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1 Introduction

String theory is a candidate UV complete theory for quantum gravity. The massless spec-
trum of the closed string at the critical dimension, D, contains graviton, B-field, and dila-
ton. The graviton corresponds to the diffeomorphism symmetry of the low energy effective
action. The diffeomorphism and the B-field gauge transformations have been speculated to
combine into the generalized diffeomorphism in the double field theory formalism in which
the manifest T-duality symmetry O(D,D) is assumed in the action before reduction [1–3].
Even though the generalized geometry appears naturally in the string theory effective ac-
tion when one reduces the D-dimensional theory on tours T d, there are obstacles for the
presence of such geometry in string theory before the Kaluza-Klein (KK) reduction [4].

The KK reduction of the tree-level effective actions of the bosonic and heterotic string
theories on tours T d have O(d, d) symmetry at all orders of α′ [5, 6]. The generalized
metric of the internal space appears naturally in the O(d, d) invariant theory. However, in
the KK reduction, one assumes the reduced fields are independent of the internal tours.
Hence, there is no partial derivative and no connection made of the generalized metric in
the O(d, d) invariant theory, e.g., there is no generalized Riemann curvature in the internal
space. There are, however, partial derivatives and connection in the base space. Although
the metric and B-field in the external space can not be combined into a generalized metric,
the connection and the torsion in this space may combine to form connection with torsion,
e.g., there might be torsional Riemann curvature in the external space. In fact, there have
been observations from studying the low energy expansion of the S-matrix elements of four
NS-NS vertex operators at eight-derivative order that the D-dimensional couplings may be
in terms of the generalized Riemann curvature [7].

The gravity couplings at the eight-derivative order, have been first found from the
sphere-level S-matrix element of four-graviton vertex operators [8, 9] as well as from the
σ-model beta function approach [10, 11]. The result in the Einstein frame for constant
dilaton is

S ⊃ γζ(3)
384κ2

∫
d10xe−3φ/2√−G

(
t8t8R

4 + 1
4ε8ε8R

4
)

(1.1)

– 1 –



J
H
E
P
1
2
(
2
0
2
2
)
1
3
9

where γ = α′3

25 and t8 is a tensor which is antisymmetric within a pair of indices and
is symmetric under exchange of the pair of indices. The couplings given by t8t8R

4 have
nonzero contribution at four-graviton level, so they were found from the sphere-level S-
matrix element of four graviton vertex operators [8, 9], whereas the couplings given by
ε8ε8R

4 have nonzero contribution at five-graviton level, i.e., ε8ε8R4 is total derivative at
four-field level. It has been shown in [12] that ε8ε8R4 term is consistent with the sphere-
level S-matrix element of five graviton vertex operators. This term contains the Riemann
curvature as well as the Ricci and the scalar curvatures. For the closed spacetime manifolds,
one has freedom to use arbitrary higher-derivative field redefinitions [13]. If one uses the
field redefinitions that remove all the Ricci and the scalar curvatures, the above action can
be written as

S ⊃ γζ(3)
κ2

∫
d10xe−3φ/2√−G

(
2RαεγεRαβγδRβµεζRδζεµ +Rαβ

εεRαβγδRγ
µ
ε
ζRδζεµ

)
(1.2)

Using other field redefinitions, the action (1.1) can be rewritten in various other forms.
The B-field and dilaton couplings at four-field level have been added to (1.1) by ex-

tending the linearized Riemann curvature R̂ to the generalized Riemann curvature at the
linear order [7],1

R̄µν
αβ = R̂µν

αβ − η[µ
[αφ,ν]

β] + e−φ/2Hµν
[α,β] (1.3)

where the bracket notation is Hµν
[α,β] = 1

2(Hµν
α,β − Hµν

β,α), and comma denotes the
partial derivative. In the string frame, the dilaton term is canceled [14], i.e.,

R̄µναβ =⇒ e−φ/2R̄µναβ (1.4)

where R̄µναβ is the following expression

R̄µναβ(Ω) = R̂µναβ +Hµν[α,β] (1.5)

It is the torsional Riemann curvature at the linear order, i.e., the torsional connection is

Ωα
µν = Γαµν + 1

2H
α
µν (1.6)

where Γαµν is the Levi-Civita connection made of the spacetime metric. The action in-
volving four NS-NS fields at the sphere level in the string frame is then

S ⊃ γζ(3)
384κ2

∫
d10xe−2φ√−G(t8t8R̄4) (1.7)

While the above action is consistent with the contact terms of the four-point functions, it
has been observed in [15] that if one replaces (1.3) into (1.2), the resulting four-H couplings
are not consistent with the corresponding sphere-level S-matrix element. It means that the
Riemann curvature in the gravity couplings in any arbitrary scheme may not be extended
to the torsional Riemann curvature.

1Note that the normalizations of the dilation and B-field here are
√

2 and 2 times the normalization of
the dilaton and B-field in [7], respectively.
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If one uses the KK reduction on a circle, then one finds the above couplings are
invariant under the linearized T-duality [14, 16]. Requiring the eight-derivative couplings
to be invariant under the full T-duality transformations, all NS-NS couplings at order α′3

have been found in [17, 18] for the closed spacetime manifolds in which one has freedom
to use arbitrary field redefinitions. Then it raises the question that is it possible to write
them in terms of the full torsional Riemann curvature?

The natural nonlinear extension of the torsional Riemann curvature (1.5) is

Rµναβ(Ω) = Rµναβ +Hαβ[µ;ν] + 1
2Hµ[α

ρHβ]νρ (1.8)

where the semicolon denotes the covariant derivative. It has been observed in [19] that
there is no scheme in which the NS-NS couplings found in [18] can be written in terms
of only the nonlinear generalized Riemann curvature. In fact, the sphere-level couplings
of two B-fields and three gravitons at eight-derivative order have been found in [20] and
shown that they can be written in terms of the generalized Riemann curvature and torsion
H. In this paper, we are going to show that the metric, B-field and dilaton couplings
at orders α′2, α′3 that have been found in [18, 21] by T-duality for the closed spacetime
manifolds, can be written in a particular scheme in terms of only generalized Riemann
curvature and H. The couplings at order α′ have been written in terms of the generalized
Riemann curvature and H in [22].

An outline of the paper is as follows: In section 2 we show that using the most general
field redefinitions, Bianchi identities and adding total derivative terms, the effective action
of the bosonic string theory at order α′2 can be written in terms of the torsional Riemann
curvature and H. In section 3, we repeat the same calculation for the NS-NS couplings of
type II superstring theory at order α′3. We show that all couplings can appear in only two
structures R4 and H2R3. In subsection 3.1, we show that the coupling in the structure
H2R3 can be simplified greatly when the torsional Riemann curvature is replaced by the
ordinarily Riemann curvature. We show that the resulting H2R3 couplings in which the
indices of the two H contract with each other at most once, are exactly the same as the
couplings found in [20] by the S-matrix method. In section 4, we briefly discuss our results,
and write the couplings at order α′ for open spcetime manifolds which has been found
in [23] in terms of the torsional curvatures, H and ∂Φ.

2 Couplings at order α′2

In this setion we are going to write the coupligs up to order α′2 in terms of the torsional
curvatures. The low energy effective actions of all string theories have the following uni-
versal sector involving the metric, B-field and dilaton at the leading order of α′ in the
string frame:

S0 = − 2
κ2

∫
dDx
√
−Ge−2Φ

(
R+ 4∇aΦ∇aΦ−

1
12H

2
)

(2.1)
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where H is field strength of the B-field. The KK reduction of this theory on tours T d has
O(d, d) symmetry [35]. It can be written in terms of the torsional scalar curvature as

S0 = − 2
κ2

∫
dDx
√
−Ge−2Φ

(
R+ 4∇aΦ∇aΦ + 1

6H
2
)

(2.2)

As can be seen, the H appears in the connection as torsion and also as a coupling in the
action. This action also includes the first derivative of dilaton. There is no field redefinition
and Bianchi identity at this order, however, one can use integration by parts to rewrite the
dilaton coupling in another form as well. So the above effective action is unique up to a
total derivative term.

At the higher orders of α′, one should first use field redefinitions, Bianchi identities and
total derivative terms to find the minimum number of independent terms, and then find
the coefficients of the independent terms by various techniques in the string theory. It has
been shown in [13], that up to these freedoms, there are 8 independent basis at order α′.
The coefficients of the independent terms have been found in [13] by the S-matrix method.
The action in a particular scheme which has no dilaton is

S1 = −2b1
κ2 α′

∫
dDx
√
−Ge−2Φ

(
RαβγδR

αβγδ − 1
2Hα

δεHαβγRβγδε

+ 1
24HεδζH

ε
α
βHδ

β
γHζ

γ
α − 1

8Hαβ
δHαβγHγ

εζHδεζ

)
(2.3)

For the bosonic string theory b1 = 1/4, for the heterotic theory b1 = 1/8 and for the
superstring theory b1 = 0. Note that the Riemann squared term and the first term in the
second line are invariant under field redefinitions and total derivative terms, i.e., these two
terms appear in all other schemes. The other two terms can be written in various other
forms in other schemes. The KK reduction of the above action on a circle, has O(d, d)
symmetry in a particular scheme in the base space [24, 25, 36].

Using field redefinitions, Bianchi identities and total derivative terms, one can write
the above action in terms of the generalized Riemann curvature and H. There are various
schemes to write the above action in terms of the generalized Riemann curvature. The
couplings in one particular scheme has been found in [22]

S1 = −2b1
κ2 α′

∫
dDx
√
−Ge−2Φ

(
RαβγδRαβγδ −Hα

δεHαβγRβγδε −
1
3HεδζH

ε
α
βHδ

β
γHζ

γ
α
)

(2.4)

Note that when one replaces the generalized Riemann curvature (1.8) into the above equa-
tion, one would find no term which has odd number of B-field, and the coefficient of the
H4 term becomes the same as the one in (2.3).

It has been shown in [26] that up to field redefinitions, total derivative terms and the
Bianchi identities, there are 60 independent basis at order α′2 in the bosonic string theory.
The O(1, 1) symmetry of the circle reduction of these 60 couplings can fix all parameters
up to one overall parameter. The couplings at order α′2 depends on the couplings at order
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α′ [27]. The couplings at order α′2 that are correspond to the couplings (2.3) have been
found in [21] by the T-duality in a particular scheme to be

S2 = −2b21
κ2 α′2

∫
dDxe−2Φ√−G

[
− 1

12Hα
δεHαβγHβδ

ζHγ
ικHει

µHζκµ

+ 1
30Hαβ

δHαβγHγ
εζHδ

ικHεζ
µHικµ + 3

10Hαβ
δHαβγHγ

εζHδε
ιHζ

κµHικµ

+13
20Hα

εζHβ
ικHγεζHδικR

αβγδ + 2
5Hα

εζHβε
ιHγζ

κHδικR
αβγδ

+18
5 Hαγ

εHβ
ζιHδζ

κHεικR
αβγδ − 43

5 Hαγ
εHβ

ζιHδε
κHζικR

αβγδ

−16
5 Hαγ

εHβδ
ζHε

ικHζικR
αβγδ − 2Hβε

ιHδζιRα
ε
γ
ζRαβγδ − 2Hβδ

ιHεζιRα
ε
γ
ζRαβγδ

−4
3Rα

ε
γ
ζRαβγδRβζδε + 4

3Rαβ
εζRαβγδRγεδζ + 3Hβ

ζιHεζιR
αβγδRγ

ε
αδ

+2Hβε
ιHδζιR

αβγδRγ
ε
α
ζ + 2HαβεHδζιR

αβγδRγ
εζι + 13

10Hα
γδHβγ

εHδ
ζιHεζι∇β∇αΦ

+13
5 Hγ

εζHδεζRα
γ
β
δ∇β∇αΦ− 52

5 Hβδ
ζHγεζRα

γδε∇β∇αΦ

−26
5 HαγεHβδζR

γδεζ∇β∇αΦ + 13
5 ∇

β∇αΦ∇εHβγδ∇εHα
γδ

+13
10Hβγ

εHβγδHδ
ζι∇αΦ∇ιHαεζ −

13
20Hα

βγHδε
ιHδεζ∇αΦ∇ιHβγζ

+ 1
20Hα

δεHαβγ∇ιHδεζ∇ιHβγ
ζ + 1

5Hα
δεHαβγ∇ζHγει∇ιHβδ

ζ

−6
5Hα

δεHαβγ∇ιHγεζ∇ιHβδ
ζ − 6

5Hαβ
δHαβγ∇ζHδει∇ιHγ

εζ

+17
10Hαβ

δHαβγ∇ιHδεζ∇ιHγ
εζ
]

(2.5)

One can add total derivative terms, use field redefinitions and Bianchi identities to write
the above couplings in various other schemes. In this section we are going to uses these
freedoms to write the couplings in terms of the torsional Riemann curvature and H. Since
the calculations are lengthy we use package "xAct" [28] to perform the calculations in
this paper.

In general, consider an action at order α′n,

Sn = −2α′n

κ2

∫
dDx
√
−Ge−2ΦLn(G,B,Φ) (2.6)

To add arbitrary total derivative terms to the above action, we consider the most general
total derivative terms at order α′n in the string frame which have the following structure:

−2α′n

κ2

∫
dDx
√
−Ge−2ΦJn = −2α′n

κ2

∫
dDx
√
−G∇α(e−2ΦIαn ) (2.7)

where the vector Iαn is all possible covariant and gauge invariant terms at (2n−1)-derivative
level with even parity. The coefficient of each term is arbitrary.

The couplings in Sn are also in a particular field variables. If one interested in changing
only the scheme of the couplings at order α′n, i.e., the couplings at orders α′, · · · , α′(n−1)

– 5 –
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remain fixed, one can change the field variables in the leading order action (2.1) as

Gµν → Gµν + α′nδG(n)
µν

Bµν → Bµν + α′nδB(n)
µν

Φ → Φ + α′nδΦ(n) (2.8)

where the tensors δG(n)
µν , δB(n)

µν and δΦ(n) are all possible covariant and gauge invariant
terms at (2n−2)-derivative level. δG(n)

µν , δΦ(n) contain even-parity terms and δB(n)
µν contains

odd-parity terms. The above field redefinitions produce the following couplings at order α′n:

δS0 = δS0
δGαβ

δG
(n)
αβ + δS0

δBαβ
δB

(n)
αβ + δS0

δΦ δΦ(n) = −2α′n

κ2

∫
dDx
√
−Ge−2Φ

[
(1

2∇γH
αβγ −Hαβ

γ∇γΦ
)
δB

(n)
αβ −

(
Rαβ − 1

4H
αγδHβ

γδ + 2∇β∇αΦ
)
δG

(n)
αβ

−2
(
R− 1

12HαβγH
αβγ + 4∇α∇αΦ− 4∇αΦ∇αΦ

)(
δΦ(n) − 1

4δG
(n)µ

µ

)]
≡ −2α′n

κ2

∫
dDx
√
−Ge−2ΦKn (2.9)

Adding the total derivative terms and the field redefinition terms to the action (2.6), one
finds new action Sn, i.e.,

Sn = −2α′n

κ2

∫
dDx
√
−Ge−2ΦLn(G,B,Φ) (2.10)

where the Lagrangian Ln(G,B,Φ) is related to the Lagrangian Ln(G,B,Φ) as

Ln = Ln + Jn +Kn (2.11)

The action Sn and Sn are physically equivalent. There is no free parameter in Ln(G,B,Φ).
Choosing different values for the arbitrary parameters in Jn, Kn, one would find different
forms of couplings for the Lagrangian Ln. Alternatively, if one chooses a specific form for
the Lagrangian Ln and the above equation has a solution for the arbitrary parameters in
Jn, Kn, then that Lagrangian would be physically the same as Ln. We are looking for
the specific Lagrangian Ln which is in terms of torsional curvature R, H and ∂Φ. There
are different structures for these couplings. We first consider all possible terms, and then
remove some of the structures. If there is a solution for the above equation, it means the
removal of that structures is physically allowed.

To check that the above equation has solution, however, one should write (2.11) in
terms of independent couplings, i.e., one has to impose the following Bianchi identities:

Rα[βγδ] = 0
∇[µRαβ]γδ = 0 (2.12)
∇[µHαβγ] = 0

[∇,∇]O −RO = 0

– 6 –
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To impose these Bianchi identities in gauge invariant form, one may contract the left-hand
side of each Bianchi identity with the NS-NS field strengths and their derivatives to produce
terms at order α′n. The coefficients of these terms are arbitrary. Adding these terms to
the equation (2.11), then one can check whether or not it has a solution. Alternatively,
to impose the Bianchi identities in non-gauge invariant form, one may rewrite the terms
in (2.11) in the local frame in which the first derivative of metric is zero, and rewrite the
terms in (2.11) which have derivatives of H in terms of B-field, i.e., H = dB. In this
way, the Bianchi identities satisfy automatically [26]. This latter approach is easier to
impose the Bianchi identities by computer. Moreover, in this approach one does not need
to introduce another large number of arbitrary parameters to include the Bianchi identities
into the equation (2.11).

For n = 2 case, we find that the equation (2.11) has solution if one removes all couplings
involving ∂Φ, and the torsional Ricci and scalar curvatures. The structure H4R is also
allowed to be removed. We find that not all couplings in the structure H6 can be removed.
One couplings in this structure must be in the L2. There are also at least two couplings
in the structure R3. We then find there are 38 couplings in the structure H2R2. To write
these couplings in terms of independent basis, we first find that there are 25 independent
couplings. They are

H2O +HαβγHµ
βγOαµ +HαβγHµβ

γOαβµν +HαβγHµβγOαβγµνρ (2.13)

where there are 3 basis for O, 4 basis for Oαµ, 11 basis for Oαβµν and 7 basis for Oαβγµνρ,
i.e.,

O = a1RabcdRabcd + a2RacbdRabcd + a7RabcdRcdab
Oαµ = a3RabµcRαabc + a8RbcµaRαabc + a4RαabcRµabc + a11RαabcRµbac
Oαβµν = a10RabµνRαβab + a9RabβνRαµab + a5RαaµbRβaνb + a15RαµabRβaνb

+a13RαaµbRβbνa + a20RαµabRβνab + a6RαaβbRµaνb + a16RαβabRµaνb
+a14RαaβbRµbνa + a21RαβabRµνab + a12RαaµbRνbβa

Oαβγµνρ = a19RαβµaRγaνρ + a24RαβµaRγνρa + a22RαµβaRγνρa + a25RαβγaRµνρa
+a18RαβµaRνaγρ + a17RαµβaRνaγρ + a23RαβµaRνργa (2.14)

where a1, · · · , a25 are some parameters that should be fixed by equating (2.13) with the 38
couplings in the structure H2R2. To write the above basis, we write all contractions of two
H and two torsional Riemann curvature R. To impose the Bianchi identity corresponding
to the torsional Riemann curvature, we go to the local frame in which the Levi-Civita
connection is zero whereas its derivatives are not zero. Then we find the above independent
basis. Note that the above basis have odd- and even-parity terms. We consider only the
even-parity terms of the above basis.

We then equate the 38 terms to be the same as these basis. To solve the resulting
equation, we go to the local frame. We find four parameters a10, a11, a12, a13 remain
arbitrary. We set them to zero and find 17 non-zero terms. For this particular choices for

– 7 –
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these parameters, the couplings become

S2 = −2b21
κ2 α′2

∫
dDxe−2Φ√−G

[
− 4

3R
αβγδRγεαεRδεβε + 4

3Rαγ
εεRαβγδRεεβδ

+HαβγHµ
βγOαµ +HαβγHµβ

γOαβµν +HαβγHµβγOαβγµνρ

−5
6Hαβ

δHαβγHγ
εεHδε

ζHε
ηµHζηµ

]
(2.15)

where the tensors Oαµ,Oαβµν and Oαβγµνρ are the following:

Oαµ = −2
3RabµcRα

abc +RbcµaRαabc −
1
3Rα

abcRµabc

Oαβµν = 2
3RabβνRαµ

ab − 8
3Rα

a
µ
bRβaνb + 8

3Rαµ
abRβaνb −

5
3Rαµ

abRβνab

−20
3 Rα

a
β
bRµaνb + 20

3 Rαβ
abRµaνb −

4
3Rα

a
β
bRµbνa −

3
2Rαβ

abRµνab

Oαβγµνρ = RαβµaRγaνρ −
22
3 Rαβµ

aRγνρa + 8
3Rαµβ

aRγνρa

−4
3Rαβµ

aRνaγρ −
8
3Rαµβ

aRνaγρ − 2RαβµaRνργa (2.16)

Note that there is no coupling in which all indices of one H contract with all indices of
the other H, i.e., no coupling with structure H2O. The couplings (2.15) and the couplings
in (2.5) are the same up to some total derivative terms, field redefinitions and Bianchi
identities.

3 Couplings at order α′3

It has been shown in [17] that, up to field redefinitions, total derivative terms and the
Bianchi identities, there are 872 independent basis at order α′3. The O(1, 1) symmetry of
the circle reduction of these 872 couplings fixes all parameters up to one overall parameter.
They are [18]

S3 = γζ(3)
κ2

∫
d10xe−2φ√−G

(
2RαεγεRαβγδRβµεζRδζεµ +Rαβ

εεRαβγδRγ
µ
ε
ζRδζεµ + · · ·

)
(3.1)

where dots represent 443 terms that involve H and Φ (see [18] for the explicit form of these
couplings). Using field redefinitions, total derivative terms and the Bianchi identities, these
terms have been written in [19] in terms of 249 couplings that do not involve the dilaton,
the Ricci and scalar curvatures. In this section we are going to write the 445 couplings
above in terms of the torsional Riemann curvature and H.

We first consider all couplings involving R, H, ∂Φ. We do not try to find the inde-
pendent basis for them at this point. There are 2900 such couplings. We find that the
equation (2.11) has solution. It means it is possible to write the couplings (3.1) in terms
of R, H, ∂Φ. We then remove the structures that have the dilaton, the torsional Ricci
and the scalar curvatures. The equation (2.11) still has solution. We have also removed

– 8 –
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the couplings in the structures H8, H6R and H4R2. The equation still has solution. So
it means the couplings (3.1) can be written in terms of only R4 and H2R3 where R is the
torsional Riemann curvature. We then choose the couplings in the structure R4 to be in
the following form:

S3 ⊃
γζ(3)
κ2

∫
d10xe−2φ√−G

[
a

(
t8t8R4 + 1

4ε8ε8R
4
)]

(3.2)

where in the second term we remove the terms in the expansion which have the torsional
Ricci and scalar curvatures. The equation (2.11) still has solution, and fixes the overall
factor to be a = 1/384. There remains 489 couplings in the structure H2R3. There is no
coupling in which all indices of one H contracted with all indices of the other H. To write
these 489 couplings in terms of independent basis, we find the basis of H2R3. There are
254 such basis. Equating the 489 couplings to be the same as these basis, and going to the
local frame to find the parameters of the basis, we find 45 parameters to be arbitrary. We
set them to zero, and find 189 non-zero couplings.

The couplings that we have found are the following:

S3 = γζ(3)
κ2

∫
d10xe−2φ√−G

[ 1
384

(
t8t8R4 + 1

4ε8ε8R
4
)

+HαβγHµ
βγQαµ

+HαβγHµν
γQαβµν +HαβγHµνρQαβγµνρ

]
(3.3)

where the tensor Qαµ has the following 17 terms:

−5
6Rae

cdRcdµbRαaeb −
1
8RcdµaReb

cdRαaeb + 1
3RbdacRe

c
µ
dRαaeb + 1

2Ra
bcdRbcedRαaµe

−1
4Ra

bcdRcdebRαaµe−
5
24RecbdRα

aebRµacd + 31
48RcdebR

cd
αaRµaeb + 1

24RcdabR
cd
αeRµaeb

+7
6RcdαbRe

c
a
dRµaeb −

4
3RbcadRe

c
α
dRµaeb + 1

4RebcdRα
aebRµ c

a
d + 1

2RacbdRα
aebRµced

+1
2RadbcRα

aebRµced −RbdacRαaebRµced −
43
24RabcdRα

aebRµecd +RacbdRαaebRµecd

−1
3RbcadRα

aebRµecd (3.4)

The tensor Qαβµν has the following 81 terms:

23
24Rbc

daRdaβνRαµbc −
7
24Rbc

daRdaµνRαβbc −
1
32RbcdaR

bcdaRαβµν −
1
16RbdcaR

bcdaRαβµν

−1
8RbdcaR

bcdaRαµβν −
1
16R

bcdaRdabcRαµβν + 7
3RcdµaRα

bcdRβaνb − 2RbaµdRαbcdRβcνa

+2RbdµaRαbcdRβcνa − 4RdaµbRαbcdRβcνa − 3RbacdRαbµcRβdνa −
3
2RbdcaRα

b
µ
cRβdνa

+7
6RcabdRα

b
µ
cRβdνa +RbcdaRαbcdRβµνa −

1
2RcdbaRα

bcdRβµνa +RbcdaRdaαcRβµνb

+2
3RcaµdRα

bcdRβνba −
5
6RcdµaRα

bcdRβνba −RbdαaRcaµdRβνbc −
19
6 Rb

d
α
aRcdµaRβνbc
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−2
3Rb

d
c
aRdaαµRβνbc − 5RbdαaRdaµcRβνbc −

5
4RdaµcR

da
αbRβνbc + 25

24RdabcR
da
αµRβνbc

+2RbdµaRαbcdRβνca + 4
3RbcdaRα

b
µ
cRβνda −

16
3 RbdcaRα

b
µ
cRβνda + 14

3 RcdbaRα
b
µ
cRβνda

−13
8 RbcdaRαµ

bcRβνda + 5
12RbdcaRαµ

bcRβνda +RdaαbRβbcdRµaνc + 23
3 Rα

bcdRβcνaRµbda

−31
12Rα

bcdRβνcaRµbda + 7
6Rα

bcdRβνbaRµcda + 3RbaβdRαbcdRµcνa −RdaβbRαbcdRµcνa

−10
3 Rα

bcdRβcνaRµdba + 29
12Rα

bcdRβνcaRµdba + 17
3 Rα

bcdRβbcaRµdνa + 2RαbcdRβcbaRµdνa

−6RcaαdRβνbcRµdba −
10
3 RcdαaRβν

bcRµdba + 1
3RbacdRα

b
β
cRµdνa + 3

2RbdcaRα
b
β
cRµdνa

−1
2RcabdRα

b
β
cRµdνa + 1

4Rα
bcdRβcdaRµνba + 1

2RcaβdRα
bcdRµνba −

11
12RcdβaRα

bcdRµνba

+5
6Rb

d
α
aRcaβdRµνbc + 19

12Rb
d
α
aRcdβaRµνbc −

1
12Rb

d
c
aRdaαβRµνbc −

2
3Rb

d
α
aRdaβcRµνbc

+1
4RdaβcR

da
αbRµνbc −

1
16RdabcR

da
αβRµνbc + 2

3RbdβaRα
bcdRµνca −

5
3RbaαdRβ

bcdRµνca

−3
2RdaαbRβ

bcdRµνca −
43
24Rα

bcdRβbcaRµνda + 29
24Rα

bcdRβcbaRµνda −
17
12RbcdaRα

b
β
cRµνda

−1
6RbdcaRα

b
β
cRµνda + 13

16RbcdaRαβ
bcRµνda + 1

4RcdbaRα
bcdRµνβa −

1
2RcabdR

cd
α
aRµνβb

−1
2RcdbaR

cd
α
aRµνβb + 13

6 RcdµaRα
bcdRνaβb −

23
6 Rα

b
µ
cRβbdaRνcda −

3
8Rαµ

bcRβbdaRνcda

+5RαbcdRβbµaRνcda −
3
2Rα

b
β
cRµbdaRνcda + 9

16Rαβ
bcRµbdaRνcda −

10
3 Rα

bcdRµbβaRνcda

+13
3 RbaµdRα

bcdRνcβa −
10
3 RbdµaRα

bcdRνcβa − 4RdaµbRαbcdRνcβa + 7RαbcdRµbcaRνdβa

−10
3 Rα

bcdRµcbaRνdβa + 5RbaαdRβbµcRνdca + 14
3 RbacdRα

b
µ
cRνdβa + 1

6RbdcaRα
b
µ
cRνdβa

−7
2RcabdRα

b
µ
cRνdβa (3.5)

And the tensor Qαβγµνρ has the following 91 terms:

1
48RcaνρRα

bcaRβbγµ + 1
2RcaγρRα

bcaRβbµν + 17
3 RcaγρRαµ

bcRβbνa + 23
24RcaµνR

ca
αbRβbγρ

−5
6RbaµνRα

bcaRβcγρ −
1
6RcaµbRα

bcaRβγνρ + 25
6 RbcνaRα

b
µ
cRβγρa + 31

32RcaµνRα
bcaRβγρb

−13
12Rb

c
α
aRcaµνRβγρb −

15
16RcaµνR

ca
αbRβγρb −

1
4RbaµνRα

bcaRβγρc + 5
6RcaµbRα

bcaRβνγρ

+5
3RbcνaRα

b
µ
cRβργa + 5

4RcaµνRα
bcaRβργb +RbcαaRcaµνRβργb −

13
48RcaµνR

ca
αbRβργb

+1
6RbaµνRα

bcaRβργc + 1
3Rαµ

bcRβbνaRγaρc −
9
16RcaνρRαβ

bcRγbµa −
21
16Rb

a
αβRcaνρRγbµc

−25
24RcaβµR

ca
αbRγbνρ −

4
3RbaβµRα

bcaRγcνρ + 11
3 Rα

b
µ
cRβbνaRγcρa − 2RαbcaRβbµcRγνρa

+10
3 Rα

bcaRβcµbRγνρa −
1
3RbaαcRβ

b
µ
cRγνρa + 19

6 RcaβµRα
bcaRγνρb +RαbcaRβcµaRγνρb

−4
3Rb

c
α
aRcaβµRγνρb + 7

4RcaβµR
ca
αbRγνρb −

10
3 RbaβµRα

bcaRγνρc + 13
3 Rα

bcaRγνρcRµaβb

+5
3Rα

bcaRβργcRµaνb +RαbcaRβνγρRµbca −
10
3 Rα

bcaRγνρcRµbβa −
1
8RcaνρRα

bcaRµbβγ
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+1
6RcaγρRα

bcaRµbβν + 1
2RcaνρRαβ

bcRµbγa −
1
2Rα

bcaRβγρcRµbνa + 7
3Rα

bcaRβργcRµbνa

+3RαbβcRγcρaRµbνa −RcaγρRαβbcRµbνa −
1
4Rb

a
αβRcaνρRµbγc + 1

2Rb
a
αβRcaγρRµbνc

−1
3Rα

bcaRβγνρRµcba −
1
3Rα

bcaRβνγρRµcba + 2RαbcaRγνρbRµcβa −
7
6Rα

bcaRβγρbRµcνa

−5
3Rα

bcaRβργbRµcνa −
14
3 RbaαcRγνρ

bRµcβa + 4
3RbcαaRγνρ

bRµcβa + 19
6 RbaαcRβγρ

bRµcνa

−5
6RbcαaRβγρ

bRµcνa +RbaαcRβργbRµcνa −
2
3RbcαaRβργ

bRµcνa + 1
4Rα

bcaRβbγcRµνρa

+1
4Rα

bcaRβcγbRµνρa + 3
16RcaβγRα

bcaRµνρb −
1
4Rα

bcaRβcγaRµνρb −
1
8Rb

c
α
aRcaβγRµνρb

+ 1
16RcaβγR

ca
αbRµνρb + 1

8RbaβγRα
bcaRµνρc −

19
24RbaαβRγ

b
µ
cRνaρc −

1
2RbaαβRµ

b
γ
cRνaρc

−11
3 Rα

b
µ
cRγcρaRνbβa −

1
4RcaβµR

ca
αbRνbγρ −

1
3RbaβµRα

bcaRνcγρ − 2RαµbcRβbγaRνcρa

− 1
24Rαβ

bcRγbµaRνcρa + 1
3RbaαβRγ

b
µ
cRνρca −

7
3Rα

bcaRβbµcRνργa + 9
2Rα

bcaRβcµbRνργa

−7
6Rα

bcaRµbβcRνργa −
1
6Rα

bcaRµcβbRνργa −
7
3RbcβaRα

b
µ
cRνργa + 10

3 RbaαcRβ
b
µ
cRνργa

−29
6 RcaαbRβ

b
µ
cRνργa −

10
3 RbaαcRµ

b
β
cRνργa + 5

3RcaαbRµ
b
β
cRνργa −

17
6 RcaβµRα

bcaRνργb

−5
6Rα

bcaRβcµaRνργb −
13
6 Rα

bcaRµcβaRνργb −
1
6Rb

c
α
aRcaβµRνργb −

7
24RcaβµR

ca
αbRνργb

−1
6RbaβµRα

bcaRνργc −
5
3RbaαµRβ

b
ν
cRρaγc + 161

96 RcaµνR
ca
αbRρbβγ −

7
3RbaµνRα

bcaRρcβγ

+4
3Rα

b
µ
cRβbνaRρcγa −

5
3Rα

bcaRµbβνRρcγa −RαbβcRµbνaRρcγa (3.6)

Here also the tensors Qαµ, Qαβµν , and Qαβγµνρ have even and odd parities. We consider
only their even-parity parts. The action (3.3) contains only the torsional Riemann curvature
and the torsion tensor H. It is the same as (3.1) up to field redefinitions, total derivative
terms and the Bianchi identities.

We have tried to write the above couplings in terms of the following couplings:

t8t8H
2R3 = tµ1···µ8

8 tν1···ν8
8 Hµ1µ2λHν1ν2

λRµ3µ4ν3ν4Rµ5µ6ν5ν6Rµ7µ8ν7ν8

ε9ε9H
2R3 = −εµ1···µ8αλ

9 εν1···ν8β
9 λHµ1µ2βHν1ν2αRµ3µ4ν3ν4Rµ5µ6ν5ν6Rµ7µ8ν7ν8 (3.7)

where we must remove the torsional Ricci and scalar curvatures in the expansion of the
second line above because there is no such tensors in (3.3). One can write the couplings (3.3)
in terms of above couplings and some extra terms as in Qαµ, Qαβµν , and Qαβγµνρ. However,
we have found that they just change the coefficients of some of the terms in Qαµ, Qαβµν ,
and Qαβγµνρ. One also need to include some other couplings which have the structure
H2Q. Since that form of the couplings is not illuminating, we did not write (3.3) in that
form. The couplings (3.7) have been introduced in [29, 30] to write the couplings of two B-
field and three gravitons found by the S-matrix elements, in terms of these tensors. It has
been observed in [20] that the tree-level couplings can not be written in terms of only these
tensors. In the next subsection, we consider the two B-field and three graviton couplings
in the action (3.3).
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3.1 H2R3 couplings

If one is interested only in the gravity part of the torsional Riemann curvature, the results
simplify greatly. In fact there are only 24 basis for H2R4. The are 2 basis in Q, 3 basis
in Qαµ, 11 basis in Qαβµν and 8 basis in Qαβγµνρ. One can write the couplings in terms
of these 24 independent basis. However, to compare the result with the couplings found
in [20], we write the couplings in terms of t8t8H2R3, ε9ε9H2R3 and the basis Q, Qαµ,
Qαβµν and Qαβγµνρ.

We write the action (3.3) in the following form:

S3 ⊃
γζ(3)
κ2

∫
d10xe−2φ√−G

[ 1
384

(
t8t8R4 + 1

4ε8ε8R
4
)

+ at8t8H
2R3 + bε9ε9H

2R3 (3.8)

+H2Q+HαβγHµ
βγQαµ +HαβγHµν

γQαβµν +HαβγHµνρQαβγµνρ

]
where a, b are two parameters. Note that the curvatures in t8t8R4 and ε8ε8R4 is the
torsional Riemann curvature, whereas in all other terms the curvature is the standard
Riemann curvature. Note that in the expansion of ε8ε8 and ε9ε9 we must remove the Ricci
and scalar curvatures because there is no such tems in (3.3). Equating the above couplings
with the two H2R3 terms in (3.3), and going to the local frame to impose the Bianchi
identity, one finds

a = − 1
192 ; b = − 1

2304 (3.9)

The tensors Qαµ, Qαβµν are zero, and

Q=− 1
18Ra

e
c
fRabcdRbfde + 1

72Rab
efRabcdRcdef

Qαβγµνρ = 1
2Rαβ

bcRµabcRνργ
a+ 1

4Rγ
abcRµναβRρabc−

1
2Rαβb

cRµνa
bRρcγ

a+ 2
3Rµaα

bRνbβ
cRρcγ

a

+ 2RµαabRνβbcRρcγa + 2RµabcRναbcRρβγa − 4RµabcRνaαcRρβγb (3.10)

Apart from the couplings H2Q, the above results are exactly the couplings that have been
found in [20] by the tree-level five-point functions including the correct normalization of the
couplings in the structure HαβγHµνρQαβγµνρ that have been clarified in [31]. The presence
of these terms have been also confirmed by T-duality in [22, 32]. Note that the five-point
S-matrix calculations can not fix the Ricci and scalar curvatures, hence, one should also
remove these terms in the expansion of ε9ε9H2R3 term in [20].

In comparing the results in [20] with the couplings in (3.8) we did not consider the
couplings in the expansion of ε8ε8R4 which involve torsional Ricci and scalar curvatures.
While there are no such terms in (3.8), the couplings in [20] include such terms. If one
replaces the expression (1.8) into those terms, one would find the couplings in (3.8) as well
as the following couplings:

H2Q=H2
(
− 1

12Ra
e
c
fRabcdRbfde + 1

48Rab
efRabcdRcdef

)
(3.11)

HαβγHµ
βγQαµ =HαβγHµ

βγ

(
RbfdeRα

e
c
fRµ

bcd + 1
2Rb

defRcdefRµ
b
α
c + 1

4RcdefRαb
efRµ

bcd
)
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Hence, the above couplings are the difference between the couplings found in [20] and the
couplings (3.8) that are produced by the T-duality. On the other hand, using equations of
motion

0 = R+ 4∇µ∇µφ− 4∇µφ∇µφ−
1
12H

µνρHµνρ

0 = Rµν + 2∇µ∇νφ−
1
4H

ρσ
µ Hνρσ (3.12)

and using the fact that the contact terms of the S-matrix elements are zero for the Ricci and
scalar curvatures, one can write H2 and HαβγHµ

βγ in terms of dilaton. Hence, up to equa-
tions of motion, the difference between the couplings found in [20] and the couplings (3.8)
are some dilaton couplings. In [20], the dilaton is assumed to be constant.

For non-constant dilaton, we expect the S-matrix calculation should reproduce the
couplings in (3.8). In particular, the non-constant dilaton should produce the H2Q terms
in (3.8). These terms might be resulted from residual contact terms in comparing the
massless poles of the field theory including the dilaton pole, and the massless poles of the
sphere-level S-matrix element of two B-field and three graviton vertex operators that did
not considered in [20]. Even though there are no such residual contact terms for constant
dilaton, there might be such contact terms for non-constant dilaton.

4 Discussion

In this paper we have shown that the effective action of the bosonic string theory at order
α′2, and the NS-NS couplings of the type II superstring theory at order α′3 that have
been found in [18, 21] by the T-duality, can be written in terms of the torsional Riemann
curvature and the torsion tensor H, i.e., equations (2.15) and (3.3). In this study we have
used the most general field redefinitions, Bianchi identities and integration by parts. The
arbitrary field redefinitions are allowed only for the spacetime manifolds which have no
boundary. Hence, the couplings (2.2), (2.15) and (3.3) are not background independent.
They are valid only for the background in which the spacetime is a closed manifold. To
find background independent couplings, one must find the couplings for the background in
which the spacetime is an open manifold. We expect the background independent effective
actions to be in terms of the torsional Riemann, Ricci and scalar curvatures, as well as the
torsion H and ∂Φ.

In the presence of boundary, one is not allowed to use the arbitrary field redefinitions
because the field redefinitions must respect the information on the boundary [33]. In this
case, one may still use some restricted field redefinitions [23]. The effective action for the
open spacetime manifold, can not be found by using the restricted field redefinitions on the
couplings (2.2), (2.15) and (3.3) because these couplings are found for the closed spacetime
manifolds. Note that the reverse is true, i.e., if one somehow finds the effective action
for open spacetime manifolds, it would be also valid for the closed spacetime manifold as
well. One may also use the most general field redefinitions which are allowed for the closed
spacetime manifold, to simplify the action for the closed spacetime manifolds, e.g., the
actions (2.2), (2.15) and (3.3).
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To find the effective action for open spacetime manifolds, one may use the restricted
field redefinitions to find all independent couplings involving the metric, B-field and the
dilaton. Then one should reduce them on a circle and impose the O(1, 1) symmetry to fix
the parameters of the independent couplings. In this way, however, the O(1, 1) symmetry
can not fix all independent couplings. One needs also to use the cosmological reduction and
impose the O(d, d) symmetry for fixing all parameters [23]. The result for the couplings at
order α′ has been found in [23] to be

S1 = −2b1
κ2 α

′
∫
d26x
√
−Ge−2Φ

[
R2

GB + 1
24Hα

δεHαβγHβδ
εHγεε −

1
8Hαβ

δHαβγHγ
εεHδεε

+RαβHα
γδHβγδ −

1
12RHαβγH

αβγ − 1
2Hα

δεHαβγRβγδε

+4R∇αΦ∇αΦ− 16Rαβ∇αΦ∇βΦ
]

(4.1)

where R2
GB is the Gauss-Bonnet gravity couplings. The corresponding boundary action has

been also found in [23] in which we are not interested here. The restricted field redefinition
at order α′ is the following:

δG(1)
µν = 0 ; δB(1)

µν = α1Hµνα∇αΦ ; δΦ(1) = α2HαβγH
αβγ + α3∇αΦ∇αΦ (4.2)

where the coefficients α1, α2, α3 are arbitrary parameters. Using this field redefinition it
has been shown in [23] that the above action is physically the same as the action proposed
by Meissner [34]. Using the above field redefinitions and adding total derivative terms, one
can write the action (4.1) in terms of the torsional curvatures as

S1 = −2b1
κ2 α

′
∫
d26x
√
−Ge−2Φ

[
R2

GB −Hαβ
εHγδεRαβγδ −

1
3Hα

δεHαβγHβδ
εHγεε

+ 1
36HαβγH

αβγHδεεH
δεε + 1

3HγδεH
γδεRαβαβ + 2

3HβγδH
βγδ∇αΦ∇αΦ

+4Rβγβγ∇αΦ∇αΦ− 16Rαγβγ∇αΦ∇βΦ
]

(4.3)

Note that the above action contains the couplings (2.2) as well as some other couplings. The
above action is background independent, i.e., it is valid for both open and closed spacetime
manifolds. However, for closed manifolds one can still use arbitrary field redefinitions to
simplify it to the action in (2.2). An alternative way for finding the above action is to first
find all independent couplings involving the torsional Riemann, Ricci and scalar curvatures,
as well as the torsion H and ∂Φ at order α′. Then one should reduce them on a circle
and impose the O(1, 1) symmetry to fix the parameters of the independent couplings. In
that way, one finds all parameters are fixed up to an overall factor, i.e., no need to impose
O(d, d) symmetry on the cosmological reduction of the independent couplings. It would be
interesting to perform this latter approach to find the couplings at orders α′2 and α′3 for
open spacetime manifolds. We expect the torsional Riemann, Ricci and scalar curvatures
at order α′3 to appear as in the first term in (3.2) with no restriction on the expansion
of ε8ε8R4.
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We have seen that using field redefinitions, one can write the spacetime effective actions
in terms of the torsional curvatures. One may ask if it is possible to write the world-volume
couplings of D-brane/O-plane effective actions in terms of the torsional curvatures as well?
Because the field redefinitions are used for the spacetime effective actions to be written
in terms of the torsional curvatures, one is not allowed to use another field redefinitions
for the world-volume couplings. However, since these objects are considered as probe, one
can impose the equations of motion in their world-volume effective actions [37]. Hence,
there is unique form for the world-volume couplings up to spacetime equations of motion,
the world-volume total derivative terms and the Bianchi identities. It turns out that the
world-volume couplings found in the literature are not in terms of the torsional curvatures.
For example, the world-volume couplings at order α′2 in the superstring theory which are
produced by the contact terms of the disk-level S-matrix element of two NS-NS vertex
operators or one NS-NS and one R-R vertex operators at order α′2, are found in [38–40].
They can not be written in terms of the torsional Riemann curvatures. In fact the curvature
terms in these couplings have even number of transverse indices whereas the ∇H terms
have odd number of transverse indices. Hence, it is impossible to combine them into the
torsional Riemann curvature (1.8). However, in these studies, the standard propagators are
assumed for the massless open string gauge field and the transverse scalar fields. Using such
standard propagators, the leading α′ order of the disk-level S-matrix element are reproduced
completely by the DBI action. On the other hand, it has been observed in [41] that the
background independence of the world-volume couplings dictates that the corresponding
propagators in the bosonic string theory are not the standard propagators. The non-
standard propagators produce some extra contact terms [41]. It would be interesting to
examine in details whether the background independence of the world-volume couplings
dictates the propagators in the superstring theory are the standard propagators or not. If
they are not standard ones, then there might be some extra world-volume couplings that
must be added to the couplings found in [38–40]. The result might then be in terms of the
torsional Riemann curvature.
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