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1 Introduction

String theory is a candidate UV complete theory for quantum gravity. The massless spec-
trum of the closed string at the critical dimension, D, contains graviton, B-field, and dila-
ton. The graviton corresponds to the diffeomorphism symmetry of the low energy effective
action. The diffeomorphism and the B-field gauge transformations have been speculated to
combine into the generalized diffeomorphism in the double field theory formalism in which
the manifest T-duality symmetry O(D, D) is assumed in the action before reduction [1-3].
Even though the generalized geometry appears naturally in the string theory effective ac-
tion when one reduces the D-dimensional theory on tours 7%, there are obstacles for the
presence of such geometry in string theory before the Kaluza-Klein (KK) reduction [4].

The KK reduction of the tree-level effective actions of the bosonic and heterotic string
theories on tours 79 have O(d,d) symmetry at all orders of o/ [5, 6]. The generalized
metric of the internal space appears naturally in the O(d, d) invariant theory. However, in
the KK reduction, one assumes the reduced fields are independent of the internal tours.
Hence, there is no partial derivative and no connection made of the generalized metric in
the O(d, d) invariant theory, e.g., there is no generalized Riemann curvature in the internal
space. There are, however, partial derivatives and connection in the base space. Although
the metric and B-field in the external space can not be combined into a generalized metric,
the connection and the torsion in this space may combine to form connection with torsion,
e.g., there might be torsional Riemann curvature in the external space. In fact, there have
been observations from studying the low energy expansion of the S-matrix elements of four
NS-NS vertex operators at eight-derivative order that the D-dimensional couplings may be
in terms of the generalized Riemann curvature [7].

The gravity couplings at the eight-derivative order, have been first found from the
sphere-level S-matrix element of four-graviton vertex operators [8, 9] as well as from the
o-model beta function approach [10, 11]. The result in the Einstein frame for constant

dilaton is
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02‘—? and tg is a tensor which is antisymmetric within a pair of indices and
is symmetric under exchange of the pair of indices. The couplings given by tgtgR* have

where v =

nonzero contribution at four-graviton level, so they were found from the sphere-level S-
matrix element of four graviton vertex operators [8, 9], whereas the couplings given by
egegs R* have nonzero contribution at five-graviton level, i.e., egegR? is total derivative at
four-field level. It has been shown in [12] that egegR* term is consistent with the sphere-
level S-matrix element of five graviton vertex operators. This term contains the Riemann
curvature as well as the Ricci and the scalar curvatures. For the closed spacetime manifolds,
one has freedom to use arbitrary higher-derivative field redefinitions [13]. If one uses the
field redefinitions that remove all the Ricci and the scalar curvatures, the above action can
be written as
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Using other field redefinitions, the action (1.1) can be rewritten in various other forms.
The B-field and dilaton couplings at four-field level have been added to (1.1) by ex-

tending the linearized Riemann curvature R to the generalized Riemann curvature at the

linear order [7],’

Ryu®® = Ry — %0 P + e=9/2 0, [oof) (1.3)

where the bracket notation is le[aﬁ] = %( Hwaﬂ — HWB’“), and comma denotes the

partial derivative. In the string frame, the dilaton term is canceled [14], i.e.,
Ruvas = ¢ *Roap (1.4)
where ﬁuyag is the following expression
Ruvap(2) = Ryuvap + Hufo g (1.5)
It is the torsional Riemann curvature at the linear order, i.e., the torsional connection is

1
Q% =T% + iHaW (1.6)

where I'“,,, is the Levi-Civita connection made of the spacetime metric. The action in-
volving four NS-NS fields at the sphere level in the string frame is then
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While the above action is consistent with the contact terms of the four-point functions, it
has been observed in [15] that if one replaces (1.3) into (1.2), the resulting four-H couplings
are not consistent with the corresponding sphere-level S-matrix element. It means that the
Riemann curvature in the gravity couplings in any arbitrary scheme may not be extended
to the torsional Riemann curvature.

INote that the normalizations of the dilation and B-field here are v/2 and 2 times the normalization of
the dilaton and B-field in [7], respectively.



If one uses the KK reduction on a circle, then one finds the above couplings are
invariant under the linearized T-duality [14, 16]. Requiring the eight-derivative couplings
to be invariant under the full T-duality transformations, all NS-NS couplings at order a3
have been found in [17, 18] for the closed spacetime manifolds in which one has freedom
to use arbitrary field redefinitions. Then it raises the question that is it possible to write
them in terms of the full torsional Riemann curvature?

The natural nonlinear extension of the torsional Riemann curvature (1.5) is
1 P
Rm/aﬁ(Q) = R,ul/aﬂ + Haﬁ[y;y] + §Hu[a HB]Vp (18)

where the semicolon denotes the covariant derivative. It has been observed in [19] that
there is no scheme in which the NS-NS couplings found in [18] can be written in terms
of only the nonlinear generalized Riemann curvature. In fact, the sphere-level couplings
of two B-fields and three gravitons at eight-derivative order have been found in [20] and
shown that they can be written in terms of the generalized Riemann curvature and torsion
H. In this paper, we are going to show that the metric, B-field and dilaton couplings
at orders o2, o/3 that have been found in [18, 21] by T-duality for the closed spacetime
manifolds, can be written in a particular scheme in terms of only generalized Riemann
curvature and H. The couplings at order o/ have been written in terms of the generalized
Riemann curvature and H in [22].

An outline of the paper is as follows: In section 2 we show that using the most general
field redefinitions, Bianchi identities and adding total derivative terms, the effective action

2 can be written in terms of the torsional Riemann

of the bosonic string theory at order o’
curvature and H. In section 3, we repeat the same calculation for the NS-NS couplings of
type II superstring theory at order o/3. We show that all couplings can appear in only two
structures R* and H?R3. In subsection 3.1, we show that the coupling in the structure
H?R3 can be simplified greatly when the torsional Riemann curvature is replaced by the
ordinarily Riemann curvature. We show that the resulting H?R? couplings in which the
indices of the two H contract with each other at most once, are exactly the same as the
couplings found in [20] by the S-matrix method. In section 4, we briefly discuss our results,
and write the couplings at order o for open spcetime manifolds which has been found

in [23] in terms of the torsional curvatures, H and 0®.

2 Couplings at order o’?

In this setion we are going to write the coupligs up to order o/? in terms of the torsional
curvatures. The low energy effective actions of all string theories have the following uni-
versal sector involving the metric, B-field and dilaton at the leading order of o/ in the
string frame:
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where H is field strength of the B-field. The KK reduction of this theory on tours 7% has
O(d,d) symmetry [35]. It can be written in terms of the torsional scalar curvature as
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As can be seen, the H appears in the connection as torsion and also as a coupling in the
action. This action also includes the first derivative of dilaton. There is no field redefinition
and Bianchi identity at this order, however, one can use integration by parts to rewrite the
dilaton coupling in another form as well. So the above effective action is unique up to a
total derivative term.

At the higher orders of o/, one should first use field redefinitions, Bianchi identities and
total derivative terms to find the minimum number of independent terms, and then find
the coeflicients of the independent terms by various techniques in the string theory. It has
been shown in [13], that up to these freedoms, there are 8 independent basis at order «'.
The coefficients of the independent terms have been found in [13] by the S-matrix method.
The action in a particular scheme which has no dilaton is
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For the bosonic string theory by = 1/4, for the heterotic theory by = 1/8 and for the
superstring theory by = 0. Note that the Riemann squared term and the first term in the
second line are invariant under field redefinitions and total derivative terms, i.e., these two
terms appear in all other schemes. The other two terms can be written in various other
forms in other schemes. The KK reduction of the above action on a circle, has O(d,d)
symmetry in a particular scheme in the base space [24, 25, 36].

Using field redefinitions, Bianchi identities and total derivative terms, one can write
the above action in terms of the generalized Riemann curvature and H. There are various
schemes to write the above action in terms of the generalized Riemann curvature. The
couplings in one particular scheme has been found in [22]
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Note that when one replaces the generalized Riemann curvature (1.8) into the above equa-
tion, one would find no term which has odd number of B-field, and the coefficient of the
H* term becomes the same as the one in (2.3).

It has been shown in [26] that up to field redefinitions, total derivative terms and the
Bianchi identities, there are 60 independent basis at order o/? in the bosonic string theory.
The O(1,1) symmetry of the circle reduction of these 60 couplings can fix all parameters
up to one overall parameter. The couplings at order o/ depends on the couplings at order



o' [27]. The couplings at order o’? that are correspond to the couplings (2.3) have been
found in [21] by the T-duality in a particular scheme to be
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One can add total derivative terms, use field redefinitions and Bianchi identities to write
the above couplings in various other schemes. In this section we are going to uses these
freedoms to write the couplings in terms of the torsional Riemann curvature and H. Since
the calculations are lengthy we use package "xAct" [28] to perform the calculations in
this paper.
In general, consider an action at order o/,

2a™ [ p —2¢
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To add arbitrary total derivative terms to the above action, we consider the most general
total derivative terms at order o/” in the string frame which have the following structure:
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where the vector Z% is all possible covariant and gauge invariant terms at (2n—1)-derivative
level with even parity. The coefficient of each term is arbitrary.

The couplings in S,, are also in a particular field variables. If one interested in changing
only the scheme of the couplings at order /", i.e., the couplings at orders o/, - -- , /("1



remain fixed, one can change the field variables in the leading order action (2.1) as
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where the tensors (5G,(3,), 5B,(ﬁ,) and §®(™) are all possible covariant and gauge invariant
terms at (2n—2)-derivative level. 5G,(ﬁ,), 5®™) contain even-parity terms and (5B,(ff,) contains

odd-parity terms. The above field redefinitions produce the following couplings at order o/™:
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Adding the total derivative terms and the field redefinition terms to the action (2.6), one
finds new action S, i.e.,

Sy =~
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where the Lagrangian L, (G, B, ®) is related to the Lagrangian £, (G, B, ®) as

Ly =Ly+ In+ Ky (2.11)

The action S,, and S,, are physically equivalent. There is no free parameter in £,,(G, B, ®).
Choosing different values for the arbitrary parameters in 7,, K, one would find different
forms of couplings for the Lagrangian L,,. Alternatively, if one chooses a specific form for
the Lagrangian L,, and the above equation has a solution for the arbitrary parameters in
In, Kn, then that Lagrangian would be physically the same as £,,. We are looking for
the specific Lagrangian L, which is in terms of torsional curvature R, H and 0®. There
are different structures for these couplings. We first consider all possible terms, and then
remove some of the structures. If there is a solution for the above equation, it means the
removal of that structures is physically allowed.

To check that the above equation has solution, however, one should write (2.11) in
terms of independent couplings, i.e., one has to impose the following Bianchi identities:

Rajgys) = 0
ViuRagls = 0 (2.12)
VipHopgy =0
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To impose these Bianchi identities in gauge invariant form, one may contract the left-hand
side of each Bianchi identity with the NS-NS field strengths and their derivatives to produce
terms at order /™. The coefficients of these terms are arbitrary. Adding these terms to
the equation (2.11), then one can check whether or not it has a solution. Alternatively,
to impose the Bianchi identities in non-gauge invariant form, one may rewrite the terms
in (2.11) in the local frame in which the first derivative of metric is zero, and rewrite the
terms in (2.11) which have derivatives of H in terms of B-field, i.e., H = dB. In this
way, the Bianchi identities satisfy automatically [26]. This latter approach is easier to
impose the Bianchi identities by computer. Moreover, in this approach one does not need
to introduce another large number of arbitrary parameters to include the Bianchi identities
into the equation (2.11).

For n = 2 case, we find that the equation (2.11) has solution if one removes all couplings
involving O®, and the torsional Ricci and scalar curvatures. The structure H*R is also
allowed to be removed. We find that not all couplings in the structure H® can be removed.
One couplings in this structure must be in the Lo. There are also at least two couplings
in the structure R3. We then find there are 38 couplings in the structure H?R?. To write
these couplings in terms of independent basis, we first find that there are 25 independent
couplings. They are

H2O + HPYH" 5,04y + HTHM Onp + HPTH YO gy (2.13)

where there are 3 basis for O, 4 basis for Oq,, 11 basis for Ong,,, and 7 basis for Oagyup,
ie.,

O = a1RawpcaR™ + a2 RacbaR™ + a7 R™R cqa
Oap = a3RappcRa™ + 8RpcuaRa™ + aaRa™ Ryuabe + a11Ra™ Ryupac
Ouppr = a10RabjrRap™ + a9RapsrRap™ + a5Ra" 1" Raavs + a15Rapn ™ Rgavs
+a13Ra 1 R gtwa + 420 RapRgvap + a6 R0 Rpavs + 16 Ras R pavi
+a14R6" 5" Rubva + 421 Rap™ Rywab + a12Ra 1" Rubsa
Oapyuvp = 019Rapu" Royavp + 024 Rapu*Ravpa + a20Raps* Ryvpa + a25Rapy " Rywpa
+a18Rasu" Ruayp + 017Raps “ Ruavp + a23Rappn  Rupya (2.14)

where aq,- -, ags are some parameters that should be fixed by equating (2.13) with the 38
couplings in the structure H2R2. To write the above basis, we write all contractions of two
H and two torsional Riemann curvature R. To impose the Bianchi identity corresponding
to the torsional Riemann curvature, we go to the local frame in which the Levi-Civita
connection is zero whereas its derivatives are not zero. Then we find the above independent
basis. Note that the above basis have odd- and even-parity terms. We consider only the
even-parity terms of the above basis.

We then equate the 38 terms to be the same as these basis. To solve the resulting
equation, we go to the local frame. We find four parameters aig, aii, a2, a1z remain
arbitrary. We set them to zero and find 17 non-zero terms. For this particular choices for



these parameters, the couplings become
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where the tensors Oqy, Oagu and Oy, are the following:
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Note that there is no coupling in which all indices of one H contract with all indices of
the other H, i.e., no coupling with structure H20. The couplings (2.15) and the couplings
in (2.5) are the same up to some total derivative terms, field redefinitions and Bianchi
identities.

3 Couplings at order o’3

It has been shown in [17] that, up to field redefinitions, total derivative terms and the
Bianchi identities, there are 872 independent basis at order o’®. The O(1,1) symmetry of
the circle reduction of these 872 couplings fixes all parameters up to one overall parameter.
They are [18]

3
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where dots represent 443 terms that involve H and & (see [18] for the explicit form of these
couplings). Using field redefinitions, total derivative terms and the Bianchi identities, these
terms have been written in [19] in terms of 249 couplings that do not involve the dilaton,
the Ricci and scalar curvatures. In this section we are going to write the 445 couplings
above in terms of the torsional Riemann curvature and H.

We first consider all couplings involving R, H, 0®. We do not try to find the inde-
pendent basis for them at this point. There are 2900 such couplings. We find that the
equation (2.11) has solution. It means it is possible to write the couplings (3.1) in terms
of R, H, 0®. We then remove the structures that have the dilaton, the torsional Ricci
and the scalar curvatures. The equation (2.11) still has solution. We have also removed



the couplings in the structures H®, HOR and H*R?. The equation still has solution. So
it means the couplings (3.1) can be written in terms of only R* and H>R? where R is the
torsional Riemann curvature. We then choose the couplings in the structure R* to be in
the following form:

1
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where in the second term we remove the terms in the expansion which have the torsional
Ricci and scalar curvatures. The equation (2.11) still has solution, and fixes the overall
factor to be a = 1/384. There remains 489 couplings in the structure H>R3. There is no
coupling in which all indices of one H contracted with all indices of the other H. To write
these 489 couplings in terms of independent basis, we find the basis of H?>R3. There are
254 such basis. Equating the 489 couplings to be the same as these basis, and going to the
local frame to find the parameters of the basis, we find 45 parameters to be arbitrary. We
set them to zero, and find 189 non-zero couplings.
The couplings that we have found are the following:
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where the tensor Q,,, has the following 17 terms:
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The tensor Qup,, has the following 81 terms:
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And the tensor Q,g+,., has the following 91 terms:
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2 R Ra" Ry ¢ ReagtRa R + 2 RucvaRal s R 4 o3 R R Ry
_%RbcaGRcawRBwb - %RcawnmabRﬁwb - inawRabcaRch + %RcaubRabcaRﬂwp
"‘gRbcvaRabucRﬁpva + ZRcawRawame + RbcaaRcawRﬂmb - chachaabRﬁmb
JFéRbawRabcaRﬁmc + %RaubcRBbvaRvam - %RcaVPRaﬁbcR’ybua - %RbaaﬁRcanR'ybuc
_chaﬁuRcaabwaw - %RbaﬂuRamevcup + L;RabucRﬂbuavaw - 2RabcaR5buch9a
+?Rabcanb’cub7€w¢m - %RbaacRBbuchpa + %Rcaﬁunabcavab + Ra bcaRBcuaprb
_gRbcaaRcaﬁ#prb + ZRcaﬁ#Rcaabprb - %ORbaﬁuRabcaprc + ?RabcavacRuaﬁb
ORGP R e Rt + R Ry Rt — 5 R RepeRoyia — R R R
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1 ca 1 (& a 1 ca 7 ca
+6Rca'prab Rub,@u + iRcaupRaﬁb Rub'y - iRab RﬁwpcRubua + gRab Rﬂp’chubua

1 1
+3Rab CR'ycpaRp,bz/a - Rca'praﬁbcRubua - ZRbaaﬁRcaupRubvc + §RbaaBRcaﬂprubyc

_%RabcaRﬁwaucba - %RabcaRﬁvwnucba + QRQbCGprbRuCﬁa - zRabcaRﬁwbR#cva
—%RJ”RW)RW - 14Rbaac7ewfm + Rbmnw,,bR,, ¢+ 9RmeﬁwbR,ﬁf
_gRbcaaRBwbRucva + RbaacRppy Rucva - gRbcaaRﬁmbRucva + zRabcaRBbchwm
+3RabcaRﬁcvawm + %RcaﬁvRabcaRuwb - iRabcaRﬁcvaRuwb - éRbCaaRcaﬁwRuwb

1 1 19
+T6Rcaﬁ7RcaabRyupb + gRba[ﬂ’yRabcaRyupc - ﬂRbaaBvachy pc — RbaaﬁRp ¥ Ru pc

11 1 1
_7RabucR'ycpaRub/3a - RcaﬂuRcaabRub'\/p - 7RbaﬁuRabcaRllc’yp - 2Ro¢u CR,Bb’yaRucpa

3 4 3
R R Rueps = Ronas R u Rupe® — R R g Rupa + TRaP*RpeR
2% af ybu vepa 3 baafB Yy vpce 3 « Bbuc’Nvpya 9 « BepbNvpya
7 ca ca 7 c a 10 c a
_éRab R,ubﬁcRup'ya - gRab RycﬁbRup’ya - gRbcﬁaRabu Rup'y + ?RbaacRBbu Rl/p'y
29 c a 10 c a 5 c a 17 ca
- 6 RcaabRﬁ “w Rl/p'y - *RbaacRubB Rup'y + chaabRub,ﬁ Rup’y - cha,ﬁuRab Rup'yb
5 13 1 7
6 bcaRBcuaRup'yb 6 RabcaRucﬂaRup'yb - gRbcaaRcaﬂuRVp’yb - ﬁRcaﬂuRcaabRvab
1 161
6RbaﬁuRabcaRup'yc - Rbaa#RﬁbucRp ye + RcauuRcaabRp By — RbauuRabcaRpc,B'y
4 c 5 ca c a
+3Rabu R,Bbl/ 7zpc‘yrz - gRab R,ub,@’uRpc'ya - RO/ B R,ubu Rpc‘ya (36)

Here also the tensors Quu, Qaguws and Qagyup have even and odd parities. We consider
only their even-parity parts. The action (3.3) contains only the torsional Riemann curvature
and the torsion tensor H. It is the same as (3.1) up to field redefinitions, total derivative
terms and the Bianchi identities.

We have tried to write the above couplings in terms of the following couplings:

213 __ M1 H8 V1V A
tgts H"R”® = lg lg H,uluz)\Hl/lllz R#3M4V3V4R,LL5H6V5V6R#7M8V7V8

23 _ p1--pga _vi--vsf3
€geg H"R™ = —€y €9 AN o BH v 000 R pravsvs Rus psvsvs Rz psvrvs (3.7)

where we must remove the torsional Ricci and scalar curvatures in the expansion of the
second line above because there is no such tensors in (3.3). One can write the couplings (3.3)
in terms of above couplings and some extra terms as in Qqu, Qapguws and Qagyu,. However,
we have found that they just change the coefficients of some of the terms in Qu,, Qagur,
and Qagyuvp- One also need to include some other couplings which have the structure
H?Q. Since that form of the couplings is not illuminating, we did not write (3.3) in that
form. The couplings (3.7) have been introduced in [29, 30] to write the couplings of two B-
field and three gravitons found by the S-matrix elements, in terms of these tensors. It has
been observed in [20] that the tree-level couplings can not be written in terms of only these
tensors. In the next subsection, we consider the two B-field and three graviton couplings
in the action (3.3).
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3.1 H?R3 couplings

If one is interested only in the gravity part of the torsional Riemann curvature, the results
simplify greatly. In fact there are only 24 basis for H2R*. The are 2 basis in @, 3 basis
in Qay, 11 basis in Qupu, and 8 basis in Qagyuvp- One can write the couplings in terms
of these 24 independent basis. However, to compare the result with the couplings found
in [20], we write the couplings in terms of tstsH>R?, egegH?R> and the basis Q, Qay,
Qapur and Qagyuvp-

We write the action (3.3) in the following form:

1 1
S3 D 7%}23) /d10$6_2¢\/ —G[384 <t8t8R4 + 4€8€8R4> + at8t8H2R3 + b€9€9H2R3 (38)

—|—H2Q + Ho‘ﬁVH“ﬁanM + HaﬁVHWWQaﬁW + Haﬁ'yHupraﬁ'y,uup

where a,b are two parameters. Note that the curvatures in tgtgR* and egegR* is the
torsional Riemann curvature, whereas in all other terms the curvature is the standard
Riemann curvature. Note that in the expansion of egeg and egeg we must remove the Ricci
and scalar curvatures because there is no such tems in (3.3). Equating the above couplings
with the two H2R3 terms in (3.3), and going to the local frame to impose the Bianchi
identity, one finds

1 1
= 150" = "3m (3.9)

The tensors Qay, Qapuw are zero, and
1 1
Q = _ERaechadeRbfde + ERabefRadeRcdef

1 1 1 2
Qaﬁ'wwp = iRaﬁbCR,uabcRyp'ya + ER'yabcR,uuaﬁRpabc - §RaBbCR;u/abRpC'ya + gRuaabRubBCRpC'ya
+ 2R 00" Rupp“ Rpey™ + 2Rpabe Rua" Rpgy™ — 4R pabe R o R ppy" (3.10)

Apart from the couplings H2Q, the above results are exactly the couplings that have been
found in [20] by the tree-level five-point functions including the correct normalization of the
couplings in the structure H*7H HYPQaByuvp that have been clarified in [31]. The presence
of these terms have been also confirmed by T-duality in [22, 32]. Note that the five-point
S-matrix calculations can not fix the Ricci and scalar curvatures, hence, one should also
remove these terms in the expansion of egeg H2R3 term in [20)].

In comparing the results in [20] with the couplings in (3.8) we did not consider the
couplings in the expansion of egegR* which involve torsional Ricci and scalar curvatures.
While there are no such terms in (3.8), the couplings in [20] include such terms. If one
replaces the expression (1.8) into those terms, one would find the couplings in (3.8) as well
as the following couplings:

1 1
H2Q _ HQ( . ERaecfRatbcdefde + 48RabefRabcdRcdef> (3‘11)

1 1
Haﬁ’yHuﬁ’YQau = Haﬂ’yHuﬁ’Y (RbfdeRaech;Lde + ERbdechdefR#bac + 4RcdefRabefRHde>
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Hence, the above couplings are the difference between the couplings found in [20] and the
couplings (3.8) that are produced by the T-duality. On the other hand, using equations of
motion

1 v
0= R+4V, V') — 4V, V"¢ — 5 H' Hy
1
0= Ru + 2V, Vot~ T H{ Hypo (3.12)

and using the fact that the contact terms of the S-matrix elements are zero for the Ricci and
scalar curvatures, one can write H2 and H*%YH* 8y in terms of dilaton. Hence, up to equa-
tions of motion, the difference between the couplings found in [20] and the couplings (3.8)
are some dilaton couplings. In [20], the dilaton is assumed to be constant.

For non-constant dilaton, we expect the S-matrix calculation should reproduce the
couplings in (3.8). In particular, the non-constant dilaton should produce the H?@Q terms
in (3.8). These terms might be resulted from residual contact terms in comparing the
massless poles of the field theory including the dilaton pole, and the massless poles of the
sphere-level S-matrix element of two B-field and three graviton vertex operators that did
not considered in [20]. Even though there are no such residual contact terms for constant
dilaton, there might be such contact terms for non-constant dilaton.

4 Discussion

In this paper we have shown that the effective action of the bosonic string theory at order
o, and the NS-NS couplings of the type II superstring theory at order o/® that have
been found in [18, 21] by the T-duality, can be written in terms of the torsional Riemann
curvature and the torsion tensor H, i.e., equations (2.15) and (3.3). In this study we have
used the most general field redefinitions, Bianchi identities and integration by parts. The
arbitrary field redefinitions are allowed only for the spacetime manifolds which have no
boundary. Hence, the couplings (2.2), (2.15) and (3.3) are not background independent.
They are valid only for the background in which the spacetime is a closed manifold. To
find background independent couplings, one must find the couplings for the background in
which the spacetime is an open manifold. We expect the background independent effective
actions to be in terms of the torsional Riemann, Ricci and scalar curvatures, as well as the
torsion H and 0.

In the presence of boundary, one is not allowed to use the arbitrary field redefinitions
because the field redefinitions must respect the information on the boundary [33]. In this
case, one may still use some restricted field redefinitions [23]. The effective action for the
open spacetime manifold, can not be found by using the restricted field redefinitions on the
couplings (2.2), (2.15) and (3.3) because these couplings are found for the closed spacetime
manifolds. Note that the reverse is true, i.e., if one somehow finds the effective action
for open spacetime manifolds, it would be also valid for the closed spacetime manifold as
well. One may also use the most general field redefinitions which are allowed for the closed
spacetime manifold, to simplify the action for the closed spacetime manifolds, e.g., the
actions (2.2), (2.15) and (3.3).
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To find the effective action for open spacetime manifolds, one may use the restricted
field redefinitions to find all independent couplings involving the metric, B-field and the
dilaton. Then one should reduce them on a circle and impose the O(1,1) symmetry to fix
the parameters of the independent couplings. In this way, however, the O(1,1) symmetry
can not fix all independent couplings. One needs also to use the cosmological reduction and
impose the O(d, d) symmetry for fixing all parameters [23]. The result for the couplings at
order o/ has been found in [23] to be

2b;

S, = o / d*%z/—Ge™2® [RéB +

1
K2

1
o Ha&chﬁ’yHBéeH’YEE _ gHaﬁéHaBVH'yeeHées

1 1
+R*H,° Hp.5 — ERJLLMHW7 — §Ha5€HaﬁWRW€

+4RV,OV® — 16Ra5vaq>v6<1>] (4.1)

where R%B is the Gauss-Bonnet gravity couplings. The corresponding boundary action has
been also found in [23] in which we are not interested here. The restricted field redefinition
at order o is the following:

6G) =0 ; 6BY) = a1HuoVe® ; 600 = apHag H*Y + a3V, dVo0  (4.2)

where the coefficients a1, ag, a3 are arbitrary parameters. Using this field redefinition it
has been shown in [23] that the above action is physically the same as the action proposed
by Meissner [34]. Using the above field redefinitions and adding total derivative terms, one
can write the action (4.1) in terms of the torsional curvatures as

2
5

1
- o / d®x/—Ge2?® [RéB — Hpp H, 5 RO — gﬂaéfﬂaﬁmﬁfﬂm

1 1 2
+%Hamm5m&5m€f + gﬂwem&naﬂaﬁ + gHWHW V, OV

+4RP 5V , ®VD — 16Ra7mva<1>v5q>] (4.3)

Note that the above action contains the couplings (2.2) as well as some other couplings. The
above action is background independent, i.e., it is valid for both open and closed spacetime
manifolds. However, for closed manifolds one can still use arbitrary field redefinitions to
simplify it to the action in (2.2). An alternative way for finding the above action is to first
find all independent couplings involving the torsional Riemann, Ricci and scalar curvatures,
as well as the torsion H and d® at order o/. Then one should reduce them on a circle
and impose the O(1,1) symmetry to fix the parameters of the independent couplings. In
that way, one finds all parameters are fixed up to an overall factor, i.e., no need to impose
O(d, d) symmetry on the cosmological reduction of the independent couplings. It would be
interesting to perform this latter approach to find the couplings at orders o/ and o'3 for
open spacetime manifolds. We expect the torsional Riemann, Ricci and scalar curvatures
at order o3 to appear as in the first term in (3.2) with no restriction on the expansion
of 6868R4.
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We have seen that using field redefinitions, one can write the spacetime effective actions
in terms of the torsional curvatures. One may ask if it is possible to write the world-volume
couplings of D-brane/O-plane effective actions in terms of the torsional curvatures as well?
Because the field redefinitions are used for the spacetime effective actions to be written
in terms of the torsional curvatures, one is not allowed to use another field redefinitions
for the world-volume couplings. However, since these objects are considered as probe, one
can impose the equations of motion in their world-volume effective actions [37]. Hence,
there is unique form for the world-volume couplings up to spacetime equations of motion,
the world-volume total derivative terms and the Bianchi identities. It turns out that the
world-volume couplings found in the literature are not in terms of the torsional curvatures.
For example, the world-volume couplings at order a/? in the superstring theory which are
produced by the contact terms of the disk-level S-matrix element of two NS-NS vertex
operators or one NS-NS and one R-R vertex operators at order a’?, are found in [38-40].
They can not be written in terms of the torsional Riemann curvatures. In fact the curvature
terms in these couplings have even number of transverse indices whereas the VH terms
have odd number of transverse indices. Hence, it is impossible to combine them into the
torsional Riemann curvature (1.8). However, in these studies, the standard propagators are
assumed for the massless open string gauge field and the transverse scalar fields. Using such
standard propagators, the leading o’ order of the disk-level S-matrix element are reproduced
completely by the DBI action. On the other hand, it has been observed in [41] that the
background independence of the world-volume couplings dictates that the corresponding
propagators in the bosonic string theory are not the standard propagators. The non-
standard propagators produce some extra contact terms [41]. It would be interesting to
examine in details whether the background independence of the world-volume couplings
dictates the propagators in the superstring theory are the standard propagators or not. If
they are not standard ones, then there might be some extra world-volume couplings that
must be added to the couplings found in [38-40]. The result might then be in terms of the
torsional Riemann curvature.
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