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Abstract— Recently, with increasing system complexity and 

advanced technology scaling, there is a severe need for accurate 
fault injection (FI) techniques in the reliability evaluation of safety-
critical systems against transient hardware faults, like soft errors. 
Since compiler-based FI techniques operate at a high intermediate 
representation (IR) code, their accuracy is insufficient to assess the 
resilience of safety-critical systems against soft errors. Although 
binary-level FI techniques can provide high accuracy, error 
propagation analysis is challenging due to missing program 
structures. This paper proposes an accurate GCC compiler-based 
FI technique called (GCFI) to assess the resilience of software 
against soft errors. GCFI operates at the back-end of the GCC 
compiler and instruments the very low-level IR code through a 
compiler extension. GCFI only performs instrumentation once 
right after the completion of optimization passes, assuring one-to-
one correspondence of IR code with assembly code. The 
effectiveness of GCFI is evaluated by employing it to conduct many 
FI experiments on different benchmarks compiled for x86 and 
ARM architectures. We compare the results with high-level and 
binary-level software FI techniques to demonstrate the accuracy of 
GCFI. The results show that GCFI can assess the resilience of 
programs against soft errors with high accuracy similar to binary-
level FI. 

Keywords—compiler-based fault injection, transient hardware 
faults, fault tolerance, assessing resilience, compiler extension. 

I. INTRODUCTION 

The advancements in processor technology have permitted 
significant increases in the transistor budgets, which have 
become smaller with low threshold voltages [1, 2]. As a result, 
highly competent and efficient processors are designed to be 
employed in different applications domains, such as high-
performance computing and embedded systems. Regarding the 
latter, the popularity of embedded systems has increased 
dramatically, making these systems be incorporated into various 
applications, from information systems and heavy industries to 
smart cities, distributed systems, and safety-critical embedded. 
Since embedded systems moved to safety-critical applications, 
their reliability has become a dominant concern [2], as the 
technology advancements have negatively affected the ability of 
processors to tolerate faults and increased their vulnerability 
against transient hardware faults, e.g., soft errors [3, 4]. The 
occurrence of soft errors can disturb the system's execution and 
cause severe financial, human, or environmental disasters [2, 5, 
6]. Therefore, employing fault tolerance techniques is 
mandatory to achieve a higher fault coverage and improve the 
safety-critical system's reliability [7, 8]. 

Quantifying the characteristics of the program's resilience to 
soft errors is mandatory before applying fault tolerance 
techniques [1, 7, 9-11]. Moreover, the target program should be 
evaluated to identify high-vulnerable parts against soft errors to 
protect them cost-effectively [6, 10, 12-14]. Thus, applying 
vulnerability assessment techniques such as fault injection (FI) 
is essential to develop fault-tolerant applications. Fault injection 
is a technique widely used to accelerate the occurrence of faults 
in the system under test to discover weak resources [2, 3, 15]. 
Moreover, fault injection facilitates designers to select the 
suitable technique to be applied to the target system among a 
wide variety of fault tolerance techniques.  

Efforts to improve the fault tolerance of safety-critical 
systems date back decades [7]. Since safety-critical applications 
require reliability evaluation at a high level of accuracy, the 
evaluation process that employs analytical models is considered 
inappropriate due to overestimations and thus imprecise results 
[5, 11]. Therefore, fault injection has been widely employed as 
the baseline evaluation approach. Numerous techniques have 
been developed for reliability evaluation. These techniques seek 
to inject real-world radiation-induced errors using hardware- 
and software-based techniques. Regarding the former, namely 
accelerated beam testing [2, 5, 15], the real device is subjected 
to accelerated neutrons to inject faults. Due to evaluating the 
system's reliability in a real-world environment, such techniques 
can provide high accuracy and realistic results. However, due to 
exposing the whole device to radiation, these techniques can 
lead to an overestimation of the reliability indices [2, 4, 5].  

Unlike hardware-based fault injection techniques, fault 
injection can be conducted at the software level using Software 
Implemented Fault Injection (SWIFI) techniques [15, 16]. 
SWIFI techniques can inject transient hardware faults by 
emulating their effects in CPU registers or memory locations. 
Typically, these techniques can be conducted at different levels 
of code granularity: (1) the high-level software, e.g., source code 
or the compiler’s intermediate representation (IR), and (2) the 
low-level software, e.g., the assembly or binary code (machine 
code) [16-18]. The high-level IR compiler-based fault injection 
facilitates mapping the fault injection results to the 
corresponding higher-level program structures. Furthermore, 
fault injection into the program code, variables, data structures, 
and statements can be performed effectively [18, 19]. However, 
details regarding the program execution state are unclear at the 
high-level source code and IR code [20]. Typically, challenges 
such as compiler optimizations, missing program states, and 



 

 

one-to-multiple instruction translation are the main challenges 
that negatively impact the accuracy of high-level software FI 
techniques [17, 18, 21]. 

Several SWIFI techniques have been attempt to overcome 
the limitations of the high-level IR compiler-based FI by 
injecting faults directly into the low-level assembly or binary 
code [15, 18, 20, 22]. Although the binary-level fault injection 
can inject soft errors at high accuracy, they suffer from poor 
portability as they highly depend on architecture-dependent 
instrumentation techniques [21]. Moreover, different high-level 
program structures are not represented at the binary-level code, 
making it is difficult to correlate the obtained fault injection 
results with higher-level corresponding program structures. 

In this paper, we propose a GCC Compiler-based Fault 
Injection (GCFI) tool, which allows faults to be injected into the 
very low-level IR code of GNU Compiler Collection (GCC) 
[23] right before emitting the assembly code. Unlike the 
compiler-based FI techniques that operate at high-level IR code, 
GCFI injected faults into the very low-level GCC IR code, 
namely Register Transfer Language (RTL), which is very close 
to the assembly code. The proposed technique operates at the 
GCC back-end, and hence, it can perform fault injection as 
accurately as the binary-level fault injection. In contrast to the 
binary-level FI, the proposed technique can correlate the fault 
injection results with the corresponding high-level program 
structures. Therefore, GCFI facilitates the soft-error propagation 
analysis as the program structure is available in more detail at 
the back-end of the GCC compiler. One more benefit of GCFI 
is its high portability which facilitates performing fault injection 
across different architectures, various programming languages, 
and a wide range of embedded systems. 

We evaluate the effectiveness of the proposed technique by 
conducting many fault injection experiments on nine diverse 
standard benchmark programs that cover different application 
domains. Moreover, we employ chi-square tests with a 
significance level of 0.05 to evaluate the accuracy of the 
proposed technique against both IR compiler-based and binary-
level FI techniques. Based on the obtained results, GCFI can 
perform fault injection at a high level of accuracy similar to that 
provided by binary-level FI techniques. 

The remainder of this paper is organized as follows. Section 
II surveys related work on software-based fault injection 
techniques. Section IV demonstrates the fault model adopted in 
this paper and gives a general background about the GCC 
compiling pipeline process. Section V describes the 
implementation and workflow of the proposed technique. A 
detailed evaluation is presented in Section VI. Finally, 
conclusions are drawn in Section VII. 

II. RELATED WORK 

Numerous fault injection techniques have been proposed for 
assessing the fault tolerance of systems against soft errors. They 
range from hardware-based FI techniques using physical 
disturbances, e.g., accelerated radiation beams, to emulate fault 
effects through pure software techniques. Regarding the latter, 
fault injection can be performed at different levels of code 
abstraction, e.g., at high-level software or the assembly or 
machine code levels.  

LLFI [16], KULFI [24], and EDFI [25] inject transient 
hardware faults into the high-level IR code of LLVM compiler 
infrastructure. As the LLFI is publically available, it has been 
widely used in reliability evaluation studies. LLFI classifies the 
IR instructions into different types and injects fault, at compile-
time, by instrumenting the high-level IR code. Such fault 
injection techniques are cross-architecture as they rely on IR 
code, which can be moved to different architectures. However, 
some information describing the program's execution state is 
missing at high-level and IR codes, affecting their accuracy. 
Compiler optimization and one-to-multiple instruction 
translation are other challenges that high-level IR code fault 
injection encounters. REFINE [21] is a compiler-based fault 
injection technique similar to LLFI but it performs fault 
injection by instrumenting the LLVM IR code at the back-end 
making its accuracy is better than LLFI.  

Low-level FI techniques inject faults into assembly or binary 
code. Typically, the fault injection takes place after gaining 
control from the target program by employing an appropriate 
interrupt-based mechanism, e.g., software-trap, time-out, 
exception interruption, etc., or using binary instrumentation 
tools. Once the program's control is acquired, it is possible to 
corrupt the content of the CPU registers and the in-memory 
image of the target program. ZOFI [22] and Faultprog [19] are 
binary level techniques that exploit time-out and exception 
trigger techniques for fault injection. LDSFI [26] leverages the 
GNU debugger (GDB) to inject faults into binary code at run 
time. BIFIT [20] and PINFI [18] are examples of 
instrumentation-based FI techniques that rely on dynamic binary 
instrumentation tools, e.g., Intel Pin [27], to perform fault 
injection into binary code. Authors in [17] have proposed 
PINFI-V2 and PINFI-V3 as improved versions of PINFI. 

Several studies have taken advantage of microarchitecture 
simulation and proposed simulation-based fault injection tools. 
GeFIN [28], GemV [29], and Gem5-Fim [30] are fault injection 
techniques that exploit the Gem5 [31], a full-system cycle-
accurate simulator, for early pre-silicon vulnerability 
assessments. They attempt to estimate the system vulnerability 
through fault injection into the microarchitecture-level models 
of processors.  

A comprehensive survey about fault injection techniques can 
be found in the respective survey [15]. 

III. MOTIVATION 

The considerable overheads imposed by conventional 
software-based fault tolerance techniques have prompted the 
researchers to propose cost-effective techniques to satisfy the 
growing strict system requirements, such as performance and 
power consumption. Several studies have highlighted Selective 
Fault-Tolerance (SFT) as an innovative approach to reduce the 
overheads by considering only the high vulnerable instructions 
of the target program [3, 6, 9, 14]. In this context, fault injection 
techniques should accurately identify the most vulnerable 
instructions to be protected. Any defects in the fault injection 
technique, such as those that arise in the high-level compile-
based FI techniques [16, 20, 21], could distort the results and 
lead to under- or over-protection [32]. 



 

 

Consequently, the proposed technique attempts to perform a 
compiler-based fault injection by instrumenting the very low-
level RTL code at the back-end of the GCC compiler. Our 
choice of GCC is motivated by the following reasons. The GNU 
Compiler Collection (GCC) has been widely adopted in 
embedded system development. Because the GCC compiler 
comprises many optimization parameters, improving the 
assembly code can be performed effectively. This includes 
improving memory usage, reducing the execution time, and 
reducing the code size to best satisfy the system's requirements. 
Moreover, GCC considers sophisticated features in modern 
processors, e.g., out-of-order, load/store architecture, and 
available registers, to improve the executable code. At the back-
end of the GCC compiler, the RTL code is lowered and 
optimized to emit the assembly code. The RTL IR code 
describes what each code’s instruction does at a fine-grained 
level of detail. Therefore, instrumenting the very low-level GCC 
RTL code can provide accurate fault injection similar to that 
provided by the binary-level fault injection due to the negligible 
semantical gap between low-level IR at GCC back-end and 
assembly code. 

IV.  THE APPLIED FAULT MODEL AND GCC OVERVIEW 

In this section, we illustrate the fault model employed in this 
study. Moreover, the assumptions with respect to the target 
system are introduced. Next, we give a brief overview of the 
GCC compiler. 

A. Fault model 

It is essential to define a realistic and accurate fault model, 
considering the environment and application under test before 
conducting fault injection campaigns. A fault model should be 
defined in more generic terms considering the environment and 
the target program under test. Moreover, the fault model should 
be as close to real-world faults as possible to precisely imitate 
the real effect of faults to obtain sound results [1, 2, 5].  

In this paper, the fault model we assume is a single bit-flip, 
as it has been widely adopted in many previous studies [2-4, 16, 
22]. Moreover, authors in [1] have discussed the validity of 
using the single bit-flip fault model rather than the multiple bit-
flip model to emulate transient hardware faults. They have 
proved that the single-bit flip fault model is accurate enough to 
be used. We model a bit-flip fault by XORing the running value 
at a bit location of a randomly selected architectural register with 
a 1. For a 32-bit architectural register, a 32-bit mask (bit flips 
ranging from 1 to 32) value can be used for achieving random 
bit-flip by XORing the selected register with the adopted mask. 
For example, one might flip the 3rd bit of the destination register 
of an instruction. We model a hardware fault as a bit-flip to be 
injected in architectural registers (logical registers) since the 
program-level logical register vulnerability factor (PVF) 
correlates with the Architectural Vulnerability Factor (AVF) of 
the physical registers as proven in previous studies [13, 33]. We 
assume that memory is protected by an error correction code 
(ECC) or parity bits. We consider a uniform distribution of fault 
injection campaigns. Related work has made similar 
assumptions [1, 18, 22]. 

B. Overview of GCC 

The GNU Compiler Collection (GCC) is a cross-
architecture, optimizing compiler widely used for different 
programming languages and operating systems running on 
various architectures. As Fig. 1 shows, the compilation pipeline 
of GCC comprises three steps, namely front-end, middle-end, 
and back-end. These steps are responsible for transforming the 
input into various IR codes, i.e., GENERIC, GIMPLE, and 
Register Transfer Language (RTL), toward producing assembly 
code. GENERIC IR code represents an independent 
programming language interface between the front-end and the 
subsequence steps of the compiler. GIMPLE and RTL are used 
during the compiling process for code optimization. Once the 
input is completely transformed, the GCC can emit the 
architecture-dependent assembly code.  

In practice, a significant fraction of injected faults is detected 
and masked by the operating system or the underlying hardware 
[7]. In this context, to gain confident results, the effect of the 
injected faults (i.e., active/inactive faults) should be considered 
because the high number of active faults is likely to make results 
more accurate. Unlike most fault injection techniques, which 
work at the high-level IR code, our proposed technique operates 
at the very low-level GCC RTL code that is highly close to the 
assembly code. Therefore, GCFI can accurately analyze the 
program's resilience against faults. 

V. GCFI: WORKFLOW AND IMPLEMETATION 

GCFI is a compiler-based fault injection technique in which 
it injects faults into different instructions and operands at 
compile time. It leverages the GCC-plugin API provided by the 
GCC compiler since version 4.5 [23] in order to extend the 
compiler to perform fault injection. A GCC-plugin is a loadable 
shared object file that can be used during compiling to extend 
the compiler functionalities and perform custom optimizations. 
GCFI operates at the very low-level GCC compiler’s RTL code. 
The RTL code is a very low-level IR code that can be seen as a 
generic assembly code and can be moved across different 
architectures. Once the target architecture is known, the GCC 
compiler applies the target machine description file, an 
architecture-dependent file describing the machine where the 
compiled code will run, to the RTL representation code to emit 
the assembly code dedicated to the target architecture [23].  

The following subsection illustrates where the proposed 
technique adds the RTL pass in the back-end to perform 
instrumentation for fault injection.  

 
Fig.  1.   Compilation pipeline of GCC compiler and the proposed plugin 

 



 

 

A. Compiler extension 

As Fig. 1 shows, GCFI inserts an RTL instrument pass by 
defining a GCC plugin as a compiler extension at the back-end 
of the GCC compiler. A compiler pass is a transformation code 
invoked by the GCC compiler during the compilation process to 
optimize and transform compilation units, e.g., functions. The 
final assembly code is emitted when the input unit travels 
through all optimization passes. The RTL pass added by the 
GCFI technique is responsible for instrumenting the RTL 
representation code right before the GCC compiler generates the 
assembly code. As the RTL code in the back-end accurately 
represents the low-level machine instructions, GCFI can 
precisely perform instrumentation. GCFI extends the GCC 
compiler by adding an RTL pass, making it a successor pass to 
the pass_free_cfg, an RTL pass executed once before emitting 
the assembly code. To be more specific, GCFI adds the RTL 
pass right before emitting assembly code and after ensuring the 
completion of all optimization passes. Consequently, none of the 
fault injection function calls (Fig. 2) added by GCFI will be 
affected or modified. Therefore, GCFI ensures realistic and 
accurate fault injection. The above-mentioned key points justify 
the selection of the back-end as a location for adding the RTL 
pass as a plugin for the GCFI technique.  

B. GCFI: instrumentation mechanisim 

GCFI instruments the input code, at the RTL level, by adding 
function-call instruction at determined locations, namely fault 
injection sites (Fig. 2). The fault injection function is responsible 
for injecting fault, i.e., bit-flip fault, into a specific operand of a 
randomly selected instruction. Fig. 2 illustrates how GCFI 
instruments the GCC's RTL code. In Fig. 2.a (right), we have an 
exclusive bitwise operation written in RTL code, which means 
“XORing the content of register r3 with the value of 144 and 
storing the result in register r3”. GCFI instruments this RTL 
code by adding a call function instruction just before this RTL 
code. In the fault injection function, Fig. 2.a (left), we inject a 
single bit-flip fault by XORing the content of register r3 with a 
mask with a value of 128 (the most significant bit). Fig. 2.b 
shows the corresponding assembly code (for ARM architecture). 
At run time, before the instrumented instruction (eor r3, r3, 
#144) is executed, the program execution will transfer to the 
fault injection function where the bit-flip fault is explicitly 
injected. 

GCFI instruments the program being compiled once. Thus 
there is no need to recompile (and re-instrument) the program 
version across the experiments. In other words, GCFI runs the 
same instrumented executable file in all the fault injection 
campaigns. At each fault injection experiment, a different 
instrumented fault injection site is selected randomly, based on 
the information provided by the user, to trigger the fault 
injection.  

C. GCFI workflow 

GCFI consists of three consecutive steps. As Fig. 3 
illustrates, in Step 1, GCFI takes multiple arguments as inputs to 
perform code instrumentation at compile-time. GCFI 
instruments the source code by defining and linking an RTL pass 
to the GCC back-end passes. Based on the profiling information 
of the program being compiled, the RTL pass determines the  

 

Fig.  2.   Fault injection by instrumentation 

appropriate instructions and marks them as fault injection sites. 
The profiling information is required to determine the sites 
within the code where the program is more likely to visit during 
execution. Therefore, GCFI instruments only the instructions 
that will be executed during the run time, reducing the size of 
the instrumented code. The RTL pass is implemented as a shared 
library plugin. GCFI uses this plugin at compile-time to 
instrument the code whenever it detects a user-defined fault 
injection site.  

In Step 2, GCFI performs fault injection by running the 
instrumented executable file. While GCFI instruments all the 
fault injection sites in the target program once, multiple faults 
may be injected because of frequently triggering the fault 
injection function. Recall that the candidate fault injection sites 
are determined by offline profiling. GCFI randomly selects one 
instruction, as an injection site, to trigger the fault injection 
function only for it, ensuring one fault injection for every 
execution.  

 

Fig. 3.   Overall GCFI workflow 
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(b) 
 



 

 

When the fault injection campaign is completed, GCFI 
arranges the produced injection results to be analyzed in Step 3. 
Typically, a bit-flip fault in a CPU architectural register can 
affect the program execution and lead to different outcomes. 
GCFI follows previous studies [5, 16, 18, 26] in which the fault-
induced effects were classified into three categories, namely 
Correct, Silent Data Corruption (SDC), and Crash. If the 
program in the presence of a fault produces golden results, fault-
free execution results, the outcome is classified as Correct. If the 
results differ from the golden results, the outcome is classified 
as SDC. In both above cases, the program execution is 
terminated normally. If the program is abnormally terminated 
due to an exception, e.g., segmentation fault, the outcome is 
classified as a Crash. 

Once the fault injection experiments are completed, GCFI 
generates two files for each experiment. These files are an output 
file that stores the result of the program under test, namely Fault 
Injection Output (FIO) and a log file. GCFI employs a Python 
script to iterate over the log and FIO files and examines their 
contents. The script files consider the following parameters: (1) 
the content of the log file, (2) the content and size of the FIO, (3) 
the content of the golden output. Fig. 4 illustrates the algorithm 
employed for classifying the effects of injected faults. When the 
FIO file is identical with the golden output and the 
corresponding log file does not indicate an exception, the fault 
effect category is Correct.  When no exception is logged, but the 
output files (golden and FIO) differ in content, the fault effect is 
classified as SDC. If any exception is logged, the fault effect is 
classified as Crash. 

 
Fig. 4.   Pseudocode describing fault effect classification algorithm 

VI. EXPERIMENTS AND RESULTS 

We evaluate the accuracy of GCFI in injecting faults with 
respect to compiler-based and binary-based fault injection 
techniques. As LLFI is a publicly available open-source tool 
[16], it has been used in several studies [1], [24], [25]. Moreover, 
these studies have shown that LLFI is suitable for studying 
different errors, particularly SDC-causing errors. Regarding 
binary-level fault injection, PINFI [18] is a binary-level fault 
injection technique that can be used for comparison. PINFI 
utilizes the Intel Pin [27], a dynamic binary instrumentation tool, 
to perform fault injection. PINFI instruments a source code that 
is compiled by the LLVM compiler. However, PINFI requires 
some modifications to render it compatible with the recent 
version of the Pin instrumentation tool. These modifications 
have led to contradictory results in different studies, such as [21] 
and [17]. On the other hand, LDSFI [26] represents a high-
accuracy state-of-the-art binary-level fault injection technique. 
LDSFI injects faults into the binary code of software 
applications at runtime. It exploits the GNU Debugger (GDB) 
and injects faults through the breakpoint interruption 
mechanism. Moreover, LDSFI follows a uniformly distributed 
fault model, similar to the fault model we adopt in this study, 
and it relies on the GNU project, like GCFI. Therefore we adopt 
the LDSFI technique as an accurate baseline for comparison. 

A. Benchmark programs and fault injection sites 

GCFI can inject faults into different instructions categories, 
i.e., different fault injection sites. The instruction categories we 
have selected to inject faults are shown in Table I. Subsequently, 
one can conduct fault injection campaigns to a specific category 
of instructions to examine its vulnerability against soft errors. 
We have utilized nine diverse programs from MiBench 
Benchmark Suite version 1.0 [34] to evaluate the effectiveness 
and accuracy of the GCFI technique. The characteristics of these 
programs are shown in Table II. The Mibench suite includes 35 
programs that fall into six categories: automotive, consumer, 
networking, security, office, and telecommunications. We have 
selected the benchmarks from different application domains to 
represent a wide range of scientific applications with different 
characteristics in terms of code size, dynamic executed 
instructions number, inputs, source code implementation, 
functionality, etc. Considering both small and large inputs 
provided by the benchmark suite for programs, the execution 
time required by MiBench programs is short, making them very 
convenient for fault injection experiments that need to be 
conducted extensively. For x86 binaries, GCFI compiles the 
programs with the GCC compiler, whereas the ARM binaries 
are built by the GCC cross-compiler to be executed on a 
simulated ARM system. 

B. Experimental setup 

As an experimental setup, we implement a prototype of 
GCFI that offers a GCC plugin to instrument programs and build 
executable files for both x86 and ARM architectures. This is 
possible because GCFI instruments the architecture-
independent RTL representation code at compile-time. Then, 
the employed compiler builds an executable file using the 
machine description file for a specific architecture. The x86 
binaries are executed on an Intel Core i7 processor, whereas the  



 

 

ARM binaries are executed on a bare-metal ARM architecture 
simulated using the cycle-accurate Gem5 simulator [31]. We 
instruct GCFI, LLFI, and LDSFI to instrument load/store, 
branch, and arithmetic instructions as fault injection sites. 
Overall, we inject 144000 faults (4 instruction types × 9 
benchmarks × 4 ISAs (3 x86 + 1 ARM) × 1000 injections = 
144000 injections). According to [35], our experiments 
correspond to a 1% error margin with a 99% confidence level. 

C. Evaluation results  

The proposed technique classifies the possible outcomes of 
fault injection experiments as follows: Correct, SDC, and Crash.  
Fig. 5 shows a graphical overview of the fault injection results 
obtained by GCFI (x86 and ARM), LLFI, and LSDFI for each 
benchmark and different instruction categories. 

Considering all charts in Fig. 5, for the used benchmark 
programs (the y-axis), the x-axis represents the rate of fault 
injection outcomes, i.e., Correct, Crash, and SDC. As Fig. 5.a to 
Fig. 5.d show, the fault injection outcomes obtained by the 
employed techniques differ across different benchmarks and 
instruction categories, as fault injection into different instruction 
types can impact the target program in different ways [1, 9, 16]. 
Moreover, the fault injection results obtained by GCFI are 
slightly different from those obtained by the accurate binary-
level fault injection. In other words, the proposed technique can 
perform fault injection at high accuracy. 

We further confirm this finding by performing a statistical 
analysis to evaluate the accuracy of GCFI across different 
employed benchmark programs and instruction categories. To 
evaluate the accuracy of GCFI with respect to both high-level 
IR software fault injection and binary-level fault injection, we 
employ chi-squared tests with a significance level of 0.05. To 
this end, we group the fault injection outcomes obtained by each 
technique for each benchmark program to calculate the 
frequencies of fault injection outcomes, as required by the chi-
square tests. For example, considering fault injection performed 
by GCFI into the four instruction categories of bitcount 
benchmark program (Fig. 5.a to Fig. 5.d), the frequencies of 
fault injection outcomes are 776, 2592, and 632 for Correct, 
Crash, and SDC, respectively. For each benchmark program and  

pair of techniques, we calculate the contingency table of the 
frequencies. Since we employ nine benchmark programs, we 
have 18 contingency tables (nine tables for each pair of 
techniques).  

For each benchmark program and pair of techniques, we 
employ the chi-square tests to compare the significance of the 
difference between fault injection outcomes. The chi-square test 
enables us to test whether there is a statistically significant 
difference between the expected frequencies and the observed 
frequencies in different categories, i.e., fault injection outcomes. 
To this end, we adopt a null hypothesis H0 that there is no 
statistically significant difference in fault injection outcome 
frequencies between a pair of techniques. The alternative 
hypothesis H1 is the opposite of the null hypothesis. Therefore, 
if the p-value in the chi-square tests is lower than 0.05 (the 
adopted significance level), we reject the null hypothesis H0 and 
accept the alternative one, which means there is a statistically 
significant difference in fault injection outcome frequencies 
between a pair of techniques. 

Since the binary-level fault injection is the most accurate 
approach, the fault injection outcomes obtained by the LDSFI 
technique are considered the baseline for comparison. With a 
confidence level of 95% and a standard significance level equal 
to 0.05., Table III shows the p-values of the chi-square tests. 
Considering fault injection performed by GCFI and LLFI into 
different benchmark programs, the p-values in the chi-squared 
tests for GCFI versus LLFI are below 0.05, indicating that we 
reject the null hypothesis.  

TABLE III.   P-VALUES OF CHI-SQUARE TESTS FOR EACH PAIR OF 

TECHNIQUES AND EACH BENCHMARK PROGRAMS (P-VALUE > 0.05 INDICATES 

THAT THE ADOPTED NULL HYPOTHESIS CANNOT BE REJECTED) 
Benchmark GCFI vs. LLFI GCFI vs. LDSFI 

bitcount 0.000 0.297 
CRC32 0.000 0.052 
qsort 0.000 0.254 

basicmath 0.000 0.226 
stringsearch 0.006 0.288 

susan 0.000 0.301 
AES 0.000 0.062 

dijkstra 0.000 0.103 
FFT 0.000 0.848 

 

TABLE I.   FAULT INJECTION INSTRUCTION CATEGORIES 

Instruction Category Description 

Arithmetic instructions standard arithmetic operations 
 Load/Store instructions data Transfer instructions 
Branch instructions control flow instructions 
Where to inject? 

All possible instruction operands: (1) immediate value, (2) data registers, and (3) control registers 

 

TABLE II.   SUMMARIZES THE ADOPTED BENCHMARK PROGRAMS AND THEIR CHARACTERISTICS 

Category Benchmark LoC Benchmark program description & Input 

Telecomm 
CRC32 1783 Calculating 32-bit Cyclic Redundancy check on 1.4MB input.pcm file 
FFT 2091 Performing the Fast Fourier Transform on a floating point data 

Security AES 4669 Encrypting an input file (small_input.asc 812 KB) 

Automotive 

basicmath 1985 Performing some mathematical calculation on a set of constants 
bitcount 2129 Counting the number of bits for a given array of integers 
qsort 1642 Sorting data using the quick-sort algorithm (small_input.dat ~53.4 KB) 
susan 1800 Smooths a black & white image of a rectangle 

Network dijkstra 2049 Finding the shortest paths for 2D 100x100 matrix (input.dat ~30 KB) 
Office stringsearch 2195 Searching a word in phrases 
    

 



 

 

As a result, there is a statistically significant difference between 
fault injection outcomes made by GCFI and LLFI. By contrast, 
GCFI is not significantly different from the binary-level LDSFI 
technique. Based on the p-values presented in Table III, we 
cannot reject the null hypothesis because the p-values are higher 
than 0.05 (for all benchmark programs). In other words, the 
results obtained by GCFI and LDSFI are not statistically 
significantly different from each other. Therefore, the proposed 
technique can perform fault injection at the GCC RTL code with 
high accuracy similar to that provided by binary-level fault 
injection techniques. Moreover, the results obtained by GCFI 
are more accurate than those obtained by LLFI, as the GCFI’s 
outcomes are not significantly different from those of 
corresponding binary-level LDSFI’s outcomes.  

Since the LLFI instruments the LLVM high-level IR code, it 
does not assure one-to-one instruction translation between the 
high-level IR code and the assembly code. The authors of LLFI 
have indicated that the gap between the high-level IR code and 
assembly code represents the main reason for the inaccuracy of 
LLFI [16, 18]. As GCFI targets RTL, which is closer than the 
high-level IR code to the underlying hardware on which the 
binaries are executed, a significant fraction of injected faults will 

not be masked by the system layer stack, leading to a high rate 
of faults activation. Our proposed technique works at the very 
low-level GCC compiler’s RTL level. The plugin provided by 
GCFI executes after completing pass_free_cfg RTL pass, which 
means there are no further significant modifications before 
emitting the assembly code. Therefore, GCFI works at the ideal 
point in the compilation process to instrument the code and 
assure one-to-one correspondence of RTL representation code 
with the assembly code. It should be noted that we compare 
GCFI's results with those obtained by LLFI and LDSFI only for 
x86 binaries. We present results for ARM binaries (Fig. 5) to 
demonstrate that GCFI is architecture-independent and can be 
ported to other architectures. 

VII. CONCLUSION 

Assessing the resilience of safety-critical systems against 
soft errors is essential to reveal any defects that may lead to 
severe consequences, e.g., system failures. In this paper, we 
have proposed a compiler-based technique for fault injection 
into the IR code of the GCC compiler. The GCFI technique 
operates at a lower level of abstraction very close to assembly 
code, enabling highly accurate fault injection with the ability to 

 
(a)  fault injection outcomes into load instructions 

 
(b)  fault injection outcomes into store instructions 

 
(c)  fault injection outcomes into branch instructions 

 
(d)  fault injection outcomes into arithmetic instructions 

Fig. 5.   Percentage of fault injection outcomes (Correct, SDC, and Crash) for GCFI, LLFI, and LDSFI. 



 

 

correlate the fault injection results with the corresponding high-
level program structures. The GCFI has been validated by 
comparing its accuracy with state-of-the-art high-level 
compiler-based/binary-level fault injection techniques and 
tested through a large number of injection campaigns. The 
results show that GCFI can perform highly accurate fault 
injection similar to binary-level fault injection. Therefore, 
resilience studies can benefit from GCFI as it best satisfies the 
required level of accuracy. Moreover, GCFI can be customized 
for different architectures with negligible effort related to 
compiler configuration.  
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