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Abstract—The recent trend in processor manufacturing 

technologies has significantly increased the susceptibility of safety-
critical systems against soft errors in harsh environments. Such 
errors result in control-flow errors (CFEs) that can disturb 
systems' execution and cause severe financial, human, or 
environmental disasters. Therefore, there is a severe need for 
efficient techniques to detect CFEs and keep the systems fault-
tolerant. Although numerous control-flow error detection 
techniques have been proposed, they impose considerable 
overheads, making them inappropriate for today's safety-critical 
systems with restricted resources. Several techniques attempt to 
insert fewer control-flow checking instructions to reduce 
overheads. However, they limit fault coverage. This paper proposes 
a software-based technique for ARM processors to detect CFEs. 
The technique leverages the Hardware Performance Counters 
(HPCs), which exist in most modern processors, to count micro-
architecture events and generate HPC-based signatures. Based on 
these signatures that capture the correct control flow of the 
program, the proposed technique can detect CFEs once the correct 
control flow is violated. We evaluate the detection capability of the 
proposed technique by performing many fault injection 
experiments applied on different benchmark programs. Moreover, 
we compare the proposed technique with common signature-based 
CFE detection techniques with respect to fault coverage and 
imposed overheads. The results demonstrate that the proposed 
technique on average can achieve ~99% fault coverage which is 
23.57% higher than that offered by the employed signature-based 
techniques. Moreover, the memory overhead imposed by the 
proposed technique is 4.85% lower, and the performance overhead 
is ~19% lower than that of the studied signature-based techniques. 

Keywords—hardware performance counter, control-flow 
checking, safety-critical systems, fault injection, software-based error 
detection. 

I. INTRODUCTION 

Recently, the popularity of embedded systems has increased 
dramatically due to the rapid improvements in processors 
technologies. They are incorporated into various applications 
ranging from information systems and heavy industries to smart 
cities, distributed systems, and safety-critical embedded 
systems. However, employing embedded systems in safety-
critical systems that operate in harsh environments has raised 
severe challenges relating to the reliability offered by such 
embedded systems [1-3]. To be more specific, the technology 
advancements have negatively affected the ability of processors 
to tolerate faults and increased their vulnerability against faults. 
A safety-critical system is a system in which a fault can disturb 
the system's execution and cause severe financial, human, or 
environmental disasters [2]. Therefore, these systems should 

adhere to strict reliability restrictions before they are put into 
operation [4-6]. 

It was discovered around 1970 that unprotected processors 
are susceptible to faults induced by radiations [7]. High-energy 
particles can cause random, temporary changes in the operating 
state of the systems due to affecting one or multiple flip-flops in 
underlying electronic components . Typically, faults that affect 
the systems manifest in three main classes depending on their 
duration [8-10]: permanent faults, intermittent faults, and 
transient faults. Researchers have pointed out that transient 
hardware faults, i.e., soft errors, are the main challenge to be 
overcome to build a fault-tolerant system. Typically, soft errors 
can affect one flip-flop temporarily, causing Single Event 
Upsets (SEUs), or more than one flip-flop, causing single-event 
multi-bit upsets (SEMUs) [11]. SEUs in the memory cells or 
CPU registers can affect the program execution and cause data-
flow errors or control-flow errors (CFEs) [1, 2, 12]. A CFE 
violates the correct program flow and moves it to an incorrect 
location within the code space or unallocated memory regions. 
Due to the deviation in the program's control flow, the operation 
behavior of the program may be incorrectly modified [1, 13-15]. 
As a result, CFEs can affect the program execution and cause 
the program to terminate abnormally or produce undesirable 
outcomes. Thus, it is of paramount importance to address this 
type of error for building fault-tolerant systems.  

Previous work [1] has stated that CFEs detection requires 
2.5x more effort than detecting data errors. Considering reduced 
instruction set computer (RISC) processors, 33% of all soft 
errors that affect them are reflected in control-flow errors [15]. 
Therefore, employing fault tolerance techniques to detect soft 
error effects, primarily CFEs, is highly important to enhance 
reliability as ISO 26262 and DO178C recommend using control 
flow checking (CFC) techniques [4].  

Many CFC techniques have been proposed to detect CFEs. 
These techniques can fall into three categories: hardware-based, 
software-based, and a combination of both software- and 
hardware-based techniques as hybrid techniques [8, 16]. Most 
techniques share the same steps to preserve the program flow 
correctness [17-24]. Initially, a control flow graph (CFG) of the 
target program is extracted. Then, additional instructions are 
inserted at predefined locations (typically at compile-time) to 
validate the correctness of the branch instruction destination. 
These instructions leverage special variables called signatures 
to perform control flow checking. CFC techniques differ in how 
signatures are generated, where to insert the signatures in the 
code, and the number of assigned signatures. 



 

 

Instrumenting the program (inserting additional instructions) 
with many checking instructions and signatures could achieve a 
high fault coverage [1, 13, 14]. However, this will lead to 
considerable overheads, making the employed techniques are 
inapplicable for today's safety-critical systems with restricted 
resources. Therefore, the main challenge facing CFC techniques 
is how to provide a high fault coverage (CFE detection ratio) 
while keeping overheads as low as possible. For tuning the 
trade-off between fault coverage and overheads, authors in [25] 
and [26], for example, protect only the susceptible basic blocks 
to CFEs. Other techniques reduce the checking frequency by 
deferring the check of the branch correctness [1, 14, 27, 28]. 
While such methods contribute to reducing overheads, the 
ability of these methods to detect errors may be negatively 
affected. 

In this paper, we propose an efficient software-based 
technique to detect CFEs at low overheads without losing 
significant fault coverage. It leverages the hardware 
performance counters (HPCs), a common feature in most 
modern processors, to detect CFEs and keep the system fault-
tolerant. In order to detect control-flow errors, we assign, at 
compile-time, an HPC-based signature to each basic block (a 
sequence of branch-free instructions) in the control flow graph. 
The assigned signatures are calculated by counting specific low-
level microarchitecture events, e.g., the number of instructions 
per basic block. During execution, a run-time HPC-signature is 
calculated and compared with the compile-time one. Any 
mismatch between signatures is a sign of a CFE.  

We evaluate the effectiveness of the proposed technique by 
conducting many fault injection experiments on diverse 
benchmark programs that cover different application domains. 
For comparison purposes, we implement the state-of-the-art 
random additive signature monitoring (RASM) technique [13] 
and the Control flow checking by software signature (CFCSS) 
[22], which is widely referred to in literature because of its high 
fault coverage. Based on the obtained results, the proposed 
technique can achieve ~99% fault coverage for CFEs on the 
selected benchmark and imposes lower overheads. 

The remainder of this paper is organized as follows. Section 
III surveys related work on software-based fault injection 
techniques. Section IV demonstrates the proposed technique and 
gives a general background about the hardware performance 
counter. Section V describes the implementation of the proposed 
technique. A detailed evaluation of the proposed technique is 
discussed in Section VI. Finally conclusions are drawn in 
Section VII. 

II. MOTIVATION 

Most CFC techniques strive to provide a high fault coverage 
with acceptable overheads. These techniques operate at different 
levels of granularity: (1) fine-grain predecessor/successor-
assertion, or (2) coarse-grain path-assertion. Despite the high 
fault coverage provided by the former techniques, they impose 
significant overheads, as all basic blocks should be 
instrumented. On the other hand, path-assertion techniques 
divide a CFG into multiple control-flow paths (a group of basic 
blocks executed in an uninterrupted sequence) and add check 
instructions into each path, resulting in fewer inserted check 
instructions. However, such techniques sacrifice some fault 

coverage as intra-block CFEs in the same control-flow path 
cannot be detected. 

Another challenge that is quite important and seldom 
discussed in the literature is how accurate CFG is. The CFG is 
considered a prerequisite for most CFC techniques. The adopted 
CFG should be complete and accurate. Lack of precision in the 
employed CFG may negatively affect the CFC technique, 
making the results questionable [13]. Therefore, the CFG must 
be as accurate as possible. In this context, indirect branches 
represent the major challenge that impedes the construction of a 
complete and high-precision CFG. Since an indirect jump gives 
a basic block multiple undetermined successors, assigning 
signatures to validate if the previous (or next) basic block is the 
correct predecessor (or successor) is not possible.  

In this paper, we propose an HPC-based technique to detect 
CFEs caused by soft errors. Using HPCs allows monitoring the 
program’s execution flow with negligible overheads. The 
signatures assigned to each basic block in the target program 
capture the correct control flow of the program. Therefore, based 
on these HPC-based signatures, the proposed technique can 
detect CFEs once the correct control flow is violated. Moreover, 
tuning the overheads can be performed effectively without fault 
coverage degradation.  

III. RELATED WORK 

Before discussing previous CFC techniques, we introduce 
the following common terminologies widely adopted in most 
CFC techniques.  

Given a program P, it is possible to extract an abstract 
representation of the execution flow of the program P, i.e., a 
Control Flow Graph (CFG). Here, we introduce the main 
terminology.  

i. A basic block (BB) is a set of sequential instructions, which 
are executed one after another from the starting point of the 
basic block (entry point) to the last one (exit point). The 
branch instructions are not allowed within the BB body. Such 
instructions only appear at the end of BB. V = {BB1, BB2, … 
BBn} is a set of all BBs in the source code of P.  

ii. Predecessors of BBi are a set of basic blocks that the program 
can explore before entering the BBi. 

iii. Successors of BBi are all possible basic blocks that the 
program can move to once the BBi is executed.  

iv. A directed edge between BBi and BBj represents a legal 
execution of BBj after the execution of BBi in the absence of 
CFEs. BBi is a predecessor of BBj and BBj is a successor of 
BBi. E = {e1, e2, …, en}  is a set of directed edges. 

v. A Control Flow Graph (CFG) of the program P, CFGP is an 
abstract representation of all possible execution paths of the 
program flow. The control flow graph is usually formed by 
linking basic blocks using directed edges, i.e., branches. 
Therefore, CFGP = {V, E} indicates CFG of program P with 
a set of BBs V and a set of directed edges E.  

A basic block may have multiple predecessors and multiple 
successors, except the first BB in the program, which has no 
predecessors, and the last BB, which has no successors as it 
terminates the execution. Fig. 1 shows a sample program source 
code and its corresponding CFG extracted for the ARM 
assembly code related to the program. The CFE could appear in 



 

 

 
Fig. 1.   (left) A sample program source code, (right) A Control Flow Graph 
(the corresponding ARM assembly code) 

different scenarios as follows [13]:  

i. Intra-BB CFE: an incorrect jump within the current BB. 
ii. Inter-BB CFE: an incorrect jump to another BB. 
iii. CFE from a given BB to outside the memory space allocated 

for the program. 

Software-based CFC techniques strive to detect such CFE 
types. Typically, CFE type iii almost leads to exceptions in the 
target program, e.g., a segmentation fault or time-out, that are 
more likely to detect by underlying hardware features. For error 
types i and ii, these CFEs are more critical in the sense we need 
sophisticated methods to cover them effectively. 

Control Flow Checking by Software Signatures (CFCSS) is 
a signature-based CFE mitigation technique [22]. It relies on 
assigning two signatures, at compile-time, to each BB. These 
signatures are used at run-time to check the correctness of the 
control flow destination. To verify the control flow, CFCSS 
calculates a run-time signature and verifies its new value, which 
should hold the same compile-time value in the case of no CFE 
has occurred. However, CFCSS is not able to detect CFEs if 
multiple BBs share multiple destination blocks. Therefore, it 
suffers from an aliasing problem. This problem has been solved 
by the CEDA technique [28]. CEDA can increase fault coverage 
up to 98.9%. Yet Another Control-Flow Checking Using 
Assertions (YACCA) technique assigns multiple signatures to 
each BB, at compile-time, in order to detect interblock CFEs 
[21]. At the exit point of each BB, the run-time signature code 
is updated and verified to detect violations. Enhanced Control-
Flow Checking Using Assertions (ECCA) [23] inserts into each 
BB four instructions and three compile-time signatures that are: 
BID (the current BB), and two signatures NEXT1, and NEXT2 
that represent the next possible successors, as the authors of 
ECCA have restricted the possible number of successors to two 
BBs, e.g., loop and if-then-else statements. At run-time, two 
variables are calculated from the previously defined signatures 
to detect CFEs. ECCA is able to detect all inter-BB CFEs, but it 
is neither able to detect intra-BB CFEs, nor errors that cause an 
incorrect decision in a conditional branch. Other signature-based 
techniques which have been widely referred to in literature are 
RSCFC [19], SEDSR [18], SCFC [17], and SIED [20]. 

The above mentioned techniques rely on inserting a 
relatively large number of additional instructions in the target 
program. CFCSS achieves a high error detection rate as it 
protects every BB with instructions for updating and validating 
signatures. However, it imposes significant overheads. In order 
to decrease this huge overhead, one can economize on the 
number of instructions added to the program. Recent work [27, 
29] inserts fewer instructions to decrease the significant 
overhead. However, this reduction is achieved at the expense of 
error detection capability. ACS [27] defers checking the control 
flow until two BBs are executed. However, it suffers from poor 
fault coverage. Authors in [25] and [26] proposed to protect only 
the basic blocks that are destinations of the erroneous branches 
(CFEs). They termed such basic blocks as susceptible blocks 
and suggested protecting them only for cutting down overheads. 

Path Sensitive Signatures (PaSS) [1] technique can detect 
both inter- and intra-BB CFEs by implementing a lightweight 
technique based on signatures. By examining the CFCSS, PaSS 
stated that comparison instructions (cmp) are the main source of 
the overheads incurred by CFCSS. Thus, PaSS relies on a 
strategy whereby a group of BBs is selected to be protected in a 
way that does not negatively affect the fault coverage. PaSS was 
implemented as a compiler extension pass using the LLVM 
compiler as it provides a high ability to deal with low-level 
Intermediate Representation (IR) code. 

The hardware performance counters (HPCs) feature in 
tandem with event ticking pins is employed by Enhanced 
Committed Instructions Counting (ECIC) to provide error 
protection for single- and multi-threaded programs run on 
COTS-based real-time embedded systems [30]. ECIC is 
evaluated by implementing a prototype on a 32-bit Pentium 
processor and using software-based fault injection to inject 6000 
faults into the target system. Like ECIC, in [31] an HPC-based 
CFC technique is introduced to detect as many CFEs as possible 
through a purely software-based technique. However, authors of 
ECIC and [31] techniques have not considered one important 
aspect of performance counters, namely how accurate they are.  

IV. THE PROPOSED TECHNIQUE 

The technique proposed in this work leverages the hardware 
performance counter (HPCs) to perform control-flow error 
detection. The signatures to be used for error detection are 
extracted by monitoring special microarchitecture events using 
HPCs. The selected events should be accurate and repeatable. 
The following section sheds light on the HPCs and illustrates 
how to extract signatures.  

A. Hardware Performace Counters 

Hardware performance counters are special on-chip registers 
that facilitate developers to perform run-time profiling through 
monitoring many microarchitecture events. Regarding ARM 
processors, a special unit called Performance Monitoring Unit 
(PMU) is installed to simplify using HPCs [32, 33]. We can 
monitor and measure a wide range of events. However, the 
problem lies in measuring these events simultaneously [34]. As 
the ARM Cortex-A8 has only four counters, we can 
simultaneously measure only four events. 

It is essential to consider one important aspect of HPCs, 
namely how accurate they are. Given that modern ARM 



 

 

processors use features such as out‐of‐order execution and 
branch prediction, it is expected that such features may 
negatively affect the accuracy of HPC measurements [33-35]. In 
other words, not all events measured by HPCs are suitable for 
CFC because of perturbation in counting events. HPCs run-to-
run variation may negatively affect the correctness of the 
measurements, making it difficult to distinguish between correct 
behavior and incorrect one caused by CFEs. 

However, CFE-induced effects on the program's behavior 
can be differentiated from the natural perturbations of some 
HPCs [34]. An illegal jump from BBi to BBj, i.e., inter-BB CFE, 
can result in a distinct difference in the monitored event. Thus, 
by measuring some precise events, the correct behavior can be 
differentiated from the wrong, abnormal behavior of the target 
program. The next section discusses the HPC selection scheme 
to generate the intended signatures.  

B. Accurate HPC-based signatures 

The accuracy of HPCs measurements has been 
experimentally discussed for different architectures [34-38]. 
Generally, the internal interactions between different operating 
system modules, hardware interrupts, and the behavior of 
applications can result in measurement variations. For CFEs 
detection, the main challenge lies in determining the most 
accurate microarchitecture events to be monitored. The 
employed signatures to detect CFEs should be extracted from 
such events that must be deterministic, high accurate, and do not 
show run-to-run variation as much as possible. In other words, 
the more accurate the events, the more confident the results we 
obtain.  

Accordingly, we need to identify the most accurate 
microarchitecture events in order to generate accurate HPC-
based signatures. To this end, we repeatedly profile several 
programs on ARM architecture simulated using the cycle-
accurate Gem5 simulator towards computing signatures. Among 
a large number of available events, we identify those events that 
show insignificant run-to-run variations in measurements. 
Based on the profiling information, the most suitable events to 
be monitored in order to compute signatures are: 

i. Instruction executed 
ii. Branch instruction executed 
iii. Load/Store instructions executed 

As the employed signatures are computed from hardware 
events, the fewer the selected events, the less the overheads 
required for CFE detection. Therefore, based on our profiling 
information and previous studies [34, 37], the instruction 
executed event (instruction architecturally executed) is accurate 
enough to be counted in order to compute accurate signatures. 
Any deviation from the correct signature assigned to each BB is 
a sign of CFE. Because the program often contains different BBs 
with respect to the type and the number of instructions, each BB 
will be assigned a unique HPC-based compile-time signature 
CTsig

i
. The CTsig

i
 signature is an integer value calculated at 

compile-time for each BB∈V as follow: 

CTsig
i
= ∑ Insnk 

n
k=1  (1) 

Therefore, CTsig
i
 denotes the count of static instructions (Insnk) 

of ith basic block that contain � instructions. At the execution, a 
run-time signature is calculated as follows: 

RTsig
i
=Ci (E) (2) 

Where Ci  
denotes the count of the selected event E (instruction 

executed) from the execution of ith basic block. 

C. Method for control flow checking 

Each basic block in the CFG comprises several instructions 
whose execution triggers a specific number of events. Then, 
each BBi ∈ V  is assigned, at compile-time, a signature 
CTsig

i 
referring to the correct number of instructions in BBi. Once 

a control flow error occurs at run-time, the program is more 
likely to produce events that their measurements (count) differ 
from the correct expected count. To be more specific, a 
perturbation caused by CFEs will affect the count of executed 
instructions of the program, making the measurements of the 
corresponding events differ from the compile-time signature.  
Therefore, a CFE is said to occur if the following condition is 
met: 

CTsig
i
 ≠ RTsig

i 
  ∀  i ∈ V (3) 

This is can be described as follows. Given a BBi  with a 
known instructions count, a bit-flip error may affect the 
program’s control flow and cause a CFE. As a result, the count 
of monitored event, i.e., instructions executed, will deviate from 
the expected one assigned at compile-time, i.e., CTsig

i
. 

Fig. 2.a shows the CFG of Fibonacci sequence algorithm 
with eight basic blocks. Before the execution transfers from BB1 
to its successor BB2, we should ensure that the instructions of 
BB1 have been executed in the correct sequence. Therefore, 
before executing the BB2, we check the correctness of the 
directed edge between BB1 and BB2 by performing the 
following (check instructions): 

 
Fig. 2   (a) CFG of Fibonacci sequence algorithm, (b) pseudo code of the 
CFC procedure (CFEs check instructions) 



 

 

i. Retrieve the measurement of HPC, i.e., RTsig
1
, that is set to 

count the number of executed instructions, 
ii. Compare the RTsig

1
 with the reference signature, i.e., CTsig

1
, 

assigned at compile-time.  

It is evident that any control flow error that causes skipping 
some instructions can be detected. Applying CFC techniques 
can increase the size of the original code, which in turn might 
impair the program's resilience against soft errors. Therefore, 
instead of adding the check instructions at the end of each BB, 
we instrument these BBs with a function call instruction to the 
CFC procedure (Fig. 2.b) that contains check instructions, 
reducing performance and memory overheads. 

D. CFE detection capability 

A single bit-flip in the address operand of a branch 
instruction at the exit point of a basic block can lead to the 
following scenarios: (i) a legal but wrong flow of control and (ii) 
an illegal flow of control. Regarding the latter, an illegal control 
flow can be intra-BB CFE, inter-BB CFE, or an illegal branch 
outside the program’s address space. Several techniques have 
not considered intra-BB CFEs [14, 22, 25-28]. Our proposed 
technique can detect both intra-BB and inter-BB CFEs, except 
for one inter-BB CFE, which is a CFE from the end point of BBi 
to the start point of a non-successor BBj (we term this type of 
control-flow error as End-to-Start CFE or ES-CFE). At the BBi, 
we do not check the source of the incoming branch, however, 
we check the number of executed instructions once the 
execution reaches the end point of BBj. Since the instructions of 
BBj will be executed correctly from the start point of BBj till the 
last one, the ES-CFE (from BBi to the non-successor BBj) 
cannot be detected as the RTsig

j 
will be equal to CTsig

j 
.Here it is 

important to note that the employed HPC-based signatures are 
assigned per each basic block without considering the next or 
previous basic block. In other words, the proposed technique is 
not a predecessor/successor CFC technique. Therefore, unlike 
most of CFE error detection techniques, such as [13, 21-23, 26-
28], our proposed technique does not suffer from the problem of 
indirect branches discussed in Section II. Moreover, to reduce 
overheads, we can perform control-flow checking at control-
path granularity without losing significant fault coverage. 

The probability of ES-CFE that occurs due to a single bit-
flip in the address operand of branch instructions at the end point 
of BBs is extremely low. As a result, protecting non-susceptible 
basic blocks against ES-CFEs can increase the overheads 
without improving fault tolerance. Therefore, it is important to 
identify the susceptible basic blocks against ES-CFEs to avoid 
unnecessary protection.  

Given a BBi that ends with a branch instruction, and a BBj ∉ 
succ (BBi), the BBj is an ES-CFE susceptible basic block if a 
single bit-flip in the address operand of the branch instruction at 
the end point of BBi can move the control flow “illegally” to 
exactly the first instruction (the start point) in the BBj. The total 
number of possible ES-CFEs can be calculated as follows: 

ES-CFE = ∑ n - BBifan_out
m
i=1  (4) 

Where n denotes the total number of basic blocks, m denotes 
the total number of basic blocks that end with a branch 
instructions, and BBifan_out  is the number of successors of BBi. 

Considering Fig. 2.a, m is equal to 5, where n is equal to 8. 
Therefore, there are a total of 34 ES-CFEs. However, not all of 
these ES-CFEs are a result of a single bit-flip. Since the adopted 
fault model in this paper is a single bit-flip model, we should 
discard ES-CFEs that require more than single bit-flip error. To 
this end, in order to identify only the ES-CFEs caused by a single 
bit-flip error, we employ an m × n matrix where their elements 
are the hamming distances between the address operand of the 
branch instructions at the end point of the source basic blocks 
and the address of the first instruction in the non-successor basic 
blocks (we use the ARM version of objdump Linux utility to 
disassemble the executable file and extract instructions' 
addresses). We term this matrix as HM. Therefore, if HM (BBi, 
BBj) is equal to 1, this indicates that an ES-CFE from BBi to BBj 
can be occurred due to a single bit-flip, and hence, this ES-CFE 
should be considered. Table I show HM extracted for the CFG 
presented in Fig. 2.a.  

The susceptible basic blocks against ES-CFE are those 
having Hamming distance 1. Therefore, among 34 ES-CFEs 
(Table I), only one ES-CFE can occur, an ES-CFE from BB4 to 
BB6 as a single bit-flip in the address operand of a branch 
instruction at the endpoint of BB4 (1033c) can modify this 
address to (10334), which is the address of the first instruction 
in BB6. As a result, we can significantly reduce overheads 
without affecting fault coverage by avoiding protecting basic 
blocks with HM (BBi, BBj) ≠ 1. 

Regarding Fig. 2.a, one possible solution to detect ES-CFEs 
is to treat BB4 and BB5 as one basic block. To this end, the 
check instructions are inserted only into BB5. Considering the 
ES-CFE from BB4 to BB6, when the program execution reaches 
the check instructions at the endpoint of BB6, the number of 
executed instructions will be different from the CTsig

6 
, as the 

RTsig
6 
will be equal to RTsig

4 
+RTsig

6 
. Therefore, the CFE can be 

detected. 

V. IMPLEMENTATION  

Manual implementation of error detection techniques is 
impractical because it can be very time-consuming, and hence, 
it cannot be used to study larger workloads. Therefore, the 
automated implementation of error detection techniques is 
essential, as it saves the trouble of implementation. 

Most techniques use the CFG to detect control-flow errors. 
Accordingly, we can implement our proposed technique where 
it is possible to extract an accurate CFG, i.e., a CFG that 
accurately includes the program instructions to be executed. The 
availability of source code facilitates constructing the CFG of 
the corresponding program. Since the code is written in a high-
level language, the whole program behavior and logic are 
evident.  

TABLE I.   THE MATRIX OF HAMMING DISTANCE (EACH ITEM INDICATES 

THE TOTAL NUMBER OF BITS THAT NEED TO BE FLIPPED FOR A ES-CFE TO 

OCCUR BETWEEN RELEVANT BASIC BLOCKS) 

 BB1 BB2 BB3 BB4 BB5 BB6 BB7 BB8 

BB1 5 * 7 5 5 5 4 3 
BB2 2 7 * * 2 2 3 4 
BB3 5 * 7 5 5 5 4 3 
BB4 3 4 3 3 3 1 *  3 
BB5 5 * 7 5 5 5 4 3 

   Asterisks (*) denote legal control flow between the relevant BBs 



 

 

However, automated implementation at source code cannot 
guarantee accuracy. The compiler may change the program 
because of optimizations, e.g., instructions reordering and loop 
unrolling. Thus CFC technique applied to the source code can 
be affected during compilation. 

A. Automated CFE detection using Compiler extension 

The compiler can insert additional instructions during the 
compilation of the program. The employed compiler in this 
paper is the GNU Compiler Collection (GCC) [39], a cross-
architecture compiler widely used for different programming 
languages and operating systems. As Fig. 3 shows, the 
compilation pipeline of GCC comprises three steps, namely 
front-end, middle-end, and back-end. We are interested in the 
back-end step where the code is lowered and optimized to emit 
the assembly code. 

Since GCC version 4.5 [39], a compiler extension can be 
developed as a plugin to extend the compiler’s functionalities. 
Thus, we implement the proposed technique at compile-time by 
developing a GCC-plugin compiler extension that operates at 
the GCC compiler’s Register Transfer Language (RTL) 
representation code. The RTL representation can be seen as a 
generic assembly code that can be moved across different 
architectures. The GCC-plugin appends an RTL-pass and makes 
it a successor RTL-pass to the pass-free-cfg, an RTL-pass 
executed once before emitting the assembly code. To be more 
specific, we add the RTL-pass right before emitting assembly 
code and after ensuring the completion of all optimization passes 
(Fig. 3). Consequently, none of the check instructions added by 
the GCC-plugin will be affected or modified, ensuring realistic 
and accurate implementation. 

B. Access hardware performance counters 

Hardware performance counters are special-purpose 
registers built into modern processors. Using these counters for 
monitoring the selected event to detect CFEs should be 
performed accurately. Typically, HPCs can be accessed at 
kernel level or user-level using different interfaces proposed in 
literature. The perf_event interface is a part of the Linux kernel 
and enables users to access HPCs at the kernel level [35, 36]. 
Performance Application Programming Interface (PAPI) 
provides a platform, operating system, and machine, 
independent access to the hardware performance counters a 
user-level [40]. PAPI encapsulates the perf_event interface’s 
functions and provides a high-level library for flexible access 
HPCs. However, PAPI’s flexibility comes at the price of 
accuracy and large overheads. 

 

 
Fig. 3   Compilation pipeline of GCC compiler and the proposed plugin (CFC 
instrument pass) 

To this end, we decide to access HPCs at the kernel-level 
using the low-level perf-event interface. Therefore, we eliminate 
possible perturbations added by high-level tools. Since the 
cycle-accurate Gem5 simulator is used to evaluate the proposed 
technique, it is important to check how Gem5 offers access to 
HPCs. Gem5 provides a Python script configuration file, namely 
“ArmPMU.py”, which defines raw code for events that gem5 
provides for the ARM architecture. Each event has a unique 
code. These codes differ across the architectures (architecture-
dependent) [32]. 

C. The granularity of checking  

The additional instructions inserted to check the program's 
control flow are considered the main source of overhead. It is 
essential to consider how frequently these instructions are 
executed to tune the imposed overheads. Protecting each basic 
block will reduce the Error Detection Latency (EDL) value, the 
interval between activating the fault and detecting it, and achieve 
a high error detection rate, but can impose higher overheads. On 
the other hand, treating a set of basic blocks as one block (like 
path-assertion technique) can reduce overheads at the price of 
the EDL that will be increased, as a CFE cannot be detected until 
the program reaches the checking instructions. However, a CFG 
contains several basic blocks with one or few instructions. 
Therefore, it is possible to treat a set of basic blocks just like a 
single one.  

Authors in [41] proposed the “node expansion” concept to 
reduce overheads so that only a particular set of basic blocks are 
protected. The technique proposed in [14] has leveraged the 
“node expansion” concept to protect only super-node (a single-
entry single-exit code region) instead of each BB. However, 
while such techniques make it possible to reduce overheads, 
they fail to detect CFEs within each super-node. Therefore, the 
granularity of node expansion is restricted as its benefits come 
with a low error detection capability. However, our proposed 
technique does not suffer from such restrictions, as it can detect 
any intra-BB CFEs.  

VI. EVALUATION AND RESULTS 

This section describes the evaluation of the proposed 
technique. After describing the experimental setup and the 
selected benchmark programs, we present the Gem5-based fault 
injection tool that was developed to evaluate the proposed CFC 
techniques. 

A. Target system and benchmark  

We evaluate the proposed technique experimentally on 
ARM architecture using the Gem5 simulator [42]. The Gem5 
simulator provides full-system and cycle-accurate (fine-
granularity per cycle) simulations. It is publicly available and 
fully maintained by developers. Moreover, Arm architecture is 
best supported by Gem5 [42]. We choose the ARM cortex A-53 
as it is available in a microarchitecture-level model in Gem5. 
Moreover, diverse programs were selected to evaluate the error 
detection capability of the proposed technique. The selected 
programs are as follows: bubble sort (BS), quick sort (QS), 
matrix multiplication (MM), and Fibonacci sequence (FS). 
These programs use our implementation. Two additional 
programs were selected from MiBench version 1.0 [43], which 
are bit count (BC) and cyclic redundancy check (CRC).  



 

 

To implement the proposed technique for the employed 
programs, we use our compiler extension, which operates at the 
GCC back-end, and instruments the program at compile-time 
before emitting the assembly code. We use the GCC cross-
compiler with our developed plugin (compiler extension) to 
compile and implement the proposed technique. The 
instrumented executable files are then executed on the Gem5 
simulator. We implement the state-of-the-art random additive 
signature monitoring (RASM) [13] and CFCSS [22] techniques 
to assess the error detection capability of our technique. Several 
control-flow error detection techniques [1, 13, 15, 28] have 
selected CFCSS as a baseline to compare and evaluate their 
techniques. CFCSS and RASM provide high fault coverage as 
they perform conservative control flow checking and instrument 
each basic block with multiple instructions. 

B. Gem5-based Fault injection 

We perform many fault injections on the selected benchmark 
programs executed on simulated ARM architecture. As the 
evaluation process is performed on the Gem5, we need to 
perform fault injection on the Gem5 simulator where the target 
benchmark programs execute. We take advantage of the built-in 
GDB remote debugger interface provided by Gem5 to perform 
remote debugging on the target program executed on Gem5. The 
adopted debugging strategy is summarized as follows. We run 
the simulated ARM architecture on Gem5 and execute the target 
program in debug mode. The program will stop and wait for a 
connection request from a remote debugger (the host debugger). 
Usually, the connection is established via TCP/IP protocol. 
Then, we launch and connect the host debugger with the Gem5's 
remote interface. At this point, we can control the target program 
running on Gem5 and perform fault injection. 

The fault model we assume is a single bit-flip, as it has been 
widely adopted in many previous studies [5, 13, 18, 25, 26]. To 
conduct an effective evaluation, we should inject faults that are 
more likely to manifest as control-flow errors rather than other 
error types. A bit-flip error in control registers and operand of 
branch instructions is more likely to cause a control-flow error. 
Accordingly, we inject faults in control registers, such as link 
register (LR), Program counter register (PC), and in the operand 
of branch instructions to emulate CFEs. We employ the 
Statistical Fault Injection (SFI) [44] to reduce the number of 
fault injection experiments while ensuring the results accuracy. 
Each fault injection campaign involves 1000 fault injection 
experiments for each benchmark program. Overall, we inject 
18000 faults (6 benchmarks × 1000 injections × 3 techniques = 
18000 injections). Therefore, we ensure 99% as a confidence 
level with 1% as the error margin [44]. 

C. Experimental results 

Table II presents the evaluation results of the proposed 
techniques (Our Tech.) and the employed conservative 
signature-based CFC techniques. Like previous studies, we 
define fault coverage as the ratio of detectable errors to total 
injected faults. We exclude the faults that lead to correct results 
as they have no effects. Typically, the fault coverage is not 
suitable to conduct a fair comparison between techniques 
because it does not consider overheads. Therefore, the 
overheads in terms of performance overhead (execution time) 
and memory overhead (code size) should be calculated.  

TABLE II.   EVALUATION RESULTS 
(a) Fault Converge ratio 

 BS QS MM FS BC CRC Avg. 
Our Tech.a 98.1 97.4 99.6 98.2 98.4 100 98.93 
CFCSS 82.6 96.8 88.3 82.4 66.2 35.9 75.36 
RASM 95.3 96.7 99.2 92.6 95.6 98.3 96.28 

(b) Execution time overhead 

 BS QS MM FS BC CRC Avg. 
Our Tech. 88.2 90.6 75.1 95.2 84.2 24.6 76.31 
CFCSS 70.6 145.3 77.3 82.4 132.2 64.2 95.3 
RASM 65.4 125.8 64.1 78.7 143.2 36.5 85.61 

(c) Memory overhead  

 BS QS MM FS BC CRC Avg. 
Our Tech. 6.2 21.5 16.1 16.6 9.5 7.2 12.85 
CFCSS 8.3 31.6 28.4 22.3 11.0 4.6 17.7 
RASM 7.6 19.4 14.6 18.7 12.6 6.3 13.2 
a: our proposed technique  

Based on the results presented in Table II, on average, the 
results demonstrate that the proposed technique can achieve 
~99% fault coverage which is 23.57% higher than that offered 
by CFCSS technique (Table II a). Moreover, the memory 
overhead (Table II c) imposed by the proposed technique is 
4.85% lower, and the performance overhead (Table II b) is 
~19% lower than that of the CFCSS technique. The overhead, in 
terms of code size, of the proposed technique is roughly the same 
as that of RAMS. However, our technique shows less overhead 
in terms of execution time, as RAMS, like CFCSS, instruments 
each basic block with multiple instructions. As a result, the 
proposed technique can be used in the context of embedded 
systems with restricted resources to detect CFEs, both inter-
block, and intra-block errors, at a low level of overheads without 
losing significant fault coverage. 

VII. CONCLUSION 

This paper presents a software-based control-flow error 
detection technique for ARM-based embedded systems. It takes 
advantage of the hardware performance counter common 
feature in modern processors to perform control flow error 
detection and keep systems fault-tolerant. The proposed 
technique can detect both inter-BB and intra-BB CFEs 
effectively. We evaluated the effectiveness of the proposed 
technique on ARM architecture by performing many fault 
injection experiments on different benchmark programs that 
cover different application domains. Experimental results 
showed that the proposed technique achieves a high fault 
coverage at lower performance and memory overheads. 
Moreover, the proposed technique is portable across different 
architectures, as most modern architectures are equipped with 
HPCs. 
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