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Influence of the three different types of standby components
on the performance of a k–out–of–n:F system in the dynamic
stress–strength model

Sara Ghanbaria , Abdolhamid Rezaei Roknabadia , and Mahdi Salehib

aDepartment of Statistics, Ferdowsi University of Mashhad, Mashhad, Iran; bDepartment of Mathematics and
Statistics, University of Neyshabur, Neyshabur, Iran

ABSTRACT
We consider the effect of adding three different types of standby compo-
nents to a k–out–of–n:F system based on the dynamic stress–strength
model. For this purpose, the system reliability in the three different types
of standby components, i.e., cold, warm and hot standby components, are
calculated. Also, it is assumed that the stress and the strength components
follow the Weibull distribution and the Weibull process, respectively. The
maximum likelihood estimators of the redundancy system reliability are
obtained. In addition, a simulation study is performed based on the Monte
Carlo method. Finally, the results are illustrated via a practical example
that is the time of successive failures of the air conditioning system of
every member of a fleet of jet airplanes.
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1. Introduction

The stress–strength model is one of the most widely used and essential reliability models. This
concept was introduced by Birnbaum and McCarty (1958) and further developed by Kotz,
Lumelskii, and Pensky (2003). In this model, a system fails if its stress exceeds its strength.
Therefore, the reliability of the system corresponds to the probability that the system’s strength
exceeds its stress (R ¼ PðY > XÞ). There are many applications of stress–strength models in
engineering and medicine. Examples of the application of this model can be found in studies by
Johnson (1988) and Ghanbari, Rezaei Roknabadi, and Salehi (2022). Following are some practical
examples of this model. Suppose that a successful rocket engine is designed with X representing
the highest stress on the piston while Y represents the piston strength of the rocket against
imposed stress. In this case, the stress–strength model’s parameter (R) denotes the probability of
successfully turning on the rocket engine. In another example, consider a dam in which Y is the
dam’s strength against the water flow, and X is the amount of water stress caused by a vigorous
flood. Then R represents the probability of the dam being successful in its design.

In many studies, the stress–strength model’s parameter was estimated based on the assumption
that X and Y are parametrically distributed. Kundu and Raqab (2009) used a three–parameter
Weibull distribution for random variables X and Y and estimated the parameter of this model.
Eryilmaz (2010) considered the reliability of stress–strength model in the general coherent system
by assuming exponential distribution for stress and strength variables. The reliability of this
model was also investigated by Salehi and Ahmadi (2015) using upper–record ranked set
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sampling by assuming exponential distribution for random variables. Other studies have esti-
mated the R parameter for random variables X and Y using record–breaking data (Sadeghpour,
Salehi, and Nezakati 2020a, 2020b). A recent study by Ghanbari et al. (2022) looked at the R par-
ameter of stress–strength model based on progressively Type–II censored samples and the
Marshall-Olkin distribution for the random variables X and Y. A generalized survival signature,
progressively Type–II censored samples, and the copula function have been applied to assess the
reliability of multistate systems (Liu et al. 2018b), Maurya and Tripathi (2020), Kohansal (2019)
and Bai et al. (2018).

The stress and strength values of the system or component change over time in the industry.
Therefore, dynamic modeling is more appropriate than static modeling. In this condition, the sys-
tem reliability is time–dependent. Assume YiðtÞ is the strength of the ith component at time t
and XiðtÞ is the stress imposed on the ith component over time. Then, the lifetime of the ith
component can be considered as the following random variable:

Ti ¼ infft � 0 : XiðtÞ > YiðtÞg: (1)

At the time s, the reliability function of the ith component, RiðsÞ, is the probability of still being
active at the time s, that is, PfTi > sg: As a result of (1), the following equation would be the
reliability

RiðsÞ ¼ PðTi > sÞ ¼ P

�
inf
0�t�s

fYiðtÞ � XiðtÞg > 0

�
: (2)

For more details in this field, we refer the reader to the following works. Eryilmaz (2013a) studied
the stress–strength reliability when the random variable Y is time–dependent, and the random
variable X is constant. In addition, he calculated the probabilistic relationships between variables
for this model. Siju and Kumar (2016) investigated time–dependent variables with a constant
cycle in the stress–strength model. Also, see Yadav (1973), Gopalan and Venkateswarlu (1982),
and Finkelstein (2007).

In this article, we assume the following hypotheses:

i. YiðtÞ is decreasing in time, that is Yiðt2Þ < Yiðt1Þ for all t1 < t2 and i ¼ 1, 2, :::, n: (our reason
for expressing this assumption is that most of the time, in reality, the strength of the compo-
nents decreases over time.)

ii. XiðtÞ ¼ X, that is, the stress entered into the components has been fixed over time
for i ¼ 1, 2, :::, n:

One of the concepts used in this article is the k–out–of–n:F system. We have briefly defined
this system, and stated the research done in this field. As stated in the reliability literature, A sys-
tem consisting of n components is called a k–out–of–n:F system, whenever the system fails if and
only if at least k components fail. This system is widely used in engineering. For more details, see
Bhattacharyya and Johnson (1974), Rao (2014), Dey et al. (2017).

The redundancy of a system is an essential aspect of increasing its reliability. It is possible to
create redundancy in the system by using standby components. Standby components can be clas-
sified as cold, warm, and hot.

Hot standby redundancy starts working when the system is active. In other words, hot standby
redundancy is functional in the standby case. So it may fail in the standby case. Cold standby
redundancy will start when the system fails, so in the standby case, it does not fail. On the other
hand, warm standby redundancy works in a milder environment in the standby case. Thus, this
redundancy component fails in the standby case with less probability than other system compo-
nents. In short, warm standby redundancy is a case between hot and cold redundancy cases. For
more details in this field, we refer the interested readers to Cha, Mi, and Yun (2007) who
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examined the system reliability of three types of standby components using accelerated life test-
ing, Li, Zhang, and Wu (2009) studied the optimal allotment of a general standby component in
a series system with two independent components, and Liu et al. (2018a) investigated the system
reliability with N subsystems so that each subsystem contains M components, only one subsystem
works under stress, and other subsystems are on standby case.Also, see Eryilmaz (2012, 2014), Li
et al. (2013, 2015), Hazra and Nanda (2017), Li and Li (2013), and Zhao et al. (2017).

In this article, we want to investigate the effect of adding standby components to a
k–out–of–n:F system in the dynamic stress–strength model and obtain the maximum likelihood
estimator (MLE) of the stress-strength model parameter. The rest of this article is organized as
follows. Preliminaries are presented in Sec. 2. The system reliability is assessed in Sec. 3 by
assuming that the Y(t) and X follow the Weibull process and the Weibull distribution, respect-
ively. In addition, a sensitivity analysis of the reliability function is done to investigate how vary-
ing parameters of the Weibull process affect it. The maximum likelihood estimator (MLE) for the
parameters is presented in Sec. 4, and a simulation study is conducted in Sec. 5. As a real applica-
tion of this model, Sec. 6 presents a real data set and Sec. 7 provides the conclusions.

2. Preliminaries

The stochastic process fwðtÞ, t � 0g is the Weibull process (WP) with aðtÞ and b parameters in
the case of the one–dimensional distribution if wðtÞ has the following density function (see,
Eryilmaz (2013a))

gWPðx; aðtÞ,bÞ ¼
b

aðtÞb
xb�1 e�ð x

aðtÞÞ
b

, x > 0 , b > 0, (3)

where the shape parameter b is assumed to be time–independent, and the intensity function
aðtÞ ¼ a

t decreases over time. Assume that YiðtÞ � WPða1ðtÞ,bÞ and ZðtÞ � WPða2ðtÞ, kÞ repre-
sent the ith component’s strength and the standby component’s strength at time t, respectively.
Also, the random variable X represents the stress imposed by the system on the components fol-
lowing the Weibull distribution with the density function given by

fWðx; h, sÞ ¼ s
hs

xs�1e�ðxhÞ
s

, x > 0, h > 0, s > 0: (4)

Now, we are interested in calculating the reliability of a k–out–of–n:F system by using the above
assumptions in two cases without and with the presence of a standby component.

3. System reliability

In a k–out–of–n:F system, suppose X is the random variable that denotes the stress imposed by
the system on the components with cumulative distribution function (CDF) FXðxÞ, and it is inde-
pendent of the strength random variables. As well, the random variable YiðtÞ represents the ith
component’s strength at time t with CDF GtðyÞ, and YiðtÞ’s are iid. Then, the lifetime of such a
system without a standby component is equal to the kth order statistics, Tk:n, that is,

Tk:n ¼ inffs > 0, X > Yj1ðsÞ,X > Yj2ðsÞ, :::,X > YjkðsÞg, (5)

where fj1, :::, jkg is a permutation of f1, 2, :::, ng: Therefore, the system reliability function at time
t is obtained from (2) and (5) as follows

Rk:nðtÞ ¼ PðTk:n > tÞ ¼ PðYk:nðtÞ > XÞ

¼
Xk�1

i¼0

n
i

� �ðþ1

0
ðGtðxÞÞi ð�GtðxÞÞn�idFXðxÞ,

(6)
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where Yk:nðtÞ is equal to the kth order statistics of the strength components at time t and
�GtðxÞ ¼ 1� GtðxÞ: Suppose Z(t) represents the standby component’s strength at time t, with
CDF HtðzÞ in the functional case and CDF HtðdðtÞÞ in the standby case, where dðtÞ is an increas-
ing function that follows dð0Þ ¼ 0 and dðtÞ � t: In the standby case, the standby component that
operates under the standard working environment until time t> 0 has a virtual age tðtÞ, com-
pared to the calendar age t, where tðtÞ is an increasing function satisfying tð0Þ ¼ 0 and tðtÞ � t:
For more details, see Li and Li (2013), Li, Zhang, and Wu (2009), and Nezakati and Razmkhah
(2018). It is possible to have both cold and hot standby components if dðtÞ ¼ tðtÞ ¼ 0 and
dðtÞ ¼ tðtÞ ¼ t, respectively.

Based on the assumption that Z is independent of Y1, :::,Yn and T �
n�kþ1 is the system’s

strength equipped with a standby component, Eryilmaz (2013b) calculated the reliability function
for a k–out–of–n:G system with the standby component as follows

�FT �
n�kþ1

ðtÞ ¼ PðT �
n�kþ1 > tÞ

¼ n!�Gk�1ðtÞ
ðn� kÞ!ðk� 1Þ!

ðt
0

�HðtðyÞ þ t � yÞ
�HðtðyÞÞ

��HðdðyÞÞGn�kðyÞdGðyÞ þ PðYn�kþ1:n > tÞ,

(7)

where �Hð�Þ ¼ 1� Hð�Þ and �Gð�Þ ¼ 1� Gð�Þ: Suppose T �
k is the system’s strength equipped with a

standby component. According to (7) and doing some changes, the stress–strength reliability
function for a k–out–of–n:F system with the standby component, denoted by R�ðtÞ, is as follows:

R�ðtÞ ¼ PðT �
k > XÞ ¼ n

n� 1

k� 1

 !ðþ1

0

ðx
0

�Gn�k
t ðxÞ

�HtðtðyÞ þ x� yÞ
�HðtðyÞÞ

� �HðdðyÞÞGk�1
t ðyÞ dGtðyÞ dFXðxÞ þ Rk:nðtÞ:

(8)

From (8), it is clear that the system reliability increases when a standby component is used. Note
that the standby component is subject to the common stress X as the other components. In the
following, we assume that R�

1ðtÞ, R�
2ðtÞ, and R�

3ðtÞ represent system reliability with cold, warm,
and hot standby components, respectively. By assuming, dðyÞ ¼ tðyÞ ¼ 0, dðyÞ ¼ tðyÞ ¼ y

2 and
dðyÞ ¼ tðyÞ ¼ y for the cold, warm, and hot standby components, respectively, and YðtÞ �
WP a1

t , b
� �

, ZðtÞ � WP a2
t , k
� �

, X � Wðh, sÞ, from (6) and (8), we have

Rk:nðtÞ ¼
Xk�1

i¼0

Xi
j¼0

n

i

 !
i

j

 !
s
hs

ð�1Þj
ðþ1

0
xs�1e�ðxhÞ

s

� e�xbðn�iþjÞð t
a1
Þb dx

(9)

and

R�
uðtÞ ¼ Rk:nðtÞ þ n

n� 1

k� 1

 !
btbs

ab1h
s

Xk�1

j¼0

k� 1

j

 !
ð�1Þj

�
ð1
0

ðx
0
e
�
�

ðx�ð3�u
2 ÞyÞt

a2

�k

xs�1yb�1e�ðxhÞ
s

� e�xbðn�kÞð t
a1
Þbe�ybððjþ1Þt

a1
Þb dy dx:

(10)

Figure 1 shows the behavior of R�
uðtÞ, u ¼ 1, 2, 3 over time when parameters are a1¼ 1.5,

a2¼ 0.5, b¼ 1.6, h¼ 1.2, k¼ 2.7, s¼ 2.4, in 2–out–of–10:F, 5–out–of–10:F, and 8–out–of–10:F
systems. From this figure, observed R�

uðtÞ is a decreasing function of time. Also, increasing the
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amount of k increases the value of R�
uðtÞ: In all cases, the inequality of R�

3ðtÞ � R�
2ðtÞ �

R�
1ðtÞ holds.
We now examine the effect of the k and a2 parameters related to the standby component’s

strength on the system reliability.

Lemma 3.1. Suppose that Z1ðtÞ and Z2ðtÞ are the standby components’ strengths of two different
k–out–of–n:F systems by the reliability functions R�1

u ðtÞ and R�2
u ðtÞ, u ¼ 1, 2, 3. Also, ZiðtÞs follow

WP ai2
t , 1

� �
, i ¼ 1, 2. By assuming b¼ 1 and s¼ 1, if a12 < a22, then R�1

u ðtÞ < R�2
u ðtÞ:

Proof. See the Appendix. w

The reliability ratio of a 7–out–of–10:F system equipped with a warm (hot)–to–cold standby
component is less than one, as shown in Figure 2A and B. In other words, the system reliability
with a cold component is higher than system reliability with a warm (hot) component.

Figure 1. Reliability of the three different systems versus time.

Figure 2. Reliability ratio of the 7–out–of–10:F system with (A) the warm–to–cold standby component (B) the hot–to–cold
standby component versus time, respectively, within left, and right charts, when a1 ¼ 1:5, k¼ 1, b¼ 1, h ¼ 1:2, s¼ 1.
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Additionally, the system reliability increases as the a2 parameter increases. As it is displayed,
Figure 2 confirms Lemma 3.1.

In the following, we want to consider the effect of the k parameter on the system reliability.
We used plots of the system reliability ratio with a warm (hot)-to-cold component versus time
and k because we could not directly prove the sign of the derivative of R�

uðtÞ relative to the k. In
addition, we have used the system reliability ratio function instead of the reliability function that
compares the reliability of a system with different types of standby components and expresses the
effect of the k parameter on the system reliability function. Figures 3–6 show the results for some
selected values of the parameters. From these figures, we observed that the reliability ratio of the
system with a warm (hot)–to–cold standby component is less than one. Thus, the system reliabil-
ity with a cold component is higher than system reliability with a warm (hot) component. Also,
the system reliability ratio is a decreasing function of the k. As a result, the system reliability is a
decreasing function of the k.

4. Point estimation of R
In this section, we estimate the system reliability before and after entering a cold, a warm, or a
hot standby component. For this purpose, suppose that we put M systems with n components
into one experiment. Then m systems with n components are observed at times t1, t2, :::, tm: The
strength and stress samples observed are respectively as

YðtÞ ¼
Y11ðt1Þ � � � Y1mðtmÞ

..

. . .
. ..

.

Yn1ðt1Þ � � � YnmðtmÞ

0B@
1CA, X ¼

X1

..

.

Xm

0B@
1CA,

where t ¼ ðt1, t2, :::, tmÞ and YijðtjÞ is ith strength component in the jth system at the time tj. We
now consider the following cases:

Case A: System without the standby component
The likelihood function of the parameters a1, b, h, and s given x and yðtÞ is obtained as (see,
e.g., Balakrishnan and Aggarwala (2000), 117–138)

Figure 3. Reliability ratio of the 7–out–of–10: F system with (A) the warm–to–cold standby component, (B) the hot–to–cold
standby component versus time, respectively, within left, and right charts, when a1 ¼ 0:5, a2 ¼ 1:5, b ¼ 1:6, h ¼ 1:2, s ¼ 2:4:
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L1 ¼
Ym
j¼1

�Yn
i¼1

gWPðyij, a1ðtjÞ, bÞ
�
� fWðxj; h, sÞ: (11)

By placing (3) and (4) into (11), the log–likelihood function follows as

Figure 4. Reliability ratio of the 7–out–of–10: F system with (A) the warm–to–cold standby component, (B) the hot–to–cold
standby component versus time, respectively, within left, and right charts, when a1 ¼ 1:5, a2 ¼ 1:5, b ¼ 1:6, h ¼ 1:2, s ¼ 2:4:

Figure 5. Reliability ratio of the 7–out–of–10: F system with (A) the warm–to–cold standby component, (B) the hot–to–cold
standby component versus time, respectively, within left, and right charts, when a1 ¼ 1:5, a2 ¼ 0:5, b ¼ 0:6, h ¼ 0:2, s ¼ 2:4:

Figure 6. Reliability ratio of the 7–out–of–10: F system with (A) the warm–to–cold standby component, (B) the hot–to–cold
standby component versus time, respectively, within left, and right charts, when a1 ¼ 0:5, a2 ¼ 0:5, b ¼ 0:6, h ¼ 0:2, s ¼ 0:4:
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l1 ¼ ln L1 ¼ nmð lnb� b ln ða1ÞÞ þm ln s�ms ln h

þ nb
Xm
j¼1

ln tj �
Xm
j¼1

� xj
h

�s
� 1

ab1

Xm
j¼1

Xn
i¼1

ðyijtjÞb

þ ðs� 1Þ
Xm
j¼1

ln xj þ ðb� 1Þ
Xm
j¼1

Xn
i¼1

ln yij,

where x ¼ ðx1, :::, xmÞ and y ¼ ðy11, :::, ynmÞ are the observations of X and YðtÞ, respectively.

The MLEs of parameters h and a1 denoted by ĥ and â1, respectively, are calculated as follows

ĥ ¼

Xm

j¼1
xŝj

m

� �1
ŝ

,

â1 ¼

Xm

j¼1

Xn

i¼1
ðyijtjÞb̂

mn

 !1
b̂

:

Also, the maximum likelihood estimators of the parameters s and b, shown by ŝ and b̂,
respectively, are obtained by solving the following nonlinear equations

@l1
@b

¼ nm

�
1
b
� ln ða1Þ

�
þ n
Xm
j¼1

ln tj þ
Xm
j¼1

Xn
i¼1

ln yij

�
Xm
j¼1

Xn
i¼1

�
yijtj
a1

�b

ln
yijtj
a1

� �
,

@l1
@s

¼ m
s
�m ln hþ

Xm
j¼1

ln xj �
Xm
j¼1

�
xj
h

�s

ln
xj
h

� �
:

Thus, R̂k:nðtÞ is derived based on the invariance property of MLE by substituting â1, b̂, ĥ, and
ŝ in (9).

Case B: System with a standby component
The strength and stress samples observed after entering the standby component, respectively,
are equal to

YðtÞ

ZðtÞ

0@ 1A, X ¼
X1

..

.

Xm

0B@
1CA:

where ZðtÞ ¼ ðZ1ðt1Þ,Z2ðt2Þ, :::,ZmðtmÞÞ, and YðtÞ is defined in Part A. The likelihood function
of the parameters a1, a2, b, h, s, and k, given x, yðtÞ, and zðtÞ, is as follows

L2 ¼
Ym
j¼1

�Yn
i¼1

gWPðyij; a1ðtjÞ,bÞ
�

� gWPðzj; a2ðtjÞ, kÞ � fWðxj, h, sÞ:
(12)

By placing (3) and (4) into (12), the log–likelihood function follows as
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l2 ¼ ln ðL2Þ ¼ nmð ln b� b ln ða1ÞÞ þmð ln ðkÞ � k ln ða2Þ

þ ln s� s ln hÞ þ nb
Xm
j¼1

ln tj þ ðb� 1Þ
Xm
j¼1

Xn
i¼1

ln yij

þ k
Xm
j¼1

ln ðtjÞ þ ðk� 1Þ
Xm
j¼1

ln ðzjÞ �
Xm
j¼1

xj
h

� �s

� 1

ab1

Xm
j¼1

Xn
i¼1

ðyijtjÞb þ ðs� 1Þ
Xm
j¼1

ln xj �
Xm
j¼1

�
tjzj
a2

�k

,

where x ¼ ðx1, :::, xmÞ, z ¼ ðz1, :::, zmÞ, and y ¼ ðy11, :::, ynmÞ are the observations of X, ZðtÞ,
and YðtÞ, respectively. Also, â2 is the MLE of the parameter a2. The ĥ, â1, and â2, are calcu-
lated as follows

ĥ ¼

Xm

j¼1
xŝj

m

 !1
ŝ

,

â1 ¼

Xm

j¼1

Xn

i¼1
ðyijtjÞb̂

mn

 !1
b̂

,

â2 ¼

Xm

j¼1
ðzjtjÞk̂

m

 !1
k̂

:

(13)

The k̂ is the MLE of the parameter k. Also, we obtained ŝ, b̂, and k̂ by solving the following
nonlinear equations

@l2
@b

¼ mn

�
1
b
� ln ða1Þ

�
þ n
Xm
j¼1

ln ðtjÞ þ
Xm
j¼1

Xn
i¼1

ln ðyijÞ

�
Xm
j¼1

Xn
i¼1

�
yijtj
a1

�b

ln
yijtj
a1

� �
,

@l2
@s

¼ m
s
�m ln ðhÞ þ

Xm
j¼1

ln ðxjÞ �
Xm
j¼1

ln
xj
h

� ��
xj
h

�s

,

@l2
@k

¼ m

�
1
k
� ln ða2Þ

�
þ
Xm
j¼1

ln ðtjÞ þ
Xm
j¼1

ln ðzjÞ

�
Xm
j¼1

ln
zjtj
a2

� ��
zjtj
a2

�k

:

(14)

Therefore, based on the invariance property of MLE, cR�
uðtÞ is derived by substituting

â1, â2, b̂, ĥ, ŝ and k̂ in (10).

5. Simulation study

In this section, we examined the reliability of a 7–out–of–10: F system without and with cold,
warm, or hot standby components. Also, we used the Monte Carlo simulation method to observe
the effect of the standby component and determine which type of standby component has the
most impact on the system reliability. For this purpose, we used the following algorithm to calcu-
late biases and the mean square errors (MSEs) criteria of the system reliability.
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Algorithm 6.1 Step1: Based on the independent observed samples X � Wðs, hÞ, YðtÞ �
WP b, a1t
� �

, and ZðtÞ � WP k, a2t
� �

, calculate Rk:nðtÞ and R�
uðtÞ, u ¼ 1, 2, 3, using (9) and (10),

respectively.

Step2: Given the independent observed samples in Step 1, calculate ĥ, â1, â2, b̂, ŝ, k̂, R̂k:nðtÞ,
and R̂�

uðtÞ using the formulas given in sec. 4.

Step3: For d ¼ 1, :::,B, repeat Step 2 to derive R̂½d	
k:nðtÞ and R̂�½d	

u ðtÞ, d ¼ 1, :::,B:
Step4: By the following definitions, calculate the Bias and MSE for Rk:nðtÞ and R�ðtÞ, respect-

ively.

MSEðR̂k:nðtÞ,Rk:nðtÞÞ ¼
1
B

XB
d¼1

�
R̂ d½ 	

k:nðtÞ � Rk:nðtÞ
�2

,

BiasðR̂k:nðtÞ,Rk:nðtÞÞ ¼
1
B

XB
d¼1

�
R̂ d½ 	

k:nðtÞ � Rk:nðtÞ
�
,

and

MSEðR̂�
uðtÞ,R�

uðtÞÞ ¼
1
B

XB
d¼1

�
R̂� d½ 	

u ðtÞ � R�
uðtÞ
�2

,

BiasðR̂�
uðtÞ,R�

uðtÞÞ ¼
1
B

XB
d¼1

�
R̂� d½ 	

u ðtÞ � R�
uðtÞ
�
,

where Rk:nðtÞ and R�
uðtÞ are already given by Step 1. We presented the results in Figures 7–12

for B¼ 1000. Also, all combinations used in this section are n¼ 10, k¼ 7, m¼ 15, b ¼ 0.8, 0.9,
1.9, k ¼ 0.5, 0.8, 1.3, a1 ¼ 0.5, 1.5, a2 ¼ 0.8, 0.9, 7, s ¼ 0.5, 2.2, and h ¼ 0.8, 1.2, 1.5.

According to Figures 7, 9, and 11, panel A shows the system reliability and its estimation over
time for different parameters. As expected, the system reliability decreases over time. Moreover,

we have R�
3ðtÞ < R�

2ðtÞ < R�
1ðtÞ and R̂�

3ðtÞ < R̂�
2ðtÞ < R̂�

1ðtÞ: Also, panel B in these figures
shows the bias value of the MLE estimator of R over time. As can be seen from these figures, the
bias value of the MLE estimator of R with and without the standby component is positive, and
we have

BiasðR̂�
1ðtÞ,R�

1ðtÞÞ < BiasðR̂�
2ðtÞ,R�

2ðtÞÞ < BiasðR̂�
3ðtÞ,R�

3ðtÞÞ < BiasðR̂k:nðtÞ,Rk:nðtÞÞ

According to Figures 8, 10, and 12, panel A shows the MSE of the MLE estimator of R� over

time. As expected, MSE ðR̂�
1ðtÞ,R�

1ðtÞÞ reduced after the impact of the standby component. Also

Figure 7. The behavior of the reliability, bias, MSE functions of R� for parameters b¼ 0.9, a1¼1.5, a2¼0.9, k¼ 0.8,
h ¼1.5, s ¼ 2:2:
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MSEðR̂�
1ðtÞ,R�

1ðtÞÞ < MSEðR̂�
2ðtÞ,R�

2ðtÞÞ < MSEðR̂�
3ðtÞ,R�

3ðtÞÞ < MSEðR̂k:nðtÞ,Rk:nðtÞÞ

Also, panel B in these figures shows the MSE of the MLE estimator of R� relative to the system
reliability. Based on these figures, we conclude that MSE decreases after the impact of standby.
All the results obtained from panel A of these Figures are also correct for panel B.

Figure 8. The behavior of the MSE functions of R� for parameters b¼ 0.9, a1¼1.5, a2¼0.9, k¼ 0.8, h¼ 1.5, s ¼ 2:2:

Figure 9. The behavior of the reliability, bias, MSE functions of R� for parameters b ¼ 1:9, a1¼1.5, a2¼7, k¼ 1.3,
h¼ 1.2, s ¼ 2:2:

Figure 10. The behavior of the MSE functions of R� for parameters b¼ 1.9, a1¼1.5, a2¼7, k¼ 1.3, h¼ 1.2, s ¼ 2:2:
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6. Real data analysis

Here, we use a real dataset to illustrate the theoretical results obtained. The dataset is related to
the time of successive failures of the air conditioning system of each member of a fleet of jet air-
planes. Proschan (1963) studied this dataset in other different works. Suppose, Yjðt1Þ, j ¼ 1, :::, 4
indicate the time interval of the first failures of the air conditioning systems of 7909, 7910, 7913,
and 7914 airplanes, respectively. Also, X1 shows the average time interval of the first failures of
air conditioning systems of 7908, 7911, 7915, 8044, and 8045 airplanes. Yjðt2Þ, j ¼ 1, :::, 4 indicate
the time interval of the second failures of the air conditioning systems of 7909, 7910, 7913, 7914
airplanes, respectively. The X2 shows the average time interval of the second failures of air condi-
tioning systems of 7908, 7911, 7915, 8044, and 8045 airplanes. We continue an equivalent process
up to the time interval of the tenth failure of the air conditioning systems, so m¼ 10. Also, differ-
ent air conditioning systems are set for Xj and YiðtjÞ data to reduce and eliminate the dependence
between these variables. Now we can suggest the following scenario to check the quality of the
air conditioning system of each member of a fleet of jet airplanes. If at least 3 of 4 air condition-
ing systems, the failure time interval is less than the average failure time interval on them. Then,
we can conclude that the quality of the air conditioning systems is lower than the average quality.
In other words, air conditioning systems need to be repaired in a short period. Here, We have a
3–out–of–4:F system at times ti, i ¼ 1, :::, 10: The observed data sets X and Y(t) are shown in
(15) and Table 1, respectively.

x0 ¼ 283:2 114 48 95 215 68:8 62:4 113:4 247:6 173
� �

: (15)

and, First, we want to check whether the Weibull distribution is adequate to fit data set X or not.

Figure 11. The behavior of the reliability, bias, MSE functions of R� for parameters b¼ 0.8, a1¼0.5, a2¼0.8, k ¼0.5,
h ¼0.9, s ¼ 0:5:

Figure 12. The behavior of the MSE functions of R� for parameters b ¼1.9, a1¼1.5, a2¼7, k¼ 1.3, h ¼1.2, s ¼ 2:2:
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For this purpose, we use the Kolmogorov-Smirnov (K–S) test. The K–S test statistic and corre-
sponding p–value for X are equal to 0.2307 and 0.5846, respectively. Thus, we can say that the
Weibull distribution is a good distribution for fitting on X data because the p–value of the K–S
test is more than 0.05. Also, we used three stochastic processes to consider the appropriate pro-
cess for Y(t) data. Stochastic processes are Weibull, Gamma, and Wiener. We use Q–Q plots as a
graphical method to check the goodness of fit of the three stochastic processes. Figure 13 shows
the Q–Q plots.

As shown in Figure 13, the Weibull process outperforms the other models. In addition to the
Q–Q plots, the Cramer–von Mises (CVM) goodness of fit test and Akaike’s information criterion
(AIC) and bayesian information criterion (BIC) of the processes are shown in Table 2.

Table 2 also confirms the results of Figure 13. The results of the MLE of parameter RðtÞ are
shown in Table 3.

Assume zðtiÞ, i ¼ 1, :::, 10 is the time interval between the ith failure of airplane 7912s air
conditioning system. Moreover, we assume that the standby component is subjected to the same
stress as the other components. Table 4 shows the data set with cold or hot standby components.

Figure 13. The Q–Q plots of the Y(t) data set under three different processes.

Table 2. The CVM statistic, p–value, AIC, and BIC for the Y(t) data set in Table 1.

CVM statistic p–value AIC BIC

Weibull process 0.0826 0.6795 439.9765 438.3542
Gamma process 0.1239 0.5345 470.1357 482.1287
Wiener process 0.1510 0.4363 521.8702 511.1257

Table 1. Real data display for y(t).

y(t) n Time t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
y1ðtÞ 90 10 60 186 61 49 14 24 56 20
y2ðtÞ 74 57 48 29 502 12 70 21 29 386
y3ðtÞ 97 51 11 4 141 18 142 68 77 80
y4ðtÞ 50 44 102 72 22 39 3 15 197 188

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 13



The previous three stochastic processes are considered to determine the appropriate stochastic
process for Z(t) data. For this purpose, the Q–Q plots of the three stochastic processes are present
in Figure 14. As shown in Figure 14, the Weibull process outperforms the other models. Also,

Table 3. The ML estimates of parameters a, b, s, h and Rk:n:

MLE’s R̂k:nðt1Þ R̂k:nðt2Þ R̂k:nðt3Þ R̂k:nðt4Þ R̂k:nðt5Þ
â ¼ 1:501 b̂ ¼ 0:154 0.5957 0.5581 0.5361 0.5128 0.5085

R̂k:nðt6Þ R̂k:nðt7Þ R̂k:nðt8Þ R̂k:nðt9Þ R̂k:nðt10Þ
ŝ ¼ 0:181 ĥ ¼ 1:512 0.4987 0.4905 0.4835 0.4772 0.4717

Table 4. The data set with a standby component.

Time t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
y1ðtÞ 90 10 60 186 61 49 14 24 56 20
y2ðtÞ 74 57 48 29 502 12 70 21 29 386
y3ðtÞ 97 51 11 4 141 18 142 68 77 80
y4ðtÞ 50 44 102 72 22 39 3 15 197 188
z(t) 28 261 87 7 120 14 62 47 225 71

Figure 14. The Q–Q plots of the Z(t) data set under three different processes.

Table 5. The CVM statistic, p–value, AIC, and BIC for the z(t) data set.

CVM statistic p–value AIC BIC

Weibull process 0.0209 0.9978 114.3476 114.9528
Gamma process 0.0812 0.7813 135.7814 129.2514
Wiener process 0.1871 0.4369 178.9318 182.1819

Table 6. The ML estimates of the parameters a1, a2, b, k, h and R�
1ðtÞ:

MLE’s R̂�
1ðt1Þ R̂�

1ðt2Þ R̂�
1ðt3Þ R̂�

1ðt4Þ R̂�
1ðt5Þ

â1 ¼ 1:501 b̂ ¼ 0:121 0.6572 0.6307 0.6100 0.5918 0.5869
â2 ¼ 1:501 ŝ ¼ 0:174 R̂�

1ðt6Þ R̂k:nðt7Þ R̂�
1ðt8Þ R̂k:nðt9Þ R̂�

1ðt10Þ
k̂ ¼ 0:118 ĥ ¼ 1:251 0.5785 0.5714 0.5653 0.5598 0.5549
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Table 5 shows the values of the AIC, BIC indices, and CVM statistics. This table confirms the
results of Figure 14. The results of the MLE of the parameter R� are presented in Table 6.

Tables 3, 6, and 7 show that the system reliability increases after the impact of the cold or hot
standby components. The inequality R�

1ðtÞ > R�
3ðtÞ holds in all cases. These results precisely

confirmed the results obtained in Sections 3 and 4.

7. Conclusions

In this article, we considered the effect of adding three different types of standby components to
a k–out–of–n:F system in the dynamic stress–strength model. Furthermore, we assumed that the
component’s strength and stress are determined by the Weibull process and the Weibull distribu-
tion, respectively. The system reliability is calculated without (and with) a standby component.
Also, we performed a sensitivity analysis on the parameters of the standby component’s strength
(k and a2) to examine the impact of these parameters on the system reliability. Moreover, an
actual data set is applied to illustrate the procedure. Based on the obtained results, a standby
component increases system reliability. We also concluded that the cold standby component has
more impact on system reliability than other standby components, and the warm standby compo-
nent has more impact than the hot standby component. We suggest the following different items
to generalize the current paper.


 According to our assumptions in the article, the strength components follow the Weibull pro-
cess. Other stochastic processes, such as Gaussian, Gamma, and Pareto, can be studied.


 One can consider a dependency structure between X and Y(t) based on different copulas, e.g.,
FGM, Gumble, Frank, and then investigate the influence of such models on the estimation
of R:
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Appendix

Proof. First we assume that the standby component is a hot component. It is enough to prove that @R�
3ðtÞ

@a2
> 0: For

this purpose, we have
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ka1a22h

Xk
j¼0

k

j

 !
ð�1Þj

A2
j

(16)

The symbol Aj ¼ ð t
a2
þ ðn� kÞ t

a1

� �
þ 1

h þ
jt
a1
Þ, j ¼ 0, :::, k is used for simplicity. Also, it is clear that

1
A0

>
1
A1

> � � � > 1
Ak

(17)

Now it is enough to prove the Eq. (16) is positive. For this purpose, the inductive method is used.
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Step1: if k¼ 1, we have

@R�
3ðtÞ

@a2
¼ nt

a1a22h
1
A2
0
� 1
A2
1

� �
(18)

Since 1
A0

> 1
A1
, (18) is positive.

Step2: if k¼ 2, we have

@R�
3ðtÞ

@a2
¼ nðn� 1Þt

2a1a22h
1
A2
0
� 2
A2
1
þ 1
A2
2

� �
¼ nðn� 1Þt

2a1a22h
1
A2
0
� 1
A2
1

� �
þ 1

A2
2
� 1
A2
1

� �" #
Given (17), we know

1
A2
0
� 1
A2
1
> 0

1
A2
2
� 1
A2
1
< 0

1
A2
0
� 1
A2
1
>

1
A2
2
� 1
A2
1

) @R�
3ðtÞ

@a2
> 0

8>>>>>><>>>>>>:
Stepk�: Now suppose that for the Step k�-1, the Eq. (16) is positive. It is enough to prove that (16) is also positive
for k ¼ k�: For this purpose, we have

nt
n� 1
k� � 1

� �
k�a1a22h

Xk�
j¼0

k�

j

� �
ð�1Þj

A2
j

¼
nt

n� 1
k� � 1

� �
k�a1a22h

�
Xk��1

j¼0

k� � 1
j

� �
ð�1Þj

A2
j

þ
Xk��1

j¼0

k� � 1
j

� �
ð�1Þjþ1

A2
jþ1

24 35
(19)

There are two cases. The first case, the sum of the sentences added is positive

�Pk��1
j¼0

�
k� � 1

j

�
ð�1Þjþ1

A2
jþ1

> 0

�
by

using induction assumption, the Eq. (19) is positive. In the second case, the sum of the sentences added is nega-

tive, i.e.,
Pk��1

j¼0

�
k� � 1

j

�
ð�1Þj
A2
jþ1

> 0: Given that
Pk��1

j¼0

�
k� � 1

j

�
ð�1Þj
A2
j

>
Pk��1

j¼0

�
k� � 1

j

�
ð�1Þj
A2
jþ1

, the Eq. (19) is also

positive. The proof is complete. The similar prove can be used for cold and warm component standby. w
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