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Abstract: It is known that, in the static gauge, the world-volume and the transverse
Kaluza-Klein (KK) reductions of the O-plane effective actions on a circle satisfy the T-
duality constraint for arbitrary base space background. In this paper we show that due
to the presence of the second fundamental form in the D-brane couplings at order α′ and
higher, the T-duality is satisfied only for a subclass of the couplings for arbitrary base
space background. They are m = 0 couplings where m is the number of B̃-field (without
derivative on it). For m > 0 couplings, the base space metric must be block-diagonal and
the momentum U(1) vector field in the transverse reduction must be zero. However, the
derivatives of the metric and the vector field are arbitrary.

Using the assumption that the effective actions at the critical dimension are background
independent, we then show that the T-duality constraint for the couplings at order α′ and
for m = 0, fixes completely both bulk and boundary actions. These couplings indicate
that the propagators of the massless open string fields receive α′-correction. We have
also imposed the T-duality constraint on m = 1, 2, 3, 4 couplings. Because of the above
restriction on the base space background in these cases, however, the T-duality can only
partially fix the couplings for m > 0. This study shows that the Dirac-Born-Infeld (DBI)
factor appears in both bulk and boundary actions at order α′.
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1 Introduction

T-duality is one of the most exciting discoveries in the perturbative string theory which has
been observed first in the spectrum of string when one compactifies theory on a circle [1, 2].
It has been proved in [3, 4] that the KK reduction of the classical effective action of the
bosonic and the heterotic string theories on tours T d are invariant under O(d, d) transfor-
mations at all orders of α′. Using the assumption that the effective action of string theory
at the critical dimension is background independent, one may consider a particular back-
ground which includes a circle. Then one can use the diffeomorphism symmetry and the
T-duality symmetry O(1, 1) to construct the classical bulk and boundary effective actions
of string theory, including their higher derivative corrections [5–13]. The T-duality trans-
formations in the base space are the Buscher rules [14, 15] pluse their α′-corrections [16],
whereas, the diffeomorphsim and the gauge transformations in the base space are the
standard transformations. In the Double Field Theory formalism in which the T-duality is
imposed before the KK reduction, however, the T-duality transformations are the standard
O(D,D) transformations whereas the gauge transformations receive α′-corrections [17–19].

It has been also shown in [20–23] that the T-duality constraint and the gauge symmetry
can be used to construct the classical bulk and boundary effective actions of the O-planes
of the superstring theories at order α′2. These non-perturbative objects have no dynamics,
i.e., they have no second fundamental form, however, they couple with the closed string
states. In this study, one does not consider α′-corrections to the Buscher rules which is
consistent with the fact that there are no corrections to the T-duality transformations in
the type II superstring theory at order α′2. In studying the O-plane effective actions, one
has to use the static gauge to fix the diffeomorphism symmetry [20, 21].

On the other hand, D-branes have open string excitations which describe the D-brane
dynamics, and couple with the closed string states. It has been shown in [24, 25] that the

– 1 –



J
H
E
P
0
1
(
2
0
2
3
)
0
1
2

T-duality and the gauge transformations of the massless open string fields can be used to
construct the world-volume couplings of the open string gauge field and the second funda-
mental form. One can impose the T-duality constraint on the open string fields, either in
covariant form [25] or in the static gauge [24]. In this case also the T-duality transforma-
tions receive α′-corrections. By the invariance under the T-duality, we mean the T-duality
of the world-volume reduction of Dp-brane is the same as the transverse reduction of Dp−1-
brane, up to some total derivative terms in the base space. The total derivative terms in
turn may fix the couplings on the boundary if the spacetime has boundary and the D-brane
is extended in the spacetime such that it ends on the boundary. One may use the above T-
duality constraint to fix the higher-derivative couplings of the massless closed string fields to
the D-brane as well [26]. As in the case of O-plane, one should use the static gauge to fix the
diffeomorphism symmetry. Unlike the O-plane case, however, the D-brane couplings include
the second fundamental form. In the covariant form, one finds that the world-volume com-
ponent of the second fundamental form is zero. In the static gauge, however, this constrains
the base space background such that the metric must be block-diagonal and the momentum
U(1) vector field in the transverse reduction of the D-brane must be zero. The derivatives
of the base space field, however, remain arbitrary. In the O-plane case, there is no second
fundamental form and the U(1) vector field in the transverse reduction is projected out by
the orientifold projections. Under this projection, the base space metric also becomes block-
diagonal. The restriction on the base space background for the D-brane case, causes that
the T-duality constraint fixes only some of the independent couplings at order α′ and higher.
Those couplings that are fixed by the T-duality constraint should be consistent with the
S-matrix elements. This would be a result of the assumption that the coefficients of the in-
dependent gauge invariant couplings are background independent, i.e., if they are fixed in a
particular background, they would be valid for any other arbitrary background as well [13].

The massless closed string B-field appears in the world-volume effective action of D-
brane either through its field strength, H, or through the combination of its pull-back with
the massless open string gauge field strength, B̃ +F . Both are invariant under the B-field
gauge transformations. The later appears in the DBI action [27, 28]. This action in the
static gauge and only for the massless closed string fields is

S0
p = −Tp

∫
dp+1σe−Φ

√
− det(Gab +Bab) (1.1)

where Tp is tension of Dp-brane, Φ is the dilaton , Gab is the world-volume component
of the spacetime metric and Bab is the world-volume component of the B-field.1 The
world-volume KK reduction of Dp-brane and the transverse reduction of Dp−1-brane are,

1Our index convention is that the Greek letters (µ, ν, · · · ) are the indices of the space-time coordinates,
the Latin letters (a, d, c, · · · ) are the world-volume indices and the Latin letters (i, j, k, · · · ) are the transverse
indices. The tilde indices are the corresponding indices in the base space. The y-coordinate is the coordinate
of the circle.
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respectively,

S0w
p = −2πTp

∫
dpσe−φ̄+ϕ/4

√
− det(ḡãb̃ + b̄ãb̃ + g[ãbb̃] + e−ϕbãbb̃)

S0t
p−1 = −Tp−1

∫
dpσe−φ̄−ϕ/4

√
− det(ḡãb̃ + b̄ãb̃ + b[ãgb̃] + eϕgãgb̃) (1.2)

where the momentum vector g is resulting from the KK reduction of the spacetime metric
and the winding vector b is resulting from the reduction of B-field (see equation (3.7)).
While the above reductions are not invariant under the U(1)×U(1) gauge transformations,
the transformation of the world-volume reduction under the Buscher rules,

ϕ→ −ϕ , b↔ g (1.3)

cancels the transverse reduction, i.e., they satisfy the T-duality constraint for the most
general base space background. Note that in this case, the T-duality satisfies with no
residual total derivative terms which indicates that, as expected, there is no boundary
action at the leading order of α′.

The D-brane effective action at each order of α′ has a tower of infinite number of B̃-
field (without derivative on it). Only at zero-derivative order, this infinite tower of B̃-field
can appear in the compact form of the DBI action (1.1). To study the T-duality constraint
at the higher orders of α′, one should truncate the couplings at a specific number of this
field, m. As we will see, the restriction on the base space background discussed earlier,
is only for m > 0. In this paper we consider the world-volume couplings of D-brane at
order α′ in the bosonic string theory in which the α′-corrections to the Buscher rules are
known [16]. We will see that at m = 0 level, the T-duality satisfies for the arbitrary base
space background. In this case, the T-duality constraint fixes completely all independent
couplings in the bulk and in the boundary. At m > 0 levels, however, because of the
restriction on the base space background, the T-duality constraint can partially fix the
independent couplings. These partial results, however, indicate that both in the bulk and
in the boundary actions, there must be the DBI factor for the couplings at order α′. The
couplings at m = 0 level, are fully consistent with the corresponding S-matrix elements.
They also indicate that the standard propagators of the massless open string gauge field
and the transverse scalar fields are corrected at order α′.

The outline of the paper is as follows: in section 2, we find all independent covariant
and parity invariant couplings at order α′ for m = 0, 1, 2, 3, 4. For m = 4 case, we consider
only the couplings which include Riemann curvature. We find there are 76 independent
couplings. The coefficients of these couplings are independent of the backgrounds in which
the Dp-brane are placed. In order to fix the coefficients of these 76 background independent
couplings and find their corresponding boundary couplings, in section 3, we consider a
background which has a boundary. The bulk and the boundary includes a circle on which
we will impose the T-duality. In this section we show the covariant result that the world-
volume component of the second fundamental for is zero, is reproduced in the static gauge
by requiring the base space background to satisfy a particular condition for m > 0. In
subsection 3.1, we find that at m = 0 level, the T-duality constraint fixes completely the
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coefficients of the couplings and their corresponding boundary coupling. In subsection
3.2, we show that, for the couplings at m = 1, 2, 3, 4 levels, the T-duality constraint can
not completely fix the parameters of the independent couplings in the bulk and in the
boundary. However, the couplings that are found by the T-duality, indicate that there
must be the DBI factor in the couplings at order α′ in both bulk and boundary. In section
4, we briefly discuss our results. In the appendix, we show that the couplings at the m = 0
level are fully consistent with the corresponding disk-level S-matrix elements. We use the
Mathematica package xAct [29] for performing the calculations in this paper.

2 Independent couplings

We apply the method used in [30] to find the independent couplings. The independent
couplings are all covariant and gauge invariant couplings modulo the field redefinitions,
the Bianchi identities and the total derivative terms. In this section we are going to find
all independent couplings at order α′ which involve the covariant fields R, H, ∇H, ∇Φ,
∇∇Φ,∇̃B̃, ∇̃∇̃B̃, Ω, ∇̃Ω and B̃. We assume the spacetime curvatures and all covariant
derivatives, except the covariant derivatives of B̃, to be constructed with the spacetime
metric Gµν . The covariant derivatives of B̃ and the world-volume fields are constructed
with the pull-back metric G̃ab. The spacetime and the world-volumes indices should be
contracted with the spacetime metric and the with pull-back metric, respectively.

Each covariant field may have world-volume and/or spacetime indices, e.g., the field
B̃ has only world-volume indices

B̃ab ≡ ∂aXµ∂bX
νBµν (2.1)

Its world-volume derivatives, e.g., ∇̃B̃, also have only world-volume indices. The B-field
strength, H = dB, on the other hand, has spacetime and world-volumes indices, e.g., Hµνα

has only spacetime indices, and Haµν which is given as

Haµν ≡ ∂aXαHαµν (2.2)

has both world-volume and spacetime indices.
The second fundamental form has two world-volume and one spacetime indices. It is

defined as the covariant derivative of the world-volume tangent vectors ∂aXµ

Ωµ
ab ≡ ∇̃a∂bXµ = ∂a∂bX

µ − Γ̃abc∂cXµ + ∂aX
ν∂bX

ρΓνρµ (2.3)

where Γµνα is the Levi-Civita connection made of the spacetime metric Gµν and Γ̃abc is
the Levi-Civita connection made of the pull-back metric G̃ab which is given as

G̃ab ≡ ∂aXµ∂bX
νGµν (2.4)

Writing the Levi-Civita connection Γ̃abc in terms of the pull-back metric and using the
above relation for the pull-back metric, one can write the second fundamental form as

Ωµ
ab = (Gµν − g̃µν)Gνα(∂a∂bXα + ∂aX

ν∂bX
ρΓνρα) (2.5)
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where g̃µν is the first fundamental form which is given as

g̃µν ≡ ∂aXµ∂bX
νG̃ab (2.6)

It is a projection tensor, i.e., g̃µνGναg̃αβ = g̃µβ . It projects the spacetime tensors to the
world-volume directions of the D-brane. The projection of the second fundamental form
along the brane is zero, i.e., g̃µνGναΩα

ab = 0. Hence, the spacetime index of the second
fundamental form can contract only with the spacetime metric, i.e., it can not be contracted
with the tangent vectors ∂aXµ to convert it to the world-volume index because

Ωc
ab ≡ G̃cd∂dXµΩab

νGµν = 0 (2.7)

The world-volume indices of Ωµ
ab contract with the inverse of the pull-back metric.

Since the massless closed string fields are the spacetime fields, one is not allowed
to use field redefinitions for these fields in the world-volume effective action of D-brane.
However, as it has been argued in [20], these fields should satisfy the spacetime equations of
motion because the D-branes are considered to be probe which do not change the spacetime
fields. To impose the equation of motion, we do not consider the Ricci tensor, Ricci scalar,
∇µHµνα, and ∇µ∇µΦ in the independent couplings. Hence the action should involve all
contractions of the following fields:

S′p = −α
′Tp
2

∫
dp+1σ

√
− det G̃ab L′(R,H,∇Φ,Ω, ∇̃B̃, ∇̃∇̃B̃, B̃) (2.8)

where R stands for the Riemann curvature with only world-volume indices, i.e.,

Rabcd = ∂aX
µ∂bX

ν∂cX
α∂dX

βRµναβ (2.9)

The world-volume indices in the above Lagrangian should be contracted with G̃ and the
spacetime indices should be contracted with the spacetime metric G. We call the coefficients
of the couplings in the above Lagrangian a′1, a′2, · · · .

One has to impose the Bianchi identities in (2.8) to find the independent couplings.
The Riemann curvature satisfies the following identity:

Rµ[ναβ] = 0 (2.10)

Since there are no couplings at order α′ which involves the derivative of H, one does not
need to impose the Bianchi identity corresponding to H, i.e., dH = 0. However, the
couplings do involve the world-volume covariant derivative of the pull-back of the B-field.
Hence, one should impose its corresponding Bianch identity. One can easily observe the
following relation:

∇̃[aB̃bc] = ∂[aB̃bc] = ∂aX
µ∂bX

ν∂cX
ρHµνρ = Habc (2.11)

We consider the scheme in which all couplings involving H in (2.8) are independent, hence,
to find the independent couplings involving the derivatives of B̃, one has to impose the
following Bianchi identity for the couplings involving ∇̃B̃:

∇̃[aB̃bc] = 0 (2.12)

which is reminiscent to the Bianchi identity of the open string gauge field, i.e., ∇̃[aFbc] = 0.
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The couplings involving ∇̃Φ, ∇̃B̃, ∇̃∇̃B̃ and B̃ may be related to each others by total
derivative terms. The total derivative terms in general should have the following structure:∫

dp+1σ
√
− det G̃ab ∇̃a(e−ΦJa) (2.13)

where the vector Ja is all contractions of fields ∇̃Φ, ∇̃B̃ and B̃ which involve one derivative.
This total derivative relates, among other things, the couplings involving ∇̃Φ to the other
couplings involving ∇̃B̃. We consider the scheme in which all couplings involving the
dilaton in (2.8) are independent, so we have to consider the total derivative terms in which
the dilaton appears only as the overall factor e−Φ. Hence we consider the following total
derivative terms:

J = −α
′Tp
2

∫
dp+1σ e−Φ

√
− det G̃ab ∇̃a(Ja) (2.14)

where now the vector Ja is all contractions of fields ∇̃B̃ and B̃ that involve one derivative.
We call their coefficients j1, j2, · · · .

If one adds J to the action (2.8), it changes only the coefficients of the gauge invariant
couplings a′1, a′2, · · · , i.e.,

S′ + J = S (2.15)

where S is the same action as (2.8) in which the coefficients of the gauge invariant couplings
are changed to a1, a2, · · · . One can write the above equation as

∆S + J = 0 (2.16)

where ∆S is the same as (2.8) in which the coefficients of the gauge invariant couplings
are δa1, δa2, · · · where δai = a′i − ai. To impose the Bianchi identity (2.10), we write the
Riemann curvature in terms of metric and go to the local frame in which the first derivative
of metric is zero. To impose the identity (2.12) in the above equation, we rewrite B̃ab in
the derivatives of this field as B̃ab = ∇̃aAb − ∇̃bAa where Aa is a vector. Then the above
equation involve only independent but non-covariant and non-gauge-invariant couplings.
Their coefficients which involve δa1, δa2, · · · and j1, j2, · · · , must be zero. If one solves the
resulting algebraic equations, one would find some relations between only δa1, δa2, · · · . The
number of these relations represents the number of couplings which are invariant under the
total derivative terms and the Bianchi identities.

Since there can be any number of field B̃ab in the couplings at any order of α′, there
are infinite number of independent couplings at each order of α′. Hence, we have to classify
the independent couplings at order α′ in sub-structures in terms of the number of covariant
fields R,∇Φ,∇∇Φ, H, B̃, ∇̃B̃, ∇̃∇̃B̃, i.e.,

S1
p = −α

′Tp
2

∫
dp+1σ e−Φ

√
− det G̃ab

∞∑
n=1

Ln (2.17)

where Ln is the Lagrangian of independent terms at order α′ which have n number of fields
R, ∇Φ, ∇∇Φ, H, B̃, ∇̃B̃, ∇̃∇̃B̃ B̃. The number of independent terms in each Ln is fixed,
however, there are different schemes that one can choose the independent couplings in each

– 6 –



J
H
E
P
0
1
(
2
0
2
3
)
0
1
2

Ln. As the number n increases, the number of independent terms in the corresponding Ln
also increases. Hence, for performing the calculations we have to truncate the independent
couplings at a specific number n∗. In this paper we choose n∗ = 6, i.e., we are interested
only in the independent couplings at orders n = 1, 2, 3, 4, 5.

After finding the independent couplings, one may arrange them in terms of the number
of B̃-field without derivative on it, i.e.,

S1
p = −α

′Tp
2

∫
dp+1σ e−Φ

√
− det G̃ab

∞∑
m=0
Lm (2.18)

where Lm is the Lagrangian of the independent terms found in (2.17) which have m field
B̃. The couplings in (2.17) for n = 1, 2, 3, 4, 5 produces Lm with m = 0, 1, 2, 3, 4. We have
found the following 11 independent terms for m = 0 case in a particular scheme:

L0 = b11HabcH
abc + b4HabµH

abµ + b2HaµνH
aµν + b1HµνρH

µνρ + b5R
ab
ab

+a1Ωµ
b
bΩµa

a + a2ΩµabΩµab + a8∇̃aB̃bc∇̃aB̃bc

+b47∇aΦ∇aΦ + b42Ωµ
a
a∇µΦ + b45∇µΦ∇µΦ (2.19)

where the world-volume indices are contracted with the inverse of the pull-back metric G̃ab
and the spacetime indices are contracted with the spacetime metric Gµν and its inverse
Gµν . Apart from the couplings with coefficient a8, all other couplings are the independent
couplings that have been considered in [26]. In that paper, the second fundamental form
is defined as

Ω′µab = ∂a∂bX
α + ∂aX

ν∂bX
ρΓνρα (2.20)

with the assumption that its spacetime index is contracted with the transverse projection
operator ⊥µν = Gµν − g̃µν . It is the same as the second fundamental form (2.5) with the
assumption that its spacetime index is contracted with the spacetime metric Gµν .

We have also found the following 6, 35, 17 and 7 independent terms, in a particular
scheme, for m = 1, 2, 3, 4, respectively:

L1 = b27B̃
abHbcµΩµ

a
c+b28B̃

abHabµΩµc
c+b36B̃

bcHabc∇aΦ
−b50B̃

bc∇aΦ∇̃bB̃ac+b51B̃a
b∇aΦ∇̃cB̃bc+b35B̃

abHabµ∇µΦ
L2 = b19B̃

abB̃cdHac
eHbde+b7B̃abB̃cdHac

µHbdµ+b20B̃
abB̃cdHab

eHcde+b21B̃a
cB̃abHb

deHcde

+b8B̃abB̃cdHab
µHcdµ+b12B̃a

cB̃abHb
dµHcdµ+b6B̃acB̃abHb

µνHcµν+b22B̃abB̃
abHcdeH

cde

+b14B̃abB̃
abHcdµH

cdµ+b10B̃abB̃
abHcµνH

cµν+b3B̃abB̃abHµνρH
µνρ+b9B̃abB̃cdRacbd

+b13B̃a
cB̃abRb

d
cd+b15B̃abB̃

abRcdcd+a5B̃
abB̃cdΩµbdΩµ

ac+a3B̃a
cB̃abΩµ

d
dΩµ

bc

+a6B̃a
cB̃abΩµcdΩµ

b
d+a4B̃abB̃

abΩµ
d
dΩµc

c+a7B̃abB̃
abΩµcdΩµcd+b49B̃bcB̃

bc∇aΦ∇aΦ
+b48B̃a

cB̃bc∇aΦ∇bΦ+a12B̃abB̃
ab∇̃cB̃de∇̃cB̃de−b54B̃a

cB̃abHcde∇̃dB̃be

+a11B̃a
cB̃ab∇̃dB̃ce∇̃dB̃be+a9B̃a

cB̃ab∇̃dB̃be∇̃eB̃cd+b52B̃
abB̃cdHcde∇̃eB̃ab

+a13B̃
abB̃cd∇̃eB̃cd∇̃eB̃ab+b53B̃

abB̃cdHbde∇̃eB̃ac+a10B̃
abB̃cd∇̃eB̃bd∇̃eB̃ac

+b55B̃
abB̃cdHbcd∇̃eB̃ae+a14B̃a

cB̃ab∇̃bB̃cd∇̃eB̃de+a15B̃abB̃
ab∇̃cB̃cd∇̃eB̃de

+b43B̃a
cB̃abΩµbc∇µΦ+b44B̃abB̃

abΩµ
c
c∇µΦ+b46B̃abB̃

ab∇µΦ∇µΦ
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L3 = b29B̃a
cB̃abB̃deHdeµΩµ

bc+b30B̃a
cB̃abB̃deHceµΩµ

bd+b31B̃a
cB̃abB̃b

dHdeµΩµ
c
e

+b32B̃abB̃
abB̃cdHdeµΩµ

c
e+b33B̃a

cB̃abB̃b
dHcdµΩµe

e+b34B̃abB̃
abB̃cdHcdµΩµe

e

+b39B̃b
dB̃bcB̃c

eHade∇aΦ+b40B̃bcB̃
bcB̃deHade∇aΦ+b41B̃a

bB̃b
cB̃deHcde∇aΦ

−b56B̃b
dB̃bcB̃c

e∇aΦ∇̃dB̃ae−b58B̃bcB̃
bcB̃de∇aΦ∇̃dB̃ae+b57B̃a

bB̃c
eB̃cd∇aΦ∇̃dB̃be

−b59B̃a
bB̃b

cB̃de∇aΦ∇̃dB̃ce+b60B̃a
bB̃cdB̃

cd∇aΦ∇̃eB̃be+b61B̃a
bB̃b

cB̃c
d∇aΦ∇̃eB̃de

+b37B̃a
cB̃abB̃b

dHcdµ∇µΦ+b38B̃abB̃
abB̃cdHcdµ∇µΦ

L4 = b16B̃a
cB̃abB̃d

f B̃deRbecf+b17B̃a
cB̃abB̃b

dB̃efRcdef+b18B̃abB̃
abB̃cdB̃efRcedf

+b23B̃a
cB̃abB̃b

dB̃c
eRd

f
ef+b24B̃abB̃

abB̃c
eB̃cdRd

f
ef+b25B̃a

cB̃abB̃b
dB̃cdR

ef
ef

+b26B̃abB̃
abB̃cdB̃

cdRef ef (2.21)

where a1, · · · a15 and b1, · · · b61 are background independent coefficients. There are also
many couplings involving H2, H∇̃B̃, (∇̃B̃)2, (∇Φ)2 in L4 above. They are six-field cou-
plings that we did not consider in (2.17). Note that the couplings in L2 with coefficients
b22, b14, b10, b3, b15, a4, a7, b49, a12, b44, b46 are the same as the couplings in L0 with one
extra factor B̃abB̃ba. The couplings in L3 with coefficients b32, b34, b40, b58, b60, b38 are
the same as the couplings in L1 with one extra factor B̃abB̃ba. The coupling in L4 with
coefficients b25, b26 are the same as the Riemann curvature coupling in L0 with the extra
factors B̃abB̃bcB̃

cdB̃da and (B̃abB̃ba)2, respectively. We will see in the next section that
most of these coefficients are fixed by the T-duality constraint. The result is such that
they can be reproduced by the overall DBI factor for the couplings at order α′.

Using the replacement B̃ → B̃ + F , the above independent couplings are covariant
and are invariant under the B-field and the massless open string gauge transformations.
To study these transformations under the T-duality constraint, one has to use the static
gauge in which Xa = σa. In this gauge, the transverse spacetime coordinates Xi are the
open string transverse scalar fields that describe the dynamics of the D-branes.

In the static gauge and for zero open string fields, all the above couplings have closed
string contributions, so they may be fixed by imposing the T-duality constraint on the
closed string fields. For zero closed string fields, the couplings with coefficients a1, · · · a15
have open string contributions, so they may also be fixed by considering the T-duality of
the open string fields. They have been studied in [24] when one uses the field redefinitions
for the open string fields. In that case, not all 15 couplings are independent. In fact, the
number of independent parameters reduces to 7 parameters [24] which can also be fixed
by comparing them with the low energy expansion of the disk-level S-matrix element of
four gauge boson vertex operators. However, if one does not use the field redefinitions, one
would find 15 independent couplings which in a particular scheme, they are the same as
the above couplings with coefficients a1, · · · a15 in which B̃ is replaced by F . In the static
gauge, all couplings have open and closed string contributions, so they may also be fixed by
considering the T-duality of massless open and closed string fields. In this paper, however,
we are going to see to what extend the T-duality of the massless closed string fields fixes
these parameters.
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3 T-duality constraint

There is a theorem that indicates the classical spacetime effective action of the bosonic
string theory at any order of α′ should be invariant under the T-duality when one com-
pactifies the theory on a tours [3]. There is no restriction on the base space background in
this study because the couplings in the base space are covariant. The T-duality transfor-
mations should be the Buscher rules plus some specific α′-corrections [16] which depend on
the scheme of the independent spacetime couplings [5]. To study the T-duality of the closed
string couplings of the D-brane effective action, however, one should fix the diffeomorphism
by choosing the static gauge. There is no theorem that indicates the D-branes effective
actions at any order of α′, in the static gauge, should be invariant under the T-duality for
arbitrary base space background. In this section we are going to show that at the m = 0
level, the base space background is arbitrary, whereas at the m > 0 levels, the background
should be specific such that metric in the base space must be block-diagonal and the gauge
field gã in the transverse reduction must be zero. There is, however, no restriction on the
derivatives of the base space fields. If one could fix the couplings in the actions (2.19)
and (2.21) for such a specific background, then the background independence assumption
guaranties that they are valid for any other arbitrary background as well.

We are interested in the massless closed string couplings in the actions (2.19) and (2.21),
hence, one should fix the world-volume diffeomorphism by using the static gauge and for
Xi = 0. In this gauge, the pull-back of metric and B-field are

G̃ab = Gab ; B̃ab = Bab (3.1)

The first fundamental form (2.6) has only world-volume components, i.e.,

g̃ij = g̃ai = g̃ia = 0 ; g̃ab = G̃ab (3.2)

In the static gauge, the second fundamental form satisfies the identity (2.7) provided that

G̃abGbµ = δaµ (3.3)

To verify the above relation, we calculate Ωc
ab from equation (2.5) in the static gauge and

for Xi = 0, i.e.,
Ωc

ab = Γabc − G̃cdGdνΓabν (3.4)

which becomes zero only when the relation (3.3) is satisfied.2 The transverse component
of the second fundamental form in the static gauge and for Xi = 0 becomes Ωi

ab = Γabi.
2The identity (2.7) for the constraint (3.3) in the static gauge becomes

G̃cd∂dX
iΩj

abGij = 0 (3.5)

For the flat spcetime metric, one finds Ωi
ab = ∂a∂bX

i. The above relation becomes

∂cX
i∂a∂bX

jηij = 0 (3.6)

Hence, the derivative of the pull-back metric becomes zero. Therefore, in the static gauge, the derivatives
for the massless open string fields become only partial derivatives.
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Note that in order to satisfy the constraint (3.3), one may consider the spacetime metric
which is block-diagonal, i.e., Gai = 0. However, such metric would not be consistent with
the KK reduction of the spacetime metric that we are going to use in this paper, i.e., it
would not be consistent with (3.7).

To study the T-duality, we begin with a specific background which has a circle and
an arbitrary base space. That is, the manifold has the structure M (26) = M (25) × S(1).
The manifold M (26) has coordinates xµ = (xµ̃, y) where xµ̃ is the coordinates of the base
space manifold M (25), and y is the coordinate of the circle S(1). The KK reduction of the
spacetime metric Gµν , Bµν and the dilaton Φ are [31]

Gµν =
(
ḡµ̃ν̃ + eϕgµ̃gν̃ e

ϕgµ̃
eϕgν̃ eϕ

)
;Bµν =

(
b̄µ̃ν̃ − 1

2gµ̃bν̃ + 1
2gν̃bµ̃ bµ̃

−bν̃ 0

)
; Φ = φ̄+ ϕ/4 (3.7)

Inverse of the spacetime metric is

Gµν =
(
ḡµ̃ν̃ −gµ̃

−gν̃ e−ϕ + gα̃g
α̃

)
(3.8)

Using these reductions, it is straightforward to calculate the reduction of the spacetime
tensors Rµνρσ, Hµνρ, and ∇µΦ which appear in the couplings (2.19) and (2.21). However,
these actions have world-volume fields as well. The reduction of the world-volume fields
dependents on position of the D-brane in the spacetime.

When Dp-plane is along the y-direction, i.e., M (26) = M (p+1)×M (25−p) and M (p+1) =
S(1) ×M (p), the reduction of pull-back metric G̃ab and its inverse in the static gauge are

G̃ab =
(
ḡãb̃ + eϕgãgb̃ e

ϕgã
eϕgb̃ eϕ

)
; G̃ab =

(
ḡãb̃ −gã

−gb̃ e−ϕ + gc̃g
c̃

)
(3.9)

where the indices ã, b̃ are world-volume indices that do not include the world-volume index
y, i.e., they are belong to M (p). In above equation, the indices are raised by ḡãb̃, and
ḡãb̃ is inverse of ḡãb̃. Using the reductions (3.7) and (3.9), one can easily verify that the
constraint (3.3) is satisfied for the world-volume reduction when the base space metric is
block-diagonal, i.e., .

ḡµ̃ν̃ =
(
ḡãb̃ 0
0 ḡĩj̃

)
(3.10)

Note that while the consistency for the second fundamental form requires ḡãi to be zero,
there is no constraint on the derivatives of this field. The reduction of the overall factor in
the action (2.18) in this case is e−Φ

√
−G̃ = e−φ̄+ϕ/4√−ḡ.

When D(p−1)-plane is orthogonal to the y-direction, i.e., M (26) = M (p) ×M (26−p) and
M (26−p) = S(1) ×M (25−p), the reduction of the pull-back metric and its inverse are

G̃ãb̃ = ḡãb̃ + eϕgãgb̃ ; G̃ãb̃ = ḡãb̃ − gãgb̃

e−ϕ + gc̃gc̃
(3.11)

In this case, however, the constraint (3.3) is satisfied for the case that the base space metric
is block-diagonal (3.10) and the vector gã is zero. In fact, for the block-diagonal base space

– 10 –



J
H
E
P
0
1
(
2
0
2
3
)
0
1
2

metric, one finds

G̃ãb̃Gb̃c̃ = δãc̃ , G̃ãb̃Gb̃̃i = gãgĩ
e−ϕ + gc̃gc̃

, G̃ãb̃Gb̃y = gã

e−ϕ + gc̃gc̃
(3.12)

which satisfy the constraint (3.3) for gã = 0. Here also we note that the consistency for
the second fundamental form in the static gauge requires no constraint on the derivatives
of this field. For the couplings at m = 0 level, as we will see shortly, in imposing the
T-duality constraint one has to consider one and two base space fields. On the other hand,
the second fundamental form does not appear in the effective action (2.19) solely. Hence,
in the T-duality at order m = 0 level, one has to consider the linear terms of the second
fundamental form. At the linear order the relation Ωc

ab = 0 is satisfied with no constraint
on the base space background. Hence, in the transverse reduction of the m > 0 couplings,
the consistency with the covariant identity (2.7) requires the base space in the static gauge
to be restricted to (3.10) and

gã = 0 ; ∂gã 6= 0 (3.13)

Note that there is no constraint on the vector gã in the world-volume reduction. There is no
constraint on the background for m = 0 case. The transverse reduction of the overall factor
in this case is e−Φ

√
−G̃ = e−φ̄−ϕ/4

√
−ḡ. Note that the second fundamental form does not

appear in the leading order DBI action, hence, in studying the KK reductions of the DBI
action in (1.2) one does not need to impose the above restriction on the base space back-
ground. Note also that for the O-plane case, the vector gã and the metric ḡãĩ are removed by
the orientifold projection. Hence, in that case also the base space background is arbitrary.

When the Dp-brane is along the circle, using the reductions (3.7) and (3.9), it is
straightforward to calculate the world-volume reduction of S1

p . We call it S1w
p . When the

Dp-brane is orthogonal to the circle, using the reductions (3.7) and (3.11), it is straight-
forward to calculate the transverse reduction of S1

p . We call it S1t
p . These two actions are

not identical. However, the transformation of S1w
p under the Buscher rules which is called

S1wT
p−1 , may be the same as S1t

p−1, up to some total derivative terms in the base space, i.e.,

∆S̃1
0 + J̃ = 0 (3.14)

where ∆S̃1
0 = S1wT

p−1 − S1t
p−1 and the total derivative term is

J̃ = −α
′Tp−1

2

∫
dpσ

√
−ḡ∇ã(e−φ̄−ϕ/4I ã) (3.15)

where I ã is a vector which is made of the base space fields and their derivatives at order
α′1/2 with coefficients I1, I2, · · · . It has been observed in [6] that the T-duality constraint
for the flat base space background produces the same constraints as for the curved base
space background. Hence, for simplicity of the calculations we consider the base space
metric to be flat. For this base space matric, the constraint (3.10) is satisfied. The T-
duality constraint (3.14) should be satisfied if the T-duality transformations are only the
Buscher rules. The subscript 0 in ∆S̃1

0 refers to the T-duality transformations at order α′0.
However, if the T-duality transformations receive α′-corrections then there should be some
other terms in (3.14) resulting from the T-duality of the leading order action.
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In fact the T-duality transformations do have α′-corrections. At order α′, they have
been found in [16]. They are

ϕ → −ϕ− α′λ0

[
2∇µ̃ϕ∇µ̃ϕ+ eϕVµ̃ν̃V

µ̃ν̃ + e−ϕWµ̃ν̃W
µ̃ν̃
]

gµ̃ → bµ̃ − α′λ0

[
2Wµ̃ν̃∇ν̃ϕ+ eϕH̄µ̃ν̃α̃V

ν̃α̃
]

bµ̃ → gµ̃ − α′λ0

[
2Vµ̃ν̃∇ν̃ϕ− e−ϕH̄µ̃ν̃α̃W

ν̃α̃
]

b̄µ̃ν̃ → b̄µ̃ν̃ − α′λ0

[
4Vα̃[µ̃W

α̃
ν̃] + 2g[ν̃Wµ̃]α̃∇α̃ϕ+ 2b[ν̃Vµ̃]α̃∇α̃ϕ

+eϕg[ν̃H̄µ̃]α̃β̃V
α̃β̃ − e−ϕb[ν̃H̄µ̃]α̃β̃W

α̃β̃
]

(3.16)

where λ0 = −1/4 for the bosonic string theory. In the above transformations, H̄µ̃ν̃ρ̃ ≡
3∂[µ̃b̄ν̃ρ̃] − 3

2g[µ̃Wν̃ρ̃] − 3
2b[µ̃Vν̃ρ̃], Vµ̃ν̃ = ∂µ̃gν̃ − ∂ν̃gµ̃ and Wµ̃ν̃ = ∂µ̃bν̃ − ∂ν̃bµ̃ are the field

strengths in the base space. In the reductions of the spacetime effective actions and the O-
plane effective actions, only these field strengths appear in the base space, i.e., the couplings
and the total derivative terms are all gauge invariant. However, the effective actions of the
D-brane involve B̃ab, hence, the base space fields b̄ãb̃, gã, bã with and without derivative on
them appear in the reductions of the couplings. Therefore, the reductions of the couplings
in the base space should be in terms of the base space fields b̄ãb̃, gã, bã and their derivatives
rather than the field strengths H̄,W, V . Therefore, I ã in (3.15) should be a vector which
is made of the base space fields b̄ãb̃, gã, bã, ϕ, φ̄ and their derivatives at order α′1/2.

Since the T-duality transformations are the Buscher rules (1.3) plus the above α′-
corrections, the DBI reductions (1.2) satisfy the T-duality only at order α′0, i.e., ∆S̃0

0 = 0.
At order α′ it produces the following residual terms:

∆S̃0
1 = −2πα′Tp

∫
dpσe−φ̄−ϕ/4

√
− det(A0

ãb̃
)
[1

4∆ϕ+ 1
2Tr[(A0)−1A1]

]
(3.17)

where

A0
ãb̃

= ḡãb̃ + b̄ãb̃ + b[ãgb̃] + eϕgãgb̃

A1
ãb̃

= ∆b̄ãb̃ + b[ã∆bb̃] + g[ã∆gb̃] + 2eϕg{ã∆bb̃} − e
−ϕgãgb̃∆ϕ (3.18)

and we have written the T-duality transformations (3.16) as

ϕ→ −ϕ+ α′∆ϕ , gã → bã + α′∆gã , bã → gã + α′∆bã , b̄ãb̃ → b̄ãb̃ + α′∆b̄ãb̃ (3.19)

The above terms should be included in the T-duality constraint (3.14), i.e.,

∆S̃0
1 + ∆S̃1

0 + J̃ = 0 (3.20)

The above constraint should fix the parameters in the actions (2.19) and (2.21). Note that
there is no parameter in the first term of (3.20). To study the constraint (3.20), one should
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expand the DBI contribution (3.17) and the reductions of the actions (2.19) and (2.21) in
terms of the number of the base space fields b̄ãb̃, gã, bã, ∂ϕ, ∂φ̄, and their derivatives.

The DBI contribution ∆S̃0
1 , ∆S̃1

0 and the total derivative term (3.15) have the expan-
sions

∆S̃0
1 =

∞∑
m̃=2

∆S̃0
1(m̃)

∆S̃1
0 =

∞∑
m̃=1

∆S̃1
0(m̃)

J̃ =
∞∑
m̃=1
J̃ (m̃) (3.21)

where m̃ is the number of the base space fields b̄ãb̃, gã, bã, ∂ϕ, ∂φ̄ and their derivatives.
For m̃ > 2, one should also impose the constraint (3.13) on the base space background.
In principle, if one considers the D-brane action (2.18) to include all infinite independent
terms at order α′, then the constraint (3.20) would produce infinite relations between their
parameters. In practice, however, one should consider the independent couplings in (2.18)
up to a specific number m. Then in the above expansion one should consider the terms up
to m̃ = m+ 1 for m > 0. For m = 0 case, one should consider the terms up to m̃ = 2.

Since there is no restriction on the base space background for the m = 0 case, as we
will see in the next subsection, the constraint (3.20) produces so many relations between
the parameters in Lagrangian (2.19) which fix the bulk and boundary actions completely.
However, to be able to study the T-duality constraint for m > 0 cases, the base space
background should be restricted as in (3.13). This causes that the constraint (3.20) does
not produce so many relations between the parameters in Lagrangian (2.21) to fix the bulk
and boundary actions completely.

3.1 m = 0 case

The T-duality constraint for m = 0 case is
2∑

m̃=2
∆S̃0

1(m̃) +
2∑

m̃=1
∆S̃1

0(m̃) +
2∑

m̃=1
J̃ (m̃) = 0 (3.22)

for arbitrary base space background. Since the base space fields are b̄ãb̃, gã, bã, ∂ϕ, ∂φ̄ and
their derivatives, there is no Bianchi identity involved in the base space. Hence the non-
gauge-invariant couplings in the base space are all independent. The coefficient of each
independent term involves a specific number which is coming from the DBI contribution,
the parameters in (2.19) and the parameters I1, I2, · · · of the vector Ĩ ã in the total derivative
term (3.15). The coefficients of all independent terms in the above constraint must be zero.
They produce some algebraic equations that their solution fix the parameters. We have
found the following relations for the parameters in (2.19):

a2 =−2, a8 =−1+a1/2, b1 = 1/24, b11 = 1/6−a1/6, b2 =−1/4, b4 = 1/4,
b42 =−2+2a1, b45 =−1+a1, b47 = 2−a1, b5 = 1 (3.23)
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and the following vector for the total derivative term:

Ĩ ã = −2eϕgb̃∂
ãgb̃ − ∂ãϕ+ (2− a1)eϕgb̃∂

b̃gã + a1e
ϕgã∂ b̃gb̃ (3.24)

where the indices are contracted with the base space metric ḡãb̃. If the spacetime has no
boundary, then the above total derivative terms would be zero. In that case, the parameter
a1 would not be fixed. If one sets a1 = 2, then the couplings (2.19) become exactly the ones
have been found in [26, 32]. It has been shown in [26, 32] that they are fully reproduced
by the corresponding disk-level S-matrix elements.

However, if the spacetimeM (26) has a boundary ∂M (26), then the total derivative terms
can not be ignored. Then the T-duality of boundary may fix the remaining parameter a1. If
both spacetime and its boundary have a circle, i.e., M (26) = S(1)×M (25), ∂M (26) = S(1)×
∂M (25), then the Dp−1-brane which is transverse to the circle, may end on the boundary, i.e.,
the Dp−1-brane which is along the subspaceM (p) in the base spaceM (25) = M (p)×M (25−p)

may have the boundary ∂M (p). In that case, the Stokes’s theorem in this subspace is∫
M(p)

dpσ
√
−ḡḡãb̃∂ã(e−ΦIb̃) =

∫
∂M(p)

dp−1τ e−Φ
√
|g| ḡãb̃nãIb̃ (3.25)

where nã = ∂ãX
µ̃nµ̃ and nµ̃ is the normal vector to the boundary ∂M (25) which is outward-

pointing (inward-pointing) if the boundary is spacelike (timelike), and the boundary in the
static gauge is specified by the functions σã = σã(τ ā). In the square root on the right-hand
side, g is determinant of the induced metric on the boundary, i.e.,

gāb̄ = ∂σã

∂τ ā
∂σb̃

∂τ b̄
ḡãb̃ (3.26)

The coordinates of the boundary ∂M (p) are τ0, τ1, · · · , τp−2.
Using the above Stokes’s theorem, one finds that the contribution of the total derivative

terms in the boundary is

J̃ (0) = α′Tp−1
2

∫
∂M(p)

dp−1τ e−Φ
√
|g|nã

[
2eϕgb̃∂

ãgb̃+∂ãϕ− (2−a1)eϕgb̃∂
b̃gã−a1e

ϕgã∂ b̃gb̃

]
(3.27)

The above terms in the boundary indicates that there must be some world-volume couplings
on the boundary.

When the spacetime has boundary, the Dp-planes in this manifold may end on the
boundary. If one writes the spacetime as M (26) = M (p+1)×M (25−p) where the Dp-plane is
along the subspaceM (p+1), and subspaceM (p+1) has boundary ∂M (p+1), then the effective
action of Dp-plane at order α′ has world-volume couplings (2.18) on the bulk of the Dp-
plane, i.e., inM (p+1), as well as some boundary couplings on the boundary of the Dp-plane,
i.e., in ∂M (p+1). The boundary action should be

∂S1
p = −α

′Tp
2

∫
∂M(p+1)

dpτ e−Φ
√
|ĝ|

∞∑
m=0

∂Lm (3.28)
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where ĝ is the determinant of the pull-back of the pull-back metric G̃ab on the boundary
of Dp-plane, i.e.,

ĝâb̂ = ∂σa

∂τ â
∂σb

∂τ b̂
G̃ab (3.29)

The boundary of Dp-plane is specified by the vectors σa(τ â) where τ0, τ1, · · · τp−1 are coor-
dinates of the boundary, and ∂Lm in (3.28) is the boundary Lagrangian at one-derivative or-
der which includes various independent couplings involving the world-volume indies a, b, · · ·
and the spacetime indices µ, ν, · · · , evaluated at the boundary of Dp-plane. As in the bulk
action (2.18), m is the number of pull-back field B̃ab without derivative on it.

It is implicitly assumed in the T-duality prescription that everything should be in-
dependent of the killing coordinate y, hence, to be able to impose the T-duality on the
boundary couplings, the boundary should be specified as σa(τ â) = (y, σã(τ ā)). Then
one can show that, in the static gauge and for Xi = 0, when Dp-plane is along the y-
direction, the reduction of e−Φ√|ĝ| = e−φ̄+ϕ/4√|g| where g is determinant of the induced
metric (3.26), and when D(p−1)-plane is orthogonal to the y-direction, the reduction of
e−Φ√|ĝ| = e−φ̄−ϕ/4

√
|g|. The former transforms under the T-duality transformations (1.3)

to the latter. Hence, to find the T-duality constraints on the boundary action (3.28), one
should consider only the T-duality constraint on ∂Lm in (3.28).

For the boundary couplings at order m = 0, we consider the following Lagrangian:

∂L0 = c1KabG̃
ab (3.30)

where Kab = ∂aX
µ∂bX

νKµν and Kµν is the extrinsic curvature of the spacetime boundary.
For the time-like boundary, it is given as

Kµν = ∇µnν − nµnρ∇ρnµ (3.31)

where nµ is the normal vector to the boundary ∂M (26). It is symmetric and satisfies
nµKµν = 0. The world-volume reduction of Dp-brane and the transverse reduction of Dp−1
for this boundary couplings are, respectively

∂Lw0 = c1

(
K̂ãb̃ḡ

ãb̃ + 1
2nã∂

ãϕ

)
∂Lt0 = c1

(
K̂ãb̃ḡ

ãb̃ + eϕnãgb̃∂
ãgb̃ − eϕnb̃gã∂

ãgb̃
)

(3.32)

where K̂µ̃ν̃ is the extrinsic curvature of the base space boundary. We have also removed gã
in the terms that have more than two base space fields, according to the constraint (3.20).
Then one finds that the T-duality constraint for m = 0 case, i.e.,

∂SwTp (0)− ∂Stp−1(0) + J̃ (0) = 0 (3.33)

fixes both the bulk parameter a1 and the boundary parameters c1 to be

a1 = 0 ; c1 = 2 (3.34)
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Hence, the T-duality constraint fixes both the bulk and the boundary actions for m = 0
case to be

S1
p+∂S1

p = −α
′Tp
2

∫
dp+1σe−Φ

√
−G̃

[
Rabab+

1
6HabcH

abc+1
4HabµH

abµ−1
4HaµνH

aµν (3.35)

+ 1
24HµνρH

µνρ−2ΩµabΩµab−∇̃aB̃bc∇̃aB̃bc+2∇aΦ∇aΦ−2Ωµ
a
a∇µΦ−∇µΦ∇µΦ

]
−α
′Tp
2

∫
dpτe−Φ

√
|ĝ|
[
2Ka

a
]

It is interesting to note that the coefficient of the extrinsic curvature is exactly the same as
the coefficient of the Hawking-Gibbons term in the spacetime action at the two-derivative
level. Note also that if one replaces B̃ → B̃ + F , then one finds that the propagators of
the massless open string gauge field and the transverse scalar fields receive α′-corrections.
This is unlike the result in [26, 32] in which the study of the boundary couplings did not
considered and the standard propagators considered for these fields. On the other hand,
the coefficients of some of the above couplings are different from those in [26, 32]. We
will show in the appendix that the corrections to the propagators, produce in the S-matrix
elements of the leading order DBI action, some contact terms at order α′ which change the
coefficients of some of the couplings in the above action such that they become exactly the
same as those in [26, 32].

3.2 m = 1, 2, 3, 4 cases

The T-duality constraint for m = 1, 2, 3, 4 cases is
5∑

m̃=2
∆S̃0

1(m̃) +
5∑

m̃=1
∆S̃1

0(m̃) +
5∑

m̃=1
J̃ (m̃) = 0 (3.36)

in which the solutions (3.23) and (3.34) must be imposed. In this case the base space
background must satisfy the constraint (3.13). Since the base space is not arbitrary back-
ground, unlike the previous case, the above T-duality constraint can not fix all 65 pa-
rameters in (2.21). In fact it produces 32 relations. Some of the couplings are fixed and
some other are related to each others. We have found the following 32 relations for the
parameters in (2.21):

a7 = −1/2, b10 = −1/16, b12 = 1/2− a6/4, b13 = −2, b14 = 1/16, b15 = 1/4, b27 = −2,
b3 = 1/96, b31 = 2, b32 = −1/2, b35 = b28, b36 = −1− b28, b37 = b33, b38 = b34,

b39 = −8b25 − b33, b40 = −8b26 − b34, b44 = −1/2 + 2a4, b46 = −1/4 + a4,

b48 = −2, b49 = 1/2− a4, b50 = 0, b51 = −2, b55 = −2b24 + b41, b56 = b23 + 16b25,

b57 = −a14 + b23, b58 = b24 + 16b26, b59 = −b23 − 4b24, b6 = −1/4 + a6/8,
b60 = −2a15 + b24, b61 = −b23, b8 = −1/2 + b7, b9 = 2− 4b7 (3.37)

and the following vector for the total derivative terms:

Ĩ ã = −1
4 b̄b̃c̃b̄

b̃c̃∂ãϕ− b25b̄b̃
d̃b̄b̃c̃b̄c̃

ẽb̄d̃ẽ∂
ãϕ− b26b̄b̃c̃b̄

b̃c̃b̄d̃ẽb̄
d̃ẽ∂ãϕ

+b̄ãc̃b̄b̃c̃∂
b̃ϕ− 1

2b23b̄
ãc̃b̄b̃

d̃b̄c̃
ẽb̄d̃ẽ∂

b̃ϕ− 1
2b24b̄

ãc̃b̄b̃c̃b̄d̃ẽb̄
d̃ẽ∂ b̃ϕ+ · · · (3.38)
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where dots represent terms that have gã without derivative on it. They are zero for the
base space background (3.13). Because of this restriction, the above total derivative terms
can also fix only some of the couplings in the boundary action.

The constraint (3.13) on the base space background, causes that some of the couplings
in (2.21) do not appear in the relations (3.37). This is unlike the m = 0 case in which
the base space background is arbitrary and all parameters in (2.19) appear in the rela-
tions (3.23). Some of the coefficients of the couplings (2.21) which are fixed in (3.37), i.e.,
b14, b10, b3, b15, a7, indicate that the couplings in L2 which have an extra factor of B̃abB̃ab

with respect to the corresponding couplings in L0, satisfy the following relation:

L2(b14, b10, b3, b15, a7) = 1
4B̃

abB̃abL0(b4, b2, b1, b5, a2) (3.39)

The T-duality could not fix a4, b22, a12. However, if one chooses these coefficients to be

a4 = 0, b22 = −1/24, a12 = 1/4 (3.40)

Then all other couplings in L2 which have an extra factor of B̃abB̃ab with respect to the
corresponding couplings in L0, satisfy similar relation:

L2(b22, a4, b49, a12, b44, b46) = 1
4B̃

abB̃abL0(b11, a1, b47, ab, b42, b45) (3.41)

The factor B̃abB̃ab may be resulted from the expansion of the DBI factor, i.e.,

L2(b14, b10, b3, b15, a7, b22, a4, b49, a12, b44, b46) =
√

det(1 + G̃abB̃bc)L0 (3.42)

The DBI factor should be expanded and one should keep m = 2 terms.
The same relation should be between the couplings in L3 which have an extra factor

of B̃abB̃ab with respect to the corresponding couplings in L1, i.e.,

L3(b32, b34, b40, b58, b38, b60) = 1
4B̃

abB̃abL1(b27, b28, b36, b50, b35, b51) (3.43)

In the relations (3.37), b32 = −1/2 and b27 = −2. They satisfies the above relation. Also
there are the relations b34 = b38 and b28 = b35 which are consistent with the above relation.
The factor B̃abB̃ab may be resulted from the expansion of the DBI factor, i.e.,

L3(b32, b34, b40, b58, b38, b60) =
√

det(1 + G̃abB̃bc)L1 (3.44)

The DBI factor should be expanded and one should keep m = 2 terms.
Assuming the DBI factor, the relation between the coupling in L4 with coefficients b25,

b26 and the couplings in L0 is

L4(b25, b26) =
√

det(1 + G̃abB̃bc)L0 (3.45)

where the DBI factor should be expanded and one should keep m = 4 terms. The rela-
tions (3.44) and (3.45) are consistent with the T-duality results (3.37) if one chooses the
following relations:

a15 = 0, b24 = −1/2, b26 = 1/32, b25 = −1/8, b34 = b28/4, b38 = b35/4 (3.46)
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Hence, it seems the couplings at order α′ should have the DBI factor. If one includes the
DBI factor in the effective action (2.18), i.e.,

S1
p = −α

′Tp
2

∫
M(p+1)

dp+1σ e−Φ
√
− det(G̃ab + B̃ab)

∞∑
m=0
Lm (3.47)

Then in the Lagrangian Lm for m > 1, one should removes the independent couplings
which have the same structures as those reproduce by expanding the DBI factor.

To find the boundary couplings for m = 1, 2, 3, 4 cases, we first note that the con-
straint (3.13) causes the transverse reduction of B̃ãb̃, G̃ãb̃ to be

B̃ãb̃ = b̄ãb̃ ; G̃ãb̃ = ḡãb̃ (3.48)

Then one can easily observe that the world-volume reduction of the couplings which involve
∇̃B̃ produces the base space fields bã and ∂b̃bã, whereas the transverse reduction of the
coupling with structure nB̃∇̃B̃ produces nb̄∂b̄. Hence the boundary action should not have
couplings with structures nB̃∇̃B̃ and nB̃B̃B̃∇̃B̃.

One finds the transverse reduction of B̃abB̃b
cK

ca is b̄ãb̃b̄b̃c̃K̂ c̃ã. On the other hand,
the world-volume reduction of B̃abB̃b

cK
ca is b̄ãb̃b̄b̃c̃K̂ c̃ã plus some other terms that have

the vector bã without derivative on it. Under the T-duality (1.3) they are removed by
the constraint (3.13). Hence, the couplings B̃abB̃b

cK
ca is invariant under the T-duality.

Therefore, the T-duality can not fix the coefficient of the boundary coupling B̃abB̃b
cK

ca.
One can easily observe that for the base space (3.13), the transverse reduction and

the T-duality of the world-volume reduction of Tr(B̃B̃) and Tr(B̃B̃B̃B̃) are b̄ãb̃b̄b̃ã and
b̄ãb̃b̄

b̃c̃b̄c̃d̃b̄
d̃ã, respectively. Similarly for any combinations of the tensor B̃. Then using the

reductions of Ka
a in (3.32), and using the reduction for dilaton in (3.7), one finds that the

terms in the vector (3.38) are cancelled with the T-duality of the following boundary terms:

∂S1
p = −α

′Tp
2

∫
∂M(p+1)

dpτ e−Φ
√
| det(ĝâb̂)|

√
det(1 + G̃abB̃bc)

[
2Ka

a − 2naB̃acB̃cb∇bΦ

−b23naB̃
acB̃ceB̃

edB̃db∇bΦ + · · ·
]

(3.49)

where we have also used the coefficients in (3.46). Note that â, b̂ are world-volume indices
on the boundary ∂Mp+1 whereas the indices a, b, · · · are the world-volume indices in the
bulk Mp+1. The dots represent the terms at m > 4 levels in which we are not interested,
and also the terms with structures B̃abB̃b

cK
ca and B̃abB̃

b
cB̃

cdB̃deK
ea which can not be

fixed by the T-duality of the massless closed string fields. They may be fixed by studying
the T-duality of massless open string fields in which we are not interested in this paper.

4 Discussion

In this paper we have found the independent world-volume couplings at order α′ involving
up to five covariant fields R, H, ∇H, ∇Φ, ∇∇Φ,∇̃B̃, ∇̃∇̃B̃, Ω, ∇̃Ω and B̃. We have
found that there are 76 independent couplings. The assumption that the effective action of
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the Dp-brane at the critical dimension is background independent is then used to find the
parameters of the above independent couplings and to find their corresponding boundary
terms when the spacetime has boundary and the D-brane ends on it. That is, we have
considered a particular background which has one circle fibred on a base space. In this
background, the effective action should satisfy the T-duality constraint. To impose the
T-duality on the closed string fields of these couplings, one has to use the static gauge
to fix the diffeomorphism symmetry. We have shown that in this gauge, the T-duality is
satisfied for the specific base space background (3.13) for the couplings with more than
two fields. The T-duality constraint fixes all couplings at the two-field level, and their
corresponding boundary term. They are fully consistent with the corresponding disk-level
S-matrix elements. Because of the restriction on the base space background, the T-duality
is failed to fix all couplings at more than two-field levels. However, those couplings that
are fixed indicate that both the bulk and boundary actions should have the DBI factor.

We have seen that because of the restriction (3.13) on the base space background, we
could find only 32 relations (3.37) between the parameters of the independent couplings at
orders m = 1, 2, 3, 4. If one includes the independent couplings at orders m > 4, we do not
expect that the T-duality constraint would fix all parameters at orderm ≤ 4. The T-duality
constraint would produce some relations between the independent couplings at orders m >

4. However, some of the unfixed parameters at ordersm ≤ 4 might be fixed by the T-duality
on the couplings at ordersm > 4. We expect, if one finds a way to impose the T-duality con-
straint on the D-brane effective action in covariant form (without using the static gauge),
then there would be no constraint on the background because the would-volume component
of the second fundamental form (2.7) is zero in covariant form without using any restriction
on the background. In that case, the T-duality may fix all couplings at each order of m.

The Op-plane effective action has no open string couplings, no couplings that have
odd number of transverse indices on metric and dilaton and their corresponding deriva-
tives, and has no couplings that have even number of transverse indices on B-field and
its corresponding derivatives [33]. This Z2 orientifold projection removes all m > 0 terms
in (2.18) and removes b11, a1, a2, a8, b42 terms in (2.19). It also removes the ∇iΦ∇iΦ part
in the term with coefficient b45 and removes the terms with even transverse indices in the
couplings with coefficients b4, b2, b1. This Z2 projection should be also applied for the re-
duction of the couplings on the circle. This projects the final constraint on the couplings,
i.e., (3.22), into two parts. The Z2 = +1 corresponds to the O-plane constraint. The DBI
contribution (3.17) for m = 0 case has A0

ãb̃
= ḡãb̃ and A1

ãb̃
= 0. Under the Z2 project,

∆ϕ→ ∆ϕ+. The T-duality constraint (3.22) then fixes the Op-plane couplings as

Sp + ∂Sp=−
α′T ′p

2

∫
dp+1σ e−Φ

√
−G̃

[
Rabab −

1
8HabiH

abi + 1
24HijkH

ijk +∇aΦ∇aΦ
]

−
α′T ′p

2

∫
dpτ e−Φ

√
|ĝ|
[
2Ka

a
]

where T ′p is the tension of Op-plane. The above couplings are the Z2 = +1 projection of
the D-brane couplings in (3.35) up to the overall factor. For the couplings at the higher
orders of α′, we expect, as long as the T-duality fixes the D-brane couplings for m = 0 case,
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up to an overall factor, then the Z2 = +1 projection on the couplings would produce the
corresponding O-plane couplings up to an overall factor. This overall factor for D-brane and
for O-plane is different. If the T-duality fixes the D-brane couplings up to some parameters,
then the O-plane couplings again would be found by the Z2 = +1 project. However, the
unfixed parameters for D-brane and for O-planes are different numbers that should be fixed
by some other methods. Hence, in general, the O-plane couplings are not the Z2 = +1
projection of the D-brane couplings up to the overall tension factor. For example, the
Chern-Simons couplings for D-brane and O-plane at order α′2 are the same up to an overall
factor, whereas at the higher orders of α′ they are not the same up to an overall factor [34].

To find the independent world-volume couplings on D-brane, we are allowed to impose
the spacetime equations of motion, however, we are not allowed to use the field redefinition
for the closed string fields. This causes that the independent couplings include the two-
field coupling (∇̃B̃)2. If the spacetime has boundary and the D-brane ends on it, then the
T-duality of the boundary term fixes the coefficient of this term to be non-zero. Hence,
upon the replacement B̃ → B̃+F , one finds the couplings at order α′ change the standard
propagator of the gauge field. The T-duality also fixes the coefficients of the square of
the second fundamental form such that the transverse scalar fields also have non-standard
propagators. If one considers the D-brane in the presence of the constant background
B-field, then one expects that the propagator of the gauge field on this D-brane to be
non-standard too. In fact, it is known that the couplings of two ∇̃F and two, four, six, and
more F ’s are non-zero. Upon the replacement F → F + B̃ and for constant B̃, one finds
couplings of ∇̃F ∇̃F and an arbitrary number of constant B-field. Hence, the propagator of
the gauge field in the presence of constant background is not the standard propagator that
is produced by the DBI action. On the other hand, as we have shown in the appendix, the
non-standard propagator produces some contact terms at order α′ when one considers the
s-channel in the S-matrix elements of the DBI action. These couplings should be added to
the contact terms that are produced by the standard propagator.

The D-brane world-volume contact terms of two gravitons at order α′ in the presence
of constant B-field background have been found in [35] by using the standard propagators.
One the other hand, it has been shown in [35] that the contact terms are not reproduced by
covariant couplings. It would be interesting to include the contact terms resulting from the
non-standard propagator to the contact terms found in [35] to see if they can be reproduced
by some covariant couplings. If that would be the case, then one must conclude that the
parameter a1 in (3.23) must be zero even if the spacetime has no boundary. This would
then confirm that the effective action must be background independent, i.e., if a1 = 0 for
the background which has boundary, it would remain zero for any other background which
may have no boundary.

It has been observed in [25] that the series of the open string gauge field couplings at
order α′ which are contracted with the inverse of the pull-back metric G̃ab and are consistent
with T-duality and S-matrix elements [24], can not be written in compact form in terms
of the inverse of the tensor hab = G̃ab + B̃ab + Fab. In this paper, however, we have shown
that the massless closed string fields in the action should have the DBI factor

√
− det(hab).

This observation has been also made in [24] for the couplings of two fundamental forms
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and two, four and six gauge fields. Hence, we expect, in general, the covariant fields with
world-volume indices to be contracted with the inverse of the pull-back metric, however,
the tensor hab = G̃ab+B̃ab+Fab appears as the overall DBI factor in the actions. Therefore,
we expect the couplings of two gravitons in the presence of constant B-field found in [35],
after including the contact terms of the non-standard propagator discussed in the pervious
paragraph, to have the overall DBI factor and a series of covariant couplings in terms of
the Riemann curvature, the second fundamental form and various powers of B-field that
are contracted with G̃ab.

We have seen that the T-duality at the two-field level fixes the action up to the pa-
rameter a1. If there is no boundary it would remain arbitrary. For a1 = 2, then the
propagators of the massless open string fields do not receive α′ corrections. However, if
there is a boundary, then the T-duality fixes this to a1 = 0, which changes the propagators
to the non-standard form. Assuming the effective action of the D-brane in the critical
dimension to be background independent, then one should not consider a1 to be arbitrary
because it is fixed in a particular background which has boundary. Hence, the background
independence dictates that the effective action at order α′ to be the one in (3.35), not
the one has been found in [26, 32]. We expect the same thing for the propagators of the
D-branes in the superstring theory. The curvature squared terms of the D-brane action
at order α′2 have been found in [36] by considering the low energy contact terms of the
disk-level S-matrix element of two gravitons [37] at order α′2. In this study, the mass-
less poles of the amplitude at order α′0 are assumed to be reproduced by the DBI action
which produces the standard propagators for the gauge field and for the transverse scalar
fields. However, if the propagators receive α′2-corrections, then the contact terms at order
α′2 would be changed and the curvature squared terms would also be changed. In fact,
the gauge field couplings at order α′2 that have been found in [38] by the boundary state
method, do have term (∇̃∇̃F )2. However, it has been argued in [38] that this term can
be removed by the appropriate field redefinitions. On the other hand, the B-field gauge
symmetry requires that the world-volume couplings have either the B-field strength H or
the combination B̃ + F . Since there is no field redefinition on the D-brane for the B̃-field,
the B-field gauge symmetry requires to have no field redefinition for the open string gauge
field F either. To check if the propagators receive α′2-corrections, one may extend the
calculations in this paper to the superstring theory on a spacetime manifold which has
boundary. If the coefficient of the world-volume coupling (∇̃∇̃B̃)2 is non-zero, then the
replacement B̃ → B̃ + F would produce the gauge field coupling (∇̃∇̃F )2 which changes
the propagator. It would be interesting to perform this calculation at m = 0 level, to
find NS-NS couplings at order α′2 by the T-duality and to see if the propagators on the
world-volume of D-branes are standard or not. Similar calculation for O-plane which has
no open string fields, has been done in [20–23].
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A Contact terms of non-standard propagators

In this appendix we are going to show that the couplings in (3.35) are fully consistent with
the S-matrix elements. It has been shown in [26, 32] that the couplings (2.19) with the
coefficients (3.23) are fully consistent with the S-matrix element for a1 = 2. To show that
for a1 = 0 case also the couplings are consistent with the S-matrix elements, we consider
the terms in (2.19) which depend on a1 and also ΩµabΩµab. They are

L0 =
(1

6−
a1
6

)
HabcH

abc+a1Ωµ
b
bΩµa

a−2ΩµabΩµab+
(
−1+a1

2

)
∇̃a(B̃bc+Fbc)∇̃a(B̃bc+F bc)

+(2−a1)∇aΦ∇aΦ−(2−a1)Ωµ
a
a∇µΦ−(1−a1)∇µΦ∇µΦ (A.1)

we have also replaced B̃ by B̃ + F . For a1 = 2, one finds the propagators for the open
string gauge field and the transverse scalar fields receive no α′-correction. The propagators
are produced only by the couplings in the DBI action, i.e.,

S0
p = −Tp

∫
dp+1σ

[
1 + 1

2∂aX
i∂aXjηij + 1

4FabF
ab + · · ·

]
(A.2)

The propagators are

(GXX)ij = iηij

Tps
; (GAA)ab = iηab

Tps
(A.3)

where s = −kaka and ka is the momentum of the open string field.
For a1 = 0, the couplings (A.1) contain the following two-field terms:

S1
p = −α

′Tp
2

∫
dp+1σ

[
− 2∂a∂bXi∂a∂bXjηij − ∂cFab∂cF ab + · · ·

]
(A.4)

They change the propagators in (A.3) to

(GXX)ij = iηij

Tps(1− α′s)
; (GAA)ab = iηab

Tps(1− α′s)
(A.5)

If one expand them, one finds the propagators in the s-channel change to the standard
propagators plus some contact terms at higher orders of α′, i.e.,

(GXX)ij = iηij

Tps
+ iα′ηij

Tp
+ · · · ; (GAA)ab = iηab

Tps
+ iα′ηab

Tp
+ · · · (A.6)

where dots represent terms at higher orders of α′.
Using the DBI action, one can calculate the scattering amplitudes of two massless

closed strings in the s-channel. They produce the massless poles at the leading order of
α′ in the s-channel, and some contact terms at order α′. Let us consider the scattering
amplitude of two dilatons from D-brane. Using the fact that the closed string fields in the D-
brane action are function of the transverse scalar fields and should be Taylor expanded, one
finds DBI action produces the following vertex for one on-shell dilaton and one off-shell Xi:

V (Φ, X)i = Tp∂iΦ (A.7)

– 22 –



J
H
E
P
0
1
(
2
0
2
3
)
0
1
2

Using the propagator of the transverse scalar field in (A.6), one finds the s-channel
produces the following contact terms at order α′:

CΦΦ = −α′Tp∂iΦ∂iΦ = −α
′Tp
2 (2∂µΦ∂µΦ− 2∂aΦ∂aΦ) (A.8)

If one adds the above dilaton couplings to the couplings in (A.1) for a1 = 0, one would
find the dilaton couplings in (A.1) for a1 = 2.

The DBI action produces the following vertex for one on-shell B̃ and one off-shell Aa:

V (B̃, A)a = Tp∂
cB̃ca (A.9)

Using the propagator of the gauge field in (A.6), one finds the s-channel produces the
following contact terms at order α′:

CBB = −α′Tp∂cB̃ca∂dB̃da = −α
′Tp
2 (−1

3H
dcaHdca + ∂cB̃ad∂cB̃ad) (A.10)

where we have also used integration by part. If one adds the above B-field couplings to
the couplings in (A.1) for a1 = 0, one would find the B-field couplings in (A.1) for a1 = 2.
Similar calculations can be done for the other couplings as well. Note that the S-matrix of
one B̃ and one F in (A.1) is also zero. Hence, the S-matrix elements for a1 = 0 are the same
as the S-matrix elements for a1 = 2. On the other hand, it has been shown in [26, 32] that
the field theory S-matrix element for a1 = 2 are consistent with the low energy expansion
of the disk-level S-matrix element in the string theory. Hence the couplings in (3.35) are
fully consistent with the corresponding S-matrix elements in the bosonic string theory.
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