
2022 CPSSI 4th International Symposium on Real-Time and Embedded Systems and Technologies (RTEST), Tehran, Iran

978-1-6654-9910-1/22/$31.00 ©2022 IEEE

Software-based Control-Flow Error Detection with
Hardware Performance Counters in ARM Processors

Hussien Al-haj Ahmad
Dependable Distributed Embedded Systems (DDEmS) Laboratory

Computer Engineering Department

Ferdowsi University of Mashhad

Mashhad, Iran
hussin.alhajahmad@mail.um.ac.ir

Yasser Sedaghat
Dependable Distributed Embedded Systems (DDEmS) Laboratory

Computer Engineering Department

Ferdowsi University of Mashhad

Mashhad, Iran
y_sedaghat@um.ac.ir

Abstract—The recent trend in processor manufacturing

technologies has significantly increased the susceptibility of safety-
critical systems against soft errors in harsh environments. Such
errors result in control-flow errors (CFEs) that can disturb
systems' execution and cause severe financial, human, or
environmental disasters. Therefore, there is a severe need for
efficient techniques to detect CFEs and keep the systems fault-
tolerant. Although numerous control-flow error detection
techniques have been proposed, they impose considerable
overheads, making them inappropriate for today's safety-critical
systems with restricted resources. Several techniques attempt to
insert fewer control-flow checking instructions to reduce
overheads. However, they limit fault coverage. This paper proposes
a software-based technique for ARM processors to detect CFEs.
The technique leverages the Hardware Performance Counters
(HPCs), which exist in most modern processors, to count micro-
architecture events and generate HPC-based signatures. Based on
these signatures that capture the correct control flow of the
program, the proposed technique can detect CFEs once the correct
control flow is violated. We evaluate the detection capability of the
proposed technique by performing many fault injection
experiments applied on different benchmark programs. Moreover,
we compare the proposed technique with common signature-based
CFE detection techniques with respect to fault coverage and
imposed overheads. The results demonstrate that the proposed
technique on average can achieve ~99% fault coverage which is
23.57% higher than that offered by the employed signature-based
techniques. Moreover, the memory overhead imposed by the
proposed technique is 4.85% lower, and the performance overhead
is ~19% lower than that of the studied signature-based techniques.

Keywords—hardware performance counter, control-flow
checking, safety-critical systems, fault injection, software-based error
detection.

I. INTRODUCTION

Recently, the popularity of embedded systems has increased
dramatically due to the rapid improvements in processors
technologies. They are incorporated into various applications
ranging from information systems and heavy industries to smart
cities, distributed systems, and safety-critical embedded
systems. However, employing embedded systems in safety-
critical systems that operate in harsh environments has raised
severe challenges relating to the reliability offered by such
embedded systems [1-3]. To be more specific, the technology
advancements have negatively affected the ability of processors
to tolerate faults and increased their vulnerability against faults.
A safety-critical system is a system in which a fault can disturb
the system's execution and cause severe financial, human, or
environmental disasters [2]. Therefore, these systems should

adhere to strict reliability restrictions before they are put into
operation [4-6].

It was discovered around 1970 that unprotected processors
are susceptible to faults induced by radiations [7]. High-energy
particles can cause random, temporary changes in the operating
state of the systems due to affecting one or multiple flip-flops in
underlying electronic components . Typically, faults that affect
the systems manifest in three main classes depending on their
duration [8-10]: permanent faults, intermittent faults, and
transient faults. Researchers have pointed out that transient
hardware faults, i.e., soft errors, are the main challenge to be
overcome to build a fault-tolerant system. Typically, soft errors
can affect one flip-flop temporarily, causing Single Event
Upsets (SEUs), or more than one flip-flop, causing single-event
multi-bit upsets (SEMUs) [11]. SEUs in the memory cells or
CPU registers can affect the program execution and cause data-
flow errors or control-flow errors (CFEs) [1, 2, 12]. A CFE
violates the correct program flow and moves it to an incorrect
location within the code space or unallocated memory regions.
Due to the deviation in the program's control flow, the operation
behavior of the program may be incorrectly modified [1, 13-15].
As a result, CFEs can affect the program execution and cause
the program to terminate abnormally or produce undesirable
outcomes. Thus, it is of paramount importance to address this
type of error for building fault-tolerant systems.

Previous work [1] has stated that CFEs detection requires
2.5x more effort than detecting data errors. Considering reduced
instruction set computer (RISC) processors, 33% of all soft
errors that affect them are reflected in control-flow errors [15].
Therefore, employing fault tolerance techniques to detect soft
error effects, primarily CFEs, is highly important to enhance
reliability as ISO 26262 and DO178C recommend using control
flow checking (CFC) techniques [4].

Many CFC techniques have been proposed to detect CFEs.
These techniques can fall into three categories: hardware-based,
software-based, and a combination of both software- and
hardware-based techniques as hybrid techniques [8, 16]. Most
techniques share the same steps to preserve the program flow
correctness [17-24]. Initially, a control flow graph (CFG) of the
target program is extracted. Then, additional instructions are
inserted at predefined locations (typically at compile-time) to
validate the correctness of the branch instruction destination.
These instructions leverage special variables called signatures
to perform control flow checking. CFC techniques differ in how
signatures are generated, where to insert the signatures in the
code, and the number of assigned signatures.

Instrumenting the program (inserting additional instructions)
with many checking instructions and signatures could achieve a
high fault coverage [1, 13, 14]. However, this will lead to
considerable overheads, making the employed techniques are
inapplicable for today's safety-critical systems with restricted
resources. Therefore, the main challenge facing CFC techniques
is how to provide a high fault coverage (CFE detection ratio)
while keeping overheads as low as possible. For tuning the
trade-off between fault coverage and overheads, authors in [25]
and [26], for example, protect only the susceptible basic blocks
to CFEs. Other techniques reduce the checking frequency by
deferring the check of the branch correctness [1, 14, 27, 28].
While such methods contribute to reducing overheads, the
ability of these methods to detect errors may be negatively
affected.

In this paper, we propose an efficient software-based
technique to detect CFEs at low overheads without losing
significant fault coverage. It leverages the hardware
performance counters (HPCs), a common feature in most
modern processors, to detect CFEs and keep the system fault-
tolerant. In order to detect control-flow errors, we assign, at
compile-time, an HPC-based signature to each basic block (a
sequence of branch-free instructions) in the control flow graph.
The assigned signatures are calculated by counting specific low-
level microarchitecture events, e.g., the number of instructions
per basic block. During execution, a run-time HPC-signature is
calculated and compared with the compile-time one. Any
mismatch between signatures is a sign of a CFE.

We evaluate the effectiveness of the proposed technique by
conducting many fault injection experiments on diverse
benchmark programs that cover different application domains.
For comparison purposes, we implement the state-of-the-art
random additive signature monitoring (RASM) technique [13]
and the Control flow checking by software signature (CFCSS)
[22], which is widely referred to in literature because of its high
fault coverage. Based on the obtained results, the proposed
technique can achieve ~99% fault coverage for CFEs on the
selected benchmark and imposes lower overheads.

The remainder of this paper is organized as follows. Section
III surveys related work on software-based fault injection
techniques. Section IV demonstrates the proposed technique and
gives a general background about the hardware performance
counter. Section V describes the implementation of the proposed
technique. A detailed evaluation of the proposed technique is
discussed in Section VI. Finally conclusions are drawn in
Section VII.

II. MOTIVATION

Most CFC techniques strive to provide a high fault coverage
with acceptable overheads. These techniques operate at different
levels of granularity: (1) fine-grain predecessor/successor-
assertion, or (2) coarse-grain path-assertion. Despite the high
fault coverage provided by the former techniques, they impose
significant overheads, as all basic blocks should be
instrumented. On the other hand, path-assertion techniques
divide a CFG into multiple control-flow paths (a group of basic
blocks executed in an uninterrupted sequence) and add check
instructions into each path, resulting in fewer inserted check
instructions. However, such techniques sacrifice some fault

coverage as intra-block CFEs in the same control-flow path
cannot be detected.

Another challenge that is quite important and seldom
discussed in the literature is how accurate CFG is. The CFG is
considered a prerequisite for most CFC techniques. The adopted
CFG should be complete and accurate. Lack of precision in the
employed CFG may negatively affect the CFC technique,
making the results questionable [13]. Therefore, the CFG must
be as accurate as possible. In this context, indirect branches
represent the major challenge that impedes the construction of a
complete and high-precision CFG. Since an indirect jump gives
a basic block multiple undetermined successors, assigning
signatures to validate if the previous (or next) basic block is the
correct predecessor (or successor) is not possible.

In this paper, we propose an HPC-based technique to detect
CFEs caused by soft errors. Using HPCs allows monitoring the
program’s execution flow with negligible overheads. The
signatures assigned to each basic block in the target program
capture the correct control flow of the program. Therefore, based
on these HPC-based signatures, the proposed technique can
detect CFEs once the correct control flow is violated. Moreover,
tuning the overheads can be performed effectively without fault
coverage degradation.

III. RELATED WORK

Before discussing previous CFC techniques, we introduce
the following common terminologies widely adopted in most
CFC techniques.

Given a program P, it is possible to extract an abstract
representation of the execution flow of the program P, i.e., a
Control Flow Graph (CFG). Here, we introduce the main
terminology.

i. A basic block (BB) is a set of sequential instructions, which
are executed one after another from the starting point of the
basic block (entry point) to the last one (exit point). The
branch instructions are not allowed within the BB body. Such
instructions only appear at the end of BB. V = {BB1, BB2, …
BBn} is a set of all BBs in the source code of P.

ii. Predecessors of BBi are a set of basic blocks that the program
can explore before entering the BBi.

iii. Successors of BBi are all possible basic blocks that the
program can move to once the BBi is executed.

iv. A directed edge between BBi and BBj represents a legal
execution of BBj after the execution of BBi in the absence of
CFEs. BBi is a predecessor of BBj and BBj is a successor of
BBi. E = {e1, e2, …, en} is a set of directed edges.

v. A Control Flow Graph (CFG) of the program P, CFGP is an
abstract representation of all possible execution paths of the
program flow. The control flow graph is usually formed by
linking basic blocks using directed edges, i.e., branches.
Therefore, CFGP = {V, E} indicates CFG of program P with
a set of BBs V and a set of directed edges E.

A basic block may have multiple predecessors and multiple
successors, except the first BB in the program, which has no
predecessors, and the last BB, which has no successors as it
terminates the execution. Fig. 1 shows a sample program source
code and its corresponding CFG extracted for the ARM
assembly code related to the program. The CFE could appear in

Fig. 1. (left) A sample program source code, (right) A Control Flow Graph
(the corresponding ARM assembly code)

different scenarios as follows [13]:

i. Intra-BB CFE: an incorrect jump within the current BB.
ii. Inter-BB CFE: an incorrect jump to another BB.
iii. CFE from a given BB to outside the memory space allocated

for the program.

Software-based CFC techniques strive to detect such CFE
types. Typically, CFE type iii almost leads to exceptions in the
target program, e.g., a segmentation fault or time-out, that are
more likely to detect by underlying hardware features. For error
types i and ii, these CFEs are more critical in the sense we need
sophisticated methods to cover them effectively.

Control Flow Checking by Software Signatures (CFCSS) is
a signature-based CFE mitigation technique [22]. It relies on
assigning two signatures, at compile-time, to each BB. These
signatures are used at run-time to check the correctness of the
control flow destination. To verify the control flow, CFCSS
calculates a run-time signature and verifies its new value, which
should hold the same compile-time value in the case of no CFE
has occurred. However, CFCSS is not able to detect CFEs if
multiple BBs share multiple destination blocks. Therefore, it
suffers from an aliasing problem. This problem has been solved
by the CEDA technique [28]. CEDA can increase fault coverage
up to 98.9%. Yet Another Control-Flow Checking Using
Assertions (YACCA) technique assigns multiple signatures to
each BB, at compile-time, in order to detect interblock CFEs
[21]. At the exit point of each BB, the run-time signature code
is updated and verified to detect violations. Enhanced Control-
Flow Checking Using Assertions (ECCA) [23] inserts into each
BB four instructions and three compile-time signatures that are:
BID (the current BB), and two signatures NEXT1, and NEXT2
that represent the next possible successors, as the authors of
ECCA have restricted the possible number of successors to two
BBs, e.g., loop and if-then-else statements. At run-time, two
variables are calculated from the previously defined signatures
to detect CFEs. ECCA is able to detect all inter-BB CFEs, but it
is neither able to detect intra-BB CFEs, nor errors that cause an
incorrect decision in a conditional branch. Other signature-based
techniques which have been widely referred to in literature are
RSCFC [19], SEDSR [18], SCFC [17], and SIED [20].

The above mentioned techniques rely on inserting a
relatively large number of additional instructions in the target
program. CFCSS achieves a high error detection rate as it
protects every BB with instructions for updating and validating
signatures. However, it imposes significant overheads. In order
to decrease this huge overhead, one can economize on the
number of instructions added to the program. Recent work [27,
29] inserts fewer instructions to decrease the significant
overhead. However, this reduction is achieved at the expense of
error detection capability. ACS [27] defers checking the control
flow until two BBs are executed. However, it suffers from poor
fault coverage. Authors in [25] and [26] proposed to protect only
the basic blocks that are destinations of the erroneous branches
(CFEs). They termed such basic blocks as susceptible blocks
and suggested protecting them only for cutting down overheads.

Path Sensitive Signatures (PaSS) [1] technique can detect
both inter- and intra-BB CFEs by implementing a lightweight
technique based on signatures. By examining the CFCSS, PaSS
stated that comparison instructions (cmp) are the main source of
the overheads incurred by CFCSS. Thus, PaSS relies on a
strategy whereby a group of BBs is selected to be protected in a
way that does not negatively affect the fault coverage. PaSS was
implemented as a compiler extension pass using the LLVM
compiler as it provides a high ability to deal with low-level
Intermediate Representation (IR) code.

The hardware performance counters (HPCs) feature in
tandem with event ticking pins is employed by Enhanced
Committed Instructions Counting (ECIC) to provide error
protection for single- and multi-threaded programs run on
COTS-based real-time embedded systems [30]. ECIC is
evaluated by implementing a prototype on a 32-bit Pentium
processor and using software-based fault injection to inject 6000
faults into the target system. Like ECIC, in [31] an HPC-based
CFC technique is introduced to detect as many CFEs as possible
through a purely software-based technique. However, authors of
ECIC and [31] techniques have not considered one important
aspect of performance counters, namely how accurate they are.

IV. THE PROPOSED TECHNIQUE

The technique proposed in this work leverages the hardware
performance counter (HPCs) to perform control-flow error
detection. The signatures to be used for error detection are
extracted by monitoring special microarchitecture events using
HPCs. The selected events should be accurate and repeatable.
The following section sheds light on the HPCs and illustrates
how to extract signatures.

A. Hardware Performace Counters

Hardware performance counters are special on-chip registers
that facilitate developers to perform run-time profiling through
monitoring many microarchitecture events. Regarding ARM
processors, a special unit called Performance Monitoring Unit
(PMU) is installed to simplify using HPCs [32, 33]. We can
monitor and measure a wide range of events. However, the
problem lies in measuring these events simultaneously [34]. As
the ARM Cortex-A8 has only four counters, we can
simultaneously measure only four events.

It is essential to consider one important aspect of HPCs,
namely how accurate they are. Given that modern ARM

processors use features such as out‐of‐order execution and
branch prediction, it is expected that such features may
negatively affect the accuracy of HPC measurements [33-35]. In
other words, not all events measured by HPCs are suitable for
CFC because of perturbation in counting events. HPCs run-to-
run variation may negatively affect the correctness of the
measurements, making it difficult to distinguish between correct
behavior and incorrect one caused by CFEs.

However, CFE-induced effects on the program's behavior
can be differentiated from the natural perturbations of some
HPCs [34]. An illegal jump from BBi to BBj, i.e., inter-BB CFE,
can result in a distinct difference in the monitored event. Thus,
by measuring some precise events, the correct behavior can be
differentiated from the wrong, abnormal behavior of the target
program. The next section discusses the HPC selection scheme
to generate the intended signatures.

B. Accurate HPC-based signatures

The accuracy of HPCs measurements has been
experimentally discussed for different architectures [34-38].
Generally, the internal interactions between different operating
system modules, hardware interrupts, and the behavior of
applications can result in measurement variations. For CFEs
detection, the main challenge lies in determining the most
accurate microarchitecture events to be monitored. The
employed signatures to detect CFEs should be extracted from
such events that must be deterministic, high accurate, and do not
show run-to-run variation as much as possible. In other words,
the more accurate the events, the more confident the results we
obtain.

Accordingly, we need to identify the most accurate
microarchitecture events in order to generate accurate HPC-
based signatures. To this end, we repeatedly profile several
programs on ARM architecture simulated using the cycle-
accurate Gem5 simulator towards computing signatures. Among
a large number of available events, we identify those events that
show insignificant run-to-run variations in measurements.
Based on the profiling information, the most suitable events to
be monitored in order to compute signatures are:

i. Instruction executed
ii. Branch instruction executed
iii. Load/Store instructions executed

As the employed signatures are computed from hardware
events, the fewer the selected events, the less the overheads
required for CFE detection. Therefore, based on our profiling
information and previous studies [34, 37], the instruction
executed event (instruction architecturally executed) is accurate
enough to be counted in order to compute accurate signatures.
Any deviation from the correct signature assigned to each BB is
a sign of CFE. Because the program often contains different BBs
with respect to the type and the number of instructions, each BB
will be assigned a unique HPC-based compile-time signature
CTsig

i
. The CTsig

i
 signature is an integer value calculated at

compile-time for each BB∈V as follow:

CTsig
i
= ∑ Insnk

n
k=1 (1)

Therefore, CTsig
i
 denotes the count of static instructions (Insnk)

of ith basic block that contain � instructions. At the execution, a
run-time signature is calculated as follows:

RTsig
i
=Ci (E) (2)

Where Ci
denotes the count of the selected event E (instruction

executed) from the execution of ith basic block.

C. Method for control flow checking

Each basic block in the CFG comprises several instructions
whose execution triggers a specific number of events. Then,
each BBi ∈ V is assigned, at compile-time, a signature
CTsig

i
referring to the correct number of instructions in BBi. Once

a control flow error occurs at run-time, the program is more
likely to produce events that their measurements (count) differ
from the correct expected count. To be more specific, a
perturbation caused by CFEs will affect the count of executed
instructions of the program, making the measurements of the
corresponding events differ from the compile-time signature.
Therefore, a CFE is said to occur if the following condition is
met:

CTsig
i
 ≠ RTsig

i
 ∀ i ∈ V (3)

This is can be described as follows. Given a BBi with a
known instructions count, a bit-flip error may affect the
program’s control flow and cause a CFE. As a result, the count
of monitored event, i.e., instructions executed, will deviate from
the expected one assigned at compile-time, i.e., CTsig

i
.

Fig. 2.a shows the CFG of Fibonacci sequence algorithm
with eight basic blocks. Before the execution transfers from BB1
to its successor BB2, we should ensure that the instructions of
BB1 have been executed in the correct sequence. Therefore,
before executing the BB2, we check the correctness of the
directed edge between BB1 and BB2 by performing the
following (check instructions):

Fig. 2 (a) CFG of Fibonacci sequence algorithm, (b) pseudo code of the
CFC procedure (CFEs check instructions)

i. Retrieve the measurement of HPC, i.e., RTsig
1
, that is set to

count the number of executed instructions,
ii. Compare the RTsig

1
 with the reference signature, i.e., CTsig

1
,

assigned at compile-time.

It is evident that any control flow error that causes skipping
some instructions can be detected. Applying CFC techniques
can increase the size of the original code, which in turn might
impair the program's resilience against soft errors. Therefore,
instead of adding the check instructions at the end of each BB,
we instrument these BBs with a function call instruction to the
CFC procedure (Fig. 2.b) that contains check instructions,
reducing performance and memory overheads.

D. CFE detection capability

A single bit-flip in the address operand of a branch
instruction at the exit point of a basic block can lead to the
following scenarios: (i) a legal but wrong flow of control and (ii)
an illegal flow of control. Regarding the latter, an illegal control
flow can be intra-BB CFE, inter-BB CFE, or an illegal branch
outside the program’s address space. Several techniques have
not considered intra-BB CFEs [14, 22, 25-28]. Our proposed
technique can detect both intra-BB and inter-BB CFEs, except
for one inter-BB CFE, which is a CFE from the end point of BBi
to the start point of a non-successor BBj (we term this type of
control-flow error as End-to-Start CFE or ES-CFE). At the BBi,
we do not check the source of the incoming branch, however,
we check the number of executed instructions once the
execution reaches the end point of BBj. Since the instructions of
BBj will be executed correctly from the start point of BBj till the
last one, the ES-CFE (from BBi to the non-successor BBj)
cannot be detected as the RTsig

j
will be equal to CTsig

j
.Here it is

important to note that the employed HPC-based signatures are
assigned per each basic block without considering the next or
previous basic block. In other words, the proposed technique is
not a predecessor/successor CFC technique. Therefore, unlike
most of CFE error detection techniques, such as [13, 21-23, 26-
28], our proposed technique does not suffer from the problem of
indirect branches discussed in Section II. Moreover, to reduce
overheads, we can perform control-flow checking at control-
path granularity without losing significant fault coverage.

The probability of ES-CFE that occurs due to a single bit-
flip in the address operand of branch instructions at the end point
of BBs is extremely low. As a result, protecting non-susceptible
basic blocks against ES-CFEs can increase the overheads
without improving fault tolerance. Therefore, it is important to
identify the susceptible basic blocks against ES-CFEs to avoid
unnecessary protection.

Given a BBi that ends with a branch instruction, and a BBj ∉
succ (BBi), the BBj is an ES-CFE susceptible basic block if a
single bit-flip in the address operand of the branch instruction at
the end point of BBi can move the control flow “illegally” to
exactly the first instruction (the start point) in the BBj. The total
number of possible ES-CFEs can be calculated as follows:

ES-CFE = ∑ n - BBifan_out
m
i=1 (4)

Where n denotes the total number of basic blocks, m denotes
the total number of basic blocks that end with a branch
instructions, and BBifan_out is the number of successors of BBi.

Considering Fig. 2.a, m is equal to 5, where n is equal to 8.
Therefore, there are a total of 34 ES-CFEs. However, not all of
these ES-CFEs are a result of a single bit-flip. Since the adopted
fault model in this paper is a single bit-flip model, we should
discard ES-CFEs that require more than single bit-flip error. To
this end, in order to identify only the ES-CFEs caused by a single
bit-flip error, we employ an m × n matrix where their elements
are the hamming distances between the address operand of the
branch instructions at the end point of the source basic blocks
and the address of the first instruction in the non-successor basic
blocks (we use the ARM version of objdump Linux utility to
disassemble the executable file and extract instructions'
addresses). We term this matrix as HM. Therefore, if HM (BBi,
BBj) is equal to 1, this indicates that an ES-CFE from BBi to BBj
can be occurred due to a single bit-flip, and hence, this ES-CFE
should be considered. Table I show HM extracted for the CFG
presented in Fig. 2.a.

The susceptible basic blocks against ES-CFE are those
having Hamming distance 1. Therefore, among 34 ES-CFEs
(Table I), only one ES-CFE can occur, an ES-CFE from BB4 to
BB6 as a single bit-flip in the address operand of a branch
instruction at the endpoint of BB4 (1033c) can modify this
address to (10334), which is the address of the first instruction
in BB6. As a result, we can significantly reduce overheads
without affecting fault coverage by avoiding protecting basic
blocks with HM (BBi, BBj) ≠ 1.

Regarding Fig. 2.a, one possible solution to detect ES-CFEs
is to treat BB4 and BB5 as one basic block. To this end, the
check instructions are inserted only into BB5. Considering the
ES-CFE from BB4 to BB6, when the program execution reaches
the check instructions at the endpoint of BB6, the number of
executed instructions will be different from the CTsig

6
, as the

RTsig
6
will be equal to RTsig

4
+RTsig

6
. Therefore, the CFE can be

detected.

V. IMPLEMENTATION

Manual implementation of error detection techniques is
impractical because it can be very time-consuming, and hence,
it cannot be used to study larger workloads. Therefore, the
automated implementation of error detection techniques is
essential, as it saves the trouble of implementation.

Most techniques use the CFG to detect control-flow errors.
Accordingly, we can implement our proposed technique where
it is possible to extract an accurate CFG, i.e., a CFG that
accurately includes the program instructions to be executed. The
availability of source code facilitates constructing the CFG of
the corresponding program. Since the code is written in a high-
level language, the whole program behavior and logic are
evident.

TABLE I. THE MATRIX OF HAMMING DISTANCE (EACH ITEM INDICATES

THE TOTAL NUMBER OF BITS THAT NEED TO BE FLIPPED FOR A ES-CFE TO

OCCUR BETWEEN RELEVANT BASIC BLOCKS)

 BB1 BB2 BB3 BB4 BB5 BB6 BB7 BB8

BB1 5 * 7 5 5 5 4 3
BB2 2 7 * * 2 2 3 4
BB3 5 * 7 5 5 5 4 3
BB4 3 4 3 3 3 1 * 3
BB5 5 * 7 5 5 5 4 3

 Asterisks (*) denote legal control flow between the relevant BBs

However, automated implementation at source code cannot
guarantee accuracy. The compiler may change the program
because of optimizations, e.g., instructions reordering and loop
unrolling. Thus CFC technique applied to the source code can
be affected during compilation.

A. Automated CFE detection using Compiler extension

The compiler can insert additional instructions during the
compilation of the program. The employed compiler in this
paper is the GNU Compiler Collection (GCC) [39], a cross-
architecture compiler widely used for different programming
languages and operating systems. As Fig. 3 shows, the
compilation pipeline of GCC comprises three steps, namely
front-end, middle-end, and back-end. We are interested in the
back-end step where the code is lowered and optimized to emit
the assembly code.

Since GCC version 4.5 [39], a compiler extension can be
developed as a plugin to extend the compiler’s functionalities.
Thus, we implement the proposed technique at compile-time by
developing a GCC-plugin compiler extension that operates at
the GCC compiler’s Register Transfer Language (RTL)
representation code. The RTL representation can be seen as a
generic assembly code that can be moved across different
architectures. The GCC-plugin appends an RTL-pass and makes
it a successor RTL-pass to the pass-free-cfg, an RTL-pass
executed once before emitting the assembly code. To be more
specific, we add the RTL-pass right before emitting assembly
code and after ensuring the completion of all optimization passes
(Fig. 3). Consequently, none of the check instructions added by
the GCC-plugin will be affected or modified, ensuring realistic
and accurate implementation.

B. Access hardware performance counters

Hardware performance counters are special-purpose
registers built into modern processors. Using these counters for
monitoring the selected event to detect CFEs should be
performed accurately. Typically, HPCs can be accessed at
kernel level or user-level using different interfaces proposed in
literature. The perf_event interface is a part of the Linux kernel
and enables users to access HPCs at the kernel level [35, 36].
Performance Application Programming Interface (PAPI)
provides a platform, operating system, and machine,
independent access to the hardware performance counters a
user-level [40]. PAPI encapsulates the perf_event interface’s
functions and provides a high-level library for flexible access
HPCs. However, PAPI’s flexibility comes at the price of
accuracy and large overheads.

Fig. 3 Compilation pipeline of GCC compiler and the proposed plugin (CFC
instrument pass)

To this end, we decide to access HPCs at the kernel-level
using the low-level perf-event interface. Therefore, we eliminate
possible perturbations added by high-level tools. Since the
cycle-accurate Gem5 simulator is used to evaluate the proposed
technique, it is important to check how Gem5 offers access to
HPCs. Gem5 provides a Python script configuration file, namely
“ArmPMU.py”, which defines raw code for events that gem5
provides for the ARM architecture. Each event has a unique
code. These codes differ across the architectures (architecture-
dependent) [32].

C. The granularity of checking

The additional instructions inserted to check the program's
control flow are considered the main source of overhead. It is
essential to consider how frequently these instructions are
executed to tune the imposed overheads. Protecting each basic
block will reduce the Error Detection Latency (EDL) value, the
interval between activating the fault and detecting it, and achieve
a high error detection rate, but can impose higher overheads. On
the other hand, treating a set of basic blocks as one block (like
path-assertion technique) can reduce overheads at the price of
the EDL that will be increased, as a CFE cannot be detected until
the program reaches the checking instructions. However, a CFG
contains several basic blocks with one or few instructions.
Therefore, it is possible to treat a set of basic blocks just like a
single one.

Authors in [41] proposed the “node expansion” concept to
reduce overheads so that only a particular set of basic blocks are
protected. The technique proposed in [14] has leveraged the
“node expansion” concept to protect only super-node (a single-
entry single-exit code region) instead of each BB. However,
while such techniques make it possible to reduce overheads,
they fail to detect CFEs within each super-node. Therefore, the
granularity of node expansion is restricted as its benefits come
with a low error detection capability. However, our proposed
technique does not suffer from such restrictions, as it can detect
any intra-BB CFEs.

VI. EVALUATION AND RESULTS

This section describes the evaluation of the proposed
technique. After describing the experimental setup and the
selected benchmark programs, we present the Gem5-based fault
injection tool that was developed to evaluate the proposed CFC
techniques.

A. Target system and benchmark

We evaluate the proposed technique experimentally on
ARM architecture using the Gem5 simulator [42]. The Gem5
simulator provides full-system and cycle-accurate (fine-
granularity per cycle) simulations. It is publicly available and
fully maintained by developers. Moreover, Arm architecture is
best supported by Gem5 [42]. We choose the ARM cortex A-53
as it is available in a microarchitecture-level model in Gem5.
Moreover, diverse programs were selected to evaluate the error
detection capability of the proposed technique. The selected
programs are as follows: bubble sort (BS), quick sort (QS),
matrix multiplication (MM), and Fibonacci sequence (FS).
These programs use our implementation. Two additional
programs were selected from MiBench version 1.0 [43], which
are bit count (BC) and cyclic redundancy check (CRC).

To implement the proposed technique for the employed
programs, we use our compiler extension, which operates at the
GCC back-end, and instruments the program at compile-time
before emitting the assembly code. We use the GCC cross-
compiler with our developed plugin (compiler extension) to
compile and implement the proposed technique. The
instrumented executable files are then executed on the Gem5
simulator. We implement the state-of-the-art random additive
signature monitoring (RASM) [13] and CFCSS [22] techniques
to assess the error detection capability of our technique. Several
control-flow error detection techniques [1, 13, 15, 28] have
selected CFCSS as a baseline to compare and evaluate their
techniques. CFCSS and RASM provide high fault coverage as
they perform conservative control flow checking and instrument
each basic block with multiple instructions.

B. Gem5-based Fault injection

We perform many fault injections on the selected benchmark
programs executed on simulated ARM architecture. As the
evaluation process is performed on the Gem5, we need to
perform fault injection on the Gem5 simulator where the target
benchmark programs execute. We take advantage of the built-in
GDB remote debugger interface provided by Gem5 to perform
remote debugging on the target program executed on Gem5. The
adopted debugging strategy is summarized as follows. We run
the simulated ARM architecture on Gem5 and execute the target
program in debug mode. The program will stop and wait for a
connection request from a remote debugger (the host debugger).
Usually, the connection is established via TCP/IP protocol.
Then, we launch and connect the host debugger with the Gem5's
remote interface. At this point, we can control the target program
running on Gem5 and perform fault injection.

The fault model we assume is a single bit-flip, as it has been
widely adopted in many previous studies [5, 13, 18, 25, 26]. To
conduct an effective evaluation, we should inject faults that are
more likely to manifest as control-flow errors rather than other
error types. A bit-flip error in control registers and operand of
branch instructions is more likely to cause a control-flow error.
Accordingly, we inject faults in control registers, such as link
register (LR), Program counter register (PC), and in the operand
of branch instructions to emulate CFEs. We employ the
Statistical Fault Injection (SFI) [44] to reduce the number of
fault injection experiments while ensuring the results accuracy.
Each fault injection campaign involves 1000 fault injection
experiments for each benchmark program. Overall, we inject
18000 faults (6 benchmarks × 1000 injections × 3 techniques =
18000 injections). Therefore, we ensure 99% as a confidence
level with 1% as the error margin [44].

C. Experimental results

Table II presents the evaluation results of the proposed
techniques (Our Tech.) and the employed conservative
signature-based CFC techniques. Like previous studies, we
define fault coverage as the ratio of detectable errors to total
injected faults. We exclude the faults that lead to correct results
as they have no effects. Typically, the fault coverage is not
suitable to conduct a fair comparison between techniques
because it does not consider overheads. Therefore, the
overheads in terms of performance overhead (execution time)
and memory overhead (code size) should be calculated.

TABLE II. EVALUATION RESULTS
(a) Fault Converge ratio

 BS QS MM FS BC CRC Avg.
Our Tech.a 98.1 97.4 99.6 98.2 98.4 100 98.93
CFCSS 82.6 96.8 88.3 82.4 66.2 35.9 75.36
RASM 95.3 96.7 99.2 92.6 95.6 98.3 96.28

(b) Execution time overhead

 BS QS MM FS BC CRC Avg.
Our Tech. 88.2 90.6 75.1 95.2 84.2 24.6 76.31
CFCSS 70.6 145.3 77.3 82.4 132.2 64.2 95.3
RASM 65.4 125.8 64.1 78.7 143.2 36.5 85.61

(c) Memory overhead

 BS QS MM FS BC CRC Avg.
Our Tech. 6.2 21.5 16.1 16.6 9.5 7.2 12.85
CFCSS 8.3 31.6 28.4 22.3 11.0 4.6 17.7
RASM 7.6 19.4 14.6 18.7 12.6 6.3 13.2
a: our proposed technique

Based on the results presented in Table II, on average, the
results demonstrate that the proposed technique can achieve
~99% fault coverage which is 23.57% higher than that offered
by CFCSS technique (Table II a). Moreover, the memory
overhead (Table II c) imposed by the proposed technique is
4.85% lower, and the performance overhead (Table II b) is
~19% lower than that of the CFCSS technique. The overhead, in
terms of code size, of the proposed technique is roughly the same
as that of RAMS. However, our technique shows less overhead
in terms of execution time, as RAMS, like CFCSS, instruments
each basic block with multiple instructions. As a result, the
proposed technique can be used in the context of embedded
systems with restricted resources to detect CFEs, both inter-
block, and intra-block errors, at a low level of overheads without
losing significant fault coverage.

VII. CONCLUSION

This paper presents a software-based control-flow error
detection technique for ARM-based embedded systems. It takes
advantage of the hardware performance counter common
feature in modern processors to perform control flow error
detection and keep systems fault-tolerant. The proposed
technique can detect both inter-BB and intra-BB CFEs
effectively. We evaluated the effectiveness of the proposed
technique on ARM architecture by performing many fault
injection experiments on different benchmark programs that
cover different application domains. Experimental results
showed that the proposed technique achieves a high fault
coverage at lower performance and memory overheads.
Moreover, the proposed technique is portable across different
architectures, as most modern architectures are equipped with
HPCs.

References

[1] Z. Zhang, S. Park, and S. Mahlke, “Path Sensitive Signatures for Control
Flow Error Detection,” in The 21st ACM SIGPLAN/SIGBED Conference
on Languages, Compilers, and Tools for Embedded Systems, 2020, pp. 62-
73.

[2] J. Vankeirsbilck, “Advancing Control Flow Error Detection Techniques for
Embedded Software using Automated Implementation and Fault
Injection,” 2020.

[3] A. Tajary, H. R. Zarandi, and N. Bagherzadeh, “IRHT: An SDC detection
and recovery architecture based on value locality of instruction binary
codes,” Microprocessors and Microsystems, vol. 77, p. 103159, 2020.

[4] M. Peña-Fernández, A. Serrano-Cases, A. Lindoso, M. García-Valderas, L.
Entrena, A. Martínez-Álvarez, et al., “Dual-Core Lockstep enhanced with

redundant multithread support and control-flow error detection,”
Microelectronics Reliability, p. 113447, 2019.

[5] Y. Nezzari and C. Bridges, “ACEDR: Automatic Compiler Error Detection
and Recovery for COTS CPU and Caches,” IEEE Transactions on
Reliability, vol. 68, pp. 859-871, 2019.

[6] P. A. Laplante and J. F. DeFranco, “Software engineering of safety-critical
systems: Themes from practitioners,” IEEE Transactions on Reliability,
vol. 66, pp. 825-836, 2017.

[7] M. Hoffmann, F. Schellenberg, and C. Paar, “ARMORY: Fully Automated
and Exhaustive Fault Simulation on ARM-M Binaries,” IEEE Transactions
on Information Forensics and Security, vol. 16, pp. 1058-1073, 2020.

[8] I. Oz and S. Arslan, “A survey on multithreading alternatives for soft error
fault tolerance,” ACM Computing Surveys (CSUR), vol. 52, pp. 1-38,
2019.

[9] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing dependability with
software fault injection: A survey,” ACM Computing Surveys (CSUR),
vol. 48, p. 44, 2016.

[10] N. Laranjeiro, J. Agnelo, and J. Bernardino, “A Systematic Review on
Software Robustness Assessment,” ACM Computing Surveys (CSUR),
vol. 54, pp. 1-65, 2021.

[11] H. Cho and K.-W. Kwon, “Modeling Application-Level Soft Error Effects
for Single-Event Multi-Bit Upsets,” IEEE Access, vol. 7, pp. 133485-
133495, 2019.

[12] S. Schuster, P. Ulbrich, I. Stilkerich, C. Dietrich, and W. Schroder-
Preikschat, “Demystifying Soft-Error Mitigation by Control-Flow
Checking - A New Perspective on its Effectiveness,” Acm Transactions on
Embedded Computing Systems, vol. 16, p. 19, Oct 2017.

[13] J. Vankeirsbilck, N. Penneman, H. Hallez, and J. Boydens, “Random
Additive Signature Monitoring for Control Flow Error Detection,” IEEE
Transactions on Reliability, vol. 66, pp. 1178-1192, Dec 2017.

[14] M. Zhang, Z. Gu, H. Li, and N. Zheng, “WCET-Aware Control Flow
Checking With Super-Nodes for Resource-Constrained Embedded
Systems,” IEEE Access, vol. 6, pp. 42394-42406, 2018.

[15] A. Rhisheekesan, R. Jeyapaul, and A. Shrivastava, “Control flow checking
or not? (for Soft Errors),” ACM Transactions on Embedded Computing
Systems 18, 1, 2019.

[16] A. Kritikakou, R. Psiakis, F. Catthoor, and O. Sentieys, “Binary Tree
Classification of Rigid Error Detection and Correction Techniques,” ACM
Computing Surveys (CSUR), vol. 53, pp. 1-38, 2020.

[17] S. A. Asghari, H. Taheri, H. Pedram, and O. Kaynak, “Software-based
control flow checking against transient faults in industrial environments,”
IEEE Transactions on Industrial Informatics, vol. 10, pp. 481-490, 2013.

[18] S. A. Asghari, A. Abdi, H. Taheri, H. Pedram, and S. Pourmozaffari,
“SEDSR: Soft error detection using software redundancy,” Journal of
Software Engineering and Applications, vol. 5, p. 664, 2012.

[19] A. Li and B. Hong, “Software implemented transient fault detection in
space computer,” Aerospace science and technology, vol. 11, pp. 245-252,
2007.

[20] B. Nicolescu, Y. Savaria, and R. Velazco, “SIED: Software implemented
error detection,” in Proceedings 18th IEEE Symposium on Defect and Fault
Tolerance in VLSI Systems, 2003, pp. 589-596.

[21] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante, “Soft-error
detection using control flow assertions,” in Proceedings 18th IEEE
Symposium on Defect and Fault Tolerance in VLSI Systems, 2003, pp.
581-588.

[22] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-flow checking by
software signatures,” IEEE transactions on Reliability, vol. 51, pp. 111-
122, 2002.

[23] Z. Alkhalifa, V. S. Nair, N. Krishnamurthy, and J. A. Abraham, “Design
and evaluation of system-level checks for on-line control flow error
detection,” IEEE Transactions on Parallel and Distributed Systems, vol. 10,
pp. 627-641, 1999.

[24] Y. Sedaghat, S. G. Miremadi, and M. Fazeli, “A software-based error
detection technique using encoded signatures,” in 21st IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, 2006, pp.
389-400.

[25] D. Rodrigues, G. Nazarian, M. Á, L. Carro, and G. Gaydadjiev, “A non-
conservative software-based approach for detecting illegal CFEs caused by
transient faults,” in IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFTS), 2015, pp. 221-
226.

[26] G. Nazarian, D. G. Rodrigues, A. Moreira, L. Carro, and G. N. Gaydadjiev,
“Bit-Flip Aware Control-Flow Error Detection,” in 23rd Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing, 2015, pp. 215-221.

[27] D. S. Khudia and S. Mahlke, “Low cost control flow protection using
abstract control signatures,” in Proceedings of the 14th ACM
SIGPLAN/SIGBED conference on Languages, compilers and tools for
embedded systems, 2013, pp. 3-12.

[28] R. Vemu and J. A. Abraham, “CEDA: Control-Flow Error Detection Using
Assertions,” IEEE Transactions on Computers, vol. 60, pp. 1233-1245,
2011.

[29] Z. Zhu, J. Callenes-Sloan, and B. C. Schafer, “Control Flow Checking
Optimization Based on Regular Patterns Analysis,” in IEEE 23rd Pacific
Rim International Symposium on Dependable Computing (PRDC), 2018,
pp. 203-212.

[30] A. Rajabzadeh and S. G. Miremadi, “Transient detection in COTS
processors using software approach,” Microelectronics Reliability, vol. 46,
pp. 124-133, 2006.

[31] H. A.-h. Ahmad, Y. Sedaghat, and M. Rezaei, “A performance counter-
based control flow checking technique for multi-core processors,” in 7th
International Conference on Computer and Knowledge Engineering
(ICCKE), 2017, pp. 461-465.

[32] A. Holdings, “ARM Architecture Reference Manual, ARMv8, for
ARMv8-A architecture profile,” ed, 2019.

[33] M. Spisak, “Hardware-Assisted Rootkits: Abusing Performance Counters
on the {ARM} and x86 Architectures,” in 10th {USENIX} Workshop on
Offensive Technologies ({WOOT} 16), 2016.

[34] X. Wang, C. Konstantinou, M. Maniatakos, R. Karri, S. Lee, P. Robison,
et al., “Malicious firmware detection with hardware performance
counters,” IEEE Transactions on Multi-Scale Computing Systems, vol. 2,
pp. 160-173, 2016.

[35] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose,
“SoK: The Challenges, Pitfalls, and Perils of Using Hardware Performance
Counters for Security,” in SoK: The Challenges, Pitfalls, and Perils of
Using Hardware Performance Counters for Security, 2019, p. 0.

[36] V. M. Weaver, D. Terpstra, and S. Moore, “Non-determinism and
overcount on modern hardware performance counter implementations,” in
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2013, pp. 215-224.

[37] C. Malone, M. Zahran, and R. Karri, “Are hardware performance counters
a cost effective way for integrity checking of programs,” in Proceedings of
the sixth ACM workshop on Scalable trusted computing, 2011, pp. 71-76.

[38] V. Weaver and J. Dongarra, “Can hardware performance counters produce
expected, deterministic results," in Proc. of the 3rd Workshop on
Functionality of Hardware Performance Monitoring, 2010.

[39] G. Team, “GCC internal manual for gcc 10.0.0.”
[40] J. J. Dongarra, K. S. London, S. V. Moore, P. Mucci, and D. Terpstra,

“Using PAPI for Hardware Performance Monitoring on Linux Systems,”
2001.

[41] R. Vemu and J. A. Abraham, “Budget-dependent control-flow error
detection,” in 14th IEEE International On-Line Testing Symposium, 2008,
pp. 73-78.

[42] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger, M.
Andreozzi, et al., “The gem5 simulator: Version 20.0+,” arXiv preprint
arXiv:2007.03152, 2020.

[43] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R.
B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proceedings of the fourth annual IEEE international
workshop on workload characterization. WWC-4 (Cat. No. 01EX538),
2001, pp. 3-14.

[44] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in Design, Automation & Test
in Europe Conference & Exhibition, 2009, pp. 502-506.

