios leads to different
Difference-Sets. To build the software signature, we need to
combine these Difference-Sets, for which we can use union or
intersection combination. If we consider k scenarios, S1;S2;/;Sk, for
software SW , then we need to combine k Difference-Sets. The
software signature for models with intersection composition and
the whole file path as n-grams (A1B1 models) is defined in (13).

SigIntðSWAllÞ¼
\

i2f1;/;kg
DiffSet

�
SWSiAll

�
: (13)

Generally, the software signature for A1 models is defined in
6

(14).

SigInt
�
SWngram

�¼ \
i2f1;/;kg

DiffSet
�
SWSingram

�
;ngram2fAll;

Unigram; Last; Two Lastg : (14)

Also, the software signature for A2 models is defined in (15).

SigUni
�
SWngram

�¼ [
i2f1;/;kg

DiffSet
�
SWSingram

�
;ngram2fAll;

Unigram; Last; Two Lastg: (15)
3.2. Software signature detection

Using the software signatures made in the previous phase, we
can discover the software that was running on the target system. To
do this, wemust first extract the list of files and folders of the target
system's disk copy (the query). We do not use exact matching,
which tries to find the entire signature in the target system. The
reason behind this is that it is almost impossible to find an exact
signature for a piece of software. Different execution scenarios,
software updates, and different software versions may change parts
of the software signature.

Instead, we try to find the similarity between the query and
various software signatures. We define a threshold for each soft-
ware. If the similarity of a query with each software's signature is
greater than the software's threshold, we conclude the presence of
the software on the target system.

To determine the threshold of a piece of software, we install and
run it on a base operating system (a newly installed oswith no other
software). To determine the threshold, unlikemaking the signature,
we do not compare the disk copies before and after running the
software. Instead, we take a copy of the disk only after running the
software. The reason behind this decision is that in the detection
phase, wedo not have access to a copy of the disk before running the
software; we are facing a compromised system fromwhich we can
take a copy and identifywhat software has run on it. Nowweextract
the list offiles and folders from this copy, calculate its similaritywith
the considered SSDE model and determine this similarity as the
software threshold for that SSDE model. We should note that we
have a separate threshold for each software per SSDE model.

In thiswork, todetermine the threshold of a piece of software,we
have only run the software with one scenario. A separate research
study is needed to determine the appropriate scenario (scenarios) of
software execution to set the threshold of a piece of software.

Fig. 4 shows how the software signature detection subsystem
determines the presence or absence of a software package on the
target system.

To calculate the similarity of a querywithdifferent signatures,we
first need to convert them into numerical vectors. There are several
ways to create numeric representations for text documents (here,
software signatures). One of these methods is the bag-of-words
model (Liu, 2013). This model first builds a dictionary of all the
words in the set of signatures. Then, for each signature and each
word in the dictionary, it is determinedwhether theword is present



Fig. 4. Examining presence or absence of a software package.
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in the signature or not. If the number of signatures is N and the
number of terms (words) is T , then a T-dimensional vector space
model is formed. The i th component of the signature vector S in this
T-dimensional space is equal to one if the i thword of the dictionary
is present in S; otherwise, this component is equal to zero.

Another way to display the signature vector is to consider the
frequency of the words in the signature. Similar to the bag-of-
words model, a T-dimensional vector space model is formed. The
i th component of the signature vector S in this T-dimensional
space is equal to the frequency of the i th word of the dictionary in S.

Another method, known as the term frequency-inverse docu-
ment frequency (TF-IDF), considers both the frequency of a word
and the inverse of the frequency of a word in the entire set of
documents (Rajaraman and Ullman, 2011). In many cases, the TF-
IDF method works better than the simple bag-of-words model or
TF-only method because it considers the importance of a word
within a document and within a set of documents (Ordonez et al.,
2011; Akuma et al., 2022).

Some other vector representation methods don't consider the
frequency of words but the context and meaning of words. These
vectors are called word embeddings, and if a neural network model
is used to construct these vectors, they are also called neural em-
beddings (Lashkari et al., 2019; Mikolov et al., 2013). While word
embedding methods maintain semantic and syntactic relationships
between words, they are slower than frequency-based models.

In this paper, we will use the TF-IDF weighing scheme to
construct the software signature vectors. Later in Section 4.3, we
will compare the performance of the TF-IDF models with some
word embedding ones (Soltani et al., 2021).

We represent the collection of our signatures by a TF-IDF matrix
with one row per software signature and one column per word in
the corpus. Using the same TF-IDF matrix built for the collection of
signatures, the query is tokenized. For a collection of N software
signatures and T distinct words, the TF-IDF matrix is N� T . Each of
the elements of this matrix represents the weight of a word in a
signature. The TF-IDF for a term t in a software signature S is
computed as:

TF IDFðt; SÞ ¼ TFðt; SÞ � IDFðtÞ: (16)

There are various ways of determining the TF factor. The
simplest form of TF is defined in (17).

TFðt; SÞ ¼ f ðt; SÞ; (17)

where f ðt; SÞ shows the frequency (count) of t in S. Another formula
for TF is a logarithmic one (Aizawa, 2003) as defined in (18).

TFðt; SÞ ¼ 1þ logðf ðt; SÞÞ: (18)

The IDF factor also has various possibilities (Aizawa, 2003), one
of which is given by (19).

IDFðtÞ ¼ log
	

N
cf ðtÞ



þ 1; (19)

whereN is the number of signatures in the collection, and cf ðtÞ is the
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number of signatures in the corpus that contain the term t. Another
variation of the IDF formula, called smooth IDF, adds the constant 1
to the numerator and denominator of the IDF as defined in (20).

IDFðtÞ ¼ log
	

N þ 1
cf ðtÞ þ 1



þ 1: (20)

Therefore, each signature in the collection is represented by a
vector inT-dimensional space. Similarly, thequeryq is representedby
a vector in this vector space. We can use a similarity measure to
calculate the resemblance of the query q with signature S. The most
straightforward similarity measure is the dot product of the two
vectors, which cares about both angle andmagnitude of two vectors:

simðS; qÞ ¼ S
!
: q!¼

XT
i¼1

Siqi: (21)

Another similarity measure is the cosine similarity which cares
about the angle between two vectors:

cos simðS; qÞ ¼ S
!
: q!��� S

!����� q!�� ¼

PT
i¼1

SiqiffiffiffiffiffiffiffiffiffiffiffiffiPT
i¼1

S2i

s ffiffiffiffiffiffiffiffiffiffiffiffiPT
i¼1

q2i

s : (22)

To determine whether the software has run on the system, we
should set a threshold for each software. If the similarity score of a
software signature with a query (system under inspection) is
higher than the threshold, we interpret that the software has run
on the system.

3.3. Various models for SSDEs

Different design parameters are involved in building an SSDE.
These parameters affect the software signature, the TF-IDF matrix,
the similarity measure, and the final decision of whether an
application has run on the system. The parameters include the
following: 1) Composition of Difference-Sets, 2) n-gram types, 3)
stop list, 4) TF-IDF formula type, 5) TF formula, 6) IDF formula, 7)
Similarity measure, and 8) Threshold values. Table 2 shows these
parameters and their different values.

Different values of these parameters lead to different models of
SSDEs. The total number of SSDE models is equal to 2� 4� 2� 2�
2� 2� 2� 3 ¼ 768. To name each SSDE model, an eight-character
string is used, with each position in the string assigned to a
parameter. For example, the string A2B3C1D2E1F2G2H3 represents
an SSDE model in which we have 1) union composition for
combining Difference-Sets, 2) the last components of the file paths
as terms, 3) no stop list, 4) the standard TF-IDF formula, 5) the
simple TF formula, 6) the smooth IDF formula, 7) the cosine simi-
larity measure, and 8) the small threshold. We should note that out
of 768 SSDE models, 192 are duplicates, as models that use only TF
(D1models) do not care about the IDF formula type (F1 or F2). So, we
have 576 distinct SSDE models.

The first three parameters affect the construction of software
signatures, which are explained in 3.1.1. Actually, we can create 2�



Table 2
The design parameters of the SSDE.

Parameter Tag Value Description

A Difference-Set composition A1 Intersection The Difference-Sets are combined using the intersection of their elements.
A2 Union The Difference-Sets are combined using the union of their elements.

B n-gram type B1 All The full file path is used as a term.
B2 Unigram The file path is broken into its components, and each component will be a term.
B3 Last The last component of the file path is considered as a term.
B4 Two Last The last two components of the file path constitute a term.

C Stop list C1 No Stop List There is no stop list for common terms.
C2 Stop List The stop list for common terms includes the file paths in the disk copy of the base OS.

D TF-IDF formula type D1 TF-only The weight matrix is computed using only term frequency.
D2 TF-IDF The weight matrix is computed using the standard formula, as stated in Equation (16).

E TF formula E1 Simple The TF is computed using Equation (17).
E2 Logarithmic The TF is computed using Equation (18).

F IDF formula F1 Logarithmic The IDF is computed using Equation (19).
F2 Smooth The IDF is computed using Equation (20).

G Similarity measure G1 Simple The similarity presented in Equation (21) is used.
G2 Cosine The similarity presented in Equation (22) is used.

H Threshold value H1 Big The similarity obtained from installing and running the software on the base OS.
H2 Medium 1/2 Big threshold
H3 Small 1/4 Big threshold
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4� 2 ¼ 16 different signatures for each software. The signatures for
software SW in A1 models consist of the intersection of Difference-
Sets of several runs of SW . The signatures of SW in A2 models
include the union of Difference-Sets of different runs of SW . The
signatures of SW in B1 models contain the full file paths in the
intersection or union of Difference-sets as n-grams. Similarly, the
signatures of SW in B2, B3, and B4models include respectively every,
the last, and the two-last components of the file paths in the
intersection or union of Difference-Sets as n-grams. The signatures
of SW in C1 models do not pay attention to the stop list. Software
signatures in C2 models consider the stop list and remove the n-
grams in the stop list from the software signature.

The fourth to seventh parameters are described in the previous
Table 3
The description of our experiments.

Software Scenario Scenario Description

Adobe Reader 11 S1,1 We opened Adobe Reader by clicking on its icon on the d
S1,2 We opened Adobe Reader by clicking on its icon in the St
S1,3 We opened file2.pdf by double-clicking it, then we made c
S1,4 We opened file1.pdf by double-clicking it, then we made c

Firefox 67 S2,1 We opened Firefox by clicking on its icon on the desktop,
S2,2 We opened Firefox by clicking on its icon in the Start menu

in a new tab, and finally, we closed it.
S2,3 We clicked on the Firefox icon on the desktop, then we v

which was a pdf file, and finally closed it.
S2,4 We clicked on the Firefox icon in the Start menu, opened

closed it.
Python 2.7 S3,1 We selected Run, typed python, opened python.exe, typed

S3,2 We clicked Start menu, All Programs, Python 2.7.17, and I
Word 2013 S4,1 We clicked on the Word icon on the desktop, created a ne

S4,2 We clicked on the Word icon in the Start menu, opened d
S4,3 We double-clicked on the doc2.docx file to open it, then w
S4,4 We right-clicked on the desktop and selected New Microso

opened it. We typed a text and saved it, and finally, we cl
7-Zip 19.0 S5,1 We opened 7-Zip by clicking on its icon in the Start menu

S5,2 We opened 7-Zip by clicking on its icon in the Start menu,
new file, and finally, we closed it.

Cygnus Hex
Editor 1.0

S6,1 We clicked on the Cygnus Hex Editor icon on the desktop
application.

S6,2 We opened the Cygnus Hex Editor by clicking on its icon
representation. Then, we saved the changes and finally cl

Invisible Secrets
4.6.2

S7,1 We clicked on the Invisible Secrets icon in the Start menu a
named the new file as hidden_data1. Finally, we closed th

S7,2 We clicked on the Invisible Secrets icon in the Start menu
data2.txt.isc. Finally, we closed the application.

S7,3 We clicked on the Invisible Secrets icon in the Start menu
data1.txt.isc. Next, we selected the "Decrypt Files" option
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section. The D1 models use only the TF factor to build vectors of
software signatures. The D2 models use both TF and IDF factors for
building signature vectors. The E1 models use the TF formula in
(17), and the E2 models use the TF formula in (18). The F1 models
use the IDF formula in (19), and the F2 models use the IDF formula
in (20). The G1 models use the simple similarity measure in (21),
and the G2 models use the cosine similarity measure in (22).

The eighth parameter determines the threshold value for
different signatures. After creating an SSDE model, we set the
threshold for each software. In other words, the threshold of a piece
of software is calculated after making the software signatures,
constructing the TF-IDF matrix, and determining the type of simi-
larity measure for an SSDE model. To define the threshold for
esktop, then we opened file1.pdf, and finally, we closed it.
art menu, then we opened file1.pdf, and finally, we closed the application.
hanges to it, saved it, and finally closed it.
hanges to it, saved it to another file, and finally closed it.
then we visited yahoo.com, and finally, we closed it.
, thenwe visited google.com, we searched for Olympic, we openedwww.olympic.org

isited gmail.com, logged in, opened an email, downloaded the email attachment,

the en.um.ac.ir, and then reviewed several successive links on this site and finally

the command print "hello world", and finally closed it.
DLE. Then we ran several commands in IDLE and finally closed it.
w document, saved it as doc1.docx on the desktop, and finally closed it.
oc2.docx, made changes to it, saved it, and finally closed the application.
e made changes to it, saved the changes to the doc3.docx file, and closed it.
ft Word Document, and named it doc1.docx. Then we double-clicked on doc1 and
osed it.
, then we compressed music1.mp3, and finally, we closed it.
then we compressed pic1.jpg. Next, we decompressed the pic1.7z and write it to a

, then we opened pic2.jpg and viewed its hex values. Finally, we closed the

in the Start menu, then we opened pic3.jpg and made some changes in its hex
osed the application.
nd selected the "Hide Files" option. Then, we hid data1.txt in the pic.png carrier and
e application.
and selected the "Encrypt Files" option. Then, we encrypted data2.txt into

and selected the "Encrypt Files" option. Then, we encrypted data1.txt into
and decrypted the newly encrypted file. Finally, we closed the application.

http://www.olympic.org


Table 4
Ground truth of applications that have run on 14 M57 machines.

Applications Nov. 16 Nov. 17 Nov. 18 Nov. 19 Nov. 20 Nov. 23 Nov. 24

Pat’s computer Adobe Reader e e e e þ þ þ
Firefox þ þ e þ þ þ þ
Python e þ e þ þ e þ
7-Zip e e e e e e e

Cygnus e e e e e e e

Invisible Secrets e e e e e e e

Charlie’s computer Adobe Reader e e e e e e e

Firefox þ þ þ e þ þ þ
Python e þ þ þ þ þ þ
7-Zip e e e e e e þ
Cygnus e e e e e e þ
Invisible Secrets e e e þ e e þ
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software SW , we install and then run the SW on a base OS. We then
query this machine against the SSDE and set the corresponding
similarity value as the threshold. Therefore, each SSDE model has a
separate threshold for each software. The three values in Table 2 for
the threshold parameter are Big (H1), Medium (H2), and Small (H3).
The Big value for this parameter is the value calculated according to
the above description. The H2 value is half of the H1, and the H3

value is one-quarter of the H1.

4. Experiments

Our experiments build the signatures for seven software, i.e.,
Adobe Reader, Firefox, Python, Word, 7-Zip, Cygnus Hex Editor, and
Invisible Secrets on Windows 7 32-bit, with several different sce-
narios. The description of different running scenarios of these ap-
plications is given in Table 3.

As Table 3 shows, we have run Adobe Reader 11 four times with
four different scenarios. Other pieces of software, including Firefox
67, Python 2.7, Word 2013, 7-Zip 19.0, Cygnus Hex Editor 1.0, and
Invisible Secrets 4.6.2, have been runwith four, two, four, two, two,
and three different scenarios, respectively.

As explained in section 3.1.1, for each SSDE model, we create a
software signature based on the corresponding parameter values.
For example, in our experiments, we construct the signature of
Adobe Reader 11 in an A1B1C1 model as follows: we calculate the
intersection of Difference-Sets obtained from four executions of
Adobe Reader 11 (listed in Table 3). We consider all file paths in the
resulting set as n-grams and do not consider a stop list.

As another example, we construct the signature of Adobe Reader
11 in an A2B1C2 model as follows: we obtain the union of
Difference-Sets obtained from four executions of Adobe Reader 11.
We consider all the file paths in the resulting set as n-grams, and
this time we select a stop list equal to all the file paths in the disk
copy of the base operating system. If one of the file paths in the
union of Difference-Sets is in the stop list, we remove it from the
software signature.

As a final example, we construct the signature of Adobe Reader
11 in an A2B3C2 model as follows: We calculate the union of
Difference-Sets obtained from four executions of Adobe Reader 11.
From the file paths in the resulting set, we consider the last com-
ponents of the paths as n-grams. Here the stop list is equal to the
last components of the file paths in the disk copy of the base OS.

To evaluate the SSDE models and determine the best ones, we
examine them against M57 Patents machines. Six of the software
packages listed in Tables 3 and i.e., Adobe Reader, Firefox, Python, 7-
Zip, Cygnus, and Invisible Secrets, have run on M57 machines. In
our experiments, we evaluate each SSDE model against disk images
of Pat and Charlie computers over seven working days. Therefore,
we have 14 test machines (queries). Table 4 shows the ground truth
about the application execution on these machines found in
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(Nelson, 2016; Roussev and Quates, 2012; Corpora, 2009). The 14
machines listed in Table 4 make up our 14 queries.

We examine the 14 queries mentioned above on each SSDE
model. For each SSDE model, we calculate the true-positive, true-
negative, false-positive, and false-negative values for all queries.
We have:

� True-Positive is the number of applications that the SSDE model
correctly detects run on the controlled system.

� True-Negative is the number of applications that the SSDE
model correctly detects not run on the controlled system.

� False-Positive is the number of applications that the SSDEmodel
falsely detects run on the controlled system.

� False-Negative is the number of applications that the SSDE
model falsely detects not run on the controlled system.

As said before, we have a threshold value for each software in
each SSDE model. If a software package is executed on a test ma-
chine, the similarity of the query with the software signature
should be greater than or equal to the corresponding threshold.
Otherwise, if the software is not executed on the test machine, the
similarity should be less than the corresponding threshold. This
way, we can calculate true-positive, true-negative, false-positive,
and false-negative. Algorithm 1 describes how to calculate these
values.

Algorithm 1. Calculate evaluation metrics for an SSDE model

Algorithm 1

signatures  
machines   
TP FP TN FN
for c machines do 

softs  c 
for i signatures do 

if i softs then 
if similarity i > threshold i then 

TP TP 
else 

FN FN 
end if 

else 
if similarity i > threshold i then 

FP FP 
else 

TN TN 
end if 

end if 
end for 

end for 
Precision TP / TP FP 
Recall TP / TP FN 



Fig. 6. Distribution of Precision and Recall of SSDE models.
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As Algorithm 1 shows, TP, FP, TN, and FN are calculated cumu-
latively. The initial value of these four parameters is zero. Then, in
two nested loops, the following checks are performed for all 14
machines (mentioned in Table 4) and for the signatures of 7 pieces
of software (in Table 3):

If software i is executed inmachine c according toTable 4, then if
the similarity of machine c (query c) with the signature of software i
is greater than or equal to the threshold of software i, TP is
increased by one; otherwise, if the similarity is less than the
threshold, FN is increased by one. Otherwise, if software i is not
executed in machine c according to Table 4, then if the similarity of
query c with the signature of software i is greater than or equal to
the threshold of software i, one unit is added to FP; otherwise, if the
similarity is less than the threshold, TN is added by one.

For example, in Table 4, we see that 7-Zip was run on Charlie's
computer on November 24th. If the similarity of this machine with
the 7-Zip signature is greater than or equal to the 7-Zip threshold,
one unit is added to TP, and otherwise, one unit is added to FN. On
the other hand, 7-Zip was not run on Charlie's computer on
November 20th. If the similarity of this machine with the 7-Zip
signature is greater than or equal to the 7-Zip threshold, FP is
added by one, and otherwise, TN is added by one.
4.1. Experimental results

The evaluation of SSDE models can start with visualizing Pre-
cision and Recall. Fig. 5 draws a point in the Precision-Recall space
for each SSDE model against 14 test machines. Because some SSDE
models have the same Precision and Recall, some points represent
more than one model. The darker blue circles represent more
models. This inspection shows that some SSDE models have
reached perfect Recall (1), and a few of them have reached perfect
Precision, but no model has reached both. In fact, all models with
perfect Recall have a Precision of less than 0.4, and all models with
perfect Precision have a Recall of less than 0.1. Also, we see that
most high Recall models have low Precision and most high Preci-
sion models have low Recall.

We divide the range [0, 1] into ten bins and determine the
number of models with Precision or Recall belonging to each bin.
Histograms of Fig. 6 show how many SSDE models fit within each
bin. As we can see, while about 100models have perfect Recall, only
Fig. 5. Scatter plot of Precision-Recall scores of SSDE models against 14 M57 machines.
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about 25 models have perfect Precision. However, if we consider
the Recall and Precision greater than 0.8 to be appropriate, more
than 240 models have the appropriate Precision, and also more
than 130 models have good Recall.

Now we want to measure the effects of different parameter
values on the performance of SSDEmodels. To see which parameter
values lead to the topmodels, we can look at the bar charts of Fig. 7.
The left diagram of this figure shows the percentage of SSDEmodels
that have perfect Precision for different values of design parame-
ters. The right diagram of Fig. 7 shows the percentage of SSDE
models with perfect Recall for different values of design
parameters.

As Fig. 7 shows, while the union or intersection of Difference-
Sets has the same effect in models with perfect Precision, the
union of sets has performed a little better than their intersection in
models with perfect Recall. Regarding the second parameter (n-
gram type), we see that only B1 models have perfect Precision. On
the other hand, only B2 and B3 models (with the majority of B2
models) have perfect Recall. Regarding the third parameter, the
presence or absence of the stop list has the same effect on the
models with perfect Precision. However, not specifying the stop list
has performed better in the models with perfect Recall.

Including or not including the IDF formula did not make a dif-
ference in models with perfect Precision, but not including the IDF
formula performed better in models with perfect Recall. Regarding
the fifth parameter, the logarithmic TF formula works better than
the simple formula in models with perfect Precision, and it is the
opposite in models with perfect Recall. Moreover, while there is no
difference between the two IDF formulas in models with perfect
Precision, the smooth IDF formula has performed better in models
with perfect Recall.

In both perfect Precision and perfect Recall models, cosine
similarity works better. In particular, all models with perfect Pre-
cision have used cosine similarity. In themodels with perfect Recall,
the small threshold is better than the medium, and the medium is
better than the Big one. The threshold values in the models with
perfect Precision have worked in reverse.

As Fig. 7 shows, many of the parameter values have a value of 0,
especially in models with perfect Precision. This is because only a
few models have perfect Precision. Moreover, as Fig. 5 shows, none
of the models have a Precision greater than 0.9 and less than one.
Therefore, we considered the models with Precision or Recall above
0.8 as appropriate models, and we examined the effect of the
parameter values on these models. Fig. 8 shows the percentage of
SSDE models with a Precision (left diagram) or Recall (right



Fig. 7. Effects of different parameter values on SSDE models with perfect Precision or Recall.
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diagram) greater than or equal to 0.8 for different values of design
parameters.

As we can see in Fig. 8, the percentage of high Recall models
with union composition (A2) is more than the intersection
composition (A1). That is, union composition leads to more models
with a Recall greater than 0.8. However, union and intersection
composition work almost identically in the number of high Preci-
sion models. Regarding the second parameter, we see that B1
models have the highest percentage among the high Precision
models. Then there are B4, B3, and B2 models, respectively. This is
not true in high Recall models. B1 models have a small share of high
Recall models, and B2 models have the largest share of high Recall
models.

In the third parameter, we see that the existence of a stop list
leads to more high Precision models, which is the opposite in
models with high Recall. TF-IDFmodels have a higher percentage of
high Precision SSDE models than TF-only models. Conversely, in
high Recall models, TF-only models have a more prominent pres-
ence than TF-IDF models.

Different values of the fifth and sixth design parameters also act
differently in terms of Precision and Recall. We see that the loga-
rithmic TF formula performs better in terms of Precision and the
simple TF acts better in terms of Recall. Also, the logarithmic IDF
performs better in terms of Precision, and the smooth IDF works
better in terms of Recall. We also see that the cosine similarity in
both diagrams works better than the simple similarity. Regarding
the threshold value, we observe that larger threshold values
perform better in terms of Precision, and smaller threshold values
work better in terms of Recall.

Finally, by comparing the diagrams of Figs. 7 and 8, we see that
Fig. 8. Effects of different parameter values on appropr
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the effect of parameter values in models with Recall � 0.8 is very
similar to models with perfect Recall. It is roughly true for models
with Precision � 0.8 and models with perfect Precision.

4.2. Experiments based on the lasting effect of software execution

Since the effects of running a software package on a hard disk
usually last for a while (Soltani et al., 2019; Grier, 2011), in our new
experiments, we assume that if a software package is run on the
system in one day, its effects on the system in the following days are
visible. There is a limit to the stability of the effect of a software
package, and we have considered two days here.

Table 5 is based on Table 4, considering this two-day period. The
red asterisk signs in this table indicate these effects. For example, as
Table 4 shows, Firefox has run on Pat's computer on November 17th
but not on November 18th. Considering the two-days effect of the
software's execution, in Table 5, Firefox is also considered executed
on November 18. Since Firefox was executed on November 19th (as
mentioned in Table 4), there is no need to change the table entry for
this day. As another example, in Table 4, we see that Invisible Se-
crets was run on Charlie's computer on November 19 but not on
November 20 and 23. In Table 5, we have marked November 20 and
23 for Invisible Secrets, considering the two-days effect of software
execution.

The experiments in this phase are performed on 14 test ma-
chines based on the ground truth in Table 5. The difference between
the experiments in this phase and the previous phase is in the
number of days that a piece of software is considered executed. This
difference affects the calculation of TP, FP, TN, and FN values in
Algorithm 1. For example, in the previous experiments, Firefox was
iate SSDE models in terms of Precision and Recall.



Fig. 9. Scatter plot of Precision-Recall scores of SSDE models against 14 M57 machines
(ground truth in Table 5).

Fig. 10. Distribution of Precision and Recall of SSDE models in Experiments1 and
Experiments2.
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considered not executed on November 18. Therefore, according to
Algorithm 1, if the similarity of the query belonging to this day with
the Firefox signature is greater than or equal to the Firefox
threshold, FP is added by one; otherwise, if the similarity is less
than the threshold, TN is added by one. In the experiments of this
phase, Firefox is considered executed on November 18. Therefore, if
the similarity of this day's query with the Firefox signature is
greater than or equal to the Firefox threshold, TP is added by one;
otherwise, if the similarity is less than the threshold, FN is
increased by one.

Fig. 9 shows the Precision and Recall values of different SSDE
models against 14 test machines based on the ground truth pre-
sented in Table 5.

To compare the performance of SSDE models in our two ex-
periments, we can look at the histograms in Fig. 10. In this figure,
Experiments1 are the experiments of the previous section (with
ground truth in Table 4), and Experiments2 are the experiments of
this section (with ground truth in Table 5). We see that the SSDE
models achieve better Precision in Experiments2. However, there is
no significant improvement in the Recall rate of Experiments2
compared to Experiments1.

We see that in Experiments2, about 38% of the models achieve
near-perfect Precision, and about 18% of the models achieve near-
perfect Recall, and this is while the operating system version of
the M57 machines (Windows XP) is different from our experiment
machines (Windows 7). Besides, the software versions used in our
experiments are different from the software versions of the M57
machines.

In this set of experiments, we have also measured the effect of
parameter values on models with perfect Precision and models
with perfect Recall. Fig. 11 shows the influence of parameter values
on these models. By comparing Fig. 11 (Experiments2) and Fig. 7
(Experiments1), we conclude that the parameter values have a
relatively similar effect in both experiments. Besides, Fig. 12 shows
the influence of parameter values on models with Precision � 0.8
and models with Recall � 0.8 in Experiments2. Comparing Figs. 12
and 8, we see that parameter values have a similar influence in the
two experiments.

Tables I and II in Appendix 1 list the SSDE models with perfect
Precision and perfect Recall in Experiments2, respectively. To see
the share of each of the design parameter values in these superior
models, we can look at Fig. 13.

In models with perfect Recall, we have:

� The union composition performs better than the intersection
composition.

� B2 Models have the maximum presence.
� Not setting a stop list works better.
� The standard TF-IDF formula works a little better.
Table 5
Ground truth of applications that have run on 14 M57 machines, considering the lasting

Applications Nov. 16 Nov. 17

Pat’s machine Adobe Reader e e

Firefox þ þ
Python e þ
7-Zip e e

Cygnus e e

Invisible Secrets e e

Charlie’s machine Adobe Reader e e

Firefox þ þ
Python e þ
7-Zip e e

Cygnus e e

Invisible Secrets e e

12
� The simple TF formula acts better.
� The smooth IDF formula has a little more presence.
� The cosine similarity works better.
� The small threshold has the best performance.

In models with perfect Precision, we see that:
effect of software run.

Nov. 18 Nov. 19 Nov. 20 Nov. 23 Nov. 24

e e þ þ þ
* þ þ þ þ
* þ þ * þ
e e e e e

e e e e e

e e e e e

e e e e e

þ * þ þ þ
þ þ þ þ þ
e e e e þ
e e e e þ
e þ * * þ



Fig. 11. Effects of different parameter values on SSDE models with perfect Precision or Recall (Experiments2).

Fig. 12. Effects of different parameter values on appropriate SSDE models in terms of Precision and Recall (Experiments2).

Fig. 13. The share of different parameter values in models with perfect Precision and
perfect Recall.
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� The intersection composition acts better than the union
composition.

� The full file path is the only n-gram type.
� 50% of the models have a stop list, and 50% do not.
� The standard TF-IDF formula is more prominent.
� The logarithmic TF formula works better.
� The smooth IDF (F2 models) is twice as present as logarithmic
IDF (F1 models), but given that the total number of F2 models is
twice the number of F1 models, we do not differ much in terms
of the IDF formula.

� Cosine similarity works much better than simple similarity.
� Finally, larger threshold values perform better.

In short, the different values of the design parameters have
worked very differently in high Precision models and high Recall
models. To select the superior SSDE models, we must determine
whether to prioritize high Recall or high Precision. In investigating
a case, all pieces of evidencemust be collected. The lack of a piece of
evidence may affect the final decision of the court. Therefore, in
digital forensic investigation, Recall is more significant than Preci-
sion (Du and Scanlon, 2019; Mashhadani et al., 2019; Lillis and
Scanlon, 2016; Porter and Petrovic, 2018; Beebe and Liu, 2014).
Although wemay have to increase the false positive rate to increase
Recall, this is tolerable because any pertinent inculpatory or
exculpatory artifact cannot be ignored (Du and Scanlon, 2019).

Therefore, we introduce the models in Table II of the attachment
as top models. Finally, if we want to choose only one model among
these models as the final superior model, we will look at the ratios
13
in Table 6. Among the models in Table II of the attachment, we
choose A2models because the share of A2 in perfect Recall models is



Table 6
The average Precision and Recall of SSDE models and S3E models (Soltani et al., 2021).

Average Precision (ground
truth in Table 4)

Average Recall (ground
truth in Table 4)

Average Precision (ground
truth in Table 5)

Average Recall (ground
truth in Table 5)

Time Cost
(ms) ¼ train þ search time

SSDE models 0.607 0.566 0.693 0.555 6.9 þ 119.6 ¼ 126.5
S3E models (Soltani

et al., 2021)
0.25 0.646 0.307 0.667 1343.4 þ 927.1 ¼ 2270.5

Fig. 14. Precision-Recall scores of SSDE models and S3E models (Soltani et al., 2021)
against 14 M57 machines (ground truth in Table 4).

Fig. 15. Precision-Recall scores of SSDE models and S3E models (Soltani et al., 2021)
against 14 M57 machines (ground truth in Table 5).
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higher than A1. Among the A2models in this table, we choose the B2
models. Then, among the A2B2 models in this table, we choose the
C1models. If we continue, we end upwith A2B2C1D2E1F2G2H3 as the
final top model.

4.3. Performance comparison

In this section, we will compare this work with our previous
work. In (Soltani et al., 2021), to detect the presence of software, we
designed software signature search engines (S3Es). We used the
doc2vec paragraph vector method to construct the software
14
signature vector and presented 120 different S3E models. We
examine these S3E models against 14 M57 machines described in
Table 4. Fig. 14 shows the Precision-Recall values of 120 S3E models
and the Precision-Recall values of 576 SSDE models. As can be seen,
the Recall rate of S3Emodels, similar to SSDEmodels, is scattered in
the whole range (0,1). This means that we have some Recall values
between (0,0.2) (0.2,0.4) (0.4,0.6) (0.6,0.8), and (0.8,1) in both
models. However, the Recall dispersion is not the same between
these two models. However, the Precision rate of S3E models is
lower than SSDE models. We also run S3E models against 14 M57
machines that consider the lasting effect of software implementa-
tion (Table 5). Fig. 15 shows the Precision-Recall values of S3E
models and the Precision-Recall values of SSDE models against
these machines. We see similar results here.

Table 6 shows the average Precision and Recall of S3E and SSDE
models against the two test sets in Tables 4 and 5. As can be seen, in
both test sets, the S3E models have lower average Precision and a
slightly higher average Recall. Table 6 also shows the time
complexity of SSDE and S3E models, which includes the time
needed to train the software signatures and the time needed to
calculate the similarity of a query with software signatures. We see
that the train time and the average search time of S3E models are
much longer than frequency-based SSDE models.

5. Conclusion and future work

In this paper, for digital forensic triage purposes, we proposed a
software signature detection engine, which includes two sub-
systems: software signature construction and detection. To build
the software signature, we presented a differential analysis model
that calculates the difference between the file system information
before and after running the software in isolated conditions. We
considered eight design parameters with different values, which
resulted in 576 distinct SSDE models. We tested each of these SSDE
models against 14 pseudo-real machines from the M57 Patents
scenario. We introduced the top SSDE models based on Precision
and Recall, and we identified the values of the design parameters
that lead to these superior models.

As future work, we can consider other design parameters for the
software signature detection engine. For instance, to determine the
effect of the operating system version and the software version on
the software signature, we can specify two parameters: grouping/
non-grouping based on the software version and grouping/non-
grouping based on the OS version. In OS version grouping, the
software signature is the same on different operating systems.
However, in non-grouping, the software signatures are different on
different OS versions. Also, in software version grouping, a single
signature is considered for various versions of a software package.
While in non-grouping, each version of the software will have its
signature. Besides, in futurework, we should construct an extensive
database of software signatures. For each software package, we
should consider various versions on different operating systems.
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In this paper, we used the file path to build the software
signature. In the future, we can utilize other file system metadata
such as MACB timestamps, file size, and hash values. Besides, we
can consider other artifacts from disk copy, such as the Registry
keys, to enhance our software signature detection engines.

In this paper, we used the TF-IDF weighting scheme to plot each
software signature as a vector in a multidimensional space, and we
calculated the TF and IDF factors based on two formulas. Of course,
there are different methods in the literature for calculating these
two factors that we can examine in the future. Also, other similarity
criteria can be used to calculate the similarity between the two
signature and query vectors.
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Appendix 1
Table I
SSDE models with perfect Precision

Name Name Name

1 A1B1C1D1E1F2G1H1 2 A1B1C1D1E1F2G2H1 3 A1B1C1
6 A1B1C1D1E2F2G2H2 7 A1B1C1D1E2F2G2H3 8 A1B1C1
11 A1B1C1D2E1F2G1H1 12 A1B1C1D2E1F2G2H1 13 A1B1C1
16 A1B1C1D2E2F1G2H2 17 A1B1C1D2E2F1G2H3 18 A1B1C1
21 A1B1C1D2E2F2G2H3 22 A1B1C2D1E1F2G1H1 23 A1B1C2
26 A1B1C2D1E2F2G2H1 27 A1B1C2D1E2F2G2H2 28 A1B1C2
31 A1B1C2D2E1F1G2H2 32 A1B1C2D2E1F2G1H1 33 A1B1C2
36 A1B1C2D2E2F1G2H1 37 A1B1C2D2E2F1G2H2 38 A1B1C2
41 A1B1C2D2E2F2G2H2 42 A1B1C2D2E2F2G2H3 43 A2B1C1
46 A2B1C1D1E2F2G2H3 47 A2B1C1D2E2F1G1H1 48 A2B1C1
51 A2B1C1D2E2F2G1H1 52 A2B1C1D2E2F2G2H1 53 A2B1C1
56 A2B1C2D1E2F2G2H1 57 A2B1C2D1E2F2G2H2 58 A2B1C2
61 A2B1C2D2E2F1G2H2 62 A2B1C2D2E2F1G2H3 63 A2B1C2
66 A2B1C2D2E2F2G2H3

Table II
SSDE models with perfect Recall

Name Name Name

1 A1B2C1D1E1F2G1H2 2 A1B2C1D1E1F2G1H3 3 A1B2C1
6 A1B2C1D1E2F2G1H2 7 A1B2C1D1E2F2G1H3 8 A1B2C1
11 A1B2C1D2E1F1G1H3 12 A1B2C1D2E1F1G2H2 13 A1B2C1
16 A1B2C1D2E1F2G2H2 17 A1B2C1D2E1F2G2H3 18 A1B2C1
21 A1B2C1D2E2F2G2H3 22 A1B2C2D1E1F2G1H2 23 A1B2C2
26 A1B2C2D1E1F2G2H3 27 A1B2C2D1E2F2G1H2 28 A1B2C2
31 A1B2C2D2E1F1G1H3 32 A1B2C2D2E1F1G2H2 33 A1B2C2
36 A1B2C2D2E1F2G2H2 37 A1B2C2D2E1F2G2H3 38 A1B2C2
41 A2B2C1D1E1F2G1H2 42 A2B2C1D1E1F2G1H3 43 A2B2C1
46 A2B2C1D1E2F2G1H2 47 A2B2C1D1E2F2G1H3 48 A2B2C1
51 A2B2C1D2E1F1G1H3 52 A2B2C1D2E1F1G2H2 53 A2B2C1
56 A2B2C1D2E1F2G2H2 57 A2B2C1D2E1F2G2H3 58 A2B2C1
61 A2B2C1D2E2F2G2H3 62 A2B2C2D1E1F2G1H2 63 A2B2C2
66 A2B2C2D1E1F2G2H3 67 A2B2C2D1E2F2G1H2 68 A2B2C2
71 A2B2C2D2E1F1G1H3 72 A2B2C2D2E1F1G2H2 73 A2B2C2
76 A2B2C2D2E1F2G2H2 77 A2B2C2D2E1F2G2H3 78 A2B2C2
81 A2B3C1D1E1F2G1H3 82 A2B3C1D1E1F2G2H1 83 A2B3C1
86 A2B3C1D2E1F1G2H2 87 A2B3C1D2E1F1G2H3 88 A2B3C1
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D1E1F2G2H2 4 A1B1C1D1E2F2G1H1 5 A1B1C1D1E2F2G2H1
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D1E2F2G2H3 29 A1B1C2D2E1F1G1H1 30 A1B1C2D2E1F1G2H1

D2E1F2G2H1 34 A1B1C2D2E1F2G2H2 35 A1B1C2D2E2F1G1H1

D2E2F1G2H3 39 A1B1C2D2E2F2G1H1 40 A1B1C2D2E2F2G2H1

D1E2F2G1H1 44 A2B1C1D1E2F2G2H1 45 A2B1C1D1E2F2G2H2

D2E2F1G2H1 49 A2B1C1D2E2F1G2H2 50 A2B1C1D2E2F1G2H3

D2E2F2G2H2 54 A2B1C1D2E2F2G2H3 55 A2B1C2D1E2F2G1H1

D1E2F2G2H3 59 A2B1C2D2E2F1G1H1 60 A2B1C2D2E2F1G2H1

D2E2F2G1H1 64 A2B1C2D2E2F2G2H1 65 A2B1C2D2E2F2G2H2
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