
2022 CPSSI 4th International Symposium on Real-Time and Embedded Systems and Technologies (RTEST), Tehran, Iran

978-1-6654-9910-1/22/$31.00 ©2022 IEEE

GCFI: A High Accurate Compiler-based Fault
Injection for Transient Hardware Faults

Hussien Al-haj Ahmad, Yasser Sedaghat
Dependable Distributed Embedded Systems (DDEmS) Laboratory

Computer Engineering Department

Ferdowsi University of Mashhad

Mashhad, Iran
hussin.alhajahmad@mail.um.ac.ir, y_sedaghat@um.ac.ir

Abstract— Recently, with increasing system complexity and

advanced technology scaling, there is a severe need for accurate
fault injection (FI) techniques in the reliability evaluation of safety-
critical systems against transient hardware faults, like soft errors.
Since compiler-based FI techniques operate at a high intermediate
representation (IR) code, their accuracy is insufficient to assess the
resilience of safety-critical systems against soft errors. Although
binary-level FI techniques can provide high accuracy, error
propagation analysis is challenging due to missing program
structures. This paper proposes an accurate GCC compiler-based
FI technique called (GCFI) to assess the resilience of software
against soft errors. GCFI operates at the back-end of the GCC
compiler and instruments the very low-level IR code through a
compiler extension. GCFI only performs instrumentation once
right after the completion of optimization passes, assuring one-to-
one correspondence of IR code with assembly code. The
effectiveness of GCFI is evaluated by employing it to conduct many
FI experiments on different benchmarks compiled for x86 and
ARM architectures. We compare the results with high-level and
binary-level software FI techniques to demonstrate the accuracy of
GCFI. The results show that GCFI can assess the resilience of
programs against soft errors with high accuracy similar to binary-
level FI.

Keywords—compiler-based fault injection, transient hardware
faults, fault tolerance, assessing resilience, compiler extension.

I. INTRODUCTION

The advancements in processor technology have permitted
significant increases in the transistor budgets, which have
become smaller with low threshold voltages [1, 2]. As a result,
highly competent and efficient processors are designed to be
employed in different applications domains, such as high-
performance computing and embedded systems. Regarding the
latter, the popularity of embedded systems has increased
dramatically, making these systems be incorporated into various
applications, from information systems and heavy industries to
smart cities, distributed systems, and safety-critical embedded.
Since embedded systems moved to safety-critical applications,
their reliability has become a dominant concern [2], as the
technology advancements have negatively affected the ability of
processors to tolerate faults and increased their vulnerability
against transient hardware faults, e.g., soft errors [3, 4]. The
occurrence of soft errors can disturb the system's execution and
cause severe financial, human, or environmental disasters [2, 5,
6]. Therefore, employing fault tolerance techniques is
mandatory to achieve a higher fault coverage and improve the
safety-critical system's reliability [7, 8].

Quantifying the characteristics of the program's resilience to
soft errors is mandatory before applying fault tolerance
techniques [1, 7, 9-11]. Moreover, the target program should be
evaluated to identify high-vulnerable parts against soft errors to
protect them cost-effectively [6, 10, 12-14]. Thus, applying
vulnerability assessment techniques such as fault injection (FI)
is essential to develop fault-tolerant applications. Fault injection
is a technique widely used to accelerate the occurrence of faults
in the system under test to discover weak resources [2, 3, 15].
Moreover, fault injection facilitates designers to select the
suitable technique to be applied to the target system among a
wide variety of fault tolerance techniques.

Efforts to improve the fault tolerance of safety-critical
systems date back decades [7]. Since safety-critical applications
require reliability evaluation at a high level of accuracy, the
evaluation process that employs analytical models is considered
inappropriate due to overestimations and thus imprecise results
[5, 11]. Therefore, fault injection has been widely employed as
the baseline evaluation approach. Numerous techniques have
been developed for reliability evaluation. These techniques seek
to inject real-world radiation-induced errors using hardware-
and software-based techniques. Regarding the former, namely
accelerated beam testing [2, 5, 15], the real device is subjected
to accelerated neutrons to inject faults. Due to evaluating the
system's reliability in a real-world environment, such techniques
can provide high accuracy and realistic results. However, due to
exposing the whole device to radiation, these techniques can
lead to an overestimation of the reliability indices [2, 4, 5].

Unlike hardware-based fault injection techniques, fault
injection can be conducted at the software level using Software
Implemented Fault Injection (SWIFI) techniques [15, 16].
SWIFI techniques can inject transient hardware faults by
emulating their effects in CPU registers or memory locations.
Typically, these techniques can be conducted at different levels
of code granularity: (1) the high-level software, e.g., source code
or the compiler’s intermediate representation (IR), and (2) the
low-level software, e.g., the assembly or binary code (machine
code) [16-18]. The high-level IR compiler-based fault injection
facilitates mapping the fault injection results to the
corresponding higher-level program structures. Furthermore,
fault injection into the program code, variables, data structures,
and statements can be performed effectively [18, 19]. However,
details regarding the program execution state are unclear at the
high-level source code and IR code [20]. Typically, challenges
such as compiler optimizations, missing program states, and

one-to-multiple instruction translation are the main challenges
that negatively impact the accuracy of high-level software FI
techniques [17, 18, 21].

Several SWIFI techniques have been attempt to overcome
the limitations of the high-level IR compiler-based FI by
injecting faults directly into the low-level assembly or binary
code [15, 18, 20, 22]. Although the binary-level fault injection
can inject soft errors at high accuracy, they suffer from poor
portability as they highly depend on architecture-dependent
instrumentation techniques [21]. Moreover, different high-level
program structures are not represented at the binary-level code,
making it is difficult to correlate the obtained fault injection
results with higher-level corresponding program structures.

In this paper, we propose a GCC Compiler-based Fault
Injection (GCFI) tool, which allows faults to be injected into the
very low-level IR code of GNU Compiler Collection (GCC)
[23] right before emitting the assembly code. Unlike the
compiler-based FI techniques that operate at high-level IR code,
GCFI injected faults into the very low-level GCC IR code,
namely Register Transfer Language (RTL), which is very close
to the assembly code. The proposed technique operates at the
GCC back-end, and hence, it can perform fault injection as
accurately as the binary-level fault injection. In contrast to the
binary-level FI, the proposed technique can correlate the fault
injection results with the corresponding high-level program
structures. Therefore, GCFI facilitates the soft-error propagation
analysis as the program structure is available in more detail at
the back-end of the GCC compiler. One more benefit of GCFI
is its high portability which facilitates performing fault injection
across different architectures, various programming languages,
and a wide range of embedded systems.

We evaluate the effectiveness of the proposed technique by
conducting many fault injection experiments on nine diverse
standard benchmark programs that cover different application
domains. Moreover, we employ chi-square tests with a
significance level of 0.05 to evaluate the accuracy of the
proposed technique against both IR compiler-based and binary-
level FI techniques. Based on the obtained results, GCFI can
perform fault injection at a high level of accuracy similar to that
provided by binary-level FI techniques.

The remainder of this paper is organized as follows. Section
II surveys related work on software-based fault injection
techniques. Section IV demonstrates the fault model adopted in
this paper and gives a general background about the GCC
compiling pipeline process. Section V describes the
implementation and workflow of the proposed technique. A
detailed evaluation is presented in Section VI. Finally,
conclusions are drawn in Section VII.

II. RELATED WORK

Numerous fault injection techniques have been proposed for
assessing the fault tolerance of systems against soft errors. They
range from hardware-based FI techniques using physical
disturbances, e.g., accelerated radiation beams, to emulate fault
effects through pure software techniques. Regarding the latter,
fault injection can be performed at different levels of code
abstraction, e.g., at high-level software or the assembly or
machine code levels.

LLFI [16], KULFI [24], and EDFI [25] inject transient
hardware faults into the high-level IR code of LLVM compiler
infrastructure. As the LLFI is publically available, it has been
widely used in reliability evaluation studies. LLFI classifies the
IR instructions into different types and injects fault, at compile-
time, by instrumenting the high-level IR code. Such fault
injection techniques are cross-architecture as they rely on IR
code, which can be moved to different architectures. However,
some information describing the program's execution state is
missing at high-level and IR codes, affecting their accuracy.
Compiler optimization and one-to-multiple instruction
translation are other challenges that high-level IR code fault
injection encounters. REFINE [21] is a compiler-based fault
injection technique similar to LLFI but it performs fault
injection by instrumenting the LLVM IR code at the back-end
making its accuracy is better than LLFI.

Low-level FI techniques inject faults into assembly or binary
code. Typically, the fault injection takes place after gaining
control from the target program by employing an appropriate
interrupt-based mechanism, e.g., software-trap, time-out,
exception interruption, etc., or using binary instrumentation
tools. Once the program's control is acquired, it is possible to
corrupt the content of the CPU registers and the in-memory
image of the target program. ZOFI [22] and Faultprog [19] are
binary level techniques that exploit time-out and exception
trigger techniques for fault injection. LDSFI [26] leverages the
GNU debugger (GDB) to inject faults into binary code at run
time. BIFIT [20] and PINFI [18] are examples of
instrumentation-based FI techniques that rely on dynamic binary
instrumentation tools, e.g., Intel Pin [27], to perform fault
injection into binary code. Authors in [17] have proposed
PINFI-V2 and PINFI-V3 as improved versions of PINFI.

Several studies have taken advantage of microarchitecture
simulation and proposed simulation-based fault injection tools.
GeFIN [28], GemV [29], and Gem5-Fim [30] are fault injection
techniques that exploit the Gem5 [31], a full-system cycle-
accurate simulator, for early pre-silicon vulnerability
assessments. They attempt to estimate the system vulnerability
through fault injection into the microarchitecture-level models
of processors.

A comprehensive survey about fault injection techniques can
be found in the respective survey [15].

III. MOTIVATION

The considerable overheads imposed by conventional
software-based fault tolerance techniques have prompted the
researchers to propose cost-effective techniques to satisfy the
growing strict system requirements, such as performance and
power consumption. Several studies have highlighted Selective
Fault-Tolerance (SFT) as an innovative approach to reduce the
overheads by considering only the high vulnerable instructions
of the target program [3, 6, 9, 14]. In this context, fault injection
techniques should accurately identify the most vulnerable
instructions to be protected. Any defects in the fault injection
technique, such as those that arise in the high-level compile-
based FI techniques [16, 20, 21], could distort the results and
lead to under- or over-protection [32].

Consequently, the proposed technique attempts to perform a
compiler-based fault injection by instrumenting the very low-
level RTL code at the back-end of the GCC compiler. Our
choice of GCC is motivated by the following reasons. The GNU
Compiler Collection (GCC) has been widely adopted in
embedded system development. Because the GCC compiler
comprises many optimization parameters, improving the
assembly code can be performed effectively. This includes
improving memory usage, reducing the execution time, and
reducing the code size to best satisfy the system's requirements.
Moreover, GCC considers sophisticated features in modern
processors, e.g., out-of-order, load/store architecture, and
available registers, to improve the executable code. At the back-
end of the GCC compiler, the RTL code is lowered and
optimized to emit the assembly code. The RTL IR code
describes what each code’s instruction does at a fine-grained
level of detail. Therefore, instrumenting the very low-level GCC
RTL code can provide accurate fault injection similar to that
provided by the binary-level fault injection due to the negligible
semantical gap between low-level IR at GCC back-end and
assembly code.

IV. THE APPLIED FAULT MODEL AND GCC OVERVIEW

In this section, we illustrate the fault model employed in this
study. Moreover, the assumptions with respect to the target
system are introduced. Next, we give a brief overview of the
GCC compiler.

A. Fault model

It is essential to define a realistic and accurate fault model,
considering the environment and application under test before
conducting fault injection campaigns. A fault model should be
defined in more generic terms considering the environment and
the target program under test. Moreover, the fault model should
be as close to real-world faults as possible to precisely imitate
the real effect of faults to obtain sound results [1, 2, 5].

In this paper, the fault model we assume is a single bit-flip,
as it has been widely adopted in many previous studies [2-4, 16,
22]. Moreover, authors in [1] have discussed the validity of
using the single bit-flip fault model rather than the multiple bit-
flip model to emulate transient hardware faults. They have
proved that the single-bit flip fault model is accurate enough to
be used. We model a bit-flip fault by XORing the running value
at a bit location of a randomly selected architectural register with
a 1. For a 32-bit architectural register, a 32-bit mask (bit flips
ranging from 1 to 32) value can be used for achieving random
bit-flip by XORing the selected register with the adopted mask.
For example, one might flip the 3rd bit of the destination register
of an instruction. We model a hardware fault as a bit-flip to be
injected in architectural registers (logical registers) since the
program-level logical register vulnerability factor (PVF)
correlates with the Architectural Vulnerability Factor (AVF) of
the physical registers as proven in previous studies [13, 33]. We
assume that memory is protected by an error correction code
(ECC) or parity bits. We consider a uniform distribution of fault
injection campaigns. Related work has made similar
assumptions [1, 18, 22].

B. Overview of GCC

The GNU Compiler Collection (GCC) is a cross-
architecture, optimizing compiler widely used for different
programming languages and operating systems running on
various architectures. As Fig. 1 shows, the compilation pipeline
of GCC comprises three steps, namely front-end, middle-end,
and back-end. These steps are responsible for transforming the
input into various IR codes, i.e., GENERIC, GIMPLE, and
Register Transfer Language (RTL), toward producing assembly
code. GENERIC IR code represents an independent
programming language interface between the front-end and the
subsequence steps of the compiler. GIMPLE and RTL are used
during the compiling process for code optimization. Once the
input is completely transformed, the GCC can emit the
architecture-dependent assembly code.

In practice, a significant fraction of injected faults is detected
and masked by the operating system or the underlying hardware
[7]. In this context, to gain confident results, the effect of the
injected faults (i.e., active/inactive faults) should be considered
because the high number of active faults is likely to make results
more accurate. Unlike most fault injection techniques, which
work at the high-level IR code, our proposed technique operates
at the very low-level GCC RTL code that is highly close to the
assembly code. Therefore, GCFI can accurately analyze the
program's resilience against faults.

V. GCFI: WORKFLOW AND IMPLEMETATION

GCFI is a compiler-based fault injection technique in which
it injects faults into different instructions and operands at
compile time. It leverages the GCC-plugin API provided by the
GCC compiler since version 4.5 [23] in order to extend the
compiler to perform fault injection. A GCC-plugin is a loadable
shared object file that can be used during compiling to extend
the compiler functionalities and perform custom optimizations.
GCFI operates at the very low-level GCC compiler’s RTL code.
The RTL code is a very low-level IR code that can be seen as a
generic assembly code and can be moved across different
architectures. Once the target architecture is known, the GCC
compiler applies the target machine description file, an
architecture-dependent file describing the machine where the
compiled code will run, to the RTL representation code to emit
the assembly code dedicated to the target architecture [23].

The following subsection illustrates where the proposed
technique adds the RTL pass in the back-end to perform
instrumentation for fault injection.

Fig. 1. Compilation pipeline of GCC compiler and the proposed plugin

A. Compiler extension

As Fig. 1 shows, GCFI inserts an RTL instrument pass by
defining a GCC plugin as a compiler extension at the back-end
of the GCC compiler. A compiler pass is a transformation code
invoked by the GCC compiler during the compilation process to
optimize and transform compilation units, e.g., functions. The
final assembly code is emitted when the input unit travels
through all optimization passes. The RTL pass added by the
GCFI technique is responsible for instrumenting the RTL
representation code right before the GCC compiler generates the
assembly code. As the RTL code in the back-end accurately
represents the low-level machine instructions, GCFI can
precisely perform instrumentation. GCFI extends the GCC
compiler by adding an RTL pass, making it a successor pass to
the pass_free_cfg, an RTL pass executed once before emitting
the assembly code. To be more specific, GCFI adds the RTL
pass right before emitting assembly code and after ensuring the
completion of all optimization passes. Consequently, none of the
fault injection function calls (Fig. 2) added by GCFI will be
affected or modified. Therefore, GCFI ensures realistic and
accurate fault injection. The above-mentioned key points justify
the selection of the back-end as a location for adding the RTL
pass as a plugin for the GCFI technique.

B. GCFI: instrumentation mechanisim

GCFI instruments the input code, at the RTL level, by adding
function-call instruction at determined locations, namely fault
injection sites (Fig. 2). The fault injection function is responsible
for injecting fault, i.e., bit-flip fault, into a specific operand of a
randomly selected instruction. Fig. 2 illustrates how GCFI
instruments the GCC's RTL code. In Fig. 2.a (right), we have an
exclusive bitwise operation written in RTL code, which means
“XORing the content of register r3 with the value of 144 and
storing the result in register r3”. GCFI instruments this RTL
code by adding a call function instruction just before this RTL
code. In the fault injection function, Fig. 2.a (left), we inject a
single bit-flip fault by XORing the content of register r3 with a
mask with a value of 128 (the most significant bit). Fig. 2.b
shows the corresponding assembly code (for ARM architecture).
At run time, before the instrumented instruction (eor r3, r3,
#144) is executed, the program execution will transfer to the
fault injection function where the bit-flip fault is explicitly
injected.

GCFI instruments the program being compiled once. Thus
there is no need to recompile (and re-instrument) the program
version across the experiments. In other words, GCFI runs the
same instrumented executable file in all the fault injection
campaigns. At each fault injection experiment, a different
instrumented fault injection site is selected randomly, based on
the information provided by the user, to trigger the fault
injection.

C. GCFI workflow

GCFI consists of three consecutive steps. As Fig. 3
illustrates, in Step 1, GCFI takes multiple arguments as inputs to
perform code instrumentation at compile-time. GCFI
instruments the source code by defining and linking an RTL pass
to the GCC back-end passes. Based on the profiling information
of the program being compiled, the RTL pass determines the

Fig. 2. Fault injection by instrumentation

appropriate instructions and marks them as fault injection sites.
The profiling information is required to determine the sites
within the code where the program is more likely to visit during
execution. Therefore, GCFI instruments only the instructions
that will be executed during the run time, reducing the size of
the instrumented code. The RTL pass is implemented as a shared
library plugin. GCFI uses this plugin at compile-time to
instrument the code whenever it detects a user-defined fault
injection site.

In Step 2, GCFI performs fault injection by running the
instrumented executable file. While GCFI instruments all the
fault injection sites in the target program once, multiple faults
may be injected because of frequently triggering the fault
injection function. Recall that the candidate fault injection sites
are determined by offline profiling. GCFI randomly selects one
instruction, as an injection site, to trigger the fault injection
function only for it, ensuring one fault injection for every
execution.

Fig. 3. Overall GCFI workflow

(a)

(b)

When the fault injection campaign is completed, GCFI
arranges the produced injection results to be analyzed in Step 3.
Typically, a bit-flip fault in a CPU architectural register can
affect the program execution and lead to different outcomes.
GCFI follows previous studies [5, 16, 18, 26] in which the fault-
induced effects were classified into three categories, namely
Correct, Silent Data Corruption (SDC), and Crash. If the
program in the presence of a fault produces golden results, fault-
free execution results, the outcome is classified as Correct. If the
results differ from the golden results, the outcome is classified
as SDC. In both above cases, the program execution is
terminated normally. If the program is abnormally terminated
due to an exception, e.g., segmentation fault, the outcome is
classified as a Crash.

Once the fault injection experiments are completed, GCFI
generates two files for each experiment. These files are an output
file that stores the result of the program under test, namely Fault
Injection Output (FIO) and a log file. GCFI employs a Python
script to iterate over the log and FIO files and examines their
contents. The script files consider the following parameters: (1)
the content of the log file, (2) the content and size of the FIO, (3)
the content of the golden output. Fig. 4 illustrates the algorithm
employed for classifying the effects of injected faults. When the
FIO file is identical with the golden output and the
corresponding log file does not indicate an exception, the fault
effect category is Correct. When no exception is logged, but the
output files (golden and FIO) differ in content, the fault effect is
classified as SDC. If any exception is logged, the fault effect is
classified as Crash.

Fig. 4. Pseudocode describing fault effect classification algorithm

VI. EXPERIMENTS AND RESULTS

We evaluate the accuracy of GCFI in injecting faults with
respect to compiler-based and binary-based fault injection
techniques. As LLFI is a publicly available open-source tool
[16], it has been used in several studies [1], [24], [25]. Moreover,
these studies have shown that LLFI is suitable for studying
different errors, particularly SDC-causing errors. Regarding
binary-level fault injection, PINFI [18] is a binary-level fault
injection technique that can be used for comparison. PINFI
utilizes the Intel Pin [27], a dynamic binary instrumentation tool,
to perform fault injection. PINFI instruments a source code that
is compiled by the LLVM compiler. However, PINFI requires
some modifications to render it compatible with the recent
version of the Pin instrumentation tool. These modifications
have led to contradictory results in different studies, such as [21]
and [17]. On the other hand, LDSFI [26] represents a high-
accuracy state-of-the-art binary-level fault injection technique.
LDSFI injects faults into the binary code of software
applications at runtime. It exploits the GNU Debugger (GDB)
and injects faults through the breakpoint interruption
mechanism. Moreover, LDSFI follows a uniformly distributed
fault model, similar to the fault model we adopt in this study,
and it relies on the GNU project, like GCFI. Therefore we adopt
the LDSFI technique as an accurate baseline for comparison.

A. Benchmark programs and fault injection sites

GCFI can inject faults into different instructions categories,
i.e., different fault injection sites. The instruction categories we
have selected to inject faults are shown in Table I. Subsequently,
one can conduct fault injection campaigns to a specific category
of instructions to examine its vulnerability against soft errors.
We have utilized nine diverse programs from MiBench
Benchmark Suite version 1.0 [34] to evaluate the effectiveness
and accuracy of the GCFI technique. The characteristics of these
programs are shown in Table II. The Mibench suite includes 35
programs that fall into six categories: automotive, consumer,
networking, security, office, and telecommunications. We have
selected the benchmarks from different application domains to
represent a wide range of scientific applications with different
characteristics in terms of code size, dynamic executed
instructions number, inputs, source code implementation,
functionality, etc. Considering both small and large inputs
provided by the benchmark suite for programs, the execution
time required by MiBench programs is short, making them very
convenient for fault injection experiments that need to be
conducted extensively. For x86 binaries, GCFI compiles the
programs with the GCC compiler, whereas the ARM binaries
are built by the GCC cross-compiler to be executed on a
simulated ARM system.

B. Experimental setup

As an experimental setup, we implement a prototype of
GCFI that offers a GCC plugin to instrument programs and build
executable files for both x86 and ARM architectures. This is
possible because GCFI instruments the architecture-
independent RTL representation code at compile-time. Then,
the employed compiler builds an executable file using the
machine description file for a specific architecture. The x86
binaries are executed on an Intel Core i7 processor, whereas the

ARM binaries are executed on a bare-metal ARM architecture
simulated using the cycle-accurate Gem5 simulator [31]. We
instruct GCFI, LLFI, and LDSFI to instrument load/store,
branch, and arithmetic instructions as fault injection sites.
Overall, we inject 144000 faults (4 instruction types × 9
benchmarks × 4 ISAs (3 x86 + 1 ARM) × 1000 injections =
144000 injections). According to [35], our experiments
correspond to a 1% error margin with a 99% confidence level.

C. Evaluation results

The proposed technique classifies the possible outcomes of
fault injection experiments as follows: Correct, SDC, and Crash.
Fig. 5 shows a graphical overview of the fault injection results
obtained by GCFI (x86 and ARM), LLFI, and LSDFI for each
benchmark and different instruction categories.

Considering all charts in Fig. 5, for the used benchmark
programs (the y-axis), the x-axis represents the rate of fault
injection outcomes, i.e., Correct, Crash, and SDC. As Fig. 5.a to
Fig. 5.d show, the fault injection outcomes obtained by the
employed techniques differ across different benchmarks and
instruction categories, as fault injection into different instruction
types can impact the target program in different ways [1, 9, 16].
Moreover, the fault injection results obtained by GCFI are
slightly different from those obtained by the accurate binary-
level fault injection. In other words, the proposed technique can
perform fault injection at high accuracy.

We further confirm this finding by performing a statistical
analysis to evaluate the accuracy of GCFI across different
employed benchmark programs and instruction categories. To
evaluate the accuracy of GCFI with respect to both high-level
IR software fault injection and binary-level fault injection, we
employ chi-squared tests with a significance level of 0.05. To
this end, we group the fault injection outcomes obtained by each
technique for each benchmark program to calculate the
frequencies of fault injection outcomes, as required by the chi-
square tests. For example, considering fault injection performed
by GCFI into the four instruction categories of bitcount
benchmark program (Fig. 5.a to Fig. 5.d), the frequencies of
fault injection outcomes are 776, 2592, and 632 for Correct,
Crash, and SDC, respectively. For each benchmark program and

pair of techniques, we calculate the contingency table of the
frequencies. Since we employ nine benchmark programs, we
have 18 contingency tables (nine tables for each pair of
techniques).

For each benchmark program and pair of techniques, we
employ the chi-square tests to compare the significance of the
difference between fault injection outcomes. The chi-square test
enables us to test whether there is a statistically significant
difference between the expected frequencies and the observed
frequencies in different categories, i.e., fault injection outcomes.
To this end, we adopt a null hypothesis H0 that there is no
statistically significant difference in fault injection outcome
frequencies between a pair of techniques. The alternative
hypothesis H1 is the opposite of the null hypothesis. Therefore,
if the p-value in the chi-square tests is lower than 0.05 (the
adopted significance level), we reject the null hypothesis H0 and
accept the alternative one, which means there is a statistically
significant difference in fault injection outcome frequencies
between a pair of techniques.

Since the binary-level fault injection is the most accurate
approach, the fault injection outcomes obtained by the LDSFI
technique are considered the baseline for comparison. With a
confidence level of 95% and a standard significance level equal
to 0.05., Table III shows the p-values of the chi-square tests.
Considering fault injection performed by GCFI and LLFI into
different benchmark programs, the p-values in the chi-squared
tests for GCFI versus LLFI are below 0.05, indicating that we
reject the null hypothesis.

TABLE III. P-VALUES OF CHI-SQUARE TESTS FOR EACH PAIR OF

TECHNIQUES AND EACH BENCHMARK PROGRAMS (P-VALUE > 0.05 INDICATES

THAT THE ADOPTED NULL HYPOTHESIS CANNOT BE REJECTED)
Benchmark GCFI vs. LLFI GCFI vs. LDSFI

bitcount 0.000 0.297
CRC32 0.000 0.052
qsort 0.000 0.254

basicmath 0.000 0.226
stringsearch 0.006 0.288

susan 0.000 0.301
AES 0.000 0.062

dijkstra 0.000 0.103
FFT 0.000 0.848

TABLE I. FAULT INJECTION INSTRUCTION CATEGORIES

Instruction Category Description

Arithmetic instructions standard arithmetic operations
 Load/Store instructions data Transfer instructions
Branch instructions control flow instructions
Where to inject?

All possible instruction operands: (1) immediate value, (2) data registers, and (3) control registers

TABLE II. SUMMARIZES THE ADOPTED BENCHMARK PROGRAMS AND THEIR CHARACTERISTICS

Category Benchmark LoC Benchmark program description & Input

Telecomm
CRC32 1783 Calculating 32-bit Cyclic Redundancy check on 1.4MB input.pcm file
FFT 2091 Performing the Fast Fourier Transform on a floating point data

Security AES 4669 Encrypting an input file (small_input.asc 812 KB)

Automotive

basicmath 1985 Performing some mathematical calculation on a set of constants
bitcount 2129 Counting the number of bits for a given array of integers
qsort 1642 Sorting data using the quick-sort algorithm (small_input.dat ~53.4 KB)
susan 1800 Smooths a black & white image of a rectangle

Network dijkstra 2049 Finding the shortest paths for 2D 100x100 matrix (input.dat ~30 KB)
Office stringsearch 2195 Searching a word in phrases

As a result, there is a statistically significant difference between
fault injection outcomes made by GCFI and LLFI. By contrast,
GCFI is not significantly different from the binary-level LDSFI
technique. Based on the p-values presented in Table III, we
cannot reject the null hypothesis because the p-values are higher
than 0.05 (for all benchmark programs). In other words, the
results obtained by GCFI and LDSFI are not statistically
significantly different from each other. Therefore, the proposed
technique can perform fault injection at the GCC RTL code with
high accuracy similar to that provided by binary-level fault
injection techniques. Moreover, the results obtained by GCFI
are more accurate than those obtained by LLFI, as the GCFI’s
outcomes are not significantly different from those of
corresponding binary-level LDSFI’s outcomes.

Since the LLFI instruments the LLVM high-level IR code, it
does not assure one-to-one instruction translation between the
high-level IR code and the assembly code. The authors of LLFI
have indicated that the gap between the high-level IR code and
assembly code represents the main reason for the inaccuracy of
LLFI [16, 18]. As GCFI targets RTL, which is closer than the
high-level IR code to the underlying hardware on which the
binaries are executed, a significant fraction of injected faults will

not be masked by the system layer stack, leading to a high rate
of faults activation. Our proposed technique works at the very
low-level GCC compiler’s RTL level. The plugin provided by
GCFI executes after completing pass_free_cfg RTL pass, which
means there are no further significant modifications before
emitting the assembly code. Therefore, GCFI works at the ideal
point in the compilation process to instrument the code and
assure one-to-one correspondence of RTL representation code
with the assembly code. It should be noted that we compare
GCFI's results with those obtained by LLFI and LDSFI only for
x86 binaries. We present results for ARM binaries (Fig. 5) to
demonstrate that GCFI is architecture-independent and can be
ported to other architectures.

VII. CONCLUSION

Assessing the resilience of safety-critical systems against
soft errors is essential to reveal any defects that may lead to
severe consequences, e.g., system failures. In this paper, we
have proposed a compiler-based technique for fault injection
into the IR code of the GCC compiler. The GCFI technique
operates at a lower level of abstraction very close to assembly
code, enabling highly accurate fault injection with the ability to

(a) fault injection outcomes into load instructions

(b) fault injection outcomes into store instructions

(c) fault injection outcomes into branch instructions

(d) fault injection outcomes into arithmetic instructions

Fig. 5. Percentage of fault injection outcomes (Correct, SDC, and Crash) for GCFI, LLFI, and LDSFI.

correlate the fault injection results with the corresponding high-
level program structures. The GCFI has been validated by
comparing its accuracy with state-of-the-art high-level
compiler-based/binary-level fault injection techniques and
tested through a large number of injection campaigns. The
results show that GCFI can perform highly accurate fault
injection similar to binary-level fault injection. Therefore,
resilience studies can benefit from GCFI as it best satisfies the
required level of accuracy. Moreover, GCFI can be customized
for different architectures with negligible effort related to
compiler configuration.

REFERENCES

[1] B. Sangchoolie, K. Pattabiraman, and J. Karlsson, “An Empirical Study
of the Impact of Single and Multiple Bit-Flip Errors in Programs,” IEEE

Transactions on Dependable and Secure Computing, 2020.
[2] P. Bodmann, G. Papadimitriou, R. L. R. Junior, D. Gizopoulos, and P.

Rech, “Soft Error Effects on Arm Microprocessors: Early Estimations vs.
Chip Measurements,” IEEE Transactions on Computers, 2021.

[3] Z. Li, H. Menon, K. Mohror, P.-T. Bremer, Y. Livant, and V. Pascucci,
“Understanding a program's resiliency through error propagation,” in
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2021, pp. 362-373.

[4] P. M. Aviles, A. Lindoso, J. A. Belloch, and L. Entrena, “Evaluating
reliability through soft error triggered exceptions at ARM Cortex-A9
microprocessor,” Microelectronics Reliability, pp. 114323, 2021.

[5] A. Chatzidimitriou, P. Bodmann, G. Papadimitriou, D. Gizopoulos, and
P. Rech, “Demystifying soft error assessment strategies on ARM CPUs:
Microarchitectural fault injection vs. neutron beam experiments,” in 49th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2019, pp. 26-38.

[6] A. Mokhtarpour, A. M. H. Monazzah, and H. Farbeh, “PB-IFMC: A
Selective Soft Error Protection Method Based on Instruction Fault
Masking Capability,” in 25th International Computer Conference,
Computer Society of Iran (CSICC), 2020, pp. 1-9.

[7] H. So, M. Didehban, Y. Ko, R. Jeyapaul, J. Kim, Y. Kim, et al.,
“Revisiting Symptom-Based Fault Tolerant Techniques against Soft
Errors,” Electronics, vol. 10, pp. 3028, 2021.

[8] A. Tajary, H. R. Zarandi, and N. Bagherzadeh, “IRHT: An SDC detection
and recovery architecture based on value locality of instruction binary
codes,” Microprocessors and Microsystems, vol. 77, pp. 103159, 2020.

[9] J. A. Martínez, J. A. Maestro, and P. Reviriego, “Evaluating the impact
of the instruction set on microprocessor reliability to soft errors,” IEEE
Transactions on Device and Materials Reliability, vol. 18, pp. 70-79,
2018.

[10] G. Papadimitriou and D. Gizopoulos, “Demystifying the System
Vulnerability Stack: Transient Fault Effects Across the Layers,” in
ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), 2021, pp. 902-915.

[11] Y. Ko, “Characterizing System-Level Masking Effects against Soft
Errors,” Electronics, vol. 10, pp. 2286, 2021.

[12] X. Xu and M.-L. Li, “Understanding soft error propagation using efficient
vulnerability-driven fault injection,” in IEEE International Conference on
Dependable Systems and Networks (DSN), 2012, pp. 1-12.

[13] V. Sridharan and D. R. Kaeli, “Quantifying software vulnerability,”
presented at the Proceedings of the workshop on Radiation effects and
fault tolerance in nanometer technologies, Ischia, Italy, 2008.

[14] S. Arslan and O. Unsal, “Efficient selective replication of critical code
regions for SDC mitigation leveraging redundant multithreading,” The
Journal of Supercomputing, pp. 1-31, 2021.

[15] N. Laranjeiro, J. Agnelo, and J. Bernardino, “A Systematic Review on
Software Robustness Assessment,” ACM Computing Surveys (CSUR),
vol. 54, pp. 1-65, 2021.

[16] Q. Lu, M. Farahani, J. Wei, A. Thomas, and K. Pattabiraman, “LLFI: An
intermediate code-level fault injection tool for hardware faults,” in IEEE
International Conference on Software Quality, Reliability and Security,
2015, pp. 11-16.

[17] L. Palazzi, G. Li, B. Fang, and K. Pattabiraman, “A tale of two injectors:
End-to-end comparison of ir-level and assembly-level fault injection,” in

IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE), 2019, pp. 151-162.

[18] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the accuracy
of high-level fault injection techniques for hardware faults,” in 44th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2014, pp. 375-382.

[19] D. Cotroneo, A. Lanzaro, and R. Natella, “Faultprog: Testing the accuracy
of binary-level software fault injection,” IEEE Transactions on
Dependable and Secure Computing, vol. 15, pp. 40-53, 2018.

[20] Y. Wang, J. Dong, S. Zhang, and D. Zuo, “B-SEFI: A Binary Level Soft
Error Fault Injection Tool,” in IEEE 19th International Conference on
Software Quality, Reliability and Security Companion (QRS-C), 2019,
pp. 235-241.

[21] G. Georgakoudis, I. Laguna, D. S. Nikolopoulos, and M. Schulz, “Refine:
Realistic fault injection via compiler-based instrumentation for accuracy,
portability and speed,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2017,
pp. 1-14.

[22] V. Porpodas, “ZOFI: Zero-Overhead Fault Injection Tool for Fast
Transient Fault Coverage Analysis,” arXiv preprint arXiv:1906.09390,
2019.

[23] GNU Compiler Collection Internals for GCC Version 5.2.0, Free
Software Foundation, Inc., Boston, MA, USA, 2015.

[24] V. C. Sharma, A. Haran, Z. Rakamaric, and G. Gopalakrishnan, “Towards
formal approaches to system resilience,” in IEEE 19th Pacific Rim
International Symposium on Dependable Computing, 2013, pp. 41-50.

[25] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “EDFI: A dependable
fault injection tool for dependability benchmarking experiments,” in
IEEE 19th Pacific Rim International Symposium on Dependable
Computing, 2013, pp. 31-40.

[26] H. A.-h. Ahmad, Y. Sedaghat, and M. Moradiyan, “LDSFI: a Lightweight
Dynamic Software-based Fault Injection,” in 9th International
Conference on Computer and Knowledge Engineering (ICCKE), 2019,
pp. 207-213.

[27] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, et al.,
“Pin: building customized program analysis tools with dynamic
instrumentation,” Acm sigplan notices, vol. 40, pp. 190-200, 2005.

[28] M. Kaliorakis, S. Tselonis, A. Chatzidimitriou, N. Foutris, and D.
Gizopoulos, “Differential fault injection on microarchitectural
simulators,” in Workload Characterization (IISWC), IEEE International
Symposium on, 2015, pp. 172-182.

[29] K. Tanikella, Y. Koy, R. Jeyapaul, K. Lee, and A. Shrivastava, “gemV: A
validated toolset for the early exploration of system reliability,” in IEEE
27th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), 2016, pp. 159-163.

[30] F. R. Da Rosa, R. Reis, and L. Ost, “gem5-FIM: a flexible and scalable
multicore soft error assessment framework to early reliability design
space explorations,” in IEEE 9th Latin American Symposium on Circuits
& Systems (LASCAS), 2018, pp. 1-4.

[31] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
et al., “The gem5 simulator,” ACM SIGARCH Computer Architecture
News, vol. 39, pp. 1-7, 2011.

[32] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai, “Modeling
soft-error propagation in programs,” in 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2018, pp. 27-38.

[33] G. S. Rodrigues, F. Rosa, Á. B. de Oliveira, F. L. Kastensmidt, L. Ost,
and R. Reis, “Analyzing the Impact of Fault-Tolerance Methods in ARM
Processors Under Soft Errors Running Linux and Parallelization APIs,”
IEEE Transactions on Nuclear Science, vol. 64, pp. 2196-2203, 2017.

[34] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proceedings of the fourth annual IEEE international
workshop on workload characterization. WWC-4 (Cat. No. 01EX538),
2001, pp. 3-14.

[35] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in Design, Automation &
Test in Europe Conference & Exhibition, 2009, pp. 502-506.

