
J
H
E
P
0
1
(
2
0
2
3
)
1
2
1

Published for SISSA by Springer

Received: September 27, 2022
Revised: December 6, 2022

Accepted: December 26, 2022
Published: January 23, 2023

Holographic QFTs on AdSd, wormholes and
holographic interfaces

A. Ghodsi,a J.K. Ghosh,b,c E. Kiritsis,d,e F. Nittid and V. Nourryd
aDepartment of Physics, Faculty of Science, Ferdowsi University of Mashhad,
Mashhad, Iran

bIndependent University Bangladesh (IUB),
Bashundhara RA, Dhaka 1229, Bangladesh

cCenter for Computational and Data Sciences, Independent University,
Bangladesh, Bashundhara RA, Dhaka 1229, Bangladesh

dUniversité Paris Cité, CNRS, Astroparticule et Cosmologie,
F-75013 Paris, France

eCrete Center for Theoretical Physics, Institute for Theoretical and Computational Physics,
Department of Physics, University of Crete,
Heraklion, Greece
E-mail: a-ghodsi@ferdowsi.um.ac.ir, jewel.ghosh@iub.edu.bd,
nitti@apc.in2p3.fr, valentin.nourry@ens-paris-saclay.fr

Abstract: We consider three related topics: (a) Holographic quantum field theories on AdS
spaces. (b) Holographic interfaces of flat space QFTs. (c) Wormholes connecting generically
different QFTs. We investigate in a concrete example how the related classical solutions
explore the space of QFTs and we construct the general solutions that interpolate between
the same or different CFTs with arbitrary couplings. The solution space contains many
exotic flow solutions that realize unusual asymptotics, as boundaries of different regions in
the space of solutions. We find phenomena like “walking” flows and the generation of extra
boundaries via flow fragmentation.

Keywords: Gauge-Gravity Correspondence, Renormalization Group

ArXiv ePrint: 2209.12094

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP01(2023)121

mailto:a-ghodsi@ferdowsi.um.ac.ir
mailto:jewel.ghosh@iub.edu.bd
mailto:nitti@apc.in2p3.fr
mailto:valentin.nourry@ens-paris-saclay.fr
https://arxiv.org/abs/2209.12094
https://doi.org/10.1007/JHEP01(2023)121


J
H
E
P
0
1
(
2
0
2
3
)
1
2
1

Contents

1 Introduction and summary 1
1.1 QFTd on AdSd 3
1.2 Proximity and QFT interfaces 4
1.3 Wormholes and quantum gravity 5
1.4 Results 5

1.4.1 Pure gravity 6
1.4.2 Einstein-dilaton gravity 7
1.4.3 Space of solutions 9
1.4.4 Single-sided solutions 11

1.5 Discussion and open problems 13
1.6 The structure of the paper 15

2 Setup 16
2.1 The first order formalism 18
2.2 General features of the solutions 19
2.3 A classification and characterization of flows between extrema of

the potential 21

3 Two-parameter flows 23
3.1 The space of solutions 25
3.2 How the QFTs on UV fixed points are related to each other? 27
3.3 The numerical strategy 29
3.4 Connecting different fixed points 31

3.4.1 The WLR
1,0 solutions 31

3.5 Connecting one fixed point with itself 36
3.5.1 Type WLL

1,1 solutions 36
3.5.2 Type-S solutions 39

3.6 Solutions with extra ϕ-bounces 40
3.6.1 The WLL

1,2 solutions 40
3.6.2 The WLR

1,1 solutions 44
3.6.3 Multi-ϕ-bounce and multi-A-bounce solutions 46

4 Special flows on the inter-region boundaries 47
4.1 Crossing from the WLR

1,0 to the WLL
1,1 region 49

4.2 Walking 54
4.3 Flow fragmentation and the generation of a new boundary 54
4.4 Crossing from type WLL

1,1 to type WLL
1,2 region 55

4.5 Crossing from WLR
1,1 to WLR

1,0 and WLL
1,2 regions 56

4.6 Corners 58
4.7 Summary of the results 60

– i –



J
H
E
P
0
1
(
2
0
2
3
)
1
2
1

5 Four-parameter solutions 62
5.1 Pure gravity 62
5.2 Einstein-Dilaton gravity 66

6 Single-boundary solutions 67

A AdS-slicing vs. global coordinates 71

B First order equations 74

C Solutions near critical points 76
C.1 Asymptotic solutions near extrema 76
C.2 ϕ-bounces, IR bounces and A-bounces 78
C.3 No ϕ-bounce at an extremum point of a potential 80

D Bulk equations and boundary transforms in AdS-slicing 83

1 Introduction and summary

Gauge/gravity duality relates a quantum field theory (QFT) in d-dimensions to a higher-
dimensional bulk theory containing dynamical gravity [1–4]. In suitable situations (namely
among others, when the QFT is strongly coupled and has a large-N expansion) the latter
can be approximated by semiclassical general relativity coupled to other fields, which are
dual to QFT operators.

Classical solutions of the bulk gravitational theory with an asymptotically AdSd+1
boundary correspond to (the ground state of) QFT renormalization-group flows (RG flows),
and evolution along the radial bulk coordinate has the dual interpretation as evolution with
energy scale in the QFT. Bulk fields which have a non-trivial dependence on the radial
coordinate correspond to running couplings. Solutions of this type are called holographic
RG flows, [5–7]

Fully AdS-invariant solutions correspond to special points in solution space and are dual
to conformal fixed points on the field theory side. More generally, the space of conformal
fixed points (CFTs) and the RG flows connecting them, is mapped on the gravity side to
the space of regular solutions of the bulk theory.

Holographic RG flows have been extensively explored, in both top-down models and
from the bottom-up point of view. The simplest bulk theory which gives this type of
solution is Einstein gravity minimally coupled to a single real scalar field, which we shall
call dilaton by an abuse of language, and whose potential admits one or more extrema
with a negative cosmological constant. Although this setup is minimal, it provides a very
rich structure: depending on the scalar potential, it offers a very rich space of solution
which reproduce all features one expects in usual field theories (e.g. RG flows between a
UV and IR fixed points, the generation of an IR scale with a mass gap, the possibility of
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confinement and phase transitions, etc) as well as certain types of exotic RG flows which
cannot occur in perturbative field theories [8, 9]. Including more fields does not change the
story qualitatively but allows for multiscale RG flows, [10].

The correspondence between QFT RG flows and gravity solutions is not limited to
QFTs on flat space-time but extends to the situation where the QFT is defined on a curved
manifold. This is because, asymptotically, one can write the near-boundary AdS metric as a
foliation whose d-dimensional radial sections admit an arbitrary metric. This near-boundary
expansion is what defines the metric of the spacetime on which the QFT lives. This opens
the way to studying holographic RG flows of QFTs on curved space-times.

A systematic analysis of curved space-time holographic RG flows in Einstein-dilaton
theories has been initiated in [11] in the case when the boundary field theory is defined on
an Einstein space with positive or negative curvature. For positive curvature, the picture
in terms of RG flows is not very different from that of flat space field theories, except for
the fact that the curvature dominates in the IR and gaps the theory before the deep IR
regime is reached. In the case of negative curvature, however, the field theory interpretation
of the resulting solutions is very different from that of an RG flow: the reason is that,
when the bulk is foliated by constant negative curvature d-dimensional radial slices, the
solution has generically two asymptotically AdSd+1 boundaries. Rather than an RG flow,
this corresponds to two UV CFTs which are interacting in a non-local way through the bulk.

Such solutions in string theory, with asymptotic boundary metrics being AdS, have
been found and studied for some time, [12–20]. They have two apparently distinct conformal
boundaries at the two end-points of the holographic coordinate. However, as the slices
involve a non-compact manifold which also has a conformal boundary, the two asymptotic
boundaries are connected, resulting in a single conformal boundary. This is represented in
the left part of figure 2: the total conformal boundary is composed of the two gray caps
plus the red surface joining them.

If the bulk is d+1 dimensional, and the slices are AdSd, the total boundary is conformal
to two pieces of Sd separated by a defect on the equator1 Sd−1. As the two endpoints
of the flow may have different sources, the two theories can have different couplings and
they are separated by an interface, prompting the name Janus solutions. A related class
of solutions contains a single boundary and is delimited in the bulk by a brane that ends
on “the boundary of the boundary”. They are also AdS-sliced and the first example was
discussed in [21]. They have been advocated as holographic duals of boundary CFTs, [22, 23].
Holographic RG flows in this context have been considered in [24].

There is however another incarnation of such solutions. In Euclidean cases, where the
slice manifold is a constant negative curvature manifold of finite volume and no boundary,
then such a solution is an example of a Euclidean wormhole, an object that still holds
mysteries for the holographic correspondence, [25, 26]. The holographic interpretation of
such solutions is still debated and therefore the study of a large class of such solutions may
be interesting in assessing their generic properties.

1In the context of holography, this description is most appropriate when the bulk AdSd+1 is written in
global coordinates (or in spherical slicing), as we will discuss in more detail in section 1.4.
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There are three interesting physics problems, the solution of which involves partly such
AdS-sliced solutions. We discuss them in the next three subsections.

1.1 QFTd on AdSd

It was argued already in [27] that, when placing a QFT on AdSd, the IR dynamics of the
QFT is drastically affected. The reason is that even massless particles have propagators that
fall off exponentially with distance in AdS. This is a consequence of the fact that Laplacians
on AdS have a gap. It was argued in [27] that this could be used to regulate the strong IR
divergences of QCD perturbation theory. Moreover, it would be also useful for the same
reason in critical theories, as one would expect AdS to suppress the strong IR fluctuations.
In general, the expectation is that AdS is expected to quench strong IR physics.

A similar approach to regulating the IR has also been applied in string theory, [28, 29].
In that case, the spatial geometry was that of S3 but the running dilaton produced AdS-like
effects on the spectrum including a universal mass gap for massless particles.

Compared to Minkowski space, AdS has a different set of isometries which are in the
same number as in flat space. However, in AdS, the boundary conditions are much more
important for the physics than in Minkowski. In particular, for gauge theories, there are
roughly two types of boundary conditions:2 Dirichlet (or electric) boundary conditions and
Neumann (or magnetic) boundary conditions (bcs). With electric bcs, gluons are allowed in
the spectrum (as in flat space), they are gapped, and there is a global SU(N) symmetry, [30].
However, it has only boundary currents.

With magnetic bcs, electric charges are not allowed in the bulk of AdS, there are
O(1) degrees of freedom and there is (bc-induced) confinement. It was argued in [30]
that for asymptotically-free gauge theories with electric bcs, a confinement/deconfinement
(quantum) phase transition was expected. If we denote by Λ the scale of the gauge theory,
and by LADS the radius of AdS, we expect the following two phases

1. When ΛLAdS & 1 we expect a confining phase, with strong interaction in the IR
before we reach the AdS mass gap.

2. When ΛLAdS . 1 we expect a deconfined weakly-coupled phase, where above the AdS
mass gap the theory is weakly-coupled.

The two phases are expected to be separated by a phase transition whose details are
not known.

With magnetic boundary conditions, one expects confinement at all scales, and a free
energy of O(1). This is a kind of trivial confinement as no electric charges are allowed in
the bulk.

So far, the only clear criterion for confinement is the order of magnitude of the free
energy: either O(1) or O(N2) when N →∞. Wilson loops do not provide an easy criterion
for confinement, as for large Wilson loops, the area and the perimeter scale the same way, in
global coordinates. But in Poincaré coordinates, there are two classes of loops with different

2One can have more complicated boundary conditions on subgroups of the gauge group.
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behavior for length and area. However, QFT on AdS in different coordinates gives rise to a
different quantum theory.

Another important expected difference, discussed in [27] is the nature of the instanton
gas. As already argued in [31–33], instantons in flat space YM form a liquid. Only above
the deconfinement phase transition, instantons form a gas, [34]. However, it is expected
that for YM on AdS instantons form a gas in most cases, [27].

The fate of CFTs on AdS is also an interesting problem. The prime example in four
dimensions, N = 4 SYM was analyzed in some detail, [15, 30, 35]. Boundary conditions on
R4

+ that preserve supersymmetry have been classified, and there are many, [15, 16]. Upon a
conformal transformation, the theory can be put on AdS4 in Poincaré coordinates. Dirichlet
bcs generically involve non-trivial vevs for three of the six scalars. At weak coupling the
theory is generically non-confining. But at strong coupling some boundary conditions
induce confinement.

For example, using S-duality, the g � 1 theory with a Higgs condensate, is mapped
to a g � 1 theory with a magnetic condensate that should be confining. In particular,
S-duality interchanges (among others) Dirichlet and Neumann bcs. With Neumann bcs no
order parameter exists that distinguishes a confining from a non-confining phase. Therefore,
no sharp transition is expected in accordance with the presence of a large amount of
supersymmetry. On the other hand, the finite-temperature behavior is not understood.

Boundary RG flows connecting CFTs in AdS subject to different boundary conditions
have been studied in [36].

1.2 Proximity and QFT interfaces

There is a general question that involves the notion of “proximity” in quantum field theory.
It can be formulated in several different ways which may not be equivalent but which are
expected to be qualitatively similar

One form of the question asks: “When two CFTs can be defined in the same Hilbert
space?”, or “when the states of one CFT can be written in terms of the states of the other?”
There is a (partial) answer to this question: this is possible if the two CFTs are connected
by a Renormalization Group (RG) flow. This seems intuitively correct, but it is not known
if this is mathematically correct. Moreover, it is not known if this remains correct in the
whole family tree of theories that belong to an RG cascade.

Another form of the question, formulated and analysed in [37] in the holographic context
is: “when can a (semiclassical) state of CFT1 described by the geometryM be approximated
by a semiclassical state of another CFT2?” The “approximation” is interpreted as the two
geometries being the same on an arbitrarily large causal patch of M . Reference [37] argued
using ideas from [22, 23] that such a notion of proximity is possible if the two CFTs can be
connected with an interface.

It was also argued in [37] that this is consistent with the idea that the precise degrees of
freedom and Hamiltonian of a holographic CFT, is only important in fixing the asymptotic
behavior of a dual space-time. On the other hand, the interior space-time of a region,
space-like-separated from a boundary time slice, is determined by more universal properties
(such as the entanglement structure) of the quantum state at this time slice. This picture
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CFT  
on AdS

CFT  
on AdS

Figure 1. A wormhole connecting two UV CFTs.

requires that low-energy gravitational theories associated with CFTs that it is possible
to non-trivially couple at an interface, are part of the same non-perturbative theory of
quantum gravity.

1.3 Wormholes and quantum gravity

As mentioned, any semiclassical gravitational solution that represents an interface, can
be immediately transformed into a solution describing a Euclidean wormhole with two
boundaries, as in the picture below. The step is to replace the AdSd slice geometry with
any d-dimensional Euclidean, finite-volume, constant-negative-curvature manifold. This is
automatically a solution to the second-order gravitational equations without further ado.

In d = 2, finite volume negative constant curvature manifolds are the g > 2 Riemann
surfaces, or Schottky manifolds in d > 2. Examples have been discussed in [38] for d = 3
and [39] for d = 4.

The two end-points are asymptotically AdS boundaries that can in principle belong to
different CFTs. Moreover, the connection is mediated by running scalars and is therefore
similar to RG flow geometries. The puzzles of negative curvature AdS boundary metrics
were discussed in [40, 41], and the associated wormhole puzzles were first discussed in [25].
It was pointed out that Euclidean wormholes can easily contain unstable modes. Moreover,
their holographic interpretation is not clear. A more recent analysis of correlators and
Wilson loops indicated some generic properties, like UV-soft cross-correlators, as well as
generic confining behavior (that in many cases rimes with the results of [42]), [26]. These
results prompted some dual models for wormholes, [43, 44].

The issues of wormholes and their interpretation/use in quantum gravity have obtained
a new twist with the advent of the SYK model and its black-hole-like interpretation in
the large-N limit, [45–48]. The suggestion is that they are a part of the gravitational
path-integral when some form of averaging is involved. This is an issue of current debate.

1.4 Results

In this paper, we start a detailed study, in the context of holography, of the three questions
mentioned above. Here we will study the structure of the two-boundary solutions in a
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concrete bottom-up model. Although the feature of two boundaries is generic, only the
simplest solutions of this type (in which the bulk geometry has a Z2 symmetry along
the radial direction) were studied in [11]. Here we shall perform a systematic search for
solutions in Einstein-Dilaton gravity that have constant negative curvature slices and map
the space and properties of such solutions. In particular, we would like to explore how the
two boundary theories explore the space of extrema of the scalar potential.

We should emphasize here that there are three interpretation for the solutions we find:

1. As interfaces between two QFTs with a shared common boundary (Janus type
solutions) when the slice geometry has infinite volume and a boundary, [12–20]. In
this case, the full solution is split in two parts: one corresponds to a flow from one
boundary to a minimum of the scale factor, and is an RG flow of one of the two QFTs.
The other half of the solution, is a flow from the other boundary to the minimum of
the scale factor. This is again an RG flow for the second QFT.

2. As wormholes, if the slice has finite volume and no boundary. In such a case the
holographic interpretation is debated in the literature. One interpretation (see [26,
43, 44]) is as two Euclidean QFTs coupled in the UV via soft interactions, but this
needs further investigation and checks.

3. As single boundary theories after orbifolding symmetric solutions. In that case the
flow is monotonic and consistent with a standard QFT on AdS interpretation.

We shall call our solutions flows, although in some cases such flows are not necessarily RG
flows in the strict sense.

In the rest of this introduction, we briefly summarise our results and discuss the
questions which are left open.

1.4.1 Pure gravity

The simplest theory one can consider is pure (d+ 1)-dimensional gravity with a negative
cosmological constant. In this case, the solutions corresponding to (conformal) field theories
on AdSd are well known: the bulk space-time is just AdSd+1 foliated by AdSd:

ds2 = du2 + cosh2[(u− u0)/`]ds2
d , (1.1)

where ` is the AdSd+1 length, u0 is an arbitrary constant and ds2
d is the metric on AdSd.

The metric above is obtained via a diffeomorphism from the global AdSd+1 metric,

ds2(global) = `2
(
cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2

d−1

)
, (1.2)

but such a diffeomorphism acts non-trivially on the boundary: the latter is conformal to
R× Sd−1 for global AdS, and to AdSd if one uses the coordinates (1.1).

Therefore, in the standard holographic dictionary, the dual field theory to the metric (1.1)
lives in a different spacetime than the one dual to global AdS with coordinates (1.2). The
metric (1.1) has two asymptotic boundaries at u → ±∞, joined by a third asymptotic
boundary reached as r →∞ with u arbitrary. In the global AdS picture, the two boundaries
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at u → ±∞ are mapped to two halves of the boundary Sd−1. They are glued together
at the equator Sd−2: this is the image of the asymptotic boundary of the slice AdSd at
r → +∞ (see figure 2) which, under this map, becomes a co-dimension two surface in
global coordinates. This is why this solution is usually called an interface CFT: in global
coordinates, it is dual to two copies of the CFT, each defined on a half-space, then glued
along a codimension-one hypersurface [13]. We should insist that the situation described in
the coordinates (1.1) is different: the conformal boundary consists of two AdSd, at u→ ±∞
plus the third boundary at r → +∞. However, there is no known holographic interpretation
of this third boundary in terms of QFT degrees of freedom living there: more precisely,
there is no known way of turning on sources and giving a consistent prescription to compute
holographic correlators of operators inserted at r → ∞ and finite u. For this reason, we
will think of the CFTs as living on the opposite AdSd at u→ ±infty and being coupled in
a non-local (in the sense that there are non-local cross-correlators) via the bulk dynamics.3

From the bulk point of view, the geometry (1.1) describes a wormhole with two
asymptotic boundaries. A similar story applies if one uses Poincaré (rather than global)
coordinates: in this case, the two CFTs live in two halves of flat d-dimensional Minkowski
spaces, joined by a flat (d− 1)-dimensional hyperplane (rightmost picture in figure 2).

Notice that the two conformal boundaries in (1.1) do not have the same curvature: the
ratio of the resulting Ricci scalars RL andRR on the two boundaries4 at u→ ±∞ is:

RL
RR

= e2u0/`. (1.3)

Equation (1.3) gives the holographic interpretation of the constant u0 appearing in (1.1): it
fixes the single dimensionless parameter one can construct out of the two curvature scales
on the boundaries.

1.4.2 Einstein-dilaton gravity

Adding a bulk scalar field gives, as we shall see, a much richer space of solutions, whose
analysis is the main purpose of this paper. For definiteness, we consider a bulk theory
described by the action:

SBulk = Md−1
P

∫
du ddx

√
−g

(
R− 1

2g
ab∂aϕ∂bϕ− V (ϕ)

)
, (1.4)

where u is the radial bulk coordinate. We take the potential V (ϕ) to be negative and to
admit several extrema, each corresponding to an RG fixed point in the dual picture. We
then study solutions which generalize (1.1):

ds2 = du2 + e2A(u)ds2
d , ϕ = ϕ(u) , (1.5)

3The situation is similar to the case asymptotic infinity in holography with flat slices: in Poincaré
coordinates, strictly speaking, the surface consisting of spacelike infinity in Minkowski space (|~x| → ∞)
and arbitrary holographic coordinate u) is part of the AdS boundary, but one usually does not consider
CFT degrees of freedom living there: rather, one imposes boundary conditions so that the fields vanish at
spacelike infinity.

4With the boundary metrics defined in terms of the Fefferman-Graham expansion, [49].

– 7 –



J
H
E
P
0
1
(
2
0
2
3
)
1
2
1
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CFT  
on AdS

CFT on a 
hemisphere

CFT on a 
hemisphere

CFT on half  
Minkowski

CFT on half  
Minkowski

Figure 2. Fixed-time d-dimensional sections of AdSd+1 written in different coordinates. Left:
AdS-slicing wormhole. The boundary is composed of two AdS spaces and a “side” boundary (red).
Center: global AdS interface. The boundary is made of two hemispheres joined at the equator,
which is identified with the whole “side” boundary of the left figure. Right: Poincaré AdS interface.
The boundary is made of two halves of flat space joined on a straight line. These space-times are all
locally diffeomorphic, but the coordinate transformation from one to the other changes the geometry
of the conformal boundary.

where again ds2
d is a fiducial metric on AdSd (whose curvature scale is arbitrary, but fixed).

The solution is characterized by the scalar field profile ϕ(u) and by the scale factor A(u),
which are related via the bulk Einstein equations.

For regular solutions, the bulk geometry looks qualitatively similar to the one on the
left in figure 2. The non-trivial running of the scalar field, however, leads to a much richer
space of solutions (and the corresponding dual QFT pictures) than in the case of pure
gravity, as we briefly describe below.

The generic solution is a two-sided wormhole connecting two separate asymptotic
boundaries. As we approach each boundary, the scale factor diverges and the scalar field
approaches one of the extrema of the potential. As each extremum corresponds to a distinct
dual CFT in the same flow landscape, we have several possibilities:

1. The wormhole connects two different extrema of V (ϕ). In this case, the dual description
is that of two distinct CFTs, each living on an AdSd space-time, and each deformed in
the UV by a relevant operator. The two CFTs are coupled by a non-local interaction
mediated by the bulk.

2. The wormhole connects an extremum of V (ϕ) with itself. In this case, we have two
copies of the same CFT, each living on two distinct AdSd space-time (possibly with
different curvature scales).

In figure 3 we display schematically a solution of the first type, which connects two different
extrema of the bulk potential; a solution of the second kind, connecting one extremum
with itself, is shown in figure 4. In these figures the reader can identify, as two salient
features, points in the bulk where either the scale factor turns around, or the scalar field
turns around, as a function of the radial bulk coordinate. We call the former feature an
A-bounce, and the latter a ϕ-bounce. The solution in figure 3 has one A-bounce and no
ϕ-bounce, whereas the one in figure 4 has both an A-bounce and a ϕ-bounce. In general,
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Figure 3. Wormhole connecting two UV CFTs on AdSd living at different maxima of V (ϕ). The
solution has one A-bounce and no ϕ-bounce.

since the generic solution connects two asymptotic UV boundaries, it must have at least
one A-bounce (and in any case, an odd number of them). In addition, the solution can have
any number (including zero) of ϕ-bounces.

We note that solutions of the first type connecting two different CFTs have recently
been constructed in [50] in the particular example of deformed N = 4 SYM, in the special
case when the CFTs on the two sides are the UV and IR endpoints of a single flow. This
results in a so-called RG interface [50].

1.4.3 Space of solutions

The bulk solutions are determined (up to diffeomorphisms) by the values of the UV
sources at each boundary. For the solutions under consideration, there are generically5

four independent dimensionful boundary parameters. These are the two scalar curvatures
RUVi and RUVf of the “initial” and “final” boundary,6 defined by the leading term in the
Fefferman-Graham expansion of the metric close to each boundary. There are also the two
scalar sources ϕ(L)

− and ϕ(R)
− defined by the near-boundary expansions of the scalar field,

ϕ(u) ' ϕ(i)
− `

∆i
−

i exp
[

∆i
−u

`i

]
, u→ −∞ , (1.6a)

ϕ(u) ' ϕ(f)
− `

∆f
−

f exp
[
−

∆f
−u

`f

]
, u→ +∞, (1.6b)

5There are also special solutions which one finds on measure-zero set of parameter space, which we shall
discuss later.

6We assign the attributes “initial” and “final” by making an arbitrary choice in the direction of the bulk
radial coordinates.
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Figure 4. Wormhole connecting two versions of the same CFT living at one maximum of V (ϕ).
The solution has one A-bounce and one ϕ-bounce.

where ∆i,f
− are the dimension of the couplings of the operator dual to ϕ in the UV CFT

on each side (which are positive, as the UV is at an extremum of V ) and `i,f are the AdS
length of each boundary.

Out of these four quantities, it is convenient to construct three dimensionless combina-
tions, which we take to be:

Ri = RUVi(
ϕ

(i)
−

)2/∆i
−
, Rf =

RUVf(
ϕ

(f)
−

)2/∆f
−
, ξ =

(
ϕ

(i)
−

)1/∆i
−

(
ϕ

(f)
−

)1/∆f
−
. (1.7)

Constructing the full four-dimensional space of (regular) solutions with arbitrary values of
the boundary parameters is not straightforward. In fact, the solutions of the form (1.5) come
in a three-parameter family: fixing Ri, Rf and ξ is enough to fix all integration constants
of the bulk equations. This can be understood from the fact that the bulk equations form a
third-order system. The two dimensionless boundary quantities Ri and Rf can be mapped
to the bulk integration constants. A convenient parametrization of these constants is to
take them as the value of ϕ and its radial derivative at the position of the A-bounce, plus
the position of the A-bounce in the radial direction.7

7The position of the A-bounce can be shifted by a bulk diffeomorphism which, however, acts non-trivially
on the boundary parameter, therefore leading to a physically inequivalent solution.
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Therefore, if one considers the ansatz (1.5), there seems to be no place for solutions
with a fourth boundary parameter.

In fact, we shall show that the space of solutions can be extended by considering
piece-wise solutions, obtained by gluing two solutions of the type (1.5) across an interface
at a fixed u, in such a way that the induced metric, its extrinsic curvature, the scalar
field and its radial derivative are all continuous: this way, Israel’s junction conditions are
satisfied without the need to introduce localized sources on the interface. The corresponding
geometries are qualitatively similar to the three-parameter family of solutions (1.5), but
now one can change independently all four boundary sources. Since the piecewise solutions
are obtained by gluing the solutions of the type (1.5), studying these “global” solutions is
enough to have an exhaustive classification from the qualitative standpoint.

As we mentioned above, the solutions (1.5) may have any number of bounces. We show
that for a fixed number of A-bounces, the two-dimensional space of solutions is divided
into continuous regions, containing solutions connecting the same two maxima of V and
with a fixed number of ϕ-bounces. When crossing the boundaries between these regions,the
following phenomena can take place:

1. The number of ϕ-bounces changes.

2. One endpoint of the solution changes from one maximum of V to another.

Solutions which sit exactly on the boundaries of this parameter space are particularly
interesting. Across boundaries of the first of the two types above, one of the sources ϕ−
changes sign. Therefore, when we are exactly on the boundary the source is zero, and
the solution corresponds to a vev deformation of the UV CFT (aka a Coulomb branch
solution). These holographic flows are known to have one parameter less than relevant
coupling deformations [8, 9].

Solutions which sit on a boundary of the second kind are even more peculiar: when
exactly at the boundary, the A-bounce approaches asymptotically an intermediate minimum
of the potential. The solution splits into two full space-times:

1) A negative curvature flow joining a UV maximum and a UV minimum of V , for which
the flow is driven by the vev of an irrelevant operator.

2) A flat flow describing a standard holographic RG flow from the maximum of V in
the UV to the minimum of V in the IR (i.e. on this “half” of the solution the scale
factor asymptotes to zero as we approach the minimum). We call this phenomenon
flow fragmentation.

1.4.4 Single-sided solutions

All the solutions described above, have two asymptotic boundaries, and their holographic
interpretation is in terms of two non-locally coupled CFTs on different AdSd space-times
and deformed by relevant couplings (or, in special cases, by vevs of operators), [26, 43, 44].
This begs the question of whether one can construct, in this simple setup, the holographic
dual of a single QFT (conformal or running) living on AdSd. Here, we explore a tentative
answer to this question suggested already in [35].
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In the space of solutions, there is a special one-parameter subspace: solutions which
connect the one fixed-point with itself (as in figure 4 and are such that the A-bounce and
the ϕ-bounce occur at the same radial position. These solutions are Z2-symmetric about
the bounce and are those which were analyzed in [11].

To obtain a single-sided solution, one can terminate such a symmetric solution at the
bounce. Since both the scale factor and the dilaton have an extremum at that point, this
can be done without adding any sources at the end-point. One can think of this as cutting
off the space by an empty and tensionless end-of-the-world brane positioned at the bounce.
The resulting geometry has a single boundary. The theory is further specified by imposing
boundary conditions for the fluctuations at the brane, which may be either Neumann or
Dirichlet if one wants no energy loss. An alternative way to think of these solutions is as a
Z2 orbifold that changes the direction of the flow and identifies the two boundaries.

Such branes at the end of the world have been considered before in the context of
Boundary CFTs (BCFTs), [22, 23]: in the case of pure gravity, when changing coordinates
from AdSd radial slicing to flat radial slicing (i.e. Poincaré AdSd+1 metric), the bulk
endpoint is mapped to a codimension-one surface which intersects the AdSd+1 boundary on
a codimension-two hypersurface: the resulting boundary CFT lives on a d-dimensional flat
space-time whose boundary is this (d− 1)-dimensional flat hyperplane. As in the case of
the interface CFT interpretation, one must be careful with this interpretation: the change
of coordinates used to go from the “half-wormhole” solution to the BCFT description is
such that it changes the boundary geometry, and therefore from a holographic standpoint
the two situations should not be thought of as equivalent: for example, in the case of the
single-boundary geometry with negative curvature radial slices, the conformal boundary is
geodesically complete (it is AdSd), unlike in the BCFT case.

To test the features of these single-boundary geometries, we consider the simple case
of a probe-free scalar on a pure-gravity background and analyze the boundary two-point
function of the corresponding operator in the dual CFT on AdSd. These correlators were
discussed extensively in [51]. From their results, it follows that neither Neumann nor
Dirichlet boundary conditions for the probe scalar at the IR endpoint leads to a conformal
correlator on AdSd, that one would obtain from the conformal-invariant two point function
in Minkowski space by performing a Weyl rescaling. Instead, one obtains an additional
contribution which breaks conformal invariance and can be understood as originating from
the fact that AdSd is conformal to half of Minkowski space.

One can nevertheless ask the question of whether a definition of the theory exists such
that the correlator preserves the full conformal symmetry. One possibility to obtain the
conformal two-point function is to change the boundary conditions at the IR, by adding
a quadratic action for the scalar on the end-of-the-world brane. This results in Robin
boundary conditions,

∂uϕ(u0, ν) = µ(ν)ϕ(u0, ν) , (1.8)

where u0 is the position of the brane, and ν is a quantum number which is the AdS version
of the Minkowski

√
k2 (it is defined by expanding the probe scalar in eigenfunctions of the

AdSd Laplacian). We determine the unique function µ(ν) which leads to the conformal
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Figure 5. Single-AdS-boundary solution vs. flat BCFT.

form of the boundary two-point function on AdSd. This two-point function is the same as
one would obtain in the full two-boundary geometry if one set all source terms to zero on
one of the two sides. However, the corresponding quadratic action one should add on the
brane at u0 to obtain (1.8) is non-local in the brane coordinates. Thus, it seems impossible
to obtain the full conformally invariant correlator for a single CFT on AdSd from a bulk
theory with a local classical action.

1.5 Discussion and open problems

The bulk geometric picture of the solutions we discuss in this work is rather clear. However,
several questions remain open concerning their holographic interpretation. Furthermore,
there are several extensions of the analysis concerning fluctuations and correlation functions
of both local and non-local operators (e.g Wilson lines) which would be interesting to
explore in the future. Below we give a list of open questions which we think are important
to investigate in future work.

• One interesting question about the AdS wormhole solutions is the nature of the
“side” boundary or interface: this is the d-dimensional surface parametrized by the
holographic coordinate u and the d− 1 boundary coordinates of the fixed-u AdS slices
(the surface in red in left figure 2). In global coordinates, this surface is mapped to a
d−1-dimensional surface (the product of the time axis and the equator of the boundary
sphere Sd−1) and its role can be interpreted in the context of interface CFTs. However,
it is not at all straightforward to give it a holographic interpretation if we stay in AdS
slicing. The root of the problem is that the usual Fefferman-Graham expansion does
not work as we approach this surface. As a consequence, holographic renormalization
cannot be performed via the standard counterterms. One can nevertheless ask the
question of whether it makes sense to insert operators on the side boundary, i.e. to
consider non-zero sources (which may be non-trivial functions of u) in the asymptotics
of the bulk fields as we approach the slice boundary. Although in global slicing such
sources would be singular on the equator of the boundary sphere, there seems to be
nothing wrong in principle in considering them in AdS slicing. This would correspond
to operators inserted on the interface.
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• Another question concerns the nature of single-boundary solutions. Although consis-
tent, the construction we propose here is rather ad hoc, since the fact that geometries
terminate in the interior is not a consequence of the field equations. One may therefore
ask, are the one-sided geometries we consider here the only possibility, or should one
consider more general ways of terminating the solution in the IR? Furthermore, how
should one understand the apparent freedom to choose different boundary conditions
for fluctuating probe fields, and how does this freedom extend to the full non-linear
case? A study of the exact top-down solution of the type in [14] would probably help
clarify this issue.

• One important problem is that of the stability of our solutions under small pertur-
bations. In holography, the existence of a wormhole solution connecting different
boundary regions means that the partition function of a product of the two boundary
CFTs does not factorize. However, there may be a loophole to this argument, in that
the wormhole may not be stable, [25, 52, 53]. If that is the case, it should not be
included as a semiclassical saddle point in the path integral. It is therefore crucial
to analyze the spectrum of small perturbations around the solutions and study their
stability. It is known that, in minimally-coupled Einstein-dilaton theories, flat-slicing
holographic RG flows with a regular IR are stable under perturbations (see e.g. [8]).
Whether this extends to RG flows with AdS-sliced bulk requires a detailed (and
non-trivial) analysis which should be addressed in future work.

• In a two-boundary solution connected by a wormhole, an interesting problem is the
behavior of non-local observables, such as Wilson loops [26]. This same problem is of
interest also in single boundary solutions obtained for the two boundary solutions.
Although the theories studied here have a conformal fixed point when considered in flat
space, the scale factor in the wormhole solution has a turning point like in confining
holographic theories, in which the Wilson loop obeys an area law, [26]. It would be
very interesting therefore to analyse the behavior of Wilson loops expectation value
in these solutions, because for large enough loop size these may effectively behave
as in a confining theory. Similarly, one can analyse correlators between Wilson loop
operators inserted on opposite boundaries and analyse their factorisation properties.
Similar questions concern other non-local observables like the entanglement entropy.

• In this work we have limited ourselves to theories whose RG flows, in flat space-time,
connect a UV and an IR conformal fixed point. One may extend the analysis to theories
whose infra-red is gapped: this includes most notably confining theories. These may
be modelled holographically by Einstein-Dilaton theories like those considered in
this work, with the difference that the scalar runs to infinity in the IR [54–56]. The
existence of a mass gap in the flat space theory then requires the potential to be
steep enough in the large-dilaton region. When considering AdS slicing, the scale
factor and/or the dilaton may bounce before one reaches the IR endpoint and a new
boundary may open up as in the examples studied here. One therefore may expect
the competition between the IR physics (governed by the confinement scale) and
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the effect of the boundary curvature. This is an interesting question for holographic
QCD-like theories on negatively curved space-times.

• The study of axion solutions in the two boundary case is of primordial interest as
axions are typically dual to instanton densities in dual QFTs. According to [27] one
should expect qualitative changes in the behavior of such solutions in the theories
studied here. This in turn should translate into the properties of the instanton fluid
in the dual gauge theory. For example, in holographic flows connecting AdS vacua, it
can be shown in general that even turning a non-trivial θ-angle, the vev of the dual
operator vanishes, [57, 58]. In the presence of AdS slices, this is not expected to be
true anymore. On the other hand, it is well known that in the presence of axions
wormhole solutions exist without negative curvature slices, [59].

• The study of the on-shell action in the context with two boundaries. Now the action
depends on two sets of sources, and appropriate holographic renormalization must
be applied to both boundaries, [26]. The interest of this action is trying to construct
a measure of distance between theories in the spirit of C and F functions. However,
this case is radically different from standard RG flows and this is what makes this
investigation more exciting. This tool may also be helpful with the study of the
cobordism conjecture in quantum gravity,8 [60].

• Last but not least, the phenomenon of flow fragmentation provides an intriguing
possibility of introducing a topology and a topological algebra on the space of holo-
graphic RG flows. It is interesting to explore it further, and study the type of algebra
it implies as well as its implications for gravity and holography.

1.6 The structure of the paper

This paper is organized as follows. In section 2 we present the Einstein-dilation setup,
give a qualitative description of the AdS-sliced two-boundary solutions and provide their
classification depending on the nature of the two boundaries. In section 3 we study the
space of solutions in detail and identify the relevant boundary parameters on which they
depend. In a case study with a given (but generic) dilaton potential, we construct the
space of solution numerically and we identify boundaries in parameter space. The solutions
considered in this section depend on two out of the three dimensionless parameters of
the boundary theories. In section 4 we analyse in detail special cases which lie on the
boundaries separating different regions of solution space. In section 5 we generalise the
two-parameter solutions found earlier and explain how to construct geometries which depend
on all three dimensionless parameters of the boundary theory. In section 6 we discuss how
one may construct single-sided solutions with AdS-slicing. Some technical details are left to
the appendix.

8We thank Irene Valenzuela for a stimulating discussion on this issue.
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2 Setup

We consider Einstein dilaton theory in d + 1 bulk dimensions. This is a minimal setup
where to study holographic RG flows driven by a single relevant operator.

SBulk = Md−1
P

∫
du ddx

√
−g

(
R(g) − 1

2g
ab∂aϕ∂bϕ− V (ϕ)

)
. (2.1)

In this paper we shall be interested in the ground state of the dual quantum field theories
(QFTs) defined on negatively curved d-dimensional space-times. We therefore choose the
following domain wall metric and scalar field

ϕ = ϕ(u) , ds2 = du2 + e2A(u)ζµνdx
µdxν . (2.2)

Here, A(u) is a scale factor that depends on the holographic coordinate u only and ζµν is a
metric on a constant curvature d-dimensional space-time with negative curvature. Although,
at some point, we shall focus on a maximally symmetric manifold, namely an AdS space, the
flows we describe are valid for any constant negative curvature manifold without necessarily
maximal symmetry.

As a consequence of constant curvature we have

R(ζ)
µν = κζµν , R(ζ) = dκ , κ = −(d− 1)

α2 , (2.3)

where α is the curvature length scale.
Varying the action (2.1) with respect to the metric and the scalar field gives rise to the

following equations of motion

2(d− 1)Ä+ ϕ̇2 + 2
d
e−2AR(ζ) = 0 , (2.4)

d(d− 1)Ȧ2 − 1
2 ϕ̇

2 + V − e−2AR(ζ) = 0 , (2.5)

ϕ̈+ dȦϕ̇− V ′ = 0 . (2.6)

Here, derivatives with respect to u will be denoted by a dot while derivatives with respect
to ϕ will be denoted by a prime.

Such flows were studied sporadically earlier, but a systematic study has been established
in [8, 10, 11, 61] where the first order formalism was also systematically developed and
several exotic RG flows found. In particular, in [11], the RG flows of holographic QFTs
both on positive and negative curvatures were studied, but the second case was not fully
studied. General properties for such flows were found. Here, we shall study in more detail
flows on QFTs defined on negative constant curvature spaces and in particular on AdSd,
and analyze in detail a generic example.

The example will involve a bulk scalar potential that contains two maxima and a
minimum. This is expected to locally describe a general potential with many more maxima
and minima.
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Figure 6. The scalar potential (2.8) plotted for the specific values, `L = 1, `R = 0.94,∆L = 1.6 and
∆R = 1.1. The minimum is located at ϕ1 = 4.31. There are two maxima at ϕ = 0 and ϕ2 = 8.34.

The expansion of the potential around a maximum ϕm can be written as

V (ϕ) = −d(d− 1)
`2

− m2

2 (ϕ− ϕm)2 +O((ϕ− ϕm)3) . (2.7)

If the scalar is constant and located at the maximum, the solution of equations of motion is
a d+ 1 dimensional AdSd+1 space-time sliced by AdSd slices.

It should be clear that α in (2.3) is the radius of the fiducial d-dimensional slice
metric ζµν , and is an auxiliary parameter. ` above is the radius of AdSd+1 and is a true
parameter of the gravitational theory, being related to the value of the scalar potential at
the relevant extremum.

For the numerical analysis that is going to follow, we shall pick d = 4 and parametrize
a quartic scalar potential as

V (ϕ) = −12
`2L

+ ∆L(∆L − 4)
2`2L

ϕ2− (ϕ1 + ϕ2)∆L(∆L − 4)
3`2Lϕ1ϕ2

ϕ3+ ∆L(∆L − 4)
4`2Lϕ1ϕ2

ϕ4 , (2.8)

where ϕ1 and ϕ2 are defined as

ϕ1 =
12`2R

√
`2R − `2L∆L(∆L − 4)√

`2R∆L(∆L − 4)− `2L∆R(∆R − 4)
(
`2R∆L(∆L − 4) + `2L∆R(∆R − 4)

) ,

ϕ2 =
12
√
`2R − `2L√

`2R∆L(∆L − 4)− `2L∆R(∆R − 4)
. (2.9)

In figure 6 we have sketched this potential for specific fixed values.
The above potential then has the following properties:

• There are two maxima for this potential, one is located at ϕ = 0 and the other at
ϕ = ϕ2. We also have a minimum of the potential at ϕ = ϕ1.
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• At ϕ = 0, the AdS length scale is ` = `L and at ϕ = ϕ2 it is ` = `R.

• At ϕ = 0 the mass square of the scalar field is equal to m2
L = 4∆L−∆2

L

`2L
and at ϕ = ϕ2

we have m2
R = 4∆R−∆2

R

`2R
.

2.1 The first order formalism

To interpret solutions to the equations of motion (2.4)–(2.6) in terms of first order flows, it
would be convenient to rewrite the second-order Einstein equations as a set of first-order
equations. We define the following set of variables

Ȧ(u) ≡ − 1
2(d− 1)W (ϕ(u)) , ϕ̇(u) ≡ S(ϕ(u)) , R(ζ)e−2A(u) ≡ T (ϕ(u)) . (2.10)

In terms of these new functions the equations of motion (2.4)–(2.6) become

S2 − SW ′ + 2
d
T = 0 , (2.11a)

d

2(d− 1)W
2 − S2 − 2T + 2V = 0 , (2.11b)

SS′ − d

2(d− 1)SW − V
′ = 0 . (2.11c)

From the definition (2.10) we also have the identity

T ′

T
= W

(d− 1)S . (2.12)

We can partially solve this system by eliminating T algebraically so that we are left with
the following equations

d

2(d− 1)W
2 + (d− 1)S2 − dSW ′ + 2V = 0 , (2.13a)

SS′ − d

2(d− 1)SW − V
′ = 0 . (2.13b)

In appendix B we analyze the equations and derive the inequality

W 2 ≤ dW ′2

2 − 4(d− 1)
d

V . (2.14)

We can also derive second-order equations for the functions W and S:(
d
(
d(W ′)2 − 2W 2

)
− 8(d− 1)V

)(
4(d− 1)V ′ +W ′

(
(d+ 2)W − 2dW ′′

) )2
=
(
− 2d2(W ′)2W ′′ + 4(d− 1)V ′W ′ − 8(d− 1)V

(
W −W ′′

)
+ 2dW 2W ′′ + d(d+ 2)W (W ′)2 − 2dW 3

)2
, (2.15)

and

2(d− 1)S3S′′ + 2(d− 1)(d+ 2)
d

V ′SS′ − 2(d− 1)
d

S2S′2

− (d− 1)S4 − 2(V + (d− 1)V ′′)S2 − 2(d− 1)
d

(V ′)2 = 0 . (2.16)
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2.2 General features of the solutions

We shall discuss here the near boundary expansion of solutions around an extremum of the
potential as well as the algorithm for the construction of the solutions.

We take the extremum to be the UV fixed point at the maximum at ϕ = 0.9 Close to
this maximum, as ϕ→ 0+, the expansion of W and S are given by (this is known as the
minus branch asymptotic solution)

W = 2(d− 1)
`

+ ∆−
2` ϕ

2 + R
d`
ϕ

2
∆− + C

`
ϕ

d
∆− + · · · , (2.17a)

S = ∆−
`
ϕ+ Cd

∆−`
ϕ

d
∆−
−1 + · · · , (2.17b)

where R and C are constants of integration of the first order system, (2.13a), (2.13b), and
we have defined

∆± = d

2 ±

√
d2

4 −m
2`2 . (2.18)

The interpretation of the integration constants of the original system in A and ϕ, depends
on the type of solution. For example using the relations (2.10) and from expansions (2.17a)
and (2.17b) close to the UV fixed point at ϕ = 0 we obtain

ϕ(u) = ϕ−`
∆−e∆−u/` + Cd |ϕ−|∆+/∆−

∆−(d− 2∆−) `
∆+e∆+u/` + . . . , (2.19a)

A(u) = A− −
u

`
−
ϕ2
− `

2∆−

8(d− 1)e
2∆−u/` − R|ϕ−|

2/∆− `2

4d(d− 1) e2u/` (2.19b)

− ∆+C|ϕ−|d/∆− `d

d(d− 1)(d− 2∆−)e
du/` + . . . ,

where ϕ− identifies as the source for the scalar operator O in the boundary field theory
associated with ϕ, and the vacuum expectation value of O depends on C and is given by

〈O〉− = Cd

∆−
|ϕ−|∆+/∆− . (2.20)

Using the definition of T in (2.10), its relation to W and S in (2.11a) and the UV expansions
of A,ϕ and W,S in (2.19a), (2.19b), (2.17a) and (2.17b) we obtain

R(ζ)e−2A− = R|ϕ−|2/∆− . (2.21)

To have more intuition on R, we define the induce metric γµν on a d-dimensional slice at
constant u, which is given by

γµν = e2A(u)ζµν . (2.22)

Using this definition, we can evaluate the scalar curvature on each slice as

R(γ) = e−2A(u)R(ζ) . (2.23)
9The different asymptotics in all cases are presented in appendix C.1.

– 19 –



J
H
E
P
0
1
(
2
0
2
3
)
1
2
1

On the other hand, according to the expansion of (2.19b), the UV boundary is asymptotically
located at u→ −∞ (or at u→ +∞, see appendix C.1). Consequently we can associate an
induced metric and scalar curvature on the UV boundary as

γUVµν = lim
u→−∞

e
2u
` γµν , RUV = lim

u→−∞
e−

2u
` R(γ) . (2.24)

Using the above definitions and the expansion relation for the scale factor in (2.19b),
we obtain

RUV = e−2A−R(ζ) . (2.25)

By comparing (2.21) and (2.25), the integration constant R is related to the curvature RUV
of the manifold on which the UV QFT is defined by

R = RUV |ϕ−|−2/∆− . (2.26)

We now introduce some terms that are useful in describing the properties of the
solutions. The first term is ϕ-bounce which is a point where the monotonicity of ϕ changes
(i.e. ϕ̇ = 0). Such points were called simply bounces in [8].

The next term is A-bounce which is a point where the monotonicity of A changes
(i.e. Ȧ = 0). Both A-bounces and ϕ-bounces are defined AWAY from the extrema of
the potential.

A-bounces and ϕ-bounces can also be, in principle, degenerate i.e. the relevant second
derivative can also vanish. However, we find that this cannot happen for ϕ-bounces, as
in that case the flow stops. Although it can happen in principle for A-bounces the only
examples we have so far of such behavior appears in otherwise singular flows, and therefore
their existence in regular flows is still open. We also define an IR-bounce to mean an
A-bounce and ϕ-bounce happening at the same point.

One general feature of the regular solutions for the RG equations, in the case where the
curvature of the slice is negative, is the existence of the A-bounces, where the derivative Ȧ
changes sign. For each regular solution with negative curvature slices, there exists at least
one A-bounce where W = 0.10

At an A-bounce, the scale factor reaches a minimum. We denote the value of ϕ at
which there is an A-bounce (Ȧ = 0), by ϕ0. The expansion of the solution around this
point is given in appendix C.2. As we deduce from equations (C.20a)–(C.20c), the only free
parameter at each generic point ϕ = ϕ0 is

S0 = ϕ̇
∣∣∣
ϕ=ϕ0

.

As a result, by choosing ϕ0 and S0 as the initial values for our system of differential
equations, we can solve the equations of motion numerically at both sides of ϕ0. Generically,
the solutions continue until they arrive at a UV fixed point (extremum) of the potential.
Another possibility is the ϕ runs to infinity. Such solutions can be shown to be singular
(and therefore unacceptable), [11]. As we shall see, most of the flows studied in this paper

10As we shall see in section 3.6.3, there exist solutions with multiple A-bounces, but we shall not study
them extensively in this paper. Such solutions have appeared in other contexts, [19, 20].
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will turn out to be regular. In particular, the flows depicted in the colored regions of figure 8
are all regular, but some flows outside are singular.

We also expect that as an flow reaches a UV fixed-point, the solutions for W and S
have the standard near-boundary expansions presented in appendix C.1. In this way, the
source and vev data of the solutions R and C can be found as a function of ϕ0 and S0.
It was already shown in [11], that curved RG flows can never end at a minimum of the
potential (so that the minimum is an IR Fixed point). However, with very special RG flows,
the + branch can start at a minimum (which becomes an AdS boundary).

We should emphasize, that from equation (C.20c), every point ϕ = ϕ0 can be an
A-bounce as far as we consider negative curvature solutions, T < 0. Since at every point
we have considered V < 0, then this equation does not put any constraint on the values of
S0 6= 0, and the expansions (C.20a)–(C.20c) are valid at every point and specifically in the
interval between two maxima of the potential, 0 < ϕ0 < ϕ2. There is an infinite number of
flows that cross through a specific A-bounce but we do not know which one is regular or
not until we solve the equations of motion.

We should also remind the reader that even when S0 = 0, the A-bounce is not a fixed
point and the flow does not stop here. The properties and expansion of the solution close
to this point are described in appendix C.2.

We conclude that, up to an integration of the first order flow equations (2.10), the
space of solutions can be constructed out of two real parameters, ϕ0, the position of an
A-bounce, and S0 the derivative φ̇ at that point. Once this pair is chosen, a unique solution
for the superpotentials W,S, T can be constructed.11 If it is everywhere regular, it is an
acceptable holographic flow. Such solutions terminate at an AdS boundary on one side
of the flow and another AdS boundary at the other side of the flow. Therefore, they are
characterized by two sets of sources and two sets of vevs for the operators included in this
paper (stress tensor and a scalar operator). In the interface picture, the two CFTs at the
two ends of the flow correspond to two QFTs separated by an interface and are both driven
by the scalar operator dual to ϕ.

2.3 A classification and characterization of flows between extrema of
the potential

To classify the solutions of the flow equations (2.13a) and (2.13b), we need to examine the
solutions of this system in the vicinity of the extremal points of the potential. This has
been already done in [11] in the general case where the curvature of the slices is non-zero.
We have summarized the results in appendix C.1 and we have given the structure of the
expansion in the previous subsection.

Near a maximum of the potential, there are two branches of solutions known as the −
and the + branch.

• The − branch contains the generic solutions that contain both source and vev.

• The + branch contains only the special solutions for which the source vanishes.
11This assumes that there are no further A-bounces and this will be the case for the moduli space of

solutions we consider in this paper. In the general case, it is less clear what is the best organisation and
labelling of the solutions.
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For both types of solutions above, the metric has an AdS boundary at the maximum.
We denote these asymptotics as Max±.

Near a minimum of the potential, we also have the + and − branches of solutions.

• The − branch contains the generic solution but does not exist for non-zero slice curvature.
It exists only for flat slices and in that case, it describes the IR-end of a flow.

• The + branch contains the special solution, and in principle can exist for both flat
and curved slices. The bulk metric has an AdS boundary in this case and the solution
describes a UV fixed-point perturbed by the vev of an irrelevant operator.

We denote these asymptotics as Min±. We remind the reader that three of these
asymptotics, namely Max± and Min+ are associated with AdS boundaries and therefore
to QFT UV fixed points, while one, Min−, to a shrinking slice geometry and therefore to
an IR Fixed point. The + branch solutions, as they contain fewer integration constants,
exist only in fine-tuned cases. Moreover, as shown in [11] the Min− solution does not exist,
when the (dimensionless) curvature of the slice R, defined in (2.26), is non-zero.

Therefore the nature of a complete flow, between extrema of the potential, is specified
by giving the type of solution near its beginning and its end. For, various values of the
dimensionless curvature, defined in (2.21) we have the following possibilities.

• R = 0. In this case, we have three possibilities, (Max−,Min−) that is the generic RG
flow driven in the UV by a relevant coupling, (Max+,Min−), is an RG flow driven
in the UV by the vev of a relevant operator, and (Min+,Min−) is driven in the UV
by the vev of an irrelevant operator. Moreover, in this case, all flows start and end at
the extrema of the potential.

• R > 0. In this case, although flows can start at an extremum of the potential, (both
maxima as Max± and minima as Min+), they always end at intermediate points, not
at extrema, [11]. The end is always an IR end-point where the slice volume vanishes.

• R < 0. In this case, it is not possible for a flow to be regular and end at intermediate
points (non-extrema of the potential), as there is no slicing of flat space with AdS
slices. Therefore, all regular flows must start and end at an extremum of the potential.
As the asymptotic solution Min− does not exist when R 6= 0, [11], we have in total
the following options, all of them having two AdS boundaries and being therefore
either wormholes or interface solutions:

(Max−,Max−), (Max−,Max+) and its reverse.

(Max+,Max+), (Max−,Min+) and its reverse.

(Max+,Min+) and its reverse, and (Min+,Min+).

Note also that for the Max+ and Min+ asymptotics, R → −∞.

Taking into account the fact that the Max+,Min+ asymptotics are fine-tuned (they
have half the adjustable integration constants), it is clear that the generic solutions
will be of the (Max−,Max−) type. Fine-tuning of the potential or the integration
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constants is needed for the (Max−,Max+) and (Max−,Min+) to exist, and double
fine-tuning needed for (Max+,Max+), (Max+,Min+) and (Min+,Min+) to exist.
In this paper, beyond the generic (Max−,Max−) solutions, we shall find in special
points of the space of solutions, also (Max−,Max+) (e.g. the a2 boundary in figure 10a)
and (Max−,Min+) solutions (e.g. the a4 boundary in figure 10a). Inversely, (Max+,
Max−) appear for example on the borders of the moduli space of figure 8 (e.g. the a1
boundary in figure 10a).
We find also the double fine-tuned (Max+,Max+) solutions, which appear for example
at the point where the a1 and a2 boundaries intersect in figure 10a. There are also the
double fine-tuned (Max+,Min+) solutions in our sample that appear for example at
the intersection point of the b1 and b2 boundaries in figure 16a.
We do not have examples of the (Min+,Min+) solutions. The reason may be our
choice of potential as it has a single minimum.12

3 Two-parameter flows

In this section, we discuss the regular solutions that are characterized by the two parameters
(ϕ0, S0) and have two boundaries. From the holographic RG flow point of view, the two
QFTs living on these boundaries are the fixed points of the RG equations.

Here we have two main groups of solutions:
1) The flows that interpolate between one UV fixed point of the potential (say ϕ = 0

in (2.8)) and a distinct UV fixed-point (like ϕ = ϕ2 in (2.8)).
2) The flows that start at a UV fixed point and end at the same UV fixed point, but

with different vevs and dimensionless curvatures.
Here, we classify the possible flows by solving the equations of motion numerically. Our

results show the relationship between different parameters of the boundary QFTs on both
sides of the flow. To begin with, we consider the potential in figure 6 with the following
specific values (which are typical):

Our potential is plotted in figure 6 and has three extrema.

• We have two maxima of the potential, one at ϕ = 0 that we shall call UVL as it is
always a UV fixed point. The other maximum is at ϕ2 = 8.34 which we shall denote
as UVR. There is also a minimum located at ϕ1 = 4.31 that we shall denote by Min.

• The AdS length scale at ϕ = 0 is `L = 1 and at ϕ2, it is equal to `R = 0.94. Moreover,
at the minimum, this length scale is `M = 0.76.

• At the UV fixed points, one needs to know the value of the conformal dimension ∆−
in (C.3). For the specific potential (2.8), ∆L = 1.6 at ϕ = 0 and ∆R = 1.1 at ϕ2.
At the minimum of the potential, we shall need the value of ∆+ according to the
expansions near the UV fixed point. This value is ∆M = 4.37 for our specific choice
of potential.

12In principle, such a flow could appear also with a single minimum as it could start and end at the
same minimum.
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Figure 7. Various flows with one fixed point at the UVL boundary. We take the start of the flow
(W > 0) to be located on the maximum of the potential at ϕ = 0. Both WLR

1,0 and WLR
1,1 flows reach

the same UVR fixed point at ϕ2, the difference is the existence of a ϕ-bounce for the type WLR
1,1

solution. Similarly, the WLL
1,1 and WLL

1,2 flows return to the UVL fixed point. The S type of solution
is a flow that has an intermediate IR-bounce. The dashed curve is the mirror image of the original
flow. WLMin+

1,0 solutions describe the flows that have a UV fixed point at the minimum ϕ1. WLMin−
0,0

is an exception that connects to an IR fixed point and it will be explained later in this paper.

The strategy to find all possible flows is to start from a generic A-bounce at ϕ0 and scan all
possibilities by changing the value of S0. Varying ϕ0 and S0 one should obtain all possible
regular solutions. In figure 7 we have shown seven types of flows that start at the UVL
boundary (ϕ = 0 as UV fixed point) with W > 0 and end at another extremum.

To describe them we introduce the notation WLR
mA,mϕ

which denotes a flow that starts
at UVL ends at UVR, has mA A-bounces and mϕ ϕ-bounces. Similarly WLL

mA,mϕ
denotes

a flow that starts at UVL ends at UVL, has mA A-bounces and mϕ ϕ-bounces. Finally
WLM
mA,mϕ

is a flow that starts at UVL and ends at the minimum and has mA A-bounces and
mϕ ϕ-bounces.

We choose the convention that all our flows start at UVL. Similar results can be
obtained for flows starting at UVR. We have the following classes of flows.

• WLR
1,0 : the flow starts at UVL ends at the UVR fixed point at ϕ = ϕ2 and has a single

A-bounce but no ϕ-bounces.13

• WLL
1,1 : the flow starts at UVL and returns to the UVL fixed point. It has a single

A-bounce and a single ϕ-bounce.

13The term “bounce” was introduced in [8] to indicate the place where a change of direction for ϕ is
happening during the flow. Here we call it ϕ-bounce to distinguish it from points where the scale factor
changes monotonicity (that we call A-bounces).
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• WLL
1,2 : the flow starts at UVL and returns to UVL with a single A-bounce and 2

ϕ-bounces.

• WLR
1,1 : the flow starts at UVL and ends at UVR. It has a single A-bounce and a single

ϕ-bounce.

• W
LMin+
1,0 : the flow starts at UVL and ends at a UV fixed point at the minimum of

the potential (Min+ asymptotics). It has a single A-bounce and no ϕ-bounces.

• W
LMin−
0,0 : this class starts at UVL and ends as an IR fixed point at the minimum of

the potential (Min− asymptotics). This exists as a limiting flat-sliced solution. It
appears a piece of a complete flow.

• Type S (Symmetric solutions): for this class of solutions, ϕ̇ vanishes at the same place
where Ȧ = 0. We shall call this type of point an IR-bounce. Such flows were analyzed
in detail in [11]. For such flows, one can introduce a tensionless brane at ϕ0 and
consider only one half of the flow. We shall comment on this in the concluding section.

Some solutions have more ϕ-bounces but we restrict ourselves in the present paper to
the type of solutions above.

Such flows can describe wormhole solutions as well as nontrivial conformal interfaces.
To be considered as bonafide wormholes, the two AdS boundaries at the two endpoints of
the flow must be isolated boundaries. This can only happen only if the constant negative
curvature slices are compact. In d = 2, we may consider a compact higher-genus Riemann
surface as a constant curvature slice metric and in that case, such solutions are genuine
wormholes. If in higher-dimensional examples one can orbifold AdSd to produce a compact
manifold of constant negative curvature, then such cases also are genuine wormholes. In
three dimensions such compact manifolds exist, [38]. Constant negative curvature compact
manifolds also exist in four dimensions, [39].

In all other cases, where the slices are non-compact, notably AdSd, then the proper
interpretation of such holographic solutions are as two distinct QFTs, on two copies of AdSd
with an intersection along a common boundary. Such theories can be considered as limits
of Janus-type solutions, [15].

3.1 The space of solutions

The space of solutions of each type is sketched in figure 8. The horizontal axis is ϕ0 and
the vertical one is S0. The whole ϕ0, S0 plane contains all solutions in our ansatz. The
colored parts are the solutions that have been found explicitly and analyzed numerically.
They contain flows from UVL,R to UVL,R with at most two ϕ-bounces, and flows from UVL
to UVR with at most one ϕ-bounce. We believe that this is the full set of solutions with
only one A-bounce but we do not have proof of this.

1) The top-orange region, labeled WLR
1,0 , is the space of the WLR

1,0 curves. At any generic
A-bounce point ϕ0, if we choose S0 from this region then there is a flow that crosses ϕ0
and has two UV fixed points. One fixed point is a UV QFT that lives on the boundary
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Figure 8. The connected space of solutions found with one A-bounce. The orange, green, blue and
red regions correspond to WLR

1,0 , WLL
1,1 , WLL

1,2 and WLR
1,1 solutions respectively. The horizontal line of

S0 = 0 is the space of type S solutions. The diagonal lines (curves) between orange and green or red
and blue regions are the space of WLMin+

1,1 solutions. The vertical dashed lines show the location of
the potential minimum ϕ1 in the middle and the potential maximum ϕ2 on the right. The WLMin−

0,0
class of solutions does not explicitly appear in this moduli space but emerge in more intricate ways
that will be explained in section 4.

at ϕ = 0, which we indicate by UVL. The other fixed point is located at the UVR at
ϕ = ϕ2. For simplicity from now on, we call the UVL with W > 0, the top UVL and
UVR with W < 0, the bottom UVR. In a symmetric way, the bottom-orange region is
the moduli space of the solutions that have two similar fixed points. One at UVR with
W > 0 (top UVR) and the other at UVL with W < 0 (bottom UVL).

2) The left-green region is the space of the WLL
1,1 solutions. Every flow with initial values

in this region has two UV fixed points at the same place, i.e. both points are located at
ϕ = 0, one is living at the top UVL and the other at the bottom UVL. The right-green
region is the space of flows from top UVR to bottom UVR.

3) The horizontal line S0 = 0 is the space of the type S solutions that start at the left or
right UV fixed points and have an “IR-bounce” defined below equation (2.26). Note
that solutions with ϕ0 = ϕ1, the minimum, are singular solutions and do not belong to
the space of S solutions.

4) The left(right)-blue region is the space of the WLL
1,2 solutions. It contains those flows

which have two fixed points, both on the UVL (UVR) but with two ϕ-bounces.
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5) The top(bottom)-red region is the space of the WLR
1,1 solutions. These flows are similar

to WLR
1,0 with two distinct fixed points, one at the top UVL and the other at bottom

UVR (or top UVR and bottom UVL), but with an extra ϕ-bounce.
6) The diagonal black lines (curves) between orange-green or red-blue regions are the

one-dimensional space of the WLMin+
1,0 solutions. In this type, a UV fixed point is at the

minimum of the potential at ϕ = ϕ1 (type + solution) and the other UV fixed point is
located on one of the maxima of the potential.

7) The leftover regions on this diagram either correspond to the multi-ϕ-bounce solutions
or the singular solutions. For example in figure 8, the hollow white region on the left
contains the flows with two fixed points at UVL but with three ϕ-bounces.

3.2 How the QFTs on UV fixed points are related to each other?

As we already mentioned, in this section, we are dealing with flows which have two UV
fixed points at their ends. At each fixed point there is an associated QFT on the negative
curvature space, with a source which is coupled to an operator O. We can interpret this
system as two QFTs at the two AdS boundaries which are connected through a wormhole
in the bulk, or as two theories that are connected by a defect depending on whether the
negative curvature slice has a boundary or not along the philosophy of Janus solutions.
This system has the following properties:

1. In a single boundary problem, the equations have a single independent source for each
bulk field. The rest of the integration constants are fixed by bulk regularity in terms
of these parameters. Here the situation is as in asymptotically AdS wormholes: there
is no constraint from bulk regularity, and the number of boundary sources is doubled
(one on each boundary for each dynamical field).
Each QFT at a UV boundary is defined by two parameters (coupling constants): the
(constant) curvature of the negative constant curvature space on which this QFT is
living, RUV , and ϕ− which is the source of the scalar operator O. Each theory on
its own, has therefore one dimensionless parameter, R defined in (2.26). For two
boundary QFTs (which we call QFTi and QFTf ) on AdSd, we therefore have four
independent dimensionful parameters,

RUVi , RUVf , ϕ
(i)
− , ϕ

(f)
− . (3.1)

From these, we can make three dimensionless parameters:
• Two dimensionless curvatures, Ri and Rf .

Ri = RUVi

(
ϕ

(i)
−

)−2/∆i
−
, Rf = RUVf

(
ϕ

(f)
−

)−2/∆f
−
. (3.2)

• The ratio of the two relevant coupling constants which can be found from the
asymptotic sources of the ϕ field

ξ ≡

(
ϕ

(i)
−

)1/∆i
−

(
ϕ

(f)
−

)1/∆f
−
. (3.3)
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In our problem, a solution for the superpotential equations (2.13a)–(2.13b) is fixed by
the two independent parameters ϕ0, S0. These are mapped to Ri and Rf which enter
the asymptotics of W (ϕ) close to each fixed point at subleading order, as one can see
in equation (2.17a).
On the contrary, the scalar sources ϕ(i)

− , ϕ
(f)
− do not appear in the superpotentials:

they are determined instead by integrating the first order equations (2.10). Notice
however, that these have only one integration constant, not two: once we solve for
ϕ(u), the integration constant of the A(u) flow equation (a shift in A) is fixed by
the third equation of the system (2.10) in such a way that it cancels the dependence
of the solution on the fiducial curvature R(ζ). Therefore integrating the first order
system (2.10) does not affect the dimensionless curvatures and determines at most
one independent combination of ϕ(i,f)

− .
It is convenient to identify the third independent integration constant in the bulk
solution with a shift in the coordinate u by a fixed amount u0. This affects the
dimensionless ratio (3.3) but not the dimensionless curvatures (3.2), as we argue
momentarily. First, notice that since the first order system (2.10) has no explicit
dependence on u, starting from any pair (A(u), ϕ(u)) which is a solution, the pair of
functions (A(u − u0), ϕ(u − u0)) is again a solution14 for any constant u0. As one
can see from the near-boundary asymptotics (2.19b) for u → −∞ (and from their
counterpart as u → +∞ obtained by sending u → −u), a shift in the coordinate u
has the effect:

u→ u− u0 ⇒ ϕ
(i)
− → ϕ

(i)
− e
−∆i

−u0/`i , ϕ
(f)
− → ϕ

(f)
− e∆f

−u0/`f , (3.4)

which corresponds to a scaling of ξ:

u→ u− u0 ⇒ ξ → ξ exp
[
−2u0

(
1
`i

+ 1
`f

)]
, (3.5)

`i,f are the AdS scales of the potential extrema at the two end-points of the flow, see
section 2.
Since the change (3.4) does not affect Ri,f , it also changes the boundary curvatures
in opposite ways:

u→ u− u0 ⇒ RUVi → RUVi e
− 2u0

`i , RUVf → RUVf e
2u0
`i . (3.6)

The integration constant u0 is rather trivial as it is a diffeomorphism in the bulk,
therefore its only effect is a trivial rescaling of ξ. It is therefore convenient to fix it
once and for all (for example by in such a way that the A-bounce is at u = 0, i.e. ϕ(u =
0) = ϕ0). If we operate this choice, the third parameter dimensionless parameter (3.3)
is not fixed and therefore, the three dimensionless field theory parameters in (3.2)

14A shift in u is a bulk diffeomorphism and therefore one may think it leads to an equivalent solution.
This is not the case, since it is a large diffeomorphism as it acts non-trivially on the asymptotic boundary
quantities defined at u→ ±∞.
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and (3.3) are not independent. If needed, the value of (3.3) can be changed by
reinstating u0 6= 0.
As we have seen, we can identify three of the four boundaries dimensionful CFT
parameters with integration constants of solutions of the form (2.2). This ansatz has
not enough free parameters to change all four boundary sources independently. This
can be also understood from the fact that the bulk equations of motion (2.4) and (2.6)
for ϕ and A are second-order differential equations, but we have also a first-order
constraint (2.5) and therefore, in total, there are three constants of integration, not
four. We shall see later how to enhance our ansatz so that we have four independent
parameters as expected from the dual QFTs in section 5.

2. From the leading terms in the near-boundary expansion of the solutions in (2.17a)
and (2.17b), we can read R and C for each QFT on the boundary. As we have
already mentioned, R is the dimensionless curvature and C controls the vev of the
scalar operator. By another integration, we obtain two more constants from (2.19a)
and (2.19b), ϕ− and A− or equivalently RUV from (2.25). Moreover, we have the
relation (2.26), so in total, we have three independent parameters for each QFT. We
should notice that R and C are dimensionless parameters while the mass dimension
of RUV and ϕ− are two and ∆− respectively.

3. All flows here contain two fixed points, UVi and UVf . Their (dimensionless) parameters
are (Ri, Ci) and (Rf , Cf ). The solutions impose two relations

Ci = Ci(Ri,Rf ) , Cf = Cf (Ri,Rf ) , (3.7)

which fix the two vevs as a function of the two sources.

4. For (+) type solutions, as discussed in appendix C.1 and detailed in [11], the value
of the source is zero. In this case, the leading behavior of the scalar field near the
boundary is ϕ(u) = ϕ+e

−∆+u
` , where ϕ+ is related to the vev of the dual scalar

operator. In this case, the dimensionless curvature is given by

R = RUV |ϕ+|−2/∆+ . (3.8)

Flows represented by (+) type solutions are called the vev flows since the source
is zero.

Since the rigid shift in u (3.4) can be performed trivially on any solution, in the rest of
this section we shall not use this freedom and concentrate on solutions characterized by the
two non-trivial free parameters which enter the superpotentials: (ϕ0, S0) in the bulk, or
equivalently (Ri,Rf ) on the boundary. In these solutions, these parameters will completely
fix the quantity ξ in (3.3).

3.3 The numerical strategy

We analyze all possible flows related to the space of solutions in figure 8 to extract the
information about the quantum field theories on the UV fixed points of the theory. This
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Figure 9. An example of the WLR
1,0 solution with the two cut-offs (red dashed lines).

information includes the values of dimensionless curvature R and the constant C in terms
of ϕ0 and S0, the coordinates of the space of solutions. To read these values, we should
insert the numerical values of W and S for each flow into the analytic series expansions
at a specific cut-off ϕ − ϕm = ε, where ϕm is the location of the UV fixed point. For
our numerical proposes, we present the results with a cut-off near the UV boundaries at
ε = 10−6. We have checked that varying this does not induce important errors.

Practically we pick a value for ϕ0 and we choose two initial values at ϕ = ϕ0 to solve
the RG equations (2.13a) and (2.13b), these are W (ϕ0) = 0 and S(ϕ0) = S0. By numerical
calculations for two generic QFTi and QFTf on the two UV fixed points we expect to find

Ri = Ri(ϕ0, S0) , Rf = Rf (ϕ0, S0) . (3.9)

To find the last dimensionless parameter we use the same strategy. To obtain the value
of ϕ− on each side we can integrate ϕ̇ = S near each cut-off boundary and then by using
the expansion of ϕ(u) we can read the value of the couplings.

To do this, consider for example figure 9. Here we consider a flow of type WLR
1,0 , which

in this case UVi = UVL and UVf = UVR. We consider the left UV boundary is located at
ϕ = εL and the right one at ϕ = ϕ2 − εR. Here εL and εR are two cut-offs and at the end,
we shall send both cut-offs to zero.

Equivalently, in the holographic coordinate u, we can consider two cut-offs at u = −ΛL
and u = ΛR. From equation ϕ̇ = S we can integrate∫ u(ϕ)

u0
du =

∫ ϕ

ϕ0

dϕ

S(ϕ) , (3.10)

where ϕ0 is an arbitrary point. For example as ϕ→ 0, we expect that u→ −∞ according to
the asymptotic behaviors in (2.19a). Now suppose that in the above equation ϕ0 = ϕm ± ε
where ε is a cut-off and ϕm is the location of the UV fixed (+ for UVL fixed point and −
for UVR fixed point), after the integration we obtain

u(ϕ) =
∫ ϕ

ϕm±ε

dϕ

S(ϕ) + s
`

∆−
log ε

∣∣∣
ε→0

, (3.11)

– 30 –



J
H
E
P
0
1
(
2
0
2
3
)
1
2
1

a1 a2

a3a4

(Max-, Max+)(Max+, Max-)

(Max+, Max+)

(Min+, Max+)

(Min+, Max-)

(Max+, Min+)

(Max-, Min+)

W1,0
LR

(Max-, Max-)

2 4 6 8
φ0

-6

-4

-2

2

4

6

S0

(a)

W(�)

S(�)

2 4 6 8

-5

5

�1 �2

UVL

UVR

�0

(b)

Figure 10. (a): the space of the WLR
1,0 ∈ (Max−,Max−) solutions. For each a1 to a4 boundary

and corner of this region, we have different types of solutions. (b): the blue and red curves describe
an example of WLR

1,0 flow corresponding to the black dot in figure (a). This flow connects the UVL

fixed point at ϕ = 0 to the UVR at ϕ = ϕ2. The blue dashed line indicates the location A-bounce.
The vertical solid line at ϕ1 shows the minimum of the potential.

where s = +1 for fixed points at W > 0 and s = −1 for W < 0. In obtaining the above
relation we have assumed that

ΛL = − `L
∆L
−

log εL , ΛR = − `R
∆R
−

log εR . (3.12)

The above assumptions are reliable as far as the point ϕ in (3.11) is very close to the
UV boundary.

Now using (3.11) we can integrate near each boundary to obtain u(ϕ) and then by
using the expansion of ϕ(u) near each UV fixed point, we can read the value of ϕ−. Finally
from the definition of (3.3), we find the ratio of the two relevant couplings.

3.4 Connecting different fixed points

3.4.1 The W LR
1,0 solutions

In this section, we look at the WLR
1,0 solutions. The parameter space of these solutions

is given in figure 10a. The points inside this region are the initial (ϕ0, S0) values for
(Max−,Max−) flows. We also discuss the points on the boundary of the orange region in
this section. Figure 10b describes the holographic flow between two different UV QFTs,
one is located at UVL (W > 0) and the other at UVR (W < 0). This specific solution
in figure 10b belongs to a specific point in the space of solutions of the WLR

1,0 flows (the
black dot in figure 10a). Both QFTs live on constant negative curvature space-times which
are slices of the five-dimensional bulk space-time and are localized at the maxima of the
potential. Each QFT is described independently by the coupling of the operator dual to the
scalar field and also by the curvature of the 4d negative curvature space on which it lives.

Near the maximum of the potential at ϕ = 0, W (blue curve) and S (red curve), as
functions of ϕ, have the expansions in (C.2a) and (C.2b). Similarly, in the vicinity of
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Figure 11. (a): the holographic coordinate u as a function of ϕ. At UVL (ϕ = 0) it tends to −∞
and at UVR (ϕ = ϕ2) to +∞. (b): the scale factor has an A-bounce at ϕ = 4.6 (the blue dashed
line) near ϕ1, the minimum of the potential.
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Figure 12. The relation between left and right dimensionless curvatures at fixed ϕ0 (while varying
S0). For example, the points on the blue curve in figure (a) are in a one-to-one relation with the
points on the blue vertical line in figure (b) at ϕ0 = 93

20 . Similarly the black curve is at ϕ0 = 83
20 .

the maximum at ϕ = ϕ2, we have the (C.10a) and (C.10b) expansions. The constants
of integrations on both sides are related to the vev of the scalar operator O and the
curvature of the manifold at the UV through the equations (2.20) and (2.26). Due to the
definition of β-function in (B.9), at the left UV fixed point β → 0− but at the right UV
fixed point β → 0+.

In figures 11a and 11b we plot the holographic coordinate u and the scale factor A as
functions of the running scalar ϕ. As we observe in diagram 11a, the left QFT (QFTL) as
a UV fixed point of the flow is located asymptotically at u→ −∞. Similarly the QFTR
is located at the point u→ +∞. Both these behaviors are consistent with the boundary
expansions of ϕ(u) in (C.5a) and (C.11a).

In figure 11b we observe that the scale factor of the geometry has an A-bounce (at the
blue dashed line where W = 0). A(ϕ) tends to infinity on both sides as we approach the
UV fixed points (boundaries).
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Figure 13. The dependence of the left/right dimensionless curvature at ϕ0 = 83
20 for black curve,

and at ϕ0 = 93
20 and blue curve, in figure 12a as a function of S0. The color code is the same as in

the moduli space figure 8.

In type WLR
1,0 solutions, the relation between RL and RR and the parameters of the

solution (S0, ϕ0) are presented in figure 12a. In this figure, we present the behavior of
log(−RR) as a function of log(−RL) as we move along a typical constant line ϕ0 = constant

in the space of solutions shown in figure 12b by varying S0. These curves are bounded by
either the a1 and a4 boundaries (e.g. the black curve) or between a2 and a3 boundaries
(e.g. the blue curve) shown on figure 10a. The behavior of these two typical blue and black
curves as a function of S0 are shown in figures 13a to 13d independently.

In summary, by numerical analysis of the curves in the WLR
1,0 region, we have the

following results for dimensionless curvatures as we move towards the boarder of orange
region, see figure 10a:.15

• (Max+,Max−) solutions: RL → −∞,16 as we move towards the a1 boundary (in
figure 13a near the red-orange border the slope of the curve goes to zero at large values)

15We should note that the a1 (a2) boundary is the joint border between WLR
1,1 (WRL

1,1 ) and WLR
1,0 regions of

the space of solutions (see figure 8) in our figures and similarly, a3 (a4) is the boundary between the WLR
1,0

(WRL
1,0 ) and WLL

1,1 (WRR
1,1 ) regions.

16The limit R → −∞ indicates a very strongly curved manifold, or that the relevant coupling constant
ϕ− → 0. When the relevant coupling vanishes, then R→ ±∞ and such solutions are vev driven flows of a
CFT on a curved space.
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Figure 14. As we change S0 along a ϕ0 = constant line in the orange region in figure 12b we can
read CL and CR in terms of the dimensionless curvatures. For example in above figures, the black
curve has ϕ0 = 83

20 and the blue one has ϕ0 = 93
20 .

but RR asymptotes to a finite value (in figure 13b the slope of the curve has a nonzero
finite value near the border).

• (Max−,Min+) solutions: as we move towards the a4 boundary, RL asymptotes to a
finite value (in figure 13a near the orange-green border, the slope of the curve has a
nonzero finite value) but RR → 0 (in figure 13b the slope of the curve goes to infinity at
small values).17

• (Max−,Max+) solutions: RL asymptotes to a finite value as we move towards the a2
boundary (in figure 13c near the red-orange border the slope of the curve goes to a finite
value) but RR → −∞ (in figure 13d the slope of the curve asymptotes to zero at large
values).

• (Min+,Max−) solutions: RL → 0 as we move towards the a3 boundary (in figure 13c
near the orange-green border the slope of the curve goes to infinity at small values)
but RR asymptotes to a finite value (in figure 13d the slope of the curve is a nonzero
finite value).

• There are also three specific types of solutions on the corners of the figure 10a:

1. (Max+,Min+) solution at the joining point of a1 and a4 boundaries. At this corner,
RL → −∞ and RR → 0.

2. (Max+,Max+) solution at the joining point of a1 and a2 boundaries. At this point
both RL,RR → −∞.

3. (Min+,Max+) solution at the joining point of a2 and a3 boundaries. Here we
observe RL → 0 and RR → −∞.

As we already discussed, the solutions determine uniquely the values of the vev-related
constants C for the left and right QFTs. The relation between CL and CR with RL and
RR are plotted in figures 14a and 14b.

17R→ 0 when either the manifold becomes flat or the relevant coupling ϕ− →∞.
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Figure 15. The ratio ξ of the relevant couplings for WLR
1,0 solutions. The black/blue curve in figure

(a)/(b) correspond to the black/blue curve in figure 12a. The vertical constant part of both curves
is at ξ ' 0.944.

Finally, we can find the ratio of relevant couplings of the left and right QFTs, ξ, for
various values of ϕ0 and S0 in the space of the WLR

1,0 solutions. In figures 15a and 15b we
have found the values of the dimensionless parameter ξ defined in (3.3), in terms of S0
for two typical black and blue curves in figure 12b with fixed values of ϕ0. According to
relation (2.21) and the behavior of the dimensionless curvatures in figures 13a to 13d, we
can explain the behavior of these two curves as follows:

1) Close to the a1 boundary, near the red-orange border in figure 15a, since RL → −∞
then ϕ(L)

− → 0 and we expect ξ → 0.

2) Close to the a2 boundary, near the red-orange border in figure 15b, since RR → −∞
then ϕ(R)

− → 0, we expect (and obtain) ξ →∞.

3) Close to the a4 boundary (orange-green border in figure 13b), we showed that RR → 0.
We shall also show in section 4.1 that in this situation, the part of the flow which
connects to UVR turns into the W− solution (see figure 36a and 36b) which is a flat-slice
solution. This means that in the left-hand side of equation (2.21) we have R(ζ) → 0.
This implies that ϕ(R)

− has a finite value. Therefore, we expect to have a finite value for
ξ too. This is shown numerically in figure 15a near the orange-green border.

4) The same behavior as the previous case is realized near the a3 boundary, figure 15b near
the orange-green border. There is a difference though: in this case, RL → 0 so that ϕ(L)

−
will be finite close to the a3 boundary.
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Figure 16. (a): the space of the WLL
1,1 ∈ (Max−,Max−) solutions. For each b1 to b5 boundary

and corner of this region, we have different types of solutions. (b): the blue and red curves describe
a flow (represented by the black dot of diagram (a)) that connects the top UVL boundary to the
bottom UVL at the same fixed point. Here the blue and red dashed lines show the location of the
A-bounce and ϕ-bounce points respectively.

3.5 Connecting one fixed point with itself

3.5.1 Type W LL
1,1 solutions

Among the solutions of (Max−,Max−) we have the WLL
1,1 solutions. The space of these

solutions is shown in figure 16a. Here the ϕ0 axis is excluded as it belongs to the type S
solutions. For every point with S0 > 0 in this region, there is a flipped solution with the
same value of S0 but negative. As an example of these solutions (corresponding to the
black dot in figure 16a), we have the figure 16b. This flow is connecting two QFTs that are
both located on the same fixed point but at different AdS boundaries, after a ϕ-bounce.
For both QFTs, the β-function (B.9) vanishes, β → 0−. If we flip these points with respect
to the ϕ0 axis, (i.e. take S0 → −S0) the curves of the flow will flip similarly, i.e. W → −W
and S → −S.

The expansions of the scalar field and scale factor near the UVL at W > 0 are given
by equations (C.5a) and (C.5b) and to reach this boundary we should send u→ −∞. On
the contrary, to reach the UVL boundary at W < 0 we need u →∞, this can be seen in
the expansions (C.9a) and (C.9b). In figure 16b the direction of the flow is chosen to be
from −∞ to +∞.

The dependence of the holographic coordinate and scale factor in terms of ϕ are
presented in figures 17a and 17b. The geometry has an A-bounce (when W (ϕ) = 0,
indicated by a blue dashed line in figure 17b or 16b). Moreover, there is a ϕ-bounce in the
flow (when S(ϕ) = 0, the red dashed line). This geometry can be described as a Janus
interface between the same UV theories at different couplings and different curvatures.

To read the dimensionless curvatures, in figure 18a we have calculated numerically the
relation between dimensionless curvature Ri for the top UVL boundary and Rf for the
bottom UVL. In this figure we portray the behavior of log(−Rf ) as a function of log(−Ri)
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Figure 17. (a): the holographic coordinate at top UVL tends to −∞ and at bottom UVL to +∞.
(b): the scale factor has an A-bounce at ϕ0 = 3.5 (blue dashed line) and a ϕ-bounce at ϕ = 4.0 (red
dashed line).
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Figure 18. The relation between two dimensionless curvatures at fixed ϕ0. The blue curve is a
typical curve between two boundaries b1 and b3, and the black curve is also a typical curve between
b2 and b3 boundaries. These curves are in a one-to-one relation with the blue and black lines in
figure (b).

as we move along a typical constant line ϕ0 = cte in the moduli space in figure 18b.
The curves are bounded between the b1 − b3 (e.g. the blue curve) or b2 − b3 (e.g. the red
curve) boundaries.

To read the behavior of dimensionless curvatures of the two UV boundaries easily, we
have redrawn the blue and black curves in figure 18a in terms of S0 in figures 19a and 19b.

By going close to the boundaries of WLL
1,1 region, we observe the following solutions (see

figure 16a):
(Max+,Max−) solutions: as we move towards the b1 boundary (blue-green border in

figures 19a) Ri → −∞ but Rf remains finite.
(Max−,Min+) solutions: as we move towards the b2 boundary (orange-green border

in figures 19b) Rf → 0 but Ri remains finite.
Type-S solutions: close to the b3 boundary (S0 = 0 in the above figures) both Ri and

Rf curvatures are finite and they become equal to each other. The equality of dimensionless
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Figure 19. The dimensionless curvatures vs S0, for blue curve with ϕ0 = 49
20 , and black curve

ϕ0 = 69
20 , in figure 18a. The horizontal axis is the logarithm of the dimensionless curvature, either

RL or RR.

(a) (b)

Figure 20. As we change S0 along a ϕ0 = constant line in the green region in figure 18b we can
read CL and CR in terms of the dimensionless curvatures. For example in above figures, the blue
curve is at ϕ0 = 49

20 and the black one at ϕ0 = 69
20 .

curvatures comes back to the fact that at the b3 boundary, the RG solutions of type
WLL

1,1 turn into type S which are symmetric solutions around the center of the flow, see
section 3.5.2.

In addition to the above solutions, at that corner where b1 and b2 boundaries are joined
we have a solution of (Max+,Min+) type where Ri → −∞ and Rf → 0.

As we already discussed, Ci and Cf on each UV boundary are not independent
parameters but concrete functions of the sources, and this can be seen in the plots of
figure 20a and 20b.

Since we have two independent coupling constants associated with the source of ϕ,
we expect to see a nontrivial behavior for the ratio of these two couplings. In figures 21a
and 21b we have sketched the behavior of the ξ in relation (3.3) as we move in the space of
the WLL

1,1 solutions along a constant ϕ0 line. In summary we have the following properties
for this ratio:

1) Very close to the b1 boundary (blue-green border in figure 21a) this ratio vanishes
because Ri → −∞ and therefore ϕ(i)

− → 0.
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Figure 21. The ratio of the couplings vs S0 for the two typical blue and black curves shown in
figure 18a.

2) Close to the b2 boundary (orange-green border in figure 21b) the ratio has a finite value.
The reason is the same as what we explained in the WLR

1,0 case near the a4 boundary (a4
and b2 boundaries are the same).

3) Near the b3 boundary at S0 = 0, since both Ri and Rf becomes equal we expect and
find that ξ → 1.

3.5.2 Type-S solutions

Type-S solutions are holographic flows that have a UVL fixed point on one side, W > 0,
and reach an IR turning point, in which both W and S are zero, see figure 22a. The flow
does not stop here and it returns to the same UVL with W < 0 through a mirror image of
the original flow (dashed curves in figure 22a). The special point about such solutions is
that the scale factor has a minimum, and the scalar field turns around at the same bulk
point. Therefore these solutions are left-right symmetric as far as the flow is concerned.

The space of solutions is the S0 = 0 axis. In fact, for any generic fixed point ϕ0 in this
space, the expansions of W and S are given by (C.18a) and (C.18b) which are characterized
by a single parameter S1. At an extremum of the potential, where S1 = ±

√
2V1 = 0, the

solutions are singular, therefore we should exclude the minima of the potential from the
space of regular solutions. For ϕ0 < ϕ1 the flow connects UVL fixed point to itself, but for
ϕ1 < ϕ0 it connects UVR to itself.

As we see from diagram 22c, the scale factor reaches a minimum and the geometry
of the space-time at this point described by (C.19b) is a regular piece of the geometry.
Figure 22b shows the behavior of the holographic coordinate. In all the WLL

1,1 solutions, the
geometry, looks like a wormhole that connects two UV boundaries at u→ ±∞ but these
boundaries belong to the same UV fixed point. But the type-S solutions are symmetric and
therefore the couplings on the two boundary theories are equal, i.e. ξ = 1.

Due to the symmetry of the solutions, we always have Ri = Rj , (see figures 19a or 19b
where close to S0 = 0 both curves arrive at a single point). Consequently, this symmetry
implies that the ratio of two couplings is ξ = 1. This behavior can be seen for example in
figures 21a and 21b where both black or blue curves reach ξ = 1 as we approach S0 = 0.
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Figure 22. Type S solution. (a): the blue and red curves describe W,S of the flow that starts from
the UVL boundary and reaches a special “IR-bounce” (at ϕ = ϕ0, the blue dashed line): this is an
A-bounce of the scale factor as well as a ϕ-bounce for ϕ at the same place. The flow returns to the
same UV fixed point through the mirror image of the original flow (b): the holographic coordinate
at the UVL fixed point, tends to −∞ and at the IR-bounce it reaches a finite value. After that, it
tends to +∞ and returns to the UVL fixed point again. (c): the scale factor has an A-bounce at
ϕ0 = 3.0 (at the blue dashed line) and is symmetric on the two sides of the flow.

3.6 Solutions with extra ϕ-bounces

3.6.1 The W LL
1,2 solutions

The space of the WLL
1,2 ∈ (Max−,Max−) solutions is sketched in figure 23a, which also

includes a region with ϕ < 0. The RG solution in figure 23b corresponds to the black dot
in this space as is shown in figure 23a. For every solution in the upper part of this space,
there is a flipped solution in the lower part. The flipped solutions have an extra ϕ-bounce
point near the bottom UVL boundary.

In figure 23b, a QFT on the top UVL boundary with Ri dimensionless curvature is
connected via a flow after two ϕ-bounces to another QFT on the bottom UVL boundary but
with Rf curvature. The flow first moves to the left (note that if we enlarge the region very
close to the ϕ = 0 then W ′ → 0) and after a ϕ-bounce at the negative values of ϕ, it returns
to the region ϕ > 0. Another ϕ-bounce changes the direction of the flow towards the left
UV fixed-point again. This means that the two UV theories that are at the end-points of
this flow have opposite sign relevant couplings.
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Figure 23. (a): the space of the WLL
1,2 solutions is the upper blue region. The black dot represents

the specific solutions of diagram (b). The lower blue region corresponds to the solutions with an
extra ϕ-bounce near the bottom UVL. (b): the blue and red curves for W,S, describe a flow that
connects the UVL fixed point to itself but after two ϕ-bounces. The locations of the ϕ-bounces are
indicated by red dashed lines.
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Figure 24. (a): the holographic coordinate at top UVL boundary tends to −∞ and for bottom
UVL to +∞. (b): the scale factor has an A-bounce at ϕ = 2.0, the blue dashed line. The first
ϕ-bounce on the left occurs at ϕ = −0.62 and the second one at ϕ = 2.48, the red dashed lines.

Figures 24a and 24b show the behavior of the holographic coordinate and scale factor
in terms of ϕ for the specific flow of figure 23b. Again the Euclidean geometry of space-time
describes a wormhole with a minimum length at the point where the scale factor has an
A-bounce, ϕ = 2.0.

We can determine the corresponding parameters of each QFT i.e. (Ri, Ci) and (Rf , Cf )
by comparing the numerical solutions of equations of motion with the expansions (C.2a),
(C.2b), (C.8a) and (C.8b). The relation between dimensionless curvatures is sketched for
constant values of ϕ0 in figure 25a. We observe that their functional dependence is different
from type WLL

1,1 (figure 18a) due to the existence of the extra ϕ-bounce at ϕ < 0. To show
the behavior of these curves in different regions of the space of WLL

1,2 solutions better, we
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Figure 25. In WLL
1,2 region we can read the behavior of Rf in terms of Ri for different constant

values of ϕ0. The colored curves represent the generic behavior of the dimensionless curvatures
as we move between different boundaries of the space of solutions in figure (b). For the red curve
ϕ0 = 1

10 , the orange curve ϕ0 = 11
10 , the black curve ϕ0 = 25

10 and the green curve ϕ0 = 31
10 .
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Figure 26. Dimensionless parameters of the WLL
1,2 solutions with ϕ0 = 25

10 , ϕ0 = 11
10 and ϕ0 = 1

10
(black, orange and red curves in figure 25a). Notice that in figures (d) and (e) at the bottom of the
graphs, both curves first go to right and then return to ξ = 0.

have specified four different groups of solutions in figure 25a which are placed between
different boundaries of this space. According to each group, we have the following properties
close to the boundaries of the space of WLL

1,2 solutions (figure 23a):

1) Close to the d1 boundary, Ri → −∞ but Rf remains finite, this is the properties of
(Max+,Max−) solutions. This can be seen for different regions in the space of solutions,
for example see the upper part of figures 26a, 26b and 26c. The reason is that beyond
the d1 boundary, there exist other solutions with even more ϕ-bounces. In other words,
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Figure 27. As we change S0 along a ϕ0 = constant line in the blue region in figure 25b we can read
Ci and Cf in terms of the dimensionless curvatures. For example in above figures, the red curve is
at ϕ0 = 1

10 , the orange curve at ϕ0 = 11
10 , the black curve at ϕ0 = 25

10 and the green one at ϕ0 = 31
10 .

whenever a new ϕ-bounce is happening around the left fixed point at W > 0 a new region
like the WLL

1,2 region is created and at its new boundary we observe that Ri → −∞.
Because of the divergence of Ri, the ratio of two relevant couplings vanishes, ξ → 0, as
seen in the upper part of figures 26d, 26e and 26f.

2) Close to the d3 boundary, Ri → −∞ while Rf remains finite (see the blue-green border
of figure 26a). The reason for the divergence of Ri is similar to the d1 boundary. As we
move from type WLL

1,1 to type WLL
1,2 , an extra ϕ-bounce appears at the negative values

of ϕ. This means that at the boundary of these two regions (d3 or b1) the sign of the
coupling of the QFT on the top-left UV boundary is changing. So at this boundary ϕ(i)

−
vanishes and according to the equation (3.3) this means that ξ → 0. This behavior can
be seen close to the blue-green border of figure 26d.

3) Close to the d4 boundary, we expect the same behavior as near the d3 boundary. Since
near the ϕ0 axis the solutions become symmetric, we expect that the value of Rf is
comparable to Ri (see figure 26b near S0 = 0). The ratio of the two relevant couplings
is plotted in figure 26e.

4) According to figure 26c and close to the d5 boundary (the lower part of figure), Rf → −∞
and Ri remains finite. This boundary is a joint border between the WLL

1,2 solutions and
solutions that have multiple ϕ-bounces, but with a ϕ-bounce that appears on the left
of the UV boundary at W < 0. This can be confirmed in figure 26f which near the d5
boundary the value of ξ → +∞.

5) Near the d2 boundary Ri → 0 and Rf remains finite, which are the properties of the
(Max−,Min+) solutions. This is expected again because the border belongs to type
W

LMin+
1,0 solutions that we shall discuss in section 4.1.

Finally, figures 27a and 27b show the behavior of Ci and Cf in terms of dimensionless
curvatures. Each curve in these figures belongs to solutions with the same value of ϕ0
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Figure 28. (a): a zoomed picture of the space of the WLR
1,1 solutions. The black dot represents

the flow in the diagram (b). (b): the flows of type WLR
1,1 are between the UVL boundary and UVR.

There is a ϕ-bounce at ϕ < 0, the red dashed line. Notice that the red region at S0 < 0 in figure (a)
is the space of solutions with an extra ϕ-bounce near UVL but at W < 0.
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Figure 29. (a): the holographic coordinate at UVL boundary tends to −∞ and at UVR to +∞.
(b): the scale factor has an A-bounce at ϕ0 = 3.5, the blue dashed line. A ϕ-bounce occurs at
ϕ = −0.64, the red dashed line.

in the space of the solutions. For example the colored curves correspond to colored lines
in figure 25b.

3.6.2 The W LR
1,1 solutions

The space of solutions WLR
1,1 ∈ (Max−,Max−) is sketched in figure 28a. Figure 28b, shows

a flow (related to the black dot in figure (a)) with two fixed points one on the UVL boundary
(W > 0) and the other one on the UVR (W < 0). The distinction between this type and
type WLR

1,0 solution is the existence of an extra ϕ-bounce at ϕ < 0. Figures 29a and 29b
show the behavior of holographic coordinate and scale factor in terms of ϕ related to the
solutions in figure 28b.

The relation between RL and RR for different constant values of ϕ0 are presented in
figure 30a for solutions between e1 and e4 boundaries and in figure 30b for flows in the space
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Figure 30. RR vs RL for the WLR
1,1 solutions at fixed ϕ0. In figure (a) all curves belong to the

points between e1 and e4 boundaries in figure 28a. In figure (b) curves are sketched either between
e1 and e4 boundaries (e.g. the blue curve at ϕ0 = 4) or between e2 and e3 boundaries (e.g. the green
curve at ϕ0 = 4.245).
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Figure 31. The dimensionless curvatures vs S0 for three generic cases, ϕ0 = 3.25 (a) and (d)
diagrams, ϕ0 = 4 (b) and (e) diagrams and ϕ0 = 4.245 (c) and (f) diagrams. By comparing (c) and
(b) or (f) and (e) we observe that the qualitative features of the e1 and e2 boundaries are similar
and therefore we should be interpret them as a single boundary.

of solutions between e1 and e3 boundaries (e.g. the blue curve) or e2 and e3 boundaries (e.g.
the green curve).

To see the general behavior of dimensionless parameters more explicitly, we have
considered specific values of ϕ0 in the space of WLR

1,1 solutions. Figures 31a, 31d and 32a
belongs to ϕ0 = 3.25 and describe solutions between e1 and e4 boundaries. Figures 31b, 31e
and 32b are sketched at ϕ0 = 4 and are related to solutions between e1 and e3 boundaries.
Moreover, by comparing figure 31c 31f for solutions between e2 and e3 boundaries and
figure 31b 31e, we observe that e2 boundary is of the same type of e1 i.e. (Max+,Max−).
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Figure 32. The ratio of the relevant couplings for two fixed values ϕ0 = 3.25, 4 as we change the
value of S0.

We can summarize the results as follows (since e2 has the same properties as e1 boundary
we just discuss e1 here):

1) Close to the e1 boundary RL → −∞, see the top part of figures 31a or 31b. These
solutions belong to (Max+,Max−) solutions. Beyond this boundary there are other
types of flows with more ϕ-bounces. On the contrary, the value of RR remains constant
near this boundary, figures 31d or 31e, and it shows that as the flow reaches the UVR
boundary no extra ϕ-bounce would appear.

2) As we move towards the e4 boundary, the red-blue border in figure 31a or 31d, RL has a
finite value but RL → 0 (the slop of curve becomes vertical). These solutions belong to
(Max−,Min+) solutions. The reason for this behavior is the existence of the WLMin+

1,0
solutions in the joint border type WLR

1,1 and WLR
1,0 regions.

3) As we move closer to the e3 boundary (the red-orange border in figure 31b or 31e), again
RL → −∞. This is obvious because the WLR

1,1 solutions have an extra ϕ-bounce with
respect to the WLR

1,0 solutions near their left UV fixed point. This is not happening on
the right UV fixed point so RR remains finite.

From the properties above, we may understand the behavior of ξ in figures 32a and 32b.
Close to e1 boundary since RL → −∞ we expect that ϕ(L)

− → 0 and therefore ξ → 0 as well.
Close to the e4, we approach to WLMin+

1,0 solutions, ϕ(R)
− 6= 0 and ξ obtains a finite value.

On the other hand, close to the e3 boundary we have the same situation as e1 therefore
again we see that ξ → 0.

As the final property of type WLR
1,1 , we can plot the dependence of CL and CR in terms

of the left and right dimensionless curvatures, see the diagrams in figures 33a and 33b.

3.6.3 Multi-ϕ-bounce and multi-A-bounce solutions

In addition, in the above solutions, one may find geometries that connect the UV QFTs with
more than two ϕ-bounces. An example of such solutions with three ϕ-bounces is sketched
in figure 34a. For example, for solutions similar to the specific solution in figure 34a, this
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Figure 33. As we change S0 along a ϕ0 = constant line in the red region in figure 28a we can read
CL and CR in terms of the dimensionless curvatures. For example in the above figures, the black
curve is at ϕ0 = 3.25 and the black one at ϕ0 = 4.

space is located on the left hollow white region (surrounded by the blue region) in figure 8.
The space of these multi-ϕ-bounce solutions is the white regions in figure 8.

The holographic coordinate and scale factor as a function of ϕ are given in figures 34b
and 34c. By zooming at the bottom of figure 34c we can see that this flow has three
A-bounces, see figure 34d.

To describe the behavior of the flow better, it would be proper to introduce the
following variables,

Q(u) = 1
2 ϕ̇

2 − V ≥ 0 , Q̇ = d

2(d− 1)WS2 . (3.13)

The variable Q and its first u derivative across the flow, track precisely A bounces and
ϕ-bounces, as Q̇ vanishes at both, as seen from (3.13). Moreover, Q̇ changes sign at
A-bounces but not ϕ-bounces.

We have plotted Q̇ in terms of u in figure 34e for the specific flow in figure 34a. The
zero points of Q̇ of the graph show the points that either S = 0 (ϕ-bounces) or W = 0
(A-bounces). Near the left and right of each ϕ-bounce, Q̇ have the same sign (at these
points the color of the graph changes), but for the A-bounces Q̇ changes its sign (this
happens just for the blue part of the graph).

In general, and for a generic potential, we expect that most of the full (S0, ϕ0) plane
of parameters will be filled with regular solutions unlike the cases with single boundaries.
Typically, the set of regular solutions corresponds to finite values for ϕ0 and S0, but as
these values become larger and larger, eventually solutions tend to run to ϕ→ ±∞ and
the solutions become singular. It would be interesting to test this conjecture in top-down
scalar potentials, like in [19, 20].

4 Special flows on the inter-region boundaries

We have seen that the moduli space of solutions involves several distinct boundaries that
separate classes of solutions that have different geometric characteristics. These involve the
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Figure 34. (a): an example of a multi-ϕ-bounce solution, WLL
3,3 . The solid line is W (ϕ) and dotted

line is S(ϕ). In this case, a flow connects two UV boundaries on the left UV fixed point after three
ϕ-bounces. Unlike the previous cases, the geometry here has three A-bounces. (b)and (c) show the
behavior of holographic coordinate and scale factor in terms of ϕ. Figure (d) is the magnification of
the bottom of figure (c). It shows that there are three A-bounces for this flow. (e): the roots of Q̇
in equation (3.13) shows the location of ϕ-bounces where the color of the graph is changed and the
location of A-bounces where the blue part of the curve crosses the u axis.
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Figure 35. The space of solutions of WLR
1,0 (the orange region), WLL

1,1 (the green region) and
W

LMin+
1,0 (the blue diagonal lines).

type of theories that are at the end-points of the flow, as well as the number of ϕ-bounces
(i.e. the number of times the scalar changes direction along the flow).

4.1 Crossing from the W LR
1,0 to the W LL

1,1 region

On the border between type WLR
1,0 and type WLL

1,1 regions shown in figure 8, one may find a
degenerate type of flow, shown in figure 35. The standard WLL

1,1 solutions start as usual
at the UVL fixed point and end on the same UVL on the other side. But exactly at the
boundary, this flow splits into two clearly distinct pieces: one is a flow from the UVL to
the intermediate minimum of the potential at ϕ1. This is a + flow near the minimum and
therefore the minimum becomes a new AdS boundary, see figure 36a. Overall this is a
(Max−,Min+) type of flow. This is the WLMin+

1,0 flow we defined in section 3.
The remaining flow is a (Max−,Min−) flow starting at the UVL fixed point (UV

boundary) and ending at the minimum of the potential with − branch flow. This is possible
because for this limiting solution RR = 0. This flow is what we defined as a WLMin−

0,0 type
flow in section 3. This degeneration into the WLMin+

1,0 + W
LMin−
0,0 flow is shown graphically

in figure 36b.
As we approach the minimum of the potential from the left, we can find the expansion

of W and S. In this case, there is just one branch (the + branch) for negative curvature
slices. As ϕ→ ϕ−1 for W < 0, we have

W+ = −2(d− 1)
`

− ∆+
2` (ϕ− ϕ1)2 − R

d`
|ϕ− ϕ1|

2
∆+ + · · · , (4.1a)

S+ = ∆+
`
|ϕ− ϕ1|+ · · · , (4.1b)

T+ = R
`2
|ϕ− ϕ1|

2
∆+ + · · · . (4.1c)
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Figure 36. (a): an example of a flow between a maximum and a minimum. For the solid curves,
(Max−,Min+) is a flow between a UV fixed point at maximum ϕ = 0 and another UV fixed point
at the minimum ϕ = ϕ1. For the (Max−,Min−) part of the solution, the minimum is an IR fixed
point. The dashed curves show the flipped image of the solid curves. The black dotted curves are
other possible flows with the same UV fixed points. (b): at a fixed ϕ0 when the value of S0 is exactly
on the border of type WLR

1,0 and type WLL
1,1 , we have the WLMin+

1,0 branch solution (the middle flow).
If we increase or decrease the value of S0 we have the WLR

1,0 or WLL
1,1 solutions respectively.

where ∆+ = d/2 +
√
d2/4 +m2`2 > 0. The expansions of the scalar field and scale factor

are given by

ϕ(u) = ϕ1 − ϕ+`
∆+e−∆+u/` + · · · , (4.2a)

A(u) = A+ + u

`
−
ϕ2

+ `
2∆+

8(d− 1)e
−2∆+u/` − R|ϕ+|2/∆+ `2

4d(d− 1) e−2u/` + · · · , (4.2b)

On the other hand, as shown in [11], the minus branch solution near a minimum of the
potential exist only if RUV = 0, and since T = 0 in that case, this implies that S = W ′ and
we have

W− = −2(d− 1)
`

− ∆−
2` (ϕ− ϕ1)2 + · · · , (4.3a)

S− = −∆−
`
|ϕ− ϕ1|+ · · · , (4.3b)

where ∆− = d/2−
√
d2/4 +m2`2 < 0. We also obtain

ϕ(u) = ϕ1 − ϕ−`∆−e−∆−u/` + · · · , (4.4a)

A(u) = A− + u

`
−
ϕ2
− `

2∆−

8(d− 1)e
−2∆−u/` + · · · . (4.4b)

For WLMin+
1,0 and WLMin0

0,0 solutions we have the following properties:

1) The space of solutions is a one-dimensional curve S0 = S0(ϕ0) which is the joint border of
type WLR

1,0 and WLL
1,1 regions. This is shown as blue diagonal lines in figure 35. A similar

type of solution also exists in the joint border of WLR
1,1 and WLL

1,2 regions, see section 4.5.
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2) The (Max−,Min+) branch of the solution: there is a UVL fixed point at the maximum
ϕ = 0 and the QFT at this point is characterized by the parameters RL (source) and
CL (vev). At the minimum of the potential, at ϕ1, there is another UV fixed point
(associated to the W+ branch solution there) and it can be reached as u→ +∞ so that
eA(u) →∞.18 The QFT at this point has only one dimensionless parameter R, because
the + branch is a flow purely driven by a vev. This parameter can be thought of as the
ratio of the curvature to the vev of the irrelevant operator (that is a modulus in such a
case). Since ϕ− = 0 for W+ branch, equation (4.2a), then according to the relation (3.3)
the value of ξ →∞ for (Max−,Min+) solutions.

3) The (Max−,Min−) branch of the solution: the flow connects a UV fixed point to an IR
one. There is a UVL fixed point at the maximum ϕ = 0 but with R = 0 (as we discussed
already, close to the a4 in type WLR

1,0 or equivalently b2 in type WLL
1,1 , log(−Rf )→ −∞).

The minimum ϕ1 is an IR fixed point at u → −∞ and eA(u) → 0. Since there is no
boundary at the IR fixed point, no QFT lives here so the ratio of couplings is meaningless.

To show the behavior of the above branches, we have sketched W in figure 36a. To
draw this figure, we have used the potential in figure 6 which at the minimum ϕ1 = 4.31 the
AdS length scale is ` = 0.76 and moreover at that minimum, ∆+ = 4.25 and ∆− = −0.25.
The dashed curves show the flows between left UV fixed points and the fixed point at a
minimum of the potential with W > 0 near the fixed point. Other independent flows with
a right UV fixed point are sketched with black dotted curves in this figure.

In figure 36b we have shown two flows very close to the (Max−,Min+) flow (which
the one in the middle of the three flows). At fixed ϕ0, as we decrease S0 away from its
value on the border, a ϕ-bounce appears and the flow returns to the left UV. But when we
increase S0 a little, the flow continues until it reaches the right UV fixed point.

To follow what is happening to the geometry as we approach the boundary, we have
drawn the holographic coordinate and scale factor of three different RG solutions in
figures 37a and 37b. In these figures, all curves are sketched for a fixed value ϕ0 = 7

2 in
the space of solutions. As we increase the value of S0 towards the b2 boundary where the
W

LMin+
1,0 solutions exist, we move from the green curve to the black curve.
Figures 38a and 38b show the behavior of the holographic coordinate u(ϕ) and scale

factor A(ϕ) when a WLMin+
1,0 solution appears. The red curves describe the (Max−,Min+)

branch, a flow between two UV fixed points one on the maximum and the other on the
minimum of the potential. The blue curve shows that the (max−,Min−) branch is a flow
between a UV fixed point at maximum ϕ = 0 and an IR fixed point at the minimum ϕ = ϕ1.

We now consider a fixed value for ϕ0 and try to change the value of S0 near the joint
border of type WLR

1,0 and type WLL
1,1 , see figure 39a as we move along the vertical red dashed

line at ϕ0 = 3.7. In summary, we have the following properties close to the joint border:

1) Close to the boundary (around S0 = 1.4) that part of the flow which connects to the UVL
with W > 0 gradually turns into the (Max−,Min+) branch or the WLMin+

1,0 solutions.
At the boundary, the value of the dimensionless curvature for the UVL fixed point of

18We should note that for a fixed point at W > 0, the minimum is a UV fixed point too but at u→ −∞.
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Figure 37. The behavior of (a): the holographic coordinate and (b): the scale factor at ϕ0 = 3.5 as
the flow solutions in type WLL

1,1 move towards the b2 boundary (as S0 increases) where the WLMin+
1,0

solution exists.
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Figure 38. The behavior of the holographic coordinate and scale factor in terms of ϕ for the
W

LMin+
1,0 and WLMin−

0,0 flows. The red curve belongs to the WLMin+
1,0 branch and the blue one to the

W
LMin−
0,0 branch in figure 36a.

(Max−,Min−) branch is given by the value of the curvatures (RL = Ri) at the joint
boundary (see the orange-green border in figure 39b).

2) As we move towards the joint border, the value of the dimensionless curvatures RR
and Rf both tend to zero, see figure 39c This is expected because as we move closer
and closer to the border, this part of the flow turns into the Max−,Min−) branch or
W

LMin−
0,0 solutions and it corresponds to the solutions with flat slices.

In figure 40, we have shown the overlap of values for dimensionless curvatures in type
WLR

1,0 and WLL
1,1 . The curves are drawn for different fixed values of ϕ0.

It is clear from figure 36a, that in the (Max−,Min+) part of the flow, there are two
parts: a standard one, starting at UVL and another one near the minimum of the potential.
In this second part that becomes asymptotically long, ϕ is very near the minimum, and
stays there for a long period, but the scale factor changes very fast. If we look at the scalar
equation (2.6) in this regime, the last term is essentially negligible and the approximate
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Figure 39. (a): shows the space of solutions in type WLR
1,0 andWLL

1,1 region and their joint boundary.
(b): the behavior of dimensionless curvature for left UV boundary when we move from region WLR

1,0
to WLL

1,1 . (c) The dimensionless curvatures on the UVf or UVR fixed points of the flow tend to zero
as one approaches the boundary.
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Figure 40. TypeWLR
1,0 (blue curves) and typeWLL

1,1 (red curves) overlap of dimensionless curvatures.
The curves are demonstrated for different constant values of ϕ0.
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equation to solve is
ϕ̈+ dȦϕ̇ = 0⇒ ϕ̇ ∼ e−dA . (4.5)

Substituting in the other equations (2.4), (2.5) we find that ϕ̇2 is subleading to the other
terms and can be dropped. From (2.5) the main contribution comes from the value of the
potential at the minimum and therefore

Ȧ ' 1
`
⇒ A = u

`
, (4.6)

and space is AdS near that point with a boundary close by. As the curvature terms in the
equations are subleading, we arrive at the solution which we would find in a flat-sliced case,
arriving at the minimum of the potential with a plus branch solution. However, this does
not imply that the solution near this AdS boundary has zero boundary curvature, but as
usual, near AdS boundaries, the curvature although a source, is subleading compared to
the source of the metric.

However, on the other side of the ϕ-bounce, the (Max−,Min−) part, the story is
different. According to the plots above, the scale factor decreases slowly to a minimum
and this minimum approaches zero as we approach the transition solution. Again here, the
solution is seen to be a − branch solution arriving at the minimum and the curvature of
the slice is subleading. The two solutions meet at the ϕ-bounce.

The key property in this class of solutions is that, because of parameters, there is
an intermediate regime in which the slice curvature is subleading to the other terms in
the equations.

4.2 Walking

The solutions near the boundary between the WLR
1,0 and WLL

1,1 regions, studied above, are
examples of “walking” solutions. As can be seen in figure 37, in the middle of the flow,
near the intermediate minimum of the potential, the scalar flows very slowly while the scale
factor changes at the same time by many orders of magnitude. This is a classic example of
“walking” associated with an intermediate fixed point. For all flows that are not exactly on
the boundary of WLR

1,0 and WLL
1,1 , this minimum is never reached, and eventually the flow

departs and returns to UVL.19

Walking here is triggered by being close to the boundary between the two classes of
solutions, and which describes the transition between ending in UVL and ending at UVR.
This is distinct from the walking described in the class of models of V-QCD, [63], where the
walking obtained there, below the conformal windows is controlled by parameters20 that
appear in the bulk action. Here, the parameter is a boundary condition of the equations.

4.3 Flow fragmentation and the generation of a new boundary

The generic solution discussed in this paper can be interpreted as having two boundaries.
In our ansatz, they are located at u→ ±∞. If the slices are compact constant curvature

19An example with such a type of flow, with an intermediate near fixed point has been observed in a
non-Lorentz-invariant example in [62].

20In that case the parameter is the ratio of flavors to colors.
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Figure 41. Schematic representation of flow-fragmentation and the generation of an extra boundary.

hyperbolic surfaces, then the solutions are standard wormholes with two boundaries. If the
slices are copies of AdSd, then the solutions are describing interfaces between the two copies
of the boundary at ±∞, which form parts of the total boundary of the bulk solutions.

However, as we described above, the degeneration of the single wormhole solution as we
approach the boundary between regions WLR

1,0 and WLL
1,1 leads to a composite solution that

is composed of a direct sum of two solutions. The first, the −+ part is a solution with two
boundaries. The first boundary is always at UVL and exists always. The second boundary
appeared in the limit, and is at the minimum of the potential. The −− part of the solution
is a solution with a single boundary at UVL that existed always. It has developed now
an end-point at the minimum of the potential, where the size of the slice has shrunk to
zero and the solution ends. Therefore, at the degeneration limit, at the minimum of the
potential both a boundary and an end of space are generated for the two pieces of the
solution. We call this limiting phenomenon, flow-fragmentation. It has been also observed
in other curved flows in [11]. We denote it schematically in figure 41.

The existence of flow-fragmentation suggests that in the gravity landscape, the number
of boundaries of the wormholes is not a property that is topologically distinct, but the moduli
space of solutions involves a fractionalization/degeneration of solutions with a different
number of boundaries. The phenomenon suggests that there might exist a (topological)
algebra of flows, but whether this is true, or what are the rules is not clear yet.

Flow-fragmentation is an interesting phenomenon, but it is not yet clear to us what
the implications of this phenomenon for holography are, and what is the interpretation for
Euclidean wormholes.

4.4 Crossing from type W LL
1,1 to type W LL

1,2 region

To find the behavior of the dimensionless parameters more explicitly, we consider moving
along a vertical line from the upper border of WLL

1,2 type space of solutions down to the ϕ0
axis in the type WLL

1,1 region, see figure 42a. By crossing this border, the relevant coupling
of the QFT on the UVL boundary with W > 0 changes from negative to positive values.
This can be seen in figure 42b where the blue curve with an extra bounce belongs to the
WLL

1,2 region and the flow without the extra bounce is a WLL
1,1 type solution.

Results are summarized as follows:

1) As we already explained in type WLL
1,2 solutions, close to the border of blue and green

regions in figure 43a, on both sides Ri → −∞ while Rf remains finite and continuous
(see figure 43b). The reason is the existence of an extra ϕ-bounce point at negative
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Figure 42. (a): type WLL
1,1 and WLL

1,2 space of solutions. (b): two flows of type WLL
1,2 and type WLL

1,1
at ϕ0 = 2.2 (red vertical dashed line) near the border (a point where the red horizontal and vertical
dashed lines are joined). The blue curve with two bounces belongs to the WLL

1,2 region and the flow
with one bounce is a WLL

1,1 solution.
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Figure 43. (a): space of type WLL
1,1 and WLL

1,2 solutions and their joint boundary. We move from
WLL

1,1 region to WLL
1,2 region on a constant ϕ0. (b,c): the behavior of dimensionless curvature Ri

when we cross the boundary from region WLL
1,1 or WLL

1,2 on a constant ϕ0 = 2.2. The horizontal red
dashed line denotes the location of the boundary nearly at S0 ≈ 0.95.

values of ϕ for the WLL
1,2 solution. At this border, the coupling of the left QFT vanishes

and according to equation (2.21), the ratio of two dimensionless couplings also vanishes.
Therefore, this is a solution that is pure vev on the initial UVL side.

2) On the upper bound of the blue region again a divergence for Ri curvature is happening
because the region beyond the blue region belongs to other types of flows with multi-ϕ-
bounce (more than three) solutions.

3) On the lower bound of the green region Ri ≈ Rf because it is close to the S-type region
where the solutions are symmetric.

4.5 Crossing from W LR
1,1 to W LR

1,0 and W LL
1,2 regions

To complete our analysis we also consider moving on a constant line ϕ = ϕ0 in the type
WLR

1,1 space of solutions, into the type WLR
1,0 or type WLL

1,2 regions, see figure 44. As an
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Figure 44. Type WLR
1,0 , WLL

1,2 and WLR
1,1 space of solutions.
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Figure 45. (a): an example of flows of type WLR
1,1 (ends on UVR) and type WLL

1,2 (ends on UVL)
with ϕ0 = 3.2 and S0 near the border of these regions. (b): an example of flows of type WLR

1,0 and
WLR

1,1 with ϕ0 = 4.

example in figure 45a we have sketched two flows with the same ϕ0 = 3.2 but different
values of S0. In this case, both flows have a bounce at negative values of ϕ but the final
UV fixed point is different. Similarly figure 45b shows two flows with ϕ0 = 4, one in the
type WLR

1,0 and the other in type WLL
1,2 region. According to these flows, we observe the

following properties:

1) As we cross the border into the type WLL
1,2 region, that part of the flow which connects

to the UVL with W > 0 gradually tends to the WLMin+
1,0 branch or the WLMin+

1,0 type
solutions. At the boundary, the value of the dimensionless curvature for the UVL fixed
point of WLMin+

1,0 branch is given by the value of the curvatures at the joint boundary,
see figure 46a. On the other hand, the value of the dimensionless curvature Rf tends to
zero from both sides of the border, see figure 46b (note that the distance to zero is due
to the finite numerical cut-off). As we move closer to the border the flow tends to the
W

LMin+
1,0 solutions.

2) If we move towards the WLR
1,0 region the situation would be different. Since in type WLR

1,1
we have an extra ϕ-bounce at ϕ < 0 near the left UV fixed point, we expect at the UV
boundary ϕ(L)

− change its sign and it becomes zero when we choose S0 on the border
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Figure 46. Dimensionless curvatures vs. S0 as we cross from type WLR
1,1 to type WLR

1,0 region in
figures (a) and (b) and as we cross from type WLR

1,1 to type WLL
1,2 region, figures (c) and (d).

between the red and orange regions. Therefore we see RL tend to −∞ in figure 46c on
both sides of the border. Since there is no similar ϕ-bounce near the right UV fixed
point the value of RR reaches a finite value at the border, see figure 46d.

4.6 Corners

Consider we are moving inside the orange region in figure 10a. All solutions inside this
region correspond to the WLR

1,0 or (Max−,Max−) solutions. We are now looking to the
deformation of the flows as we move towards the corners of this region i.e. the points where
boundaries are intersected:

• a3 ∩ a4 corner: as a specific point in the space of solutions, let’s move towards the
S0 = 0 along the constant ϕ0 = ϕ1 i.e. the minimum of the potential. This is depicted
in figure 47a, where the dashed curve gradually changes to a solid curve as we decrease
S0. The behavior of holographic coordinate and scale factor are sketched in figures 47b
and 47c. These figures show that as the corner the (Max−,Max−) solution splits into
three different solutions. The first one is the flat solution (Max−,Min−) stretched
between the UVL boundary and the minimum of the potential. The second one is an
AdS solution located at the minimum of the potential ϕ = ϕ1 and the third one is a flat
solution (Min−,Max−) which is stretched between the minimum of the potential and
UVR boundary.
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Figure 47. Along the fixed line ϕ0 = ϕ1 i.e. the minimum of the potential, see figure 10a, if we
decrease the value of S0 down to zero, gradually the dashed curves in all figures above move toward
the solid curves. In the above curves the dashed curves have S0 = 0.5 and the solid ones S0 = 0.01.
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Figure 48. When we move towards the top corner of the orange region in figure 10a, the
(Max−,Max−) solution gradually tends to the (Max+,Max+) solutions.

• a1 ∩ a2 corner: if we move towards the S0 ≈ 2.98 along the constant ϕ0 = ϕ1 i.e. the
minimum of the potential, then the (Max−,Max−) solution gradually tends to the
(Max+,Max+) solution which both RL and RR go to −∞. This is sketched in figure 48.
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Figure 49. As we move towards the left or right corners of the orange region in figure 10a the
(Max−,Max−) solution gradually tends to above solutions. (a): splitting of solution on the left or
a1 ∩ a4 corner. (b): splitting on the right or a2 ∩ a3 corner.
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Figure 50. (a) Space of solution with its boundaries. (b): the ratio of two relevant couplings, ξ,
near the boundaries.

• a1 ∩ a4 corner: if we move towards the S0 ≈ 2.19 and ϕ0 ≈ 3.32 we arrive the corner
where two a3 and a4 boundaries are intersected. In this case, the (Max−,Max−) solution
gradually splits into the (Max+,Min+) and the flat solution (Min−,Max−). This is
sketched in figure 49a.

• a2 ∩ a3 corner: if we move towards the S0 ≈ 2.19 and ϕ0 ≈ 5.33 we arrive the corner
where two a2 and a3 boundaries are intersected. In this case, the (Max−,Max−)
solution gradually splits into the flat solution (Max−,Min−) and (Min+,Max+). This
is sketched in figure 49b.

4.7 Summary of the results

In this section, we have summarised all the previous results in the table 1.

• In the first column different possible solutions related to the space of solution in
figure 8 are given.
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Type Ri Rf ξ Region Section

(Max−,Max−) fin fin fin Colored regions 3.4.1, 3.5.1,
3.6.1, 3.6.2

(Max+,Max−) −∞ fin 0 a1, b1, 4.5, 4.4,
(d1, d5), (e1, e2) 3.6.1, 3.6.2

(Max−,Max+) fin −∞ ∞ a2 3.4.1
(Max−,Min+) fin fin ∞

a4, d2 4.1, 4.5⊕
(Min−,Max−) 0 0 -
(Max−,Min+) 0 fin ∞

a3 3.4.1⊕
(Min−,Max−) 0 0 -

S fin fin 1 b3, d4 3.5.2
(Max+,Max+) −∞ −∞ - a1 ∩ a2 4.6
(Min+,Max+) fin −∞ -

a2 ∩ a3 4.6⊕
(Max−,Min−) 0 0 -
(Max+,Min+) −∞ fin -

a1 ∩ a4 4.6⊕
(Min−,Max−) 0 0 -
(Max−,Min−) 0 0 -

a3 ∩ a4 4.6
⊕

AdSMin fin fin fin
⊕

(Min−,Max−) 0 0 -

Table 1. In this table we address the properties of different types of solutions in the space of the
solutions. For example a1∩a2 means the intersection point of a1 and a2 boundaries. The boundaries
in the fifth column are defined in figure 50a, or 8. The information of the second and third columns
are also portrayed in figures 51a, 51b.

• The second and third columns give the information on dimensionless curvatures for
the initial and final boundaries of the RG solutions. To have a better view, we have
shown this information on the boundaries in figures 51a and 51b.

• The fourth column gives the ratio of two relevant couplings of the boundary QFTs.
This ratio for example does not exist for (Min−,Max−) or (Max−,Min−) because
Min− is an IR endpoint. The behavior of this ratio near the boundaries is sketched
in figure 50b.

• The last two columns show the region of validity and the section which we have
discussed that type of solution.
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Figure 51. (a) and (b): the behavior of Ri and Rf at boundaries.

5 Four-parameter solutions

In a boundary theory which is the product of two QFTs, there are in principle four
dimensionful parameters, namely the two UV curvatures RUVi , RUVf and the two UV
relevant couplings ϕ(i)

− , ϕ
(f)
− .

In the previous sections, we have extensively explored a three-parameter family of
solutions. As discussed in subsection 3.2, in the bulk, the three independent parameters
are ϕ0 (the position in field space of the A-bounce), S0 (the derivative of the scalar field at
the A-bounce), and u0, the position of the A-bounce. As we have seen, these three “bulk”
parameters can be traded for three dimensionless “boundary” parameters, for example, the
dimensionless curvatures Ri.f at the initial and final boundary and the ratio of the initial
and finite couplings ξ defined in equation (3.3).

In this section we show how to extend the solution spaces by adding the missing fourth
parameter, without having to solve the Einstein equation from the start: the new solutions
are constructed piecewise using as building blocks the solutions we have already encountered.

This completes the solution space, as now a generic point in the boundary field theory
parameter space can be, in principle, associated with a bulk solution.21

We begin to illustrate the construction in the case of pure AdS gravity, then we
generalize it to the scalar flows.

5.1 Pure gravity

We consider pure Euclidean gravity in d+1-dimensions with a negative cosmological constant,

Λ = −d(d− 1)
`2

. (5.1)

The Einstein equation is solved by an AdSd-sliced AdSd+1, which is discussed in detail in
appendix A. We first write a generalization of the metric (A.5):

ds2 = du2 + cosh2
(
u− u0
`

)
ds2
d,` . (5.2)

21More precisely, the space of bulk solutions has the same dimensionality as the space expected in the
boundary theory. The correspondence may not be one-to-one, i.e. there may exist choices of the boundary
parameters for which no bulk regular solution exists.
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The position of the A-bounce in the metric (5.2) is at u0. This is now left arbitrary, as
it is an integration constant of Einstein’s equations. In fact, u0 can be set to zero by a large
diffeomorphism u→ u+u0. However, this changes the boundary condition at both u = ±∞
and therefore affects the source of the metric. Therefore, u0 is a physical parameter of the
metric as we shall see below.

The space-time (5.2) is again global Euclidean AdSd+1, as one can see by writing the
embedding space coordinates generalizing (A.1) as:

X−1 = ` cosh(u− u0) cosh τ cosh r , (5.3)
X0 = ` sinh(u− u0) ,

Xd = ` cosh(u− u0) sinh τ cosh r ,

Xi = ` cosh(u− u0) sinh τ Ωi , i = 1 . . . d− 1 ,
d−1∑
i=1

Ω2
i = 1 ,

where τ , r and Ωi are global coordinates on Euclidean AdSd and Ωi are angles parametriz-
ing Sd−2. As before, the coordinates above describe the connected component of the
manifold (A.1) with positive X−1.

Now take two such metrics (5.2) with different u0 and glue them at the A-bounce, i.e.
where the argument of the cosh vanishes. This results in the following metric:

ds2 =


du2 + cosh2

(
u−uL
`

)
ds2
d,` , −∞ < u < uL ,

dũ2 + cosh2
(
ũ−uR
`

)
ds2
d,` , uR < ũ < +∞ .

(5.4)

Each side is diffeomorphic to AdSd+1 so it solves the bulk equations.
In general, when joining two geometries at a codimension-one interface with no localized

energy density, one must ensure that Israel’s junction conditions are satisfied: both the
induced metric on the interface and the extrinsic curvature (roughly the derivative of
the metric normal to the interface) must be continuous. Both conditions hold for the
ansatz (5.4), for any value of uL,R:

1. The induced d-dimensional metric is manifestly continuous;

2. The extrinsic curvature Kµν satisfies:

Kµν ∝
1
`

tanh
(
u− uL
`

)
, (5.5)

on the left, and a similar expression on the right. Both vanish at the junction.

Therefore (5.4) is a well-defined solution of the bulk Einstein’s equation. In particular, all
higher derivatives are continuous.

It is not hard to show that the space-time (5.4) is again the full Euclidean AdSd+1 in a
different coordinate system. To see this, we can go to the embedding space R1,d+1 with the
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definition (A.1), and this time we define the following local coordinates:

X0 < 0 :


X−1 = ` cosh(u− uL) cosh τ cosh r
Xd = ` cosh(u− uL) sinh τ cosh r
Xi = ` cosh(u− uL) sinh τ Ωi

X0 = ` sinh(u− uL)

u < uL , (5.6a)

X0 ≥ 0 :


X−1 = ` cosh(u− uR) cosh τ cosh r
Xd = ` cosh(u− uR) sinh τ cosh r
Xi = ` cosh(u− uR) sinh τ Ωi

X0 = ` sinh(u− uR)

u ≥ uR . (5.6b)

These coordinates lead to the metric (5.4) and they clearly cover the whole hyperboloid,
just like the coordinates (5.3).

The geometry (5.4) has two UV boundaries with AdSd geometry at u → −∞ and
ũ→ −∞. The CFT parameters are the two boundary AdS lengths `L, `R (or equivalently
the AdS curvatures RUVL , RUVR ). Their ratio is the only dimensionless parameter. These are
the only parameters as there is no scalar field, therefore no relevant coupling deforming the
two CFTs.

Near each boundary u→ ±∞, the metric (5.4) takes the form:

ds2 '


du2 + e−

2u
`

[
1
4e

2uL
` ds2

d,` +O
(
e

2u
`

)]
u→ −∞ ,

dũ2 + e
2ũ
`

[
1
4e
− 2uR

` ds2
d,` +O

(
e−

2ũ
`

)]
ũ→ +∞ .

(5.7)

From this expression we can read off the asymptotic geometries at u→ ±∞: they are two
Euclidean AdSd space-times with lengths

`L = `

2e
uL
` , `R = `

2e
−uR

` . (5.8)

Notice that by freely choosing uL and uR we can change the boundary parameters indepen-
dently. This is not possible if we limit ourselves to the “global” solution (5.2) with u = ũ

and uL = uR = u0: in this case we can change the ratio of the curvatures but not each one
independently. Thus moving from the ansatz (5.2) to the piecewise geometry (5.4) allowed
us to introduce one extra parameter and match the number of source parameters of the
boundary CFTs.

More generally, one could have done the gluing at a generic point (not necessarily the
extremum of the Cosh function) by defining:

ds2 =


du2 + cosh2

(
u−uL
`

)
ds2
d,` , −∞ < u < u∗ ,

dũ2 + cosh2
(
ũ−uR
`

)
ds2
d,` , ũ∗ < ũ < +∞ ,

(5.9)

where u∗ is arbitrary. Then Israel’s junction conditions are satisfied if ũ∗ is chosen as:

ũ∗ = u∗ − (uL − uR) . (5.10)
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Figure 52. The two-parameter pure gravity solution is obtained by gluing two halves of two
different solutions across a junction at fixed u, in such a way that the metric and the extrinsic
curvature are smooth. This way one can freely choose both length scales on each UV boundary.

Notice that (5.9) can also be written as:

ds2 =


du2 + f(u) ds2

d,` , −∞ < u < u∗ ,

dũ2 + f(ũ− δ) ds2
d,` , u∗ + δ < ũ < +∞ ,

(5.11)

where
f(u) ≡ cosh2

(
u− uL
`

)
, δ ≡ uR − uL . (5.12)

It is perhaps worth explaining in more detail what the expression (5.11) means. The
manifold we have constructed here is schematically represented in figure 52. It is composed
of two pieces: each one is a manifold equipped with a system of coordinates and a metric,
corresponding to the upper and lower lines of equation (5.11). Each of these half-manifolds
has a boundary at finite radial direction, given respectively by the hypersurfaces u = u∗ and
ũ = u∗ + δ. In addition, each of them has a single UV boundary, at u→ −∞ and ũ→ +∞.
In the interior, each component manifold is a solution of the same Einstein equation. The
two boundaries are then identified, and the two pieces are glued together to result in the
full manifold. Since at the interface the metric and extrinsic curvature (and in fact, all
higher u-derivatives of the metric) are continuous, the gluing can be done without adding
any localized energy density.

Notice that the two half-manifolds are trivially diffeomorphic to each other, for example
by the change of coordinates ũ = u + δ performed on the right half-manifold. However,
importantly, this diffeomorphism acts nontrivially on the UV boundary at u→ +∞ and it
scales the boundary conditions (the leading order Fefferman-Graham metric) by a factor
exp δ/`. Therefore, the manifold obtained by gluing the two halves in equation (5.11) is
physically (in the sense of the UV boundary data) different from the e.g. the one described
by equation (5.2), although they are locally diffeomorphic.
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Finally, unlike the parameter δ, we stress that changing the gluing point u∗ does not
introduce an extra degree of freedom to the space of solutions, because it can be reabsorbed
in a diffeomorphism together with a redefinition of the parameters uL and uR. Thus
changing u∗ one moves from one solution to another in the same class.

5.2 Einstein-Dilaton gravity

Following the previous section, a piecewise solution which automatically satisfies Israel’s junc-
tion conditions (continuous A(u) and ϕ(u) with continuous derivatives) can be constructed
using the following recipe:

1. Take any of the solutions from section 3 connecting two AdS, with a given scale factor
and a given dilaton profile (Ā(u), ϕ̄(u));

2. Define the following piecewise solution by gluing the two half-solutions:

A =


Ā(u) , u < u∗ ,

Ā(ũ− δ) , u∗ + δ < ũ < +∞ ,

(5.13)

ϕ =


ϕ̄(u) , u < u∗ ,

ϕ̄(ũ− δ) , u∗ + δ < ũ < +∞ .

(5.14)

Like the case of pure gravity discussed in the previous section, this geometry is composed
of two manifolds smoothly joined at an interface, with a scalar field defined in each half
and smooth at the junction.

We now have four dimensionless parameters: the three we had in section 3.2 for the
continuous solution(namely S0, ϕ0 and u0) plus the extra independent parameter δ/`. If
R̄UVi , R̄UVf , ϕ̄i−, ϕ̄

f
− are four UV (dimensionful) parameters of the continuous solution (Ā, ϕ̄),

the parameters of the solution (5.13)–(5.14) are:

RUVi = R̄UVi , ϕi− = ϕ̄i− , RUVf = e2δ/`R̄UVf , ϕf− = eδ∆
f
−/`ϕ̄f− . (5.15)

The two dimensionless parameters Ri,f are unaffected, but the third one ξ is rescaled.
Notice however, that the effect of δ on the individual couplings is different than the effect
of the parameter u0 in equation (3.4), (3.6). One can then use a combination of u0 and δ
(or equivalently uL and uR as in the previous subsection) to separately change ϕi− and ϕf−.

Therefore, this extra parameter completes the full space of expected independent
couplings of the solutions. As in the case of pure gravity, the choice of the gluing point u∗
is not an extra parameter in the space of solutions (for simplicity, it can be taken to be the
turning point of the scale factor).

As a final remark, notice that dimensionless vev parameters, Ci,f are insensitive to δ,
but according to (2.20) the vevs of boundary operators change as

〈Oi〉 = 〈Ōi〉 , 〈Of 〉 = 〈Ōf 〉eδ∆
f
+/` . (5.16)
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6 Single-boundary solutions

In the previous sections, we have seen that hyperbolic-slicing holographic flows connect two
asymptotic AdS regions, and can be interpreted as the holographic dual to two coupled
CFTs defined on AdS, each with a relevant deformation turned on. This begs the question:
what is the holographic description of a single CFT on AdS? In this section, we put forward
a possible answer.

In the family of solutions we have studied, there is a special class of geometries which
can help answer this question: these are the type S solutions, corresponding to the points
on the horizontal axis in the parameters space shown in figure 8. In these solutions, the
scale factor and the dilaton turn around at the same point. Notice that they asymptote to
the same UV extremum on the left and the right.

Type S solutions are Z2-invariant under (u− u0)→ −(u− u0). Therefore, to obtain
a single-sided solution, one can simply take a quotient by Z2 of a type S solution. The
resulting geometry is regular at the fixed point u = u0 since at this point both the scale
factor and scalar field radial derivative vanish: this means there is no need to introduce a
localized dilaton potential term at the IR end-of-space u = u0, to absorb boundary terms
in the variation of the action. Furthermore, these solutions have the correct number of
dimensionless parameters to describe a single CFT: since S0 = 0, they are parametrized
by the single dimensionless parameter ϕ0, which can be traded for R on the boundary.
This is the only dimensionless combination one can form from the boundary curvature and
deformation mass parameter ϕ− in a single CFT.

Thus, one possibility is that the holographic dual of a single QFT on AdS is the
Z2-symmetric quotient of a left-right symmetric two-boundary solution.

In general, this prescription breaks part of the conformal symmetry on AdS. To see this,
it is convenient to analyze the situation in the simplest case in which the dilaton is treated
as a probe, and the bulk theory is a pure gravity with a negative cosmological constant. In
this case, the appropriate two-sided solution is AdSd+1 in Ads-slicing coordinates, given in
equation (5.2), in which we can set u0 = 0 for simplicity:

ds2 = du2 + (cosh2 u

`
)ds2

d,` , u ∈ (−∞,+∞) . (6.1)

For concreteness, we will write the slice metric in Poincaré coordinates,

ds2
d,` = `2

z2

(
dz2 + d~x2

d−1

)
, (6.2)

and we take the slice-AdS length to be equal to the bulk-AdS length ` for simplicity. The
single-sided solution is obtained by restricting the range of u to (−∞, 0].

To study correlation functions of dimension-∆ operators O in the d-dimensional bound-
ary theory on AdSd, we add a probe scalar of a given mass m2 = ∆(∆− d), whose action
we take as:

S = − 1
2`d−1

∫
du

∫
ddx
√
−g

[
gab∂aϕ∂bϕ+m2ϕ2

]
, (6.3)

where g is the metric tensor in equation (6.1).
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Boundary correlators are obtained by the usual holographic prescription: solve the bulk
field equation with given source ϕ− in the UV, evaluate the action on-shell and differentiate
with respect to the source. Holographic correlators in the geometry (6.1) were studied
in [51]. Here, we borrow their results and refer the reader to that work for details.

Let us first describe the full two-boundary geometry. In this case there is a copies of
the CFT on each boundary u → ±∞, and we can turn on two independent source ϕ(−)

−
and ϕ

(+)
− on the two AdSd space-times at u → ±∞. Therefore there are four types of

boundary correlators,

G±±(z, z′; ~x− ~x′) = 〈O±(z, ~x)O±(z′, ~x′)〉 , (6.4)

and the on-shell action will be a boundary term of the form, schematically:

Son−shell =
∫ (

ϕ
(−)
− G−−ϕ

(−)
− + ϕ

(+)
− G++ϕ

(+)
− + ϕ

(−)
− G−+ϕ

(+)
− + ϕ

(+)
− G+−ϕ

(−)
−

)
. (6.5)

Out of the four correlators in (6.4) only two are independent, since by the Z2-symmetry of
the background G−− = G++ and G−+ = G+−.

In a single-sided solution, there is a single operator O(z, ~x) and correspondingly a
single source: one must give a prescription to relate the two sources ϕ(−)

− and ϕ(+)
− . The

correlator one obtains will then be a linear combination of G−− and G−+. In particular,
the single-sided solution one obtains by a Z2-orbifold around u = 0 correspond to picking
a Z2-even solution for the bulk scalar field, ϕ(−u, z, ~x) = ϕ(u, z, ~x). This is equivalent to
introducing an IR brane at u = 0 with a Neumann boundary for the scalar field. In this
case, the boundary correlator is [51]:

〈O(z, ~x)O(z′, ~x′)〉N = 1
2∆

[
1

(coshL− 1)∆ + 1
(coshL+ 1)∆

]
, (6.6)

where we have defined:
coshL = 1 + (z − z′)2 + |~x− ~x′|2

2zz′ . (6.7)

We have:

coshL− 1 = (z − z′)2 + |~x− ~x′|2
2zz′ ≡ C(z, ~x, z′, ~x′) , (6.8)

coshL+ 1 = (z + z′)2 + |~x− ~x′|2
2zz′ .

The operator O in the theory with Neumann boundary conditions is related to the operators
of the ± CFTs by:

O(z, ~x) ≡ 1√
2

(O+(z, ~x) +O−(z, ~x)) . (6.9)

The quantity C(z, ~x, z′, ~x′) in (6.8) is the conformal distance between the points
(z, ~x, z′, ~x′) on the boundary AdSd. It has the interesting property that it is covariant
under coordinate transformations generated by conformal killing vectors of AdSd (which
exist in the same number as flat space conformal killing vectors) [64]. In other words, the
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conformal distance behaves just like the Euclidean distance in flat space under conformal
transformations. On the contrary, the geodesic distance (which is given by L in (6.7)) does
not satisfy this property.

In a conformally invariant quantum field theory on AdSd, one then expects the correlator
to be conformally covariant in a similar way as its flat space counterpart and given by:

〈O(z, ~x)O(z′, ~x′)〉conf = 1
2∆

1
[C(z, ~x, z′, ~x′)]∆

= 1
2∆

1
(coshL− 1)∆ , (6.10)

i.e. the first term in (6.6). The presence of the second term in (6.6) breaks conformal
invariance. This is related to the fact that only certain boundary conditions at the z → 0
boundary of AdSd preserve full conformal invariance [65], and the holographic single-sided
solution defined above using Neumann boundary conditions is not compatible with these
conformal boundary conditions.

One can construct different, more general single-sided solutions if one abandons the
idea of imposing Z2-symmetry on the two-sided geometry: simply cut off the space by a
general IR brane and assume some boundary at u = 0. For example, if one were to impose
Dirichlet boundary conditions for the scalar ϕ at u = 0, one would find [51]:

〈O(z, ~x)O(z′, ~x′)〉D = 1
2∆

[
1

(coshL− 1)∆ −
1

(coshL+ 1)∆

]
. (6.11)

This also differs from the conformal result (6.10).
One may then ask the question of whether there exists a definition of IR boundary

conditions such that, at least in the probe scalar case, the holographic correlator reproduces
the equation (6.10). The answer is affirmative but, as we show below, these “conformal” IR
boundary conditions cannot be encoded in a local brane action at u = 0.

The most general, local, linear boundary condition can be obtained by adding to the
action (6.3) a quadratic term localized on the brane,

SIR = −µ2

∫
u=0

√
−γϕ2 , (6.12)

where γµν is the induced metric at u = 0 and µ is a constant. Upon varying S + SIR one
obtains the bulk equation and the IR condition:

∂ϕ

∂u
(z, ~x, u = 0) = µϕ(z, ~x, u = 0) . (6.13)

From equations (6.6) and (6.11) it is clear that the conformal boundary correlator (6.10) is
given by the linear combination of the Neumann and Dirichlet results:

〈O(z, ~x)O(z′, ~x′)〉conf = 1
2
[
〈O(z, ~x)O(z′, ~x′)〉D + 〈O(z, ~x)O(z′, ~x′)〉N

]
. (6.14)

Recall that the holographic boundary correlator is, schematically, given by the derivative of
the bulk-to-boundary Green’s function, i.e. a solution of the bulk field equation with unit
source, obeying the corresponding boundary condition:

〈O(z, ~x)O(z′, ~x′)〉D,N ∼ (∂uKD,N )(z, z′; ~x− ~x′, u = 0) , (6.15)
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where on the left-hand side KD,N are the bulk-to-boundary Green’s functions obeying
respectively Dirichlet and Neumann boundary conditions at the IR brane. Therefore, the
linear combination (6.14) is obtained by choosing µ in (6.12) so that the boundary conditions
at u = 0 pick the following bulk-to-boundary Green’s function:

Kconf = 1
2 (KD +KN ) . (6.16)

This combination is characterized by the property:

(∂uKconf)(u = 0) = (∂uKD)
KN

∣∣∣
u=0

Kconf(u = 0) . (6.17)

Recalling that Kconf is a solution of the bulk field equation, and comparing with (6.13)
suggests that we should identify the parameter µ with the quantity:

µ = (∂uKD)
KN

∣∣∣
u=0

. (6.18)

This cannot be correct, however, because the right-hand side is not a constant but a
non-trivial function of the boundary points. This implies that it is impossible to obtain a
conformal correlator by any choice of local action at the IR boundary of the type (6.12).

If we are willing to use a non-local action, the way to proceed is to go to “momentum
space” along the slice, i.e. by decomposing the d+ 1 Klein-Gordon equation

�d+1ϕ = m2ϕ , (6.19)

into eigenmodes of the slice Laplacian, namely writing ϕ(u, z, ~x) = Fν(u)φν(z, ~x) and, using
the metric in the form (6.1), writing equation (6.19) as:[

∂2
u + d tanh u∂u + cosh−2 u

(
ν2 − (d− 1)2

4

)]
Fν(u) = m2Fν(u) , (6.20a)

�dφν(z, ~x) =
(
ν2 − (d− 1)2

4

)
φν(z, ~x) , (6.20b)

In the form above, the (complex) number ν determines the eigenvalue of the slice-AdS
laplacian. The boundary condition at u = 0 is then imposed on the function F , and its
general form

F ′ν(u = 0) = µ(ν)Fν(u = 0) , (6.21)

where µ is, in general, a function of the slice Laplacian eigenvalue ν. One then writes the
brane-localized action as a decomposition over a complete set of eigenmodes (parametrized
by ν and spatial momentum conjugate to ~x), i.e schematically

SIR =
∫
dν

∫
dd−1k

(2π)d−1 µ(ν) |ϕ̃(ν,~k)|2 , (6.22)

where ϕ̃(ν,~k) are “Fourier modes” of the field ϕ(u = 0), adapted to the eigenvalue equation
in AdSd. One can then go back to position space using the AdS analogue of the Parseval
formula for the Fourier transform, which results in a non-local action on AdSd

Sbrane =
∫
dzdz′dd−1x dd−1x′ µ(z, z′, ~x− ~x′)ϕ(z, ~x)ϕ(z′, ~x′) , (6.23)
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where µ(z, z′, ~x − ~x′) is obtained from µ(ν) by an appropriate integral transform. The
interested reader can find the technical details in appendix D. There, it is also shown that
the expression of µ in momentum space which results in the conformal correlator is:

µ(ν) =
2 tan(π2 (ν − 1

2))
π2

∣∣∣∣Γ(3
4 + ν

2 + γ

2

)∣∣∣∣2 ∣∣∣∣Γ(3
4 + ν

2 −
γ

2

)∣∣∣∣2 (cos(πγ) + sin(πν)) . (6.24)
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A AdS-slicing vs. global coordinates

Here we want to relate the R× Sd−1-slicing (usually referred to as global coordinates) and
AdSd-slicing of AdSd+1, and the structure of the respective conformal boundaries.

We work in Euclidean signature. The embedding space definition of EAdSd+1 is:

−X2
−1 +X2

0 +
d∑
i=1

X2
i = −`2 . (A.1)

• R× Sd−1-slicing
It is useful to explicitly split Sd−1 = [0, π]θ × Sd−2, since in hyperbolic slicing only an
Sd−2 appears:

X−1 = ` coshψ cosh ρ , (A.2)
X0 = ` sinh ρ cos θ ,
Xd = ` sinhψ cosh ρ ,

Xi = ` sinh ρ sin θΩi , i = 1 . . . d− 1 ,
d−1∑
i=1

Ω2
i = 1 ,

with ranges ρ ∈ [0,+∞), θ ∈ [0, π], ψ ∈ (−∞+∞).
The metric reads:

ds2 = `2
[
dρ2 + cosh2 ρ dψ2 + sinh2 ρ

(
dθ2 + sin2 θ dΩ2

d−2

)]
. (A.3)

• EAdSd-slicing
Define:

X−1 = ` cosh u cosh τ cosh r (A.4)
X0 = ` sinh u
Xd = ` cosh u sinh τ cosh r

Xi = ` cosh u sinh τ Ωi i = 1 . . . d− 1 ,
d−1∑
i=1

Ω2
i = 1 ,
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with ranges u ∈ (−∞,+∞), r ∈ [0,+∞), τ ∈ (−∞+∞).

The metric reads:

ds2 = `2
[
du2 + cosh2 u

(
dr2 + cosh2 rdτ2 + sinh2 r dΩ2

d−2

)]
. (A.5)

Both coordinate systems cover the full EAdSd+1 manifold: comparing (A.2) and (A.4) we
see that the two sets of local coordinates cover the same range of X−1 . . . Xd, namely the
connected component with X−1 > 0 of the manifold defined by equation (A.1). Therefore
they are both global charts on Euclidean EAdSd.

The two charts may be directly related by the following transformation:

cosh ρ = cosh u cosh r , cos θ = sinh u(
cosh2 u cosh2 r − 1

)1/2 , ψ = τ , (A.6)

and its inverse:

sinh u = cos θ sinh ρ , cosh r = cosh ρ(
cos2 θ sinh2 ρ+ 1

)1/2 , τ = ψ . (A.7)

The AdS boundary is at ρ → +∞. From (A.6), we can see that this corresponds in the
hyperbolic slicing to taking either u→ ±∞ with r finite (reaching the two disconnected
EAdSd boundary slices) or r → +∞ with u finite (going to the boundary along a slice).
Notice that in the latter case, θ → π/2.

From the last consideration, it may seem that all the slice boundaries at any u collapse
to the equator of the Sd−2 at ρ → ∞, which is a codimension-2 hypersurface in the full
manifold and a codimension-1 hypersurface of the boundary. One may worry that this
makes any non-trivial function f(r, u), which does not go to a u-independent constant as
r → +∞, ill-defined. This question is not well-defined as it is, since neither the Sd−1 at
ρ→∞ nor the corresponding limits in hyperbolic slicing are part of the EAdSd+1 manifold.
For example, it is clearly not true that in the limit r →∞ all slices converge: take two points
on two different hyperbolic slices, with coordinates A = (uA, rA,Ωi

A) and B = (uB, rB,Ωi
B),

such that rA = rB, ΩA = ΩB, uA 6= uB. The distance between these two points is

d(A,B) = `|uA − uB| , (A.8)

as one can immediately see from (A.5), and it stays finite as we move the points to the
slice-boundaries rA = rB → +∞. Therefore there is no sense in which all slices converge,
and a nontrivial function of u as r →∞ is certainly allowed.

The question becomes more interesting if we pose it in the conformal compactification
of the space. In this case, the answer depends on which conformal compactification we use,
which is related to the choice of the space where we define the dual CFT.

In global coordinates, we can go to the conformal compactification by defining:

tan ξ = sinh ρ , ξ ∈ [0, π/2] . (A.9)
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The metric (A.3) becomes:

ds2 = 1
cos2 ξ

[
dξ2 + dψ2 + sin2 ξ

(
dθ2 + sin2 θ dΩ2

d−2

)]
. (A.10)

The boundary is at ξ = π/2. The conformal compactification is obtained by removing the
prefactor (cos ξ)−2. The boundary (which now does belong to the manifold) ξ = π/2 has
geometry Rψ × Sd−1. Therefore, this is the appropriate conformal compactification if we
want the CFT to live on Rψ × Sd−1. In this case, the locus θ = π/2 with fixed ψ and fixed
Ωi is a single point on the boundary, and any regular function must have a single value at
this point.

Let us now consider hyperbolic coordinates (A.5). Defining the new coordinate z by

tan z2 = tanh u2 , z ∈
[
−π2 ,

π

2

]
, (A.11)

brings (A.5) in the form:

ds2 = `2

cos2 z

[
dz2 +

(
dr2 + cosh2 rdτ2 + sinh2 r dΩ2

d−2

)]
. (A.12)

If we remove the conformal factor, we obtain the factorized space-time [−π
2 ,

π
2 ]×EAdSd,

which has two copies of EAdSd as its boundary. This is the right conformal compactification
if we want to study (two copies of) a CFT on EAdSd. In the metric (A.12), unlike the
conformal compactification (A.10), going to the slice boundary r →∞ at fixed τ and Ωi

does not shrink the space to a point, but it leaves the segment [−π/2, π/2]z. Therefore, in
this conformal compactification, points on different slices stay at a finite distance when we
move towards the slice boundary, as we noted previously.

One may argue that the conformal compactification (A.12) has not made the full
boundary compact, as the slice-boundaries are still of infinite size and an infinite distance
away. This can be remedied by further (conformally) compactifying the manifold (A.12) to
bring also the slice-boundary at a finite distance. This is easily done as in (A.9), but now
applied to the coordinate r: defining

tan β = sinh r , (A.13)

brings (A.12) to:

ds2 = `2

cos2 z cos2 β

[
dτ2 + dβ2 + cos2 β dz2 + sin2 β dΩ2

d−2

]
, (A.14)

where β ∈ [0, π/2] and z ∈ [−π/2, π/2]. Now, it is clear that going to the slice boundary
β → π/2 shrinks any distance along z to a point, however, the boundary doesn’t have the
geometry of EAdSd anymore. Thus, this conformal compactification does not describe
CFTs on EAdSd.

In fact, it is not hard to see that the conformal boundary of the manifold (A.14) is
again Rτ × Sd−1. To see this, first notice that the metric in the square brackets in (A.14)
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is locally the same as Rτ × Sd, where Sd is written in a combination of polar-spherical
coordinates: to see this, define Sd as

Y 2
0 + Y 2

1 + . . . Y 2
d = 1 , (A.15)

and choose polar coordinates in the (Y0, Y1) plane and (d− 1)-dimensional spherical coordi-
nates in the remaining directions:

Y0 = cosβ cos z , (A.16)
Y1 = cosβ sin z ,

Yi+1 = sin β Ωi , i = 1 . . . d− 1 ,
d−1∑
i=1

Ω2
i = 1 .

One can easily check that the metric is the same as that of the (β, z,Ωi) factor in (A.14).
To cover the whole Sd once, we need β ∈ [0, π/2] and z ∈ [−π, π]. However, the

manifold we arrived at in (A.14) has z ∈ [−π/2, π/2], therefore it is only half of an Sd: the
half corresponding to Y0 ≥ 0. Its boundary is the intersection of Sd with the hyperplane
Y0 = 0, which is Sd−1.

B First order equations

In this appendix, we write the first-order equations in various forms, to elucidate
their structure.

In terms of W,S, T defined in (2.10), the equations of motion (2.4)–(2.6) are given by

S2 − SW ′ + 2
d
T = 0 , (B.1a)

d

2(d− 1)W
2 − S2 − 2T + 2V = 0 , (B.1b)

SS′ − d

2(d− 1)SW − V
′ = 0 . (B.1c)

We also have the identity
T ′

T
= W

(d− 1)S . (B.2)

We can simplify this system by eliminating T algebraically so that we are left with the
following equations

d

2(d− 1)W
2 + (d− 1)S2 − dSW ′ + 2V = 0 , (B.3a)

SS′ − d

2(d− 1)SW − V
′ = 0 . (B.3b)

The system can be converted into a second-order equation for a single variable. Solv-
ing (2.13a) algebraically for S gives

S± = dW ′

2(d− 1) ±
√
d2W ′2 − 8(d− 1)V − 2dW 2

2(d− 1) , (B.4)
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which indicates that for all real solutions we have the bound

W 2 ≤ dW ′2

2 − 4(d− 1)
d

V . (B.5)

The remaining equation can be converted into a non-linear second-order differential equation
for W (

d
(
d(W ′)2 − 2W 2

)
− 8(d− 1)V

)(
4(d− 1)V ′ +W ′

(
(d+ 2)W − 2dW ′′

) )2
=
(
− 2d2(W ′)2W ′′ + 4(d− 1)V ′W ′ − 8(d− 1)V

(
W −W ′′

)
+ 2dW 2W ′′ + d(d+ 2)W (W ′)2 − 2dW 3

)2
. (B.6)

Another approach is to solve (2.13b) for W

W = −2(d− 1)
d

(
V ′

S
− S′

)
= 2(d− 1)

dS
Q′ , Q ≡ S2

2 − V , (B.7)

and then substitute in (2.13a) to obtain a second order equation for S

2(d− 1)S3S′′ + 2(d− 1)(d+ 2)
d

V ′SS′ − 2(d− 1)
d

S2S′2

− (d− 1)S4 − 2(V + (d− 1)V ′′)S2 − 2(d− 1)
d

(V ′)2 = 0 . (B.8)

Assuming the scale factor plays the role of energy scale,22 the holographic beta function
can be expressed as

β(ϕ) = dϕ

dA
= −2(d− 1) S(ϕ)

W (ϕ) . (B.9)

We can express then

S′ = V ′

S
+ dW

2(d− 1) = V ′

S
− dS

β
, W ′ =

2V + (d− 1)S2 + 2d(d− 1)S2

β2

dS
. (B.10)

Differentiating we obtain

β′ = 1
2d

[2β(βV + d(d− 1)V ′)
(d− 1)S2 + β2 − 2d(d− 1)

]
, (B.11)

from where we obtain

S2 = 2β (βV + d(d− 1)V ′)
(d− 1) (2dβ′ − β2 + 2d(d− 1)) . (B.12)

Differentiating once more, we obtain a second-order differential equation for β in terms of
the potential V[ 2β (βV + d(d− 1)V ′)

(d− 1) (2dβ′ − β2 + 2d(d− 1))

]′
+ 2d

β

[ 2β (βV + d(d− 1)V ′)
(d− 1) (2dβ′ − β2 + 2d(d− 1))

]
= 2V ′ .

(B.13)
22This is not however clear here, as the scale factor is no longer monotonic. A proper interpretation is

obtained if we think of these solutions as two different QFTs with an interface.
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C Solutions near critical points

Since the equations of motion are not exactly solvable we solve these equations numerically
and it should be necessary to know the expansion of solutions in the vicinity of some specific
points. For negative curvatures (AdS slices) we have the following expansions [11]:

C.1 Asymptotic solutions near extrema

At each extremum of the potential, we have a UV fixed point. Close to the UV fixed point
at ϕ = ϕm, we consider the scalar potential has an expansion of the form (m2 > 0 for
maxima and m2 < 0 for minima)

V (ϕ) = −d(d− 1)
`2

− m2

2 (ϕ− ϕm)2 +O((ϕ− ϕm)3) . (C.1)

• Maximum of the potential: Near the maximum of the potential, the solution of
equations of motion (2.13a) and (2.13b) for W and S has two branches [11]. For the minus
branch as ϕ→ ϕ+

m the solutions have the following expansions

W− = 2(d− 1)
`

+ ∆−
2` (ϕ− ϕm)2 + R

d`
|ϕ− ϕm|

2
∆− + C

`
|ϕ− ϕm|

d
∆− + · · · , (C.2a)

S− = ∆−
`
|ϕ− ϕm|+

Cd

∆−`
|ϕ− ϕm|

d
∆−
−1 + · · · , (C.2b)

where dots stand for higher power expansion terms and R and C are constants of integration
and we have defined

∆± = d/2±
√
d2/4−m2`2 . (C.3)

Since 0 < m2 < d2/4`2 therefore 0 < ∆− < d/2 and d/2 < ∆+ < d. Moreover, the plus
branch is described by the following expansions

W+ = 2(d− 1)
`

+ ∆+
2` (ϕ− ϕm)2 + R

d`
|ϕ− ϕm|

2
∆+ + · · · , (C.4a)

S+ = ∆+
`
|ϕ− ϕm|+ · · · . (C.4b)

The plus branch as is discussed in [11], can be arrived at by a specific rescaling of the
minus branch. In other words, the plus branch is the upper envelope of the family of minus
branch solutions parameterized by C. Given the above expansions, we can solve ϕ(u) and
A(u) from (2.10) to obtain the scalar field and scale factor for the minus branch (from now
on, we just discuss the minus branch so we ignore some subscripts)

ϕ(u) = ϕm + ϕ−`
∆−e∆−u/` + Cd |ϕ−|∆+/∆−

∆−(d− 2∆−) `
∆+e∆+u/` + . . . , (C.5a)

A(u) = A− −
u

`
−
ϕ2
− `

2∆−

8(d− 1)e
2∆−u/` − R|ϕ−|

2/∆− `2

4d(d− 1) e2u/` (C.5b)

− ∆+C|ϕ−|d/∆− `d

d(d− 1)(d− 2∆−)e
du/` + . . . ,

where ϕ− and A− are two constants of integration.
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When ϕ→ ϕ−m we can use the symmetries of equations of motion (2.13a) and (2.13b)
to write the expansions again. As we see, W →W , S → −S and dϕ→ −dϕ is a symmetry
of these equations so we can write the solutions as

W = 2(d− 1)
`

+ ∆−
2` (ϕ− ϕm)2 + R

d`
|ϕ− ϕm|

2
∆− + C

`
|ϕ− ϕm|

d
∆− + · · · , (C.6a)

S = −
(∆−
`
|ϕ− ϕm|+

Cd

∆−`
|ϕ− ϕm|

d
∆−
−1 + · · ·

)
. (C.6b)

Again, we can read the expansions of ϕ(u) and A(u)

ϕ(u) = ϕm −
(
ϕ−`

∆−e∆−u/` + Cd |ϕ−|∆+/∆−

∆−(d− 2∆−) `
∆+e∆+u/` + . . .

)
, (C.7a)

A(u) = A− −
u

`
−
ϕ2
− `

2∆−

8(d− 1)e
2∆−u/` − R|ϕ−|

2/∆− `2

4d(d− 1) e2u/` (C.7b)

− ∆+C|ϕ−|d/∆− `d

d(d− 1)(d− 2∆−)e
du/` + . . . .

In both cases above, the UV fixed point is located at u → −∞ and the geometry is
asymptotically AdS space with length scale `.

For equations of motion (2.13a) and (2.13b) there is another symmetry as W → −W ,
S → −S and dϕ → dϕ. In this case for the minus branch as ϕ → ϕ+

m the W and S

expansions are given by

W = −2(d− 1)
`

− ∆−
2` (ϕ− ϕm)2 − R

d`
|ϕ− ϕm|

2
∆− − C

`
|ϕ− ϕm|

d
∆− + · · · , (C.8a)

S = −∆−
`
|ϕ− ϕm| −

Cd

∆−`
|ϕ− ϕm|

d
∆−
−1 + · · · . (C.8b)

To obtain the scalar field and scale factor it would be enough to replace u→ −u. Therefore
we can read the expansions of ϕ(u) and A(u) as follow

ϕ(u) = ϕm + ϕ−`
∆−e−∆−u/` + Cd |ϕ−|∆+/∆−

∆−(d− 2∆−) `
∆+e−∆+u/` + . . . , (C.9a)

A(u) = A− + u

`
−
ϕ2
− `

2∆−

8(d− 1)e
−2∆−u/` − R|ϕ−|

2/∆− `2

4d(d− 1) e−2u/` (C.9b)

− ∆+C|ϕ−|d/∆− `d

d(d− 1)(d− 2∆−)e
−du/` + . . . .

In the same way as ϕ→ ϕ−m we have the following series expansions

W = −2(d− 1)
`

− ∆−
2` (ϕ− ϕm)2 − R

d`
|ϕ− ϕm|

2
∆− − C

`
|ϕ− ϕm|

d
∆− + · · · , (C.10a)

S = ∆−
`
|ϕ− ϕm|+

Cd

∆−`
|ϕ− ϕm|

d
∆−
−1 + · · · . (C.10b)
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and also

ϕ(u) = ϕm −
(
ϕ−`

∆−e−∆−u/` + Cd |ϕ−|∆+/∆−

∆−(d− 2∆−) `
∆+e−∆+u/` + . . .

)
, (C.11a)

A(u) = A− + u

`
−
ϕ2
− `

2∆−

8(d− 1)e
−2∆−u/` − R|ϕ−|

2/∆− `2

4d(d− 1) e−2u/` (C.11b)

− ∆+C|ϕ−|d/∆− `d

d(d− 1)(d− 2∆−)e
−du/` + . . . .

In these two last cases, the UV fixed point is located at u→ +∞ and again the geometry
is asymptotically AdS space-time with length scale `.

• Minimum of the potential: As we approach the minimum of the potential from the
left, we can find the expansion of W and S. In this case, there is just one branch (the +
branch) for negative curvature slices. As ϕ→ ϕ−1 for W < 0, we have

W+ = −2(d− 1)
`

− ∆+
2` (ϕ− ϕ1)2 − R

d`
|ϕ− ϕ1|

2
∆+ + · · · , (C.12a)

S+ = ∆+
`
|ϕ− ϕ1|+ · · · , (C.12b)

T+ = R
`2
|ϕ− ϕ1|

2
∆+ + · · · . (C.12c)

where ∆+ = d/2 +
√
d2/4 +m2`2 > 0. The expansions of the scalar field and scale factor

are given by

ϕ(u) = ϕ1 − ϕ+`
∆+e−∆+u/` + · · · , (C.13a)

A(u) = A+ + u

`
−
ϕ2

+ `
2∆+

8(d− 1)e
−2∆+u/` − R|ϕ+|2/∆+ `2

4d(d− 1) e−2u/` + · · · , (C.13b)

On the other hand, as shown in [11], the minus branch solution near a minimum of the
potential exist only if RUV = 0, and since T = 0 in that case, this implies that S = W ′ and
we have

W− = −2(d− 1)
`

− ∆−
2` (ϕ− ϕ1)2 + · · · , (C.14a)

S− = −∆−
`
|ϕ− ϕ1|+ · · · , (C.14b)

where ∆− = d/2−
√
d2/4 +m2`2 < 0. We also obtain

ϕ(u) = ϕ1 − ϕ−`∆−e−∆−u/` + · · · , (C.15a)

A(u) = A− + u

`
−
ϕ2
− `

2∆−

8(d− 1)e
−2∆−u/` + · · · . (C.15b)

C.2 ϕ-bounces, IR bounces and A-bounces

For a generic point x = ϕ0 − ϕ consider an expansion for scalar potential as follow

V (x) = V0 + V1x+ V2x
2 +O(x3) . (C.16)
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• ϕ-Bounce point: at this point, the expansion of the W , S and T when x → 0+ are
given by

W = W1 −
4(d− 1)V0 + dW 2

1
d(d− 1)S0

x
1
2 − (d− 6)W1(4(d− 1)V0 + dW 2

1 )
6d(d− 1)2S2

0
x+O(x

3
2 ) ,

(C.17a)

S = S0
√
x− dW1

3(d− 1)x−
36(d− 1)V0 + 36(d− 1)2V2 + d(d+ 9)W 2

1
36(d− 1)2S0

x
3
2 +O(x2) ,

(C.17b)

T = 4(d− 1)V0 + dW 2
1

4(d− 1)
(
1− 2W1

(d− 1)S0
x

1
2 + 12(d− 1)V0 − (d− 9)dW 2

1
3d(d− 1)2S2

0
x+O(x

3
2 )
)
.

(C.17c)

At the ϕ-bounce point, the flow does not stop, ϕ̈ = S2
0 6= 0. The expansions at each point

are parametrized by W1 and the value of S0 is fixed by potential, S0 = ±
√

2V1. As we
see, there are two branches at this point, depending on the sign of S0. In this case, the
flow reaches the ϕ-bounce point ϕ0 from one branch and then it bounces and returns from
the other branch. The value of W1 is not arbitrary and since V0 < 0 it should be chosen
carefully because we need to have a negative value for T . In fact (C.17c) suggests that
W 2

1 <
−4(d−1)V0

d .

• IR-bounce: at this point, W and S simultaneously tend to zero, but the flow does not
stop here, ϕ̈ 6= 0. As x→ 0+ the flow goes to the fixed point from the left. The expansions
of W , S and T around this point are given by

W = 4V0
dS1

√
x+O(x) , (C.18a)

S = S1
√
x+O(x) , (C.18b)

T = V0 +O(
√
x) . (C.18c)

Two branches are depending on the choice of S1 = ±
√

2V1. The solution with a minus sign
is the mirror image of the solution with a plus sign. The solutions of the scalar field and
metric near the IR fixed point u = u0 are given by

ϕ(u) ≈ ϕ0 −
S2

1
4 (u− u0)2 , (C.19a)

ds2 ≈ du2 + e2A0

(
1 + (u− u0)2

`2IR
ds2

AdSd,α

)
, (C.19b)

where A0 is the integration constant and `2IR = d(d− 1)/|V0| and ds2
AdSd,α is a AdSd metric

with length scale α. Since Ȧ(u0) = ϕ̇(u0) = 0 we can continue the geometry for u > u0 by
gluing its mirror image around u0. This geometry is regular since the metric and scalar
field, as well as their derivatives, are all continuous across u0. There is an exception when
V1 = 0 or when ϕ0 is located on the minimum of the potential.
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• A-bounce: at this point, S(x) 6= 0 so the flow does not stop but since W (x) = 0 the
scale factor reaches a minimum (or a maximum). As x→ 0+ the scale factor decreases and
then after the A-bounce it increases. The expansions of W and S are given by

W =
((d− 1)S0

d
+ 2V0
dS0

)
x+

(
d+ 1
2dS0

− V0
dS3

0

)
V1x

2 +O(x3) , (C.20a)

S = S0 + V1
S0
x+O(x2) , (C.20b)

T = V0 −
S2

0
2 −

(S2
0 − 2V0)((d− 1)S2

0 + 2V0)
4(d− 1)dS2

0
x2 +O(x3) . (C.20c)

All the above extremal points may occur when the flow approaches from the right. In this
situation, we can use the above expansions for x = ϕ− ϕ0.

C.3 No ϕ-bounce at an extremum point of a potential

Previously we have assumed that the bouncing point does not coincide with an extremum
of the potential. In this section, we study the possibility of a bouncing flow when the
bouncing point is an extremum of the potential. For convenience we write here again the
two first-order equations that we solve:

d

2(d− 1)W
2 + (d− 1)S2 − dSW ′ + 2V = 0 , (C.21a)

SS′ − d

2(d− 1)SW − V
′ = 0 . (C.21b)

Near an extremum ϕ = ϕ1, the potential can be expanded as:

V (ϕ) = V0 + V2
2 (ϕ− ϕ1)2 + · · · . (C.22)

First, we analyze if there can be a ϕ-bounce on an extremum. For a ϕ-bounce, we
demand that

ϕ̇ = 0 , ϕ̈ 6= 0 . (C.23)

This can be translated to that near ϕ = ϕ1

S = 0 , 1
2
dS2

dϕ
6= 0 . (C.24)

Let us assume that near ϕ = ϕ1, to the leading order:

1
2
dS2

dϕ
= S2

0
2 , (C.25)

where S0 is a constant. Integrating this equation with the condition that S(ϕ1) = 0 we find

S = ±S0
√
ϕ− ϕ1 . (C.26)

Since SS′ is finite, and V ′ → 0, eq. (C.21b) demands that, near ϕ = ϕ1

W ∼ 1√
ϕ− ϕ1

. (C.27)
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Therefore, near ϕ = ϕ1, we can use the following expansions:

S(ϕ) =
√
ϕ− ϕ1

[
S0 + S1

√
ϕ− ϕ1 + S2 (ϕ− ϕ1) + · · ·

]
, (C.28)

W (ϕ) = 1√
ϕ− ϕ1

[
W0 +W1

√
ϕ− ϕ1 +W2 (ϕ− ϕ1) + · · ·

]
. (C.29)

Substituting this into eqs. (C.21a)–(C.21b) we find:

S0 = 0 , W0 = 0 , W1 = ±2

√
(1− d)V0

d
,

S1 = −1
2

−
√

dV0
1− d ±

√
−dV0 + 4(d− 1)V2

d− 1

 . (C.30)

Since S0 = 0, we can conclude that there can not be any ϕ-bounce on an extremum of the
potential. Writing

V0 = −d(d− 1)
`21

, (C.31)

we can write

W1 = ±2(d− 1)
`1

, S1 = 1
2`1

(
d±

√
d2 + 4V2`21

)
= ∆±

`1
, (C.32)

where
∆± = 1

2

(
d±

√
d2 + 4V2`21

)
. (C.33)

Using the definition
W = −2(d− 1)Ȧ , (C.34)

we find that to the leading order:
A = C ∓ u

`1
, (C.35)

where C is an integration constant that we can set to zero. Using

d

2(d− 1)W
2 − S2 − 2T + 2V = 0 , (C.36)

we can observe that near ϕ = ϕ1

T ≈ 0 . (C.37)

Since
T = Re−2A(u) ≈ Re±

u
`1 . (C.38)

For T ≈ 0 and W1 = −2(d−1)
`1

, it requires

either R = 0 , or u→ +∞ . (C.39)

For the latter case, since
eA(u) →∞, (C.40)
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this is a UV. We are now going to analyze the case for which R = 0. In this case, we have
the following equation:

d

2(d− 1)W
2 −W ′2 + 2V = 0 . (C.41)

First, we analyze if there can be any ϕ-bounce on an extremum of the potential. We
can pass from the curved case to the flat case by setting S = W ′. Therefore we take the
following expansion:

W ′(ϕ) =
√
ϕ− ϕ1

[3
2W1 + 2W2

√
ϕ− ϕ1 + 5

2W3 (ϕ− ϕ1) + · · ·
]
. (C.42)

Integrating this once we find:

W (ϕ) = W0 +W1 (ϕ− ϕ1)3/2 +W2 (ϕ− ϕ1)2 + · · · , (C.43)

where W0 is an integration constant. Inserting this into eq. (C.41), and solving order by
order we find:

W0 = ±2

√
V0(1− d)

d
, W1 = 0 , W2 = 1

8

 dW0
d− 1 ±

√
16V2 + d2W 2

0
(d− 1)2

 . (C.44)

Since W1 = 0, we conclude that there can not be any bouncing solution on an extremum of
the potential. We take

V0 = −d(d− 1)
`21

, W0 = −2(d− 1)
`1

. (C.45)

Then W2 becomes:
W2 = − 1

4`1

(
d±

√
d2 + 4`21V2

)
= −∆±

2`1
. (C.46)

Integrating
W = −2(d− 1)Ȧ , ϕ̇ = W ′ , (C.47)

we find that to the leading order:

A(u) = u

`1
+ · · · , (C.48)

ϕ(u) = ϕ1 + ϕ±e
−∆±u

`1 . (C.49)

For a maximum, ∆± > 0, eq. (C.49) implies that u→ +∞. In that case, since eA →∞, this
corresponds to a UV. On the other hand, for a minimum ∆+ > 0 and ∆− < 0. Therefore
for (+) solution we require u→ +∞, which again corresponds to a UV. For (−) solution,
∆− < 0, which requires u→ −∞ which corresponds to an IR. We can summarize all these
by the following.

There can not be any ϕ-bounce exactly on an extremum of a potential. A maximum
always corresponds to a UV. A minimum is an IR only for a (−) type flat flow. It can act
as the UV for both curved and flat flow for the (+) type of solution.
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D Bulk equations and boundary transforms in AdS-slicing

In this appendix, we provide some technical details on the calculation of correlators in the
presence of AdS slices, discussed in section 6.

We use a probe scalar field to study the 2-point functions on an AdSd boundary metric.
Since the coordinate system (6.1) studied in details in appendix A is not singular except
at u→ ±∞, boundary conditions at both infinities are required to solve the equation of
motion (6.19). The equation of motion in question is reproduced here

�d+1ϕ = m2ϕ . (D.1)

The laplacian of AdSd+1 is written, using the coordinate system (6.1), as

`2�d+1 = ∂2
u + dtanhu∂u + cosh u−2�d , (D.2)

where �d is the laplacian of AdSd. The scalar ϕ is decomposed into a basis of functions
Y (~kα) defined as eigenvectors of �d. In the following, we use Poincaré coordinates (6.2) for
the slice AdSd to build these eigenfunctions. Their eigenvalue is parametrized as

�dY
(~k,ν)(z, ~x) =

[
ν2 −

(
d− 1

2

)2]
Y (~k,ν)(z, ~x) . (D.3)

The Fourier decomposition in the AdSd basis reads,

ϕ(u, z, ~x) =
∫
Rd−1

d~k

(2π)d−1

∫
R
dαY (~k,iα)(Z, ~y)ϕ̃(u, iα,~k) , (D.4)

where ν = iα and ϕ̃ are the AdSd-Fourier mode of the field ϕ. The equation of motion (D.1)
for ϕ̃ is separable because the laplacian is replaced by the eigenvalue (D.3). Solutions
of (D.1) are then obtained using the separation of variables

ϕ̃(u, ν,~k) = Fν(u)φ(ν,~k) . (D.5)

The radial part of the equation of motion (D.1) is then given by

F ′′ν (u) + d tanh uF ′ν(u)− (cosh u)−2
[
(`m)2 − ν2 +

(
d− 1

2

)2]
Fν(u) = 0 . (D.6)

This is solved using associated Legendre functions. The most general solution is given by a
linear combination of Legendre functions of the first and second kind denoted respectively
by Pmn and Qmn .

Fν(u) = λ(cosh u)−d/2
[
Qγν−1/2(tanh u) + bP γν−1/2(tanh u)

]
, (D.7)

where b and λ are integration constants and γ is defined by

γ ≡ (`m)2 + d2

4 . (D.8)
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To implement Dirichlet and Neumann boundary conditions at u = 0, the general solu-
tion (D.7) needs to be written explicitly in terms of the integration constants at u = 0.
This is obtained using formulae 8.6 of [66]. In particular, the Dirichlet condition Fν(0) = 0
fixes the constant b to the value

bDirichlet = π

2 tan
(
π

2

(
ν − 1

2 + γ

))
, (D.9)

whereas Neumann condition F ′α(0) = 0 fixes b to the value

bNeumann = −π2 cot
(
π

2

(
ν − 1

2 + γ

))
. (D.10)

The constant λ is fixed by using the asymptotics of Legendre functions at the boundary
u→ −∞,

Fν(u) →
u→−∞

λeu∆−2
∆+

2
Γ(γ)
π

(
b cos(πν)− π

2 sin(πν)
)
, (D.11)

along with the unit-source boundary condition

Fν(u) →
u→−∞

= eu∆− . (D.12)

Using the values for bDirichlet and bNeumann given in (D.10) and (D.11) and the values of λ
for each solution using (D.12), one can obtain the particular solution (6.16) which is a sum
of Dirichlet and Neumann solutions. The result is given by

bconformal = −π2 cotπγ . (D.13)

This solution leads to the conformal correlator (6.10). An important remark is that a
solution satisfying (D.13) has a source on the u→ −∞ boundary, but has zero source on the
opposite boundary u→ +∞. Indeed, the asymptotic behaviour of the general solution (D.7)
at u→ +∞ is given by

Fν(u) →
u→+∞

= λe−u∆−2
∆+

2
Γ(γ)
π

(
b sin(πγ) + π

2 cos(πγ)
)
. (D.14)

This leading term cancels in the conformal case (D.13). Therefore, the conformal solution
corresponds to a solution with zero-source on the opposite boundary.

Next, we rewrite the conformal condition (D.13) as a condition on a brane located at
u = 0 (6.21) at which point the scale factor has a minimum. Taking the action for a brane
at u = 0 in (6.12), writing it in momentum space using (D.4), the boundary condition for
ϕ̃(u = 0, ν,~k) (the position of the “IR” brane) is given by

F ′ν(u = 0) = µ(ν)Fν(u = 0) . (D.15)

The expression of µ(ν) is obtained by taking the solution which satisfies (D.13), and
evaluating it (as well as its first derivative with respect to u) at u = 0 using the formulae
8.6 of [66]. The result is given by

µ(ν) = 2 tan
(
π

2

(
ν − 1

2

))
Γ
[

3
4 + ν

2 + γ
2 ,

3
4 + ν

2 −
γ
2

1
4 + ν

2 + γ
2 ,

1
4 + ν

2 −
γ
2

]
. (D.16)

This can be is simplified to the form of eq. (6.24) using Euler’s reflection formula.
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