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Abstract

Background: Non-contact anterior cruciate ligament (ACL) injuries commonly occur when athletes land in high risk positions such
as knee valgus. The impact of foot orthoses during exercises that recreate a non-contact ACL harm system (i.e., landing) in any case
will be obscured.
Objectives: The purpose of the current study research was to evaluate the effect of two foot orthoses (semi-hard foot orthoses and
hard foot orthoses) on knee valgus angle during single-leg drop landing.
Methods: Twenty male leisure volleyball gamers performed landing in one-leg step from 30 cm height in 3 conditions (without
foot orthoses, mid-hard foot orthoses, and hard foot orthoses). A motion capture system was used to measure lower extremity
kinematics. Two risk factors of ACL injury, maximum knee valgus angle (KVA), and maximum knee flexion was measured. ANOVA
was used for statistical analysis (P < 0.05).
Results: With mid-hard foot, orthoses provide the maximum level of knee flexion and the minimum level of knee valgus during
single-leg drop landing.
Conclusions: It may be concluded showed that foot orthoses affect knee kinematics. More knee flexion and less knee valgus brought
about by mid-hard foot orthoses can reduce injuries of the anterior cruciate ligament (ACL).
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1. Background

Landing is one of the most commonly used sporting
movements, which can produce an impact force between 2
to 12 times the body weight, the most common cause mech-
anism of lower limb injury (1, 2). This mechanical impact
should be moderated via the musculoskeletal system. In-
creasing impact forces and repetition of these forces facili-
tate damage to the soft tissue surrounding the joint during
landing. Single-leg landing (SLL) is common in sports such
as volleyball, soccer, basketball, and badminton (1). The
alignment of the lower limb has the main responsibility
for absorbing pressure during contact and modulating the
load (3). Lack of knee joint muscles’ ability to absorb force
during landing may lead to changes in the kinematics of
this joint, including increased knee valgus angle (KVA) and
knee flexion (4, 5). About 70% of knee injuries, especially
anterior cruciate ligament (ACL), occur in non-contact in-

juries (6, 7). Increased KVA and decreased knee flexion,
tibia spin, internal rotation, and hip adduction within cut-
ting and landing maneuvers can usually be the mechanism
of damage to ACL injuries (6-10). which can increase the
strain on the ACL (11, 12). Studies showed that SLL leads to
an increase in damage to the ACL in a non-contact position
compared to double-leg landing (DLL) (13, 14). They con-
cluded that increased knee valgus and decreased knee flex-
ion followed. A study by Yeow et al. showed that single-leg
landing, compared to double-leg landing, significantly re-
duced knee flexion and increased the risk of anterior cru-
ciate ligament damage (14).

Foot orthoses are usually prescribed to improve lower
limb and functional impairment (15, 16). Researchers have
considered the effect of orthoses on lower limb biome-
chanics during walking and running (17-19). When using
foot orthoses during walking and running, a decrease in
the movement of the lower limbs was observed in both
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the frontal and transverse planes (19). The effect of foot or-
thoses in sports activities such as landing, jumping, and
cutting is still unknown, and most studies have investi-
gated the effect of foot orthoses during walking and run-
ning (16, 19). Few studies have focused on the effect of
foot orthoses on sports activities, such as landing, and
have found different results (20, 21). Foot orthoses have in-
creased activity in the gluteus medius during slow move-
ments (20). On the contrary, foot orthoses have also shown
an increase in movement in the frontal plane in the ankle
and an increase in lateral pressure on the foot during the
landing after the layup in basketball (21). The use of foot or-
thoses causes reduced lower limb injury in sports activities
(15). It has been suggested that foot orthoses can change
the movement of the lower extremities, which is responsi-
ble for reducing damage.

2. Objectives

The purpose of this research was to consider the effect
of two types of foot orthoses (semi-hard foot orthoses and
hard foot orthoses) on knee valgus angle during single-leg
drop-landing.

3. Methods

3.1. Participants

Findings from a pilot study (n = 8) demonstrated the
variability expected for each variable of interest. To achieve
80% or above power with two degrees of freedom at a sig-
nificant level of 0.05, we calculated a needed sample size of
20 subjects (22). Twenty male recreational volleyball play-
ers with the mean ± standard deviation of age: of 22.3 ±
1.45 years; height of 1.75 ± 15.51 meters; body mass: 69.05
±0.51 kg participated in this study. All participants had no
history of ACL injury as well as lower limb injury in the past
six months. All players had played volleyball at least once a
week during the past three years. All participants signed a
written agreement form, before beginning this study.

3.2. Equipment

Participants used similar shoes (ASICS Gel-Rocket 7,
Men’s Volleyball Shoes, model B405N, Japan) to prevent
the effect of footwear. In the current study, all partici-
pants were right-leg dominant. Nine reflective markers (15
mm in diameter) were placed on the anatomical points of
the dominant leg. The anatomical points included the an-
terior superior iliac spine (ASIS), posterior superior iliac
spine (PSIS), medial and lateral condyles of the femur, me-
dial and lateral condyles of the tibia, medial and lateral
malleoli, and the second metatarsal head (on the shoe).

Markers were placed on the anatomical points before mea-
surements. Three-dimensional (3D) motion data was cap-
tured at a frequency of 200 Hz using six digital cameras
and Cortex software (Motion Analysis Corp., Santa Rosa, CA,
USA) version 2.5.0.1160. Two types of foot orthoses (semi-
hard and hard) with four layers were used in the study. The
orthoses were similar except for the first and upper lay-
ers. The second to fourth layers in both foot orthoses were
made of (polypropylene, bone POLYFOAM, and hard POLY-
FOAM), respectively. The first layer in semi-hard foot or-
thoses was made from semi-hard foam, while the first layer
of hard foot orthoses was made from hard foam. The thick-
nesses of the layers of foot orthoses were: semi-hard foam
and hard foam 5 mm, polypropylene was 1.5 - 2 mm, and
hard polyfoam was 7 mm. Also, in general, the thickness of
foot orthoses under the heel was 6 to 10 mm, and in the cen-
ter of the inner longitudinal arc, it reached 25 to 30 mm.
It should be noted that the molecular composition of the
material used to make the foams was the same. But the fac-
tor that made hard foam, for example, harder in terms of
hardness was that the amount of material poured into the
mold was higher during the manufacturing of hard foam
(Figure 1).

3.3. Procedures

Subjects were required to do a 5-minute warm-up and
given time to practice drop-landing maneuvers before
recording data. Participants were requested to stand on
a 0.3 m high step on two legs, with both hands on iliac
crests. The drop-landing operation was performed with
the dominant leg at 20 cm from the front edge of the plat-
form. Subjects were trained to easily roll off the platform
and perform the most natural possible landing. Subjects
were trained to maintain their balance for at least 2 sec-
onds after landing. Drop-landing was performed in three
positions in a randomized manner: including without foot
orthoses, with semi-hard foot orthoses, and with hard foot
orthoses. A successful landing was defined as a landing
without jumping up or forward or landing on both legs.
Six successful trials were recorded for each orthosis.

3.4. Measures

The maximum knee angle was measured on the sagit-
tal and coronal planes. Kinematics data were automat-
ically filtered by a fourth-order zero-lag Butterworth 12-
HZ low-pass filter (23). A kinematics model was proposed
based on the lower limb to describe knee joint angles dur-
ing landing. The hip joint center was estimated based on
the methods described by Vaughan et al. (24). In the stand-
ing trial, joint centers for the knee and ankle were deter-
mined (25). The femur’s center was defined as the mid-
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Figure 1. The right image of the semi-hard foot orthoses and the left-hand side of the hard foot orthoses with a four-layer profile used in this study.

point between the medial and lateral condyles of the fe-
mur. The center of the tibia was defined as the midpoint
between the medial and lateral condyles of the tibia. The
center of the talocrural joint was defined as the midpoint
between medial and lateral malleoli. Knee flexion and val-
gus angles were calculated based on the GROOD and SUN-
TAY method (26). Maximum knee flexion and maximum
knee valgus angles within landing were calculated for each
trial during the landing phase. The fool landing phase was
defined from the primary ground contact of the dominant
foot until maintaining balance without motion and with
no ground contact in the opposite foot for at least 2 sec-
onds.

3.5. Statistical Analysis

The variables of interest were maximum knee valgus
angle and maximum knee flexion angle during the whole
phase of landing. The mean of the six measurements
in each trial condition (without foot orthoses, semi-hard
foot orthoses, and hard foot orthoses) was calculated. The
mean values were used for the analysis. The Shapiro-Wilk
test (P > 0.05) was used to check the normality of continu-
ous variables. Continuous variables were presented using
mean and standard deviation (SD). One-way repeated mea-
sures analysis of variance (ANOVA) was used to compare
the three trials. Pairwise comparisons were made using
Bonferroni correction. The η2 was calculated as effect size.
The η2 value greater than 0.25 is considered as large effect
size, while moderate and small effect size are defined as η2
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vale between, 0.09 and 0.01 and lesser than 0.01, respec-
tively (27). Data was analyzed using the statistical package
for social sciences (SPSS) software (IBM Inc, USA) version 22.

4. Results

4.1. Knee Valgus Angle

There was a significant difference in knee joint valgus
angle between the three trials (P < 0.001). Post-hoc tests
showed that knee valgus angle was significantly smaller in
the mid-hard foot orthoses compared to hard foot orthoses
(P < 0.001) or without orthosis trials (P < 0.001). Further-
more, the post hoc test revealed a significant difference in
knee valgus angle between without foot orthoses and hard
foot orthoses conditions (P < 0.001) (Table 1).

4.2. Knee Flexion Angle

There was a significant difference in knee flexion angle
between the three trials (P < 0.001). Post-hoc tests revealed
greater knee flexion angle in the mid-hard foot orthoses
trial, compared to hard foot orthoses (P = 0.000) or with-
out orthoses trials (P = 0.000). Furthermore, the post-hoc
test revealed a significant difference in knee flexion angle
between without foot orthoses and hard foot orthoses tri-
als (P = 0.002) (Table 1).

5. Discussion

To the best of our knowledge, this study was the first
research that assessed the effect of two different foot or-
thoses (mid-hard foot orthoses and hard foot orthoses) on
knee valgus angle during single-leg drop-landing. As we
hypothesized, the mid-hard foot orthoses resulted in a sig-
nificant reduction in maximum knee valgus angle and a
significant increase in maximum knee flexion angle dur-
ing single-leg landing. These findings indicate that foot or-
thoses alter the kinematics of knee during single-leg land-
ing.

5.1. Effects of Foot Orthoses on Knee Valgus Angle

The results of this study demonstrated that mid-hard
foot orthoses reduced knee valgus angle during single-leg
drop landing compared to hard foot orthoses or without
foot orthoses trials. No study has yet compared lower limb
kinematics during landing with different foot orthoses.
Several studies have reported kinematic changes in lower
extremity joints during walking and running due to foot
orthoses (16, 19, 28-30).

Subjects wearing foot orthoses were shown to exhibit
kinematic changes in the frontal (knee), and transverse

(ankle and hip) planes. Foot orthoses were shown to re-
duce knee joint valgus (knee abduction) in a group of fe-
male basketball players (31). Previous studies showed that
little changes in knee valgus angle could extremely alter
knee valgus load. McLean et al. showed that a two-degree
change in knee valgus angle resulted in 40 N.M enhance-
ment in knee valgus moment (32). Furthermore, Chaud-
hari and Andriacchi reported that knee abduction (frontal
plane position) as little as 2° has the potential to cause ACL
injury (33). Our findings suggest that landing with mid-
hard foot orthoses could decrease the valgus load on the
knee through decreasing the knee valgus angle.

5.2. Effects of Foot Orthoses on Knee Flexion Angle

Our research also showed the maximum knee flexion
angle was achieved when landing with a semi-hard foot or-
thosis. Previous studies showed that the maximum dam-
age to ACL occurs at an angle close to full extension (8). In-
crease in knee flexion during sports activities reduces the
force on the ACL. The anterior shear force is the main pre-
dicting factor of the load on ACL (12). When the knee flex-
ion increases, the angle between the patella and tibial ten-
don increases, and the quadriceps contraction force pro-
duces less anterior shear force in the proximal tibia (34).
Therefore, the increase in knee flexion is accompanied by
a decrease in force on the ACL. On the other hand, the in-
crease in knee flexion is accompanied by a reduction in the
posterior ground reaction force. This finding is due to the
direct relation between anterior shear force and posterior
ground reaction force (35). Therefore, it can be concluded
that the increase in knee flexion will reduce the force on
the ACL. Southard et al. used a biomechanical model and
compared biomechanical factors in both normal landing
and landing with a bending knee and showed that tension
on ACL is reduced by 10% in landing mode (36). Concern-
ing findings of previous studies, the findings suggest that
landing with a semi-hard foot orthosis can reduce tension
on the ACL.

5.1. Conclusion

Enhanced knee valgus angle increased the risk of
ACL damage during landing among athletes. Our study
showed that mid-hard foot orthoses decreased KVA. The re-
sults of this study were based on a small number of sub-
jects. There is need for more studies on the effectiveness of
foot orthoses on kinematics in coronal and sagittal planes.
A foot orthosis that has the potential to optimally change
lower limb motion or neuromuscular recruitment mod-
els will be promising in decreasing the incidence of non-
contact ACL damage in a male sportsman.
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Table 1. Mean (SD) of Knee Valgus and Flexion Angles

Variables a Without Foot Orthoses Mid-hard Foot Orthoses Hard Foot Orthoses P-Value η2

Knee valgus (0) 11.34 (0.91) a , b 7.18 (1.27) b , d 9.31 (1.61) a , d < 0.001 0.64

Knee flexion (0) 38.98 (2.05) a , b 48.78 (2.53) b , d 46.36 (1.94) a , d < 0.001 0.79

a η2 was measured as effect size. The cut-off values for large, moderate, and small effect size are 0.25, 0.09, and 0.01, respectively.
b Significant difference with mid-hard foot orthoses trial.
c Significant difference with hard foot orthoses trial.
d Significant difference with without foot orthoses trial.
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