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A random assignment is robust ex-post Pareto efficient whenever for any of its lottery
decomposition, each deterministic assignment in its support is Pareto efficient. We show
that ordinal efficiency implies robust ex-post Pareto efficiency while the reverse does not
hold. We know that strategy-proof and ordinal efficient mechanisms satisfy neither equal
treatment of equals nor equal division lower bound. We prove that it is not possible to
avoid these two impossibilities by weakening ordinal efficiency to robust ex-post Pareto
efficiency.

 2022 Published by Elsevier Inc.

1. Introduction

In an assignment problem, one allocates a finite set of indivisible objects, without monetary transfer, to a set of agents
who have reported their ordinal preferences over objects. An assignment is Pareto efficient if one could not make an agent
better off without making at least one other agent worse off. A random assignment is ex-post Pareto efficient whenever it
has a lottery decomposition where each deterministic assignment in its support is Pareto efficient. Bogomolnaia and Moulin
(2001), in their seminal paper, introduced ordinal efficiency, which is a stronger notion than ex-post Pareto efficiency.
Robust ex-post Pareto efficiency is an intermediate notion of efficiency weaker than ordinal efficiency but stronger than
ex-post Pareto efficiency (Aziz et al., 2015). An assignment is robust ex-post Pareto efficient whenever each deterministic
assignment in support of any of its ex-post decomposition is Pareto efficient.

We already know that ex-post Pareto efficiency is possible with strategy-proofness and equal treatment of equals, as the
well-known random priority mechanism of Zhou (1990) satisfies all these criteria. However, for more than four objects and
agents, no ordinally efficient and strategy-proof mechanism satisfies equal treatment of equals (Bogomolnaia and Moulin,
2001) or equal division lower bound (Nesterov, 2017). The question arises whether there exists another notion of efficiency
weaker than ordinal efficiency, which is possible with strategy-proofness and fairness. It is not clear in advance whether
robust ex-post efficiency is closer to ex-post efficiency or ordinal efficiency in the sense of compatibility with other axioms.

The main contribution of this paper is to strengthen the impossibility results of Bogomolnaia and Moulin (2001) and
Nesterov (2017) and show that they continue to hold if ordinal efficiency is replaced with robust ex-post Pareto efficiency.
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We show that a robust ex-post Pareto efficient random assignment might not be ordinal efficient and prove that there is no
strategy-proof mechanism that is robust ex-post Pareto efficient and satisfies fairness, namely, equal treatment of equals or
equal division lower bound.

The paper is organized as follows. In Section 2, we review the related literature. Section 3 recalls the standard model and
axioms of random assignments. In Section 4, we study robust ex-post Pareto efficiency. Section 5 proves some impossibility
results. Finally, Section 6 concludes, and omitted proofs are presented in the Appendix.

2. Related work

The compatibility of different axioms in random assignment mechanisms, namely efficiency, fairness, and strategy-
proofness, has been studied in market design literature. Strategy-proofness is incompatible with Pareto efficiency and equal

treatment of equals (Zhou, 1990). Moreover, no ex-post Pareto optimal and group-strategy-proof random matching mecha-
nism treats equals equally (Bade, 2016). Zhang (2019) proved that a mechanism that is ex-post Pareto efficient and fair
(in the sense of equal treatment of equals, equal total assignment,1 and uniform-head fairness2) is strongly group manipulable.
Zhang (2020) found that the results of Bade (2016) and Zhang (2019) still hold unless the domains are restricted to have a
particular tier structure.

For a model of fractional matching, Alva and Manjunath (2020) showed that strategy-proofness, ex-post Pareto efficiency,
and ex-ante individual rationality are incompatible when each agent’s utility is a linear function of both their fractional as-
signment and money. Moreover, non-wasteful strategy-proof mechanisms are not dominated by strategy-proof mechanisms
(Erdil, 2014). Martini (2016) proved that no strategy-proof assignment mechanism satisfies equal treatment of equals once
we weaken ordinal efficiency to non-wastefulness, a weaker notion of efficiency.

Budish et al. (2013) generalized the randomized assignment problem to multi-unit allocation problems with bihierarchy

constraints and developed new mechanisms that select ex-ante efficient and envy-free expected allocations through ran-
domization. Nevertheless, their expansion of the previous works can rule out many real-world applications. Akbarpour and
Nikzad (2020) generalized this approach to a much broader class of allocation problems and showed that by treating some
of the constraints as goals, one could accommodate many more constraints.

3. Model

Let A be a finite set of objects which should be assigned to a finite set of agents, N , with |A| = |N| = n. Each agent
i ∈ N has a complete, transitive, and anti-symmetric strict preference relation ≻i over A. We denote a preference profile
by ≻≡ (≻i)i∈N and the domain of those preferences by ̥. To simplify our notation, for each i ∈ N , we write ≻i : abcd

instead of a ≻i b ≻i c ≻i d. We represent a random assignment by a bistochastic matrix P = [pia]i∈N,a∈A , with agents on rows
and objects on columns, where pia is the probability of assigning object a to agent i. We denote the domain of random
assignments by R . A random allocation for some agent i ∈ N , P i , is a probabilistic distribution over all objects in A where
the sum of probabilities of assigning objects to the agent i equals to 1. A deterministic assignment, 5 = [pia]i∈N,a∈A , is
a particular case of random assignment where its entries are all either 0 or 1. The Birkhoff–von Neumann theorem states
that all random assignments can be decomposed as a probability distribution over deterministic assignments and so can be
implemented in practice.

Upon enumerating objects in A for agent i from best to worst according to ai,1 ≻i ai,2 ≻i ... ≻i ai,n , where ai,k is the kth

best object of agent i, we define uP
ir

=
∑r

k=1 piai,k to be the summation of probabilities of receiving the first r best objects
of agent i in the random assignment P . Given a preference ordering ≻i on A, the stochastic dominance relation is denoted
by ≻sd

i
, where P i ≻sd

i
Q i if and only if uP

ir
≥ u

Q
ir

for r = 1, ...,n. Given a preference profile ≻i , we say that the random

assignment P , is stochastically dominated by another random assignment Q 6= P , if Q i ≻sd
i

P i for two allocations of all
i ∈ N . A random assignment is ordinally efficient if it is not stochastically dominated.

A mechanism, given the preferences of all agents, provides us with a procedure to assign objects to agents. More
formally, amechanism µ(.) is a function from ̥

n into R , that associates each preference profile with some random assign-
ment. A mechanism is strategy-proof when no agent can beneficially misreport her preference. More formally, a mechanism
µ(.) is strategy-proof whenever for each profile ≻≡

(

≻ j

)

j∈N
, and for each i ∈ N , µi(≻i,≻−i

) ≻sd
i

µi(≻
′

i
,≻

−i
) for all ≻

′

i
6=≻i .

Equal treatment of equals requires that agents with the same preference should have the same allocation, i.e., for each
i, j ∈ N with ≻i=≻ j we have P i = P j . Another approach to define fairness is to compare the allocations of agents with the
equal share where each agent receives each object with equal probability, i.e., 1/n. If a random assignment P stochastically
dominates the random assignment with equal division, i.e., ∀i ∈ N , P i ≻

sd
i

1/n, then it satisfies equal division lower bound.

1 Equal total assignment requires that agents obtain equal total probability shares of objects.
2 Uniform-head fairness requires that if all agents have equal preferences over a subset of objects and prefer the objects in that subset to the remaining

objects, they obtain equal probability shares of the objects in that subset.
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4. Robust ex-post Pareto efficiency

Every ex-post Pareto efficient random assignment can be decomposed into a lottery over Pareto efficient deterministic
assignments. However, it is also possible that it has a decomposition with non-Pareto efficient deterministic assignment in
its support, as illustrated in Example 1.

Example 1. For the preference profile

≻1= adbc, ≻2= cbda, ≻3= cdba, and ≻4= abcd, (1)

the random assignment

P =







1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2

1/2 1/2 0 0







=
1

2

Pareto Efficient
︷ ︸︸ ︷






0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0







+
1

2

Pareto Efficient
︷ ︸︸ ︷






1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0







=
1

2

51: Non-Pareto Efficient
︷ ︸︸ ︷






0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0







+
1

2

Pareto Efficient
︷ ︸︸ ︷






1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0






,

is ex-post Pareto efficient but it has a decomposition that admits a non-Pareto efficient deterministic assignment in its
support.

An assignment is robust ex-post Pareto efficient whenever for all of its lottery decomposition, each deterministic assign-
ment in its support is Pareto efficient. More formally,

Definition 1. A random assignment P for a preference profile ≻, is robust ex-post Pareto efficient whenever for every
decomposition of P to deterministic assignments, i.e., P = λ151 + λ252 + ... + λk5k for some k, each 5 j with λ j 6= 0, is
Pareto efficient, where j = 1, ...,k.

The particular appeal of robust ex-post Pareto efficiency comes from a computational complexity argument: Given an
ex-post Pareto efficient assignment P , it is NP-hard to find a decomposition where all the deterministic assignments in
its support are Pareto efficient (Aziz et al., 2015). However, if we know that P is robust ex-post Pareto efficient, we could
arbitrarily decompose it in polynomial time and ensure that the decomposition is a lottery over Pareto efficient deterministic
assignments. Example 3 of Abdulkadiroğlu and Sönmez (2003) showed a (robust) ex-post Pareto efficient random assignment
that is not ordinally efficient.

To study the relationship between robust ex-post Pareto efficiency and ordinal efficiency in the general case, we need
to introduce some new concepts, namely ex-ante/ex-post feasible trading cycles for random assignments. A trading cycle is a
sequence of agent/object pairs, where each agent prefers the object of the next pair to her. For the very last pair, the next
pair is defined to be the very first one. More formally, let r = 〈(a1, i1), (a2, i2), ..., (am, im)〉 be a sequence of agent/object
pairs. Given a preference profile 〈≻i〉i∈N , we say r is a trading cycle whenever a(k+1 mod m) ≻ik ak , for all k = 1...m. We refer
to the set of all trading cycles by CL≻ .

The existence of a trading cycle in an assignment matters as it makes the assignment inefficient. However, given an
assignment, some potential trading cycles might not be feasible because they do not occur. Given a random assignment, de-
pending on whether the trading cycles happen ex-ante or ex-post, we could define ex-ante/ex-post feasible trading cycles:
we say that a trading cycle is ex-ante feasible whenever each agent/object pair in the cycle happens with a positive prob-
ability, and ex-post feasible whenever there exists a decomposition of the random assignment such that the cycle happens
in one of the deterministic assignments in its support.

Definition 2. Let P be a random assignment and r = 〈(a1, i1), (a2, i2), ..., (am, im)〉 be a trading cycle regarding a preference
profile ≻. We say that the trading cycle r is

• ex-ante P -feasible whenever pitat > 0, for all 1 ≤ t ≤m.
• ex-post P -feasible whenever there exists a decomposition of P to deterministic assignments, i.e., P = λ151 + λ252 +

... + λk5k for some k, such that for some 5 j with λ j 6= 0, the cycle r happens in 5 j , i.e.,
(

5 j

)

itat
= 1, for all 1 ≤ t ≤m.

Example 2 illustrates definition 2 for a given preference profile and a random assignment.

3



ARTICLE IN PRESS
JID:YGAME AID:3439 /FLA [m3G; v1.318] P.4 (1-12)

R. Ramezanian and M. Feizi Games and Economic Behavior ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Example 2. For the preference profile (1) and random assignment P (in Example 1), r1 = 〈(b,1), (d,2)〉 is an ex-post P -

feasible trading cycle as r1 happens in 51 . For the same preference profile, and random assignment

Q =







1/2 0 0 1/2
0 0 1/2 1/2
0 1/2 1/2 0

1/2 1/2 0 0







=
1

2

Pareto Efficient
︷ ︸︸ ︷






1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0







+
1

2

Pareto Efficient
︷ ︸︸ ︷






0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0






,

r2 = 〈(b,3), (d,2)〉 is ex-ante Q -feasible since q3b > 0 and q2d > 0. However, it is not ex-post Q -feasible, as r2 does not
happen in any of deterministic assignments in its support.

Lemma 3 of Bogomolnaia and Moulin (2001) stated that a random assignment, given a preference profile, is ordinally
efficient if and only if their defined binary relation based on the given preference profile is acyclic. We could read this
Lemma, in our context, as a random assignment P is ordinal efficient if and only if it has no ex-ante P -feasible cycle. Lemma 1
proves a similar statement for a robust ex-post Pareto efficient random assignment.

Lemma 1. A random assignment P is robust ex-post Pareto efficient if and only if it has no ex-post P -feasible cycle.

Proof. First, we show that if a random assignment P is robust ex-post Pareto efficient, then it has no ex-post P -feasible
cycle. Let ≻ be a preference profile and suppose that P is robust ex-post Pareto efficient. Suppose for some r ∈ CL≻ , the
cycle r is ex-post P -feasible. Then by Definition 2, there exists a decomposition of P to deterministic assignments, i.e.,
P = λ151 + λ252 + ... + λk5k for some k, such that for some 5 j with λ j 6= 0, we have for all 1 ≤ t ≤ m,

(

5 j

)

itat
= 1.

Note that 5 j is not Pareto efficient and thus λ151 + λ252 + ... + λk5k is a decomposition of P where there exists a
non-Pareto efficient deterministic assignment in its support. It contradicts with P is robust ex-post Pareto efficient. For the
converse, suppose that P is not robust ex-post Pareto efficient. Then, it has a convex decomposition with a non-Pareto
efficient deterministic assignment 5 which has a cycle, say r = 〈(a1, i1), (a2, i2), ..., (am, im)〉. Since 5 is in the support of
P , by Definition 2, r is an ex-post P -feasible cycle, a contradiction. 2

The Proposition 1 proves that any ordinal efficient random assignment is robust ex-post Pareto efficient but not neces-
sarily vice versa.

Proposition 1. Ordinal efficiency implies robust ex-post Pareto efficiency while the reverse does not hold.

Proof. It is straightforward to show that if a trading cycle is ex-post P -feasible, it is ex-ante P -feasible. Moreover, Bogo-

molnaia and Moulin (2001) implicitly stated that a random assignment P is ordinal efficient if and only if it has no ex-ante

P -feasible cycle. Therefore, by Lemma 1, it is easily seen that ordinal efficiency implies robust ex-post Pareto efficiency. The

other direction holds by the following simple counterexample that shows although the support of any decomposition of a

robust ex-post Pareto efficient random assignment has only Pareto efficient deterministic assignment, it could be ordinally

inefficient. For the preference profile (1), the random assignment Q , in example 2, has a unique decomposition into Pareto

efficient deterministic assignments, and hence it is robust ex-post Pareto efficient. But, Q is not ordinally efficient since it

is stochastically dominated by







1/2 0 0 1/2
0 1/2 1/2 0
0 0 1/2 1/2

1/2 1/2 0 0







. 2

There exists a hierarchy between different notions of efficiency. Fig. 1 illustrates the relationship between ordinal effi-
ciency (OE), robust ex-post Pareto efficiency (REPE), and ex-post Pareto efficiency (EPE).

5. Main results: impossibilities

In this Section, we prove that any strategy-proof mechanism that satisfies robust ex-post Pareto efficiency is not possible
to achieve with different notions of fairness, namely, equal treatment of equals or equal division lower bound. Proposition 2
shows the first impossibility when only four agents and objects exist. Then, Theorem 1 proves it for the general case.

To prove our impossibility results when there are only four agents and objects, we suppose by a contradictory argument
that a strategy-proof and fair mechanism satisfies robust ex-post Pareto efficiency. Since, Mennle and Seuken (2021) proved

4
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Fig. 1. Relationship between different notions of efficiency.

that a mechanism is strategy-proof if and only if it is swap monotonic,3 upper invariant,4 and lower invariant,5 our mechanism
should also satisfy these three properties. We first determine the mechanism’s output for a profile where all agents have
the same preference. Then, we change an agent’s preference marginally in any subsequent profiles until we get to a profile
for which the mechanism cannot output any bistochastic random assignment. This contradiction shows that it is impossible
to have such a mechanism in the first place.

Proposition 2. For n = 4, there is no mechanism satisfying robust ex-post Pareto efficiency, equal treatment of equals, and strategy-

proofness.

Proof. See the Appendix. 2

Now, we are equipped to prove our first impossibility result in the general case with at least four agents and objects.

Theorem 1. For n ≥ 4, there is no strategy-proof mechanism satisfying robust ex-post Pareto efficiency and equal treatment of equals.

Proof. Let N1 = {1,2,3,4}, N2 = {5,6, ...,n}, A1 = {a,b, c,d}, and A2 = {o5,o6, ...,on}. We extend each profile Q k (1 ≤ k ≤

14) in proof of Proposition 2 to Q k
′
in the way that

• for i ∈ N1 , the preference of i in profile Q k
′
over objects in A1 is the same as her preference in profile Q k,

• for i ∈ N1 , for all x ∈ A1 and all y ∈ A2 , we have x ≻′
i
y,

• for all i, j ∈ N1 , for all x, y ∈ A2 , x ≻′
i
y if and only if x ≻′

j
y,

• for i ∈ N2 , the first-best of i is oi , and
• for i ∈ N2 , for all x ∈ A2 and all y ∈ A1 , we have x ≻′

i y.

Because of robust ex-post Pareto efficiency, using Lemma 4 (in the Appendix), we have φioi (Q k
′
) = 1 for all i ∈ N2 .

Therefore, the same argument of Proposition 2 works for profiles Q k
′
(1 ≤ k ≤ 14) as well. 2

Martini (2016) proved that if agents have outside options, no mechanism is strategy-proof, non-wasteful, and satisfies
equal treatment of equals. However, if we allow the mechanism to be wasteful, the impossibility does not hold.6 The
impossibility result of Bogomolnaia and Moulin (2001) is a conclusion of our Theorem 1. Chun and Yun (2020) introduced a

3 For each pair ≻i , ≻
′

i
∈̥, ≻

′

i
is adjacent to ≻i if ≻

′

i
is attained from ≻i by swapping two sequentially ranked objects without changing the rank of any

other objects. A mechanism satisfies swap monotonicity if one agent alters her preference to another adjacent one, then either the agent gets the same
allocation, or she is more likely to receive the object with a higher rank in the revised preference. More formally, for each ≻i∈̥N , each i ∈ N , each ≻

′

i
∈ ̥,

and each a,b ∈ A, if ≻
′

i
is adjacent to ≻i i.e., a ≻i b, and b ≻

′

i
a, then either µi(≻

′

i ,≻−i) = µi(≻i ,≻−i) or µib(≻
′

i ,≻−i) > µib(≻i ,≻−i).
4 Let U (≻i ,a) = {b ∈ A|b ≻i a} be the (strict) upper contour set of a in ≻i . A mechanism satisfies upper invariance, introduced by Hashimoto et al.

(2014), if an agent replaces her preference with another adjacent one, the probabilities of getting any object in the strict upper-contour set of the two
swapping objects should not be changed. More formally, for ≻i∈ ̥N , each i ∈ N , each ≻

′

i
∈ ̥, and each a,b ∈ A, if ≻

′

i
is adjacent to ≻i i.e., a ≻i b, and

b ≻
′

i
a, then µic(≻

′

i ,≻−i) > µic(≻i ,≻−i) for each c ∈ U (≻i ,a).
5 Let L(≻i ,a) = {b ∈ A|a ≻i b} be the (strict) lower contour set of a in ≻i . A mechanism meets lower invariance if an agent switches her preference

to another adjacent one, the probabilities of receiving any object in the strict lower-contour set of the two swapping objects should not be altered. More
formally, for ≻i∈ ̥N , each i ∈ N , each ≻

′

i
∈ ̥, and each a,b ∈ A, if ≻

′

i
is adjacent to ≻i i.e., a ≻i b, and b ≻

′

i
a, then µic(≻

′

i ,≻−i) > µic(≻i ,≻−i) for each
c ∈ L(≻i ,b).
6 Given a preference profile with n agents and m objects (excluding the null object), the market designer gives each agent only 1

max{n,m}
of her first best

object. This mechanism is clearly strategy-proof since no agent could benefit by misreporting her preferences. It also satisfies equal treatment of equals as

5
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weakening of strategy-proofness, called upper-contour strategy-proofness, which showed to be equivalent to the combination
of upper invariance and lower invariance. They proved that the impossibility of Bogomolnaia and Moulin (2001) still holds
even with the introduced notion of strategy-proofness. As we also used only upper invariance and lower invariance in our
proof of Proposition 2, one could read Chun and Yun (2020) impossibility as a conclusion of our Theorem 1.

Proposition 3 shows the second impossibility when only four agents and objects exist. Then, Theorem 2 proves it for the
general case.

Proposition 3. For n = 4, there is no strategy proof mechanism satisfying robust ex-post Pareto efficiency and equal division lower

bound.

Proof. See the Appendix. 2

Our Proposition 3 strengthens the impossibility of Nesterov (2017) by weakening ordinal efficiency to robust ex-post
Pareto efficiency.

Theorem 2. For n ≥ 4, there is no strategy-proof mechanism satisfying robust ex-post Pareto efficiency and equal division lower bound.

Proof. The proof is straightforward. It is easily derived from Proposition 3 similar to the proof of Theorem 1. 2

6. Conclusion

An assignment is robust ex-post Pareto efficient whenever for any of its lottery decomposition, each deterministic as-
signment in its support is Pareto efficient. We showed that robust ex-post Pareto efficiency is an intermediate notion of
efficiency weaker than ordinal efficiency but stronger than ex-post Pareto efficiency. In other words, ordinal efficiency im-
plies robust ex-post Pareto efficiency while the reverse does not hold. We also introduced ex-ante/ex-post feasible trading
cycles to differentiate robust ex-post Pareto efficiency from ordinal efficiency. Given a random assignment, we say that a
trading cycle is ex-ante feasible whenever each agent/object pair in the cycle happens with a positive probability, and ex-
post feasible whenever there exists a decomposition of the random assignment such that the cycle happens in one of the
deterministic assignments in its support. We proved that a random assignment is robust ex-post Pareto efficient if and only
if it has no ex-post feasible cycle. Finally, we proved two impossibility results. We knew that strategy-proof and ordinal
efficient mechanisms satisfy neither equal treatment of equals nor equal division lower bound. We proved that these im-
possibilities prevail, for at least four agents and objects, even when we replace ordinal efficiency with a weaker notion of
robust ex-post Pareto efficiency.

Appendix A

A.1. Auxiliary lemmas

For a trading cycle r = 〈(a1, i1), (a2, i2), ..., (ak, ik)〉, we collect all agents within the cycle in Nr = {i1, i2, ..., ik}, and all
objects within the cycle in Ar = {a1,a2, ...,ak}.

Lemma 2. Let P = [pia]i∈N,a∈A be a random assignment, and r = 〈(a1, i1), (a2, i2), ..., (ak, ik)〉 be a trading cycle. If r is ex-ante

P -feasible but not ex-post P -feasible, then for every permutation σ : (N − Nr) → (A − Ar), we have pik+1σ (ik+1) × pik+2σ (ik+2) ×

... × pinσ (in) = 0.

Proof. We prove by contradiction. Suppose for some permutation σ , we have

pik+1σ (ik+1) × pik+2σ (ik+2) × ... × pinσ (in) 6= 0. (2)

Then, consider the deterministic assignment 5 where 5itat = 1 for 1 ≤ t ≤ k and 5itσ (it ) = 1 for t > k. Let ε =

min {pia|a ∈ A, i ∈ N,5ia = 1}. Note that given (2), and the assumption that r is ex-ante P -feasible, ε > 0. For P ′ = P − ε5,
the matrix 1

1−ε P
′ is bistochastic, and by the Birkhoff-von Neumann theorem, has a convex decomposition into determin-

istic assignments, i.e., 1
1−ε P

′ = λ151 + ... + λm5m where 51, ...,5m are deterministic assignments. Then, P = ε5 + P ′ =

ε5 + (1 − ε)λ151 + ... + (1 − ε)λm5m . As r is a cycle for 5, by Definition 2, it is ex-post P -feasible, that is a contradic-
tion. 2

two agents with the same first best object get the same allocation. Finally, it is robust ex-post Pareto efficient since, in all deterministic assignments of its
support, agents get an object only if it is their first best, and no agent exchanges her first best object with any object of another agent.

6
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Lemma 3. Let N = {i, j,h,k} be a set of agents and ≻ be a profile of preferences over objects A = {a,b, c,d}. Suppose for two arbitrary

objects, without loss of generality say a and b, and two arbitrary agents, without loss of generality say i and j, we have a ≻i b and

b ≻ j a. For every robust ex-post Pareto efficient random assignment P if pib > 0 and p ja > 0, then either for object c, phc = pkc = 0,
or for object d, phd = pkd = 0.

Proof. Suppose P is a robust ex-post Pareto efficient random assignment. Then, [(b, i), (a, j)] is not an ex-post P -feasible
cycle. By Lemma 2-(ii), since pib > 0 and p ja > 0, we have phcpkd = 0 and phdpkc = 0, which in turn imply that at least one
of the following happens:

(i) phc = pkc = 0
(ii) phd = pkd = 0
(iii) phc = phd = 0
(iv) pkc = pkd = 0

If (i) or (ii) happens, we are done. Suppose (iii) happens, i.e.,

phc = phd = 0. (3)

Then,

pha + phb = 1. (4)

Since pib > 0 and p ja > 0, we have pha > 0 and phb > 0. We also have either a ≻h b or b ≻h a. In the former case,

[(b,h), (a, j)] is a trading cycle and in the latter case, [(a,h), (b, i)] is a trading cycle. Assume the former case happens.7

Since P is robust ex-post Pareto efficient, the trading cycle [(b,h), (a, j)] is not ex-post P -feasible. Thus, by Lemma 2-(ii),

we have

picpkd = pidpkc = 0. (5)

Because of (4) and p ja > 0, we have pia + pib < 1 and thus either pic 6= 0 or pid 6= 0. Therefore, by (5) either pkd = 0 or
pkc = 0. So, using (3), we have either pkd = phd = 0 or pkc = phc = 0, and we are done. The argument for (iv) is similar. 2

Lemma 4. Let N = N1 ∪ N2 (where N1 ∩ N2 = ∅), and A = A1 ∪ A2 (where A1 ∩ A2 = ∅) with |N1| = |A1| and |N2 = |A2|, and ≻

be a profile of preferences where

(1) for all i ∈ N2 , the first-best of agent i, denoted by F B i , is not the first-best of any other agent in N ,

(2) for all i ∈ N2 , for all a ∈ A2 , and all b ∈ A1 , a ≻i b,

(3) for all i ∈ N1 , for all b ∈ A1 , and all a ∈ A2 , b ≻i a.

Then, for every Pareto efficient deterministic assignment 5 regarding profile ≻, 5(i) = F B i , for all i ∈ N2 .

Proof. It is straightforward. 2

A.2. Omitted proofs

Proof of Proposition 2. Let N = {1,2,3,4} be a set of agents, and A = {a,b, c,d} be a set of objects. Suppose by a contradictory

argument that φ is a mechanism satisfying robust ex-post Pareto efficiency, equal treatment of equals, and strategy-proofness. 2

Profile 1. Q 1: for all agents i, ≻i : abcd. By equal treatment of equals, we have

φ(Q 1) =







1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4







.

Profile 2. Q 2: for i = 1,2,3, ≻i : abcd, and≻4: bacd. By lower invariance, which is a consequence of strategy-proofness, φ4c(Q 2) =

φ4c(Q 1) = 1/4, and φ4d(Q 2) = φ4d(Q 1) = 1/4. We apply Lemma 3 to objects a and b to show that φ4a(Q 2) = 0 (suppose it is not

the case, and φ4a(Q 2) > 0. Then, for some agent j 6= 4, φ jb(Q 2) > 0. By Lemma 3, either for all i ∈ N\{4, j}, φic(Q 2) = 0 or for

all i ∈ N\{4, j}, φid(Q 2) = 0. Suppose the former case happens. Since φ satisfies equal treatment of equals, we have φ1c(Q 2) =

φ2c(Q 2) = φ3c(Q 2) = 0, which contradicts with φ4c(Q 2) = 1/4 and the fact that φ(Q 2) is a bistochastic matrix. The argument

7 The argument for the latter case is similar.

7
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for the latter case is similar. Thus, φ4a(Q 2) = 0). Therefore, φ4b(Q 2) = 1/2 and by equal treatment of equals, we can construct the

allocations of agents 1, 2, and 3.

φ(Q 2) =







1/3 1/6 1/4 1/4
1/3 1/6 1/4 1/4
1/3 1/6 1/4 1/4
0 1/2 1/4 1/4







.

Profile 3. Q 3: for i = 1,2, ≻i= abcd, for i = 3,4, ≻i= bacd. By lower invariance, φ3c(Q 3) = φ3c(Q 2) = 1/4 and φ3d(Q 3) =

φ3d(Q 2) = 1/4. By equal treatment of equals, φ4c(Q 3) = φ4d(Q 3) = 1/4. Again, by equal treatment of equals, φ1c(Q 3) =

φ2c(Q 3) = 1/4, and φ1d(Q 3) = φ2d(Q 3) = 1/4.

φ(Q 3) =







− − 1/4 1/4
− − 1/4 1/4
− − 1/4 1/4
− − 1/4 1/4







.

We apply Lemma 3 to objects a and b. Since for all i ∈ N , φic(Q 3) = φid(Q 3) = 1/4, either φ1b(Q 3) = 0 or φ3a(Q 3) = 0.

If φ1b(Q 3) = 0, then φ1a(Q 3) = 1/2 and by equal treatment of equals, φ2b(Q 3) = 0, and φ2a(Q 3) = 1/2. Then, φ3a(Q 3) =

0, φ4a(Q 3) = 0, φ3b(Q 3) = 1/2, φ4a(Q 3) = 0 and φ4b(Q 3) = 1/2. If φ3a(Q 3) = 0, with a similar argument, we derive the same

results. Finally, we have

φ(Q 3) =







1/2 0 1/4 1/4
1/2 0 1/4 1/4
0 1/2 1/4 1/4
0 1/2 1/4 1/4







.

Profile 4. Q 4: for i = 1,2,3, ≻i : abcd, and ≻4: bcad. By lower invariance, φ4d(Q 4) = φ4d(Q 2) = 1/4, and by upper invariance,

φ4b(Q 4) = φ4b(Q 2) = 1/2. We apply Lemma 3 to objects a and b to show that φ4a(Q 4) = 0 (by a contradictory argument, suppose

φ4a(Q 4) > 0. Then, for some agent i = 1, 2, or 3, we have φib(Q 4) > 0. Without loss of generality, assume i = 1. Now, by Lemma 3,

either φ2c(Q 4) = φ3c(Q 4) = 0 or φ2d(Q 4) = φ3d(Q 4) = 0. Suppose the former case happens. Then, by equal treatment of equals,

φ1c(Q 4) = 0, which implies φ4c(Q 4) = 1, a contradiction. The argument for the latter case is similar). Finally, we have φ4c(Q 4) =

1/4. By equal treatment of equals, we can construct the allocations of agents 1, 2, and 3. Finally, we have φ(Q 4) = φ(Q 2).

Profile 5. Q 5: for i = 1,2, ≻i : abcd, ≻3: bacd, and ≻4: bcad. By lower invariance, φ3c(Q 5) = φ3c(Q 4) = 1/4, and φ3d(Q 5) =

φ3d(Q 4) = 1/4. By upper invariance, φ4b(Q 5) = φ4b(Q 3) = 1/2, and by lower invariance φ4d(Q 5) = φ4d(Q 3) = 1/4. By equal

treatment of equals, we get φ1d(Q 5) = φ2d(Q 5) = 1/4. Now, if φ1b(Q 5) > 0 and φ4a(Q 5) > 0, then by Lemma 3, either

φ2c(Q 5) = φ3c(Q 5) = 0 or φ2d(Q 5) = φ3d(Q 5) = 0. However, both cases are impossible as we already showed φ3c(Q 5) = 1/4 6= 0
and φ3d(Q 5) = 1/4 6= 0. Therefore, Lemma 3 implies φ1b(Q 5) = 0 or φ4a(Q 5) = 0, where in both cases φ3a(Q 5) = 0 holds.

In the former case where φ1b(Q 5) = 0, by equal treatment of equals, φ2b(Q 5) = 0, and we derive φ3b(Q 5) = 1/2 which implies

φ3a(Q 5) = 0. In the latter case where φ4a(Q 5) = 0, we have φ4c(Q 5) = 1/4. Since φ4c(Q 5) 6= 0, and φ2d(Q 5) 6= 0, with a similar

argument, Lemma 3 implies φ1b(Q 5) = 0 or φ3a(Q 5) = 0. Note that we already showed that the former case φ1b(Q 5) = 0 leads to

φ3a(Q 5) = 0.
Since φ(Q 5) is bistochastic, we have φ3b(Q 5) = 1/2 and by equal treatment of equals, we derive φ1b(Q 5) = φ2b(Q 5) = 0.

Moreover, φ1c(Q 5) > 0 since otherwise φ4c(Q 5) = 3/4 and φ4c(Q 5) + φ4b(Q 5) > 1, which is a contradiction. Now, we apply

Lemma 3 to objects a and c to show φ4a(Q 5) = 0. By a contradictory argument, suppose φ4a(Q 5) > 0. Since φ1c(Q 5) > 0, applying
Lemma 3 to objects a and c where c ≻4 a and a ≻1 c, implies either φ2b(Q 5) = φ3b(Q 5) = 0 or φ2d(Q 5) = φ3d(Q 5) = 0. But, we

already derived that φ3b(Q 5) = 1/2 6= 0 and φ3d(Q 5) = 1/4 6= 0, a contradiction. Hence, φ4c(Q 5) = 1/4, and by equal treatment of

equals, we get φ1c(Q 5) = φ2c(Q 5) = 1/4, and φ1a(Q 5) = φ2a(Q 5) = 1/2. Therefore, φ(Q 5) = φ(Q 3).

Profile 6. Q 6: for i = 1,2, ≻i : abcd, and for i = 3,4, ≻i : bcad. By upper invariance, φ3b(Q 6) = φ3b(Q 5) = 1/2, and by lower

invariance, φ3d(Q 6) = φ3d(Q 5) = 1/4. By equal treatment of equals, φ4b(Q 6) = 1/2 and φ4d(Q 6) = 1/4. Note that φ1c(Q 6) > 0.
Since otherwise, by equal treatment of equals, φ1c(Q 6) = φ2c(Q 6) = 0 and φ3c(Q 6) = φ4c(Q 6) = 1/2 which is a contradiction as

φ4c(Q 6) + φ4b(Q 6) + φ4d(Q 6) > 1.
Now, we apply Lemma 3 to objects a and c to show φ3a(Q 6) = 0. By contradiction, assume that φ3a(Q 6) > 0. As we also have

φ1c(Q 6) > 0, c ≻3 a, and a ≻1 c, by Lemma 3, either φ2b(Q 6) = φ4b(Q 6) = 0 or φ2d(Q 6) = φ4d(Q 6) = 0. Thus, by equal treatment

of equals, either for all i ∈ N , φib(Q 6) = 0 or for all i ∈ N , φid(Q 6) = 0, a contradiction. Since φ satisfies equal treatment of equals,

φ4a(Q 6) = 0 and φ1a(Q 6) = φ2a(Q 6) = 1/2. Since φ(Q 6) is a bistochastic matrix and satisfies equal treatment of equals, we simply

derive φ3c(Q 6) = φ4c(Q 6) = 1/4. Altogether, we have φ(Q 6) = φ(Q 5).

Profile 7. Q 7: for i = 1,2,3, ≻i : abcd, and≻4: bcda. By upper invariance, φ4b(Q 7) = φ4b(Q 4) = 1/2 and φ4c(Q 7) = φ4c(Q 4) =

1/4. By equal treatment of equals, φ1b(Q 7) = φ2b(Q 7) = φ3b(Q 7) = 1/6 and φ1c(Q 7) = φ2c(Q 7) = φ3c(Q 7) = 1/4. We apply

8
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Lemma 3 to objects a and b to show φ4a(Q 7) = 0. Suppose φ4a(Q 7) > 0. As we also have φ1b(Q 7) > 0, Lemma 3 implies either

φ2c(Q 7) = φ3c(Q 7) = 0 or φ2d(Q 7) = φ3d(Q 7) = 0 which by equal treatment of equals implies either for all i ∈ N , φic(Q 7) = 0
or for all i ∈ N , φid(Q 7) = 0. We derive either φ4c(Q 7) = 1 or φ4d(Q 7) = 1 which is a contradiction as φ is a bistochastic matrix.

Together, we have φ(Q 7) = φ(Q 2).

Profile 8. Q 8: for i = 1,2, ≻i : abcd, ≻3: bacd, and ≻4: bcda. By lower invariance, φ3c(Q 8) = φ3c(Q 7) = 1/4 and φ3d(Q 8) =

φ3d(Q 7) = 1/4, and by upper invariance, φ4b(Q 8) = φ4b(Q 5) = 1/2 and φ4c(Q 8) = φ4c(Q 5) = 1/4. Note that φ1d(Q 8) > 0 since

otherwise φ1d(Q 8) = φ2d(Q 8) = 0 that implies φ4d(Q 8) = 3/4, which is a contradiction as φ4b(Q 8) + φ4d(Q 8) > 1. We apply

Lemma 3 to objects a and d to show φ4a(Q 8) = 0. Suppose it is not the case, then φ4a(Q 8) > 0 and φ1d(Q 8) > 0. Lemma 3 implies

either φ2b(Q 8) = φ3b(Q 8) = 0 or φ2c(Q 8) = φ3c(Q 8) = 0. Since φ satisfies equal treatment of equals, we have either φ1b(Q 8) =

φ2b(Q 8) = φ3b(Q 8) = 0 or φ1c(Q 8) = φ2c(Q 8) = φ3c(Q 8) = 0. The former case implies φ4b(Q 8) = 1 which contradicts with

φ4b(Q 8) = 1/2. The latter case is also impossible as we already showed φ3c(Q 8) = 1/4. Therefore, since φ(Q 8) is a bistochastic

matrix, φ4d(Q 8) = 1/4 and since it is a bistochastic matrix and satisfies equal treatment of equals, φ1c(Q 8) = φ2c(Q 8) = φ1d(Q 8) =

φ2d(Q 8) = 1/4.
Also, note that φ1b(Q 8) = 0 or φ3a(Q 8) = 0. Since otherwise if φ1b(Q 8) > 0 and φ3a(Q 8) > 0, then by Lemma 3 we have either

φ2c(Q 8) = φ4c(Q 8) = 0 or φ2d(Q 8) = φ4d(Q 8) = 0. However, both cases are impossible as we already showed φ2c(Q 8) = 1/4 6= 0
and φ2d(Q 8) = 1/4 6= 0. If φ1b(Q 8) = 0 then by equal treatment of equals, φ2b(Q 8) = 0 and φ1a(Q 8) = φ2a(Q 8) = 1/2 and since

φ(Q 8) is a bistochastic matrix, φ3a(Q 8) = 0 and φ3b(Q 8) = 1/2. If φ3a(Q 8) = 0 then φ3b(Q 8) = 1/2. By equal treatment of equals,

φ2b(Q 8) = φ2b(Q 8) = 0 and φ1a(Q 8) = φ2a(Q 8) = 1/2. Altogether, we have φ(Q 8) = φ(Q 3).

Profile 8
′
. Q 8′: ≻1: bacd, for i = 2,3, ≻i : abcd, and ≻4: bcda. Profile Q 8′ is a permutation of profile Q 8 and we have

φ(Q 8′) =







0 1/2 1/4 1/4
1/2 0 1/4 1/4
1/2 0 1/4 1/4
0 1/2 1/4 1/4







.

Profile 8′′ . Q 8′′: for i = 1,3, ≻i : abcd, ≻2: bacd, and ≻4: bcda. Profile Q 8′′ is a permutation of profile Q 8 and we have

φ(Q 8′′) =







1/2 0 1/4 1/4
0 1/2 1/4 1/4

1/2 0 1/4 1/4
0 1/2 1/4 1/4







.

Profile 9. Q 9 : for i = 1,2,3,4, ≻i : bacd. By equal treatment of equals, we have φ(Q 9) = φ(Q 1).

Profile 10. Q 10: for i = 1,2,3, ≻i : bacd and≻4: bcad. By upper invariance, φ4b(Q 10) = φ4b(Q 9) = 1/4, and by lower invariance

φ4d(Q 10) = φ4d(Q 9) = 1/4. Since φ4b(Q 10) = 1/4, by equal treatment of equals, φ1b(Q 10) = φ2b(Q 10) = φ3b(Q 10) = 1/4.

Since φ4d(Q 10) = 1/4 by equal treatment of equals, φ1d(Q 10) = φ2d(Q 10) = φ3d(Q 10) = 1/4. By Lemma 3 applied to objects a

and c, φ4a(Q 10) = 0. Otherwise, φ4a(Q 10) > 0 and φ1c(Q 10) > 0. By Lemma 3, either φ2b(Q 10) = φ3b(Q 10) = 0 or φ2d(Q 10) =

φ3d(Q 10) = 0, but we already showed that φ2b(Q 10) = 1/4 (note that φ1c(Q 10) > 0, since otherwise by equal treatment of equals,

φ1c(Q 10) = φ2c(Q 10) = φ3c(Q 10) = 0which implies φ4c(Q 10) = 1 that contradicts with φ4b(Q 10) = 1/4) and φ2d(Q 10) = 1/4,

a contradiction. Therefore, φ4a(Q 10) = 0 and we get φ4c(Q 10) = 1/2. By equal treatment of equals,

φ(Q 10) =







1/3 1/4 1/6 1/4
1/3 1/4 1/6 1/4
1/3 1/4 1/6 1/4
0 1/4 1/2 1/4







.

Profile 11. Q 11: for i = 1,2,3, ≻i : bacd and ≻4: bcda. By upper invariance, φ4b(Q 11) = φ4b(10) = 1/4 and φ4c(Q 11) =

φ4c(10) = 1/2. Note that because of equal treatment of equals, and φ4c(Q 11) = 1/2 > 0,

for all object o ∈ A, φ1o(Q 11) = φ2o(Q 11) = φ3o(Q 11) > 0. (6)

By Lemma 3 applied to objects a and c, we get φ4a(Q 11) = 0. Suppose it is not the case. Then, φ4a(Q 11) > 0 and φ1c(Q 11) > 0. By
Lemma 3, we have either φ2b(Q 11) = φ3b(Q 11) = 0 or φ2d(Q 11) = φ3d(Q 11) = 0 which contradicts with (6). Hence, φ4d(Q 11) =

1/4 and by equal treatment of equals, φ(Q 11) = φ(Q 10).

Profile 12. Q 12: for i = 1,2,4, ≻i : bacd and ≻3: abcd. By lower invariance, φ3c(Q 12) = φ3c(Q 9) = 1/4 and φ3d(Q 12) =

φ3d(Q 9) = 1/4. Note that because of equal treatment of equals, and φ3c(Q 12) = 1/4 > 0,

for all object o ∈ A, φ1o(Q 12) = φ2o(Q 12) = φ4o(Q 12) > 0. (7)

9
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By Lemma 3 applied to objects a and b, we get φ3b(Q 12) = 0. Suppose it is not the case. Then, since φ3b(Q 12) > 0 and φ1a(Q 12) >

0, using Lemma 3, we have either φ2c(Q 12) = φ4c(Q 12) = 0or φ2d(Q 12) = φ4d(Q 12) = 0 which contradicts with (7). Hence,

φ3a(Q 12) = 1/2. By equal treatment of equals,

φ(Q 12) =







1/6 1/3 1/4 1/4
1/6 1/3 1/4 1/4
1/2 0 1/4 1/4
1/6 1/3 1/4 1/4







.

Profile 13. Q 13: for i = 1,2, ≻i : bacd, ≻3: abcd and ≻4: bcad. By upper invariance, φ4b(Q 13) = φ4b(Q 12) = 1/3.

φ(Q 13) =







− − − −

− − − −

− − − −

− 1/3 − −







.

Profile 14. Q 14: for i = 1,2, ≻i : bacd, ≻3: abcd and ≻4: bcda. By lower invariance, φ2c(Q 14) = φ2c(Q
8′) = 1/4, φ2d(Q 14) =

φ2d(Q
8′) = 1/4, φ1c(Q 14) = φ1c(Q 8′′) = 1/4, φ1d(Q 14) = φ1d(Q 8′′) = 1/4, φ3c(Q 14) = φ3c(Q 11) = 1/6, and φ3d(Q 14) =

φ3d(Q 11) = 1/4. By Lemma 3, φ3b(Q 14) = 0 (suppose not, then for some i ∈ N\{3},we have φia(Q 14) > 0. Now, by Lemma 3, either

for all j ∈ N\{3, i}, φ jc(Q 14) = 0 or for all j ∈ N\{3, i}, φ jd(Q 14) = 0. Either agent 1 or agent 2 belongs N\{3, i}. Without loss of

generality, assume that 1 ∈ N\{3, i}. Since φ1c(Q 14) = φ1d(Q 14) = 1/4 6= 0, we face a contradiction) which implies φ3a(Q 14) =

7/12. By Lemma 3 applied to objects a and d,we get φ4a(Q 14) = 0. Suppose it is not the case, then φ4a(Q 14) > 0 and we already have

φ3d(Q 14) = 1/4 > 0. By Lemma 3, either φ1b(Q 14) = φ2b(Q 14) = 0 or φ1c(Q 14) = φ2c(Q 14) = 0. If the former case happens,

we have φ1a(Q 14) = φ2a(Q 14) = 1/2 while φ1a(Q 14) + φ2a(Q 14) + φ3a(Q 14) > 1. The latter case also does not happen as we

already showed φ2c(Q 14) = 1/4, a contradiction. Therefore, φ4a(Q 14) = 0. Now, we have φ1a(Q 14) = φ2a(Q 14) = 5/24. By upper

invariance, φ4b(Q 14) = φ4b(Q 13) = 1/3. By equal treatment of equals, φ1b(Q 14) = φ2b(Q 14) = 1/3. But φ1a(Q 14)+φ2a(Q 14)+

φ3a(Q 14) + φ4a(Q 14) = 5/24 + 1/3+ 1/4+ 1/4 > 1, a contradiction, and finally we are done.

φ(Q 14) =







5/24 1/3 1/4 1/4
5/24 1/3 1/4 1/4
7/12 0 1/6 1/4
0 1/3 1/3 1/4







.

QED.

Proof of Proposition 3. Let N = {1,2,3,4} be a set of agents, and A = {a,b, c,d} be a set of objects. Suppose by a contradictory

argument that φ is a mechanism satisfying robust ex-post Pareto efficiency, strategy-proofness, and equal division lower bound. We

use the following profiles to complete our proof. 2

Profile 1. Q 1: for i = 1,2, ≻i : abcd, and for i = 3,4, ≻i : acbd. By equal division lower bound, it is easily seen that

φ1a(Q 1) = φ2a(Q 1) = φ3a(Q 1) = φ4a(Q 1) = 1/4, (8)

and

φ1d(Q 1) = φ2d(Q 1) = φ3d(Q 1) = φ4d(Q 1) = 1/4. (9)

Now, by (8), (9), and applying Lemma 3 to objects b and c, we have φ1c(Q 1)φ3b(Q 1) = 0, φ1c(Q 1)φ4b(Q 1)
= 0, φ2c(Q 1)φ3b(Q 1) = 0, and φ2c(Q 1)φ4b(Q 1) = 0.

We show that φ1c(Q 1) = 0. By contradiction, suppose φ1c(Q 1) 6= 0. Then, since we already have φ1c(Q 1)φ3b(Q 1) = 0 and

φ1c(Q 1)φ4b(Q 1) = 0, it is derived that φ3b(Q 1) = 0, and φ4b(Q 1) = 0. Because φ1c(Q 1) is a bistochastic matrix, we conclude that

φ3c(Q 1) = φ4c(Q 1) = 1/2. Hence, φ3c(Q 1) + φ4c(Q 1) + φ1c(Q 1) > 1, which is a contradiction. Thus, φ1c(Q 1) = 0. With similar

arguments, it is proved that φ2c(Q 1) = 0, φ3b(Q 1) = 0, and φ4b(Q 1) = 0. Therefore,

φ(Q 1) =







1/4 1/2 0 1/4
1/4 1/2 0 1/4
1/4 0 1/2 1/4
1/4 0 1/2 1/4







.

Profile 2. Q 2: ≻1: abdc, ≻2: abcd, and for i = 3,4, ≻i : acbd. By equal division lower bound, φ1a(Q 2) = φ2a(Q 2) = φ3a(Q 2) =

φ4a(Q 2) = 1/4. By upper invariance, φ1b(Q 2) = φ1b(Q 1) = 1/2. By swap monotonicity, we derive either φ1d(Q 2) = φ1d(Q 1) =

10
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1/4 or φ1d(Q 2) > φ1d(Q 1) = 1/4. The latter case is impossible as φ1a(Q 2) + φ1b(Q 2) + φ1d(Q 2) = 1/4 + 1/2 + φ1d(Q 2) > 1.

Thus, we have φ1d(Q 2) = 1/4 and φ1c(Q 2) = 0. Now, by equal division lower bound, φ2d(Q 2) = φ3d(Q 2) = φ4d(Q 2) = 1/4.

Since for all i, φia(Q 2) > 0 and φid(Q 2) > 0, by applying Lemma 3 to objects b and c, φ1c(Q 2)φ3b(Q 2) = 0, φ1c(Q 2)φ4b(Q 2) = 0,

φ2c(Q 2)φ3b(Q 2) = 0, and φ2c(Q 2)φ4b(Q 2) = 0.With a same argument, discussed already for profile Q 1, φ2c(Q 2) = 0, φ3b(Q 2) =

0, and φ4b(Q 2) = 0. Therefore,

φ(Q 2) =







1/4 1/2 0 1/4
1/4 1/2 0 1/4
1/4 0 1/2 1/4
1/4 0 1/2 1/4







.

Profile 2′ . Q 2′: Profile Q 2′ is a permutation of profile Q 2 as follows: ≻1: abcd, ≻2: abdc, and for i = 3,4, ≻i : acbd. Therefore,

φ(Q 2′) =







1/4 1/2 0 1/4
1/4 1/2 0 1/4
1/4 0 1/2 1/4
1/4 0 1/2 1/4







.

Profile 3. Q 3: for i = 1,2, ≻i : abdc, and for i = 3,4, ≻i : acbd. First, by equal division lower bound, φ1a(Q 3) = φ2a(Q 3) =

φ3a(Q 3) = φ4a(Q 3) = 1/4. By upper invariance, φ2b(Q 3) = φ2b(Q 2) = 1/2 and φ1b(Q 3) = φ1b(Q
′2) = 1/2. By swap monotonic-

ity, we derive either φ2d(Q 3) = φ2d(Q 2) = 1/4 or φ2d(Q 3) > φ2d(Q 2) = 1/4. The latter case is impossible as φ2a(Q 3)+φ2b(Q 3)+

φ2d(Q 3) = 1/4+ 1/2+ φ2d(Q 3) > 1. Thus, φ2d(Q 3) = 1/4 and φ2c(Q 3) = 0. Again, regarding profile Q 3 and Q 2′ for agent 1, by

swap monotonicity, with a similar argument, φ1d(Q 3) = 1/4 and φ1c(Q 3) = 0. Now, by equal division lower bound,

φ(Q 3) =







1/4 1/2 0 1/4
1/4 1/2 0 1/4
1/4 0 1/2 1/4
1/4 0 1/2 1/4







.

Profile 4. Q 4: for i = 1,2, ≻i : abdc, and for i = 3,4, ≻i : abcd. By equal division lower bound, we have

φ1a(Q 4) = φ2a(Q 4) = φ3a(Q 4) = φ4a(Q 4) = 1/4, (10)

and

φ1b(Q 4) = φ2b(Q 4) = φ3b(Q 4) = φ4b(Q 4) = 1/4. (11)

Now, by (10), (11), and applying Lemma 3 to objects c and d, φ1c(Q 4)φ3d(Q 4) = 0, φ1c(Q 4)φ4d(Q 4) = 0, φ2c(Q 4)φ3d(Q 4) =

0, φ2c(Q 4)φ4d(Q 4) = 0. We show φ1c(Q 4) = 0. Otherwise, we have φ3d(Q 4) = 0 and φ4d(Q 4) = 0 which causes φ3c(Q 4) = 1/2

and φ4c(Q 4) = 1/2. Then, we have φ3c(Q 4) + φ4c(Q 4) + φ1c(Q 4) = 1/2 + 1/2 + φ1c(Q 4) > 1, contradiction. With a similar

argument, we derive φ2c(Q 4) = 0, φ3d(Q 4) = 0, and φ4d(Q 4) = 0. Therefore,

φ(Q 4) =







1/4 1/4 0 1/2
1/4 1/4 0 1/2
1/4 1/4 1/2 0
1/4 1/4 1/2 0







.

Profile 5. Q 5: for i = 1,2, ≻i : abdc, ≻3: abcd and ≻4: acbd. By equal division lower bound, we have

φ1a(Q 5) = φ2a(Q 5) = φ3a(Q 5) = φ4a(Q 5) = 1/4. (12)

By lower invariance, φ4d(Q 5) = φ4d(Q 4) = 0, and φ3d(Q 5) = φ3d(Q 3) = 1/4. By equal division lower bound, we have

φ1b(Q 5) ≥ 1/4, φ2b(Q 5) ≥ 1/4, φ3b(Q 5) ≥ 1/4. (13)

Now, we apply Lemma 3 to objects d and c to show φ1c(Q 5) = φ2c(Q 5) = 0. If φ1c(Q 5) > 0 then φ1c(Q 5)φ3d(Q 5) > 0 and

thus by Lemma 3, either φ2a(Q 5) = φ3a(Q 5) = 0 or φ2b(Q 5) = φ3b(Q 5) = 0. By (12) and (13), both cases do not happen and thus

φ1c(Q 5) = 0.With a similar argument, φ2c(Q 5) = 0. Note that φ3c(Q 5) > 0, since otherwise we must have φ4c(Q 5) = 1,which is a

contradiction.

We show that φ4b(Q 5) = 0. Otherwise, since φ(Q 5) is a bistochastic matrix, we either have φ1d(Q 5) > 0 or φ2d(Q 5) > 0. If

the former case happens, then since φ4b(Q 5) > 0, φ3c(Q 5) > 0, φ1d(Q 5) > 0, and φ2a(Q 5) > 0, the probability of occurrence

of the cycle ([b,4), (3, c)] is greater than 0 which contradicts with the assumption that φ(Q 5) is robust ex-post Pareto efficient. If

the latter case happens, then since φ4b(Q 5) > 0, φ3c(Q 5) > 0, φ2d(Q 5) > 0, and φ1a(Q 5) > 0, the probability of occurrence of

11



ARTICLE IN PRESS
JID:YGAME AID:3439 /FLA [m3G; v1.318] P.12 (1-12)

R. Ramezanian and M. Feizi Games and Economic Behavior ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

the cycle ([b,4), (3, c)] is greater than 0 which contradicts with the assumption that φ(Q 5) is robust ex-post Pareto efficient. Thus,

φ4b(Q 5) = 0. As φ(Q 5)is a bistochastic matrix, φ4c(Q 5) = 3/4, and then φ3c(Q 5) = 1/4 and φ3b(Q 5) = 1/4. Therefore,

φ(Q 5) =







1/4 − 0 −

1/4 − 0 −

1/4 1/4 1/4 1/4
1/4 0 3/4 0







.

Profile 5′ . Q 5′: for i = 1,3, ≻i : abdc, ≻2: abcd and ≻4: acbd. We have

φ(Q 5′) =







1/4 − 0 −

1/4 1/4 1/4 1/4
1/4 − 0 −

1/4 0 3/4 0







.

Profile Q 5′′: for i = 2,3, ≻i : abdc, ≻1: abcd and ≻4: acbd. We have

φ(Q 5′′) =







1/4 1/4 1/4 1/4
1/4 − 0 −

1/4 − 0 −

1/4 0 3/4 0







.

Profile 6. Q 6: for i = 1,2,3, ≻i : abdc and ≻4: acbd. By equal division lower bound, φ1a(Q 6) = φ2a(Q 6) = φ3a(Q 6) =

φ4a(Q 6) = 1/4. By upper invariance, φ1b(Q 6) = φ1b(Q
′′5) = 1/4, φ2b(Q 6) = φ2b(Q

′5) = 1/4, and φ3b(Q 6) = φ3b(Q 5) = 1/4

which together conclude φ4b(Q 6) = 1/4. Also, by equal division lower bound, for all i = 1,2,3, φid(Q 6) ≥ 1/4. Therefore,

φ(Q 6) =







1/4 1/4 − ≥ 1/4
1/4 1/4 − ≥ 1/4
1/4 1/4 − ≥ 1/4
1/4 1/4 − −







.

Since φ(Q 6) is a bistochastic matrix, there exists j ∈ {1,2,3} such that φ jc(Q 6) > 0. Then, we have φ4b(Q 6)φ jc(Q 6) > 0. By
Lemma 3, either for all i ∈ N\{4, j}, we have φia(Q 6) = 0 or for all i ∈ N\{4, j}, we have φid(Q 6) = 0, where both cases do not

happen. Contradiction. QED.
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