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A B S T R A C T   

Purpose: To investigate the possibility to be able to offer left sided breast cancer patients, not suitable for DIBH, 
an organ at risk saving treatment. 
Materials and Methods: Twenty patients receiving radiotherapy for left breast cancer in DIBH were enrolled in the 
study. Planning CT scans were acquired in the same supine treatment position in FB and DIBH. 3DCRT_DIBH 
plans were designed and optimized using two parallel opposed tangent beams (with some additional segments) 
for the breast and chest wall and anterior-posterior fields for regional lymph nodes irradiation. Additionally, FB 
helical tomotherapy plans were optimized to minimize heart and lung dose. All forty plans were optimized with 
at least 95% of the total CTV covered by the 95% of prescribed dose of 50 Gy in 25 fractions. 
Results: HT_FB plans showed significantly better dose homogeneity and conformity compared to the 3DCRT_DIBH 
specially for regional nodal irradiation. The heart mean dose was almost comparable in 3DCRT_DIBH and HT_FB 
while the volume (%) of the heart receiving 25 Gy had a statistically significant reduction from 7.90 ± 3.33 in 
3DCRT_DIBH to 0.88 ± 0.66 in HT_FB. HT_FB was also more effective in left descending artery (LAD) mean dose 
reduction about 100% from 30.83 ± 9.2 Gy to 9.7 ± 3.1. The ipsilateral lung volume receiving 20 Gy has a 
further reduction of 43 % in HT_FB compared with 3DCRT_DIBH. For low dose comparison, 3DCRT_DIBH was 
superior for contralateral organ sparing compared to the HT_FB due to the limited angle for dose delivery. 
Conclusion: For patients who cannot be a candidate for DIBH for any reason, HT in free breathing may be a good 
alternative and provides heart and ipsilateral lung dose sparing, however with the cost of increased dose to 
contralateral breast and lung.   

Introduction 

Radiotherapy is one of the essential modalities of the standard of care 
in breast cancer treatment after breast-conserving surgery or mastec-
tomy [1–7]. While this adjuvant treatment approach can improve local 

control and overall survival, the benefits can be hindered by radiation- 
induced late side effects, such as cardiovascular disease and second 
primary cancers [8–12]. Deep Inspiration Breath Hold (DIBH) radio-
therapy has been validated as an effective approach for cardiac and lung 
dose reduction in left breast radiotherapy [13–18]. Although most 
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patients can benefit from respiratory management via DIBH, there is still 
a minority that cannot comply with DIBH and need alternative ap-
proaches for toxicity management. Schönecker et al. evaluated the 
application of DIBH for left-sided breast cancer radiotherapy and re-
ported that 9 out of 13 patients successfully completed the treatment 
with good compliance and no interruption [19], which means that 31% 
did not. Al-Hammadi et al. evaluated the cardiac sparing of voluntary 
DIBH for left-sided breast irradiation and stated that nine out of sixty- 
three patients (14.3%) were excluded at the time of coaching due to 
non-compliance with the DIBH protocol [20]. 

Intensity Modulated Radiation Therapy (IMRT) techniques via in-
verse planning dose calculation methods and step and shoot, rotational 
or helical dose delivery may be other possible ways to reduce the dose to 
the heart and ipsilateral lung in left breast irradiation. IMRT can tailor 
the dose distribution in a concave shape to the left breast and manage 
the heart and left descending artery (LAD) doses in close proximity to 
the target volume. However, a larger volume of the heart, spinal cord, 
contralateral breast, and contralateral lung may be exposed to low-dose 
irradiation due to the dose delivery from several gantry angles [21–25]. 
Helical tomotherapy (HT), as one of the IMRT dose delivery techniques, 
covers the concave targets with excellent conformity of the helical dose 
distribution throughout a rotating gantry, binary MLC, and a moving 
couch. Several studies reported that HT results in significant dosimetric 
gain related to normal tissue sparing compared to the 3D conformal 
radiotherapy (3DCRT) technique for breast radiotherapy especially 
when internal mammary chain and reginal lymph nodes are involved, 
but it can also lead to larger low-dose regions [26–30]. 

Considering local extension of tumors, studies showed that a high 
proportion of breast cancer patients in Iran (approximately 85%) had 
advanced stage of disease at their first presentation and at the time of 
diagnosis [31–33]. Although recent studies show a decrease in T4 Tu-
mors and increase in early stages detection [34], the majority of cases 
are still diagnosed with T3 or T2b stages. In recent years, increasing 
attention has been paid to irradiating the internal mammary lymph 
nodes (IMN) along with the regional lymph nodes especially for 
advanced stages of breast cancer to decrease the risk of distant recur-
rence and improve long-term overall survival [35–39]. Therefore, the 
majority of breast radiotherapy patients in Iran are candidate for IMN 
and regional nodes irradiation, which implies larger and more nonsur-
face volumes and raises concerns about heart, LAD and lung dose. Our 
institute treats about 1000 breast cancer patients with radiotherapy per 
year, out of a total of 3500 patients per year. However, only one of our 5 
linacs is equipped with surface guided radiotherapy (SGRT) and motion 
management technology due to lack of resources. As a result, we need to 
look for another efficient alternative for toxicity management in breast 
irradiation. Considering this situation, this study aims to evaluate the 
efficiency of cardiac and lung sparing techniques with and without DIBH 
in challenging clinical scenarios in a population more weighted towards 
high stage patients who had mastectomy surgery and/or IMN treatment. 

Material and methods 

A heart-sparing radiotherapy technique incorporating DIBH was 
implemented for left-breast treatment in Reza Radiotherapy and 
Oncology Center (RROC), Mashhad, Iran, in 2019. 

In the computed tomography (CT) room with Siemens Somatom 
Definition AS Open scanner (Siemens Medical Solutions, Erlangen, 
Germany) the surface guided DIBH technique was acquired using Sen-
tinelTM optical surface scanner (C-rad Positioning AB, Uppsala, Sweden). 
On one of the linacs (Siemens Artiste, Medical Solutions, Erlangen, 
Germany) patient position verification and intra-fractional motion 
monitoring of the patients’ surface, including DIBH, was carried out 
using a commissioned optical surface scanner (CatalystTM, C-rad Posi-
tioning AB, Uppsala, Sweden). 

Patient selection 

The inclusion criteria for DIBH treatment were: i) the patient is 
candidate for left breast irradiation, ii) > 10% of the heart volume re-
ceives 25 Gy in the 3DCRT free breathing plans and iii) the patient is 
able to perform four consecutive DIBHs of 25 s each at coaching session. 
One exclusion criterion was: heart dose was not significantly reduced to 
meet the dose constraint in DIBH plan for any reason (this decision will 
be made qualitatively by radiation oncologist and medical physicist 
based on the best judgment). Twenty-three patients were approached to 
be included in this study. Both FB and DIBH scans were made for each 
patient to assess the inclusion criteria. Three patients could not meet the 
inclusion criteria of DIBH treatment of which two patients could not 
comply with stable DIBH for 25 s at coaching session, and one patientś 
body habitus obscured her chest which made it impossible using the 
motion management system. Inclusion was stopped when twenty pa-
tients were prospectively included in this study. Patient characteristics 
of this cohort are shown in Table 1. Seventy percent of the patients in 
this study had mastectomy surgery and/or IMN target. All patients were 
treated with a conventional fractionated regimen (2 Gy in 25 fractions) 
and if indicated sequential boost to the tumor bed was applied with a 
dose of 5 × 2 Gy. The use of the radiotherapy database for this study has 
been approved by RROC research and education committee and the 
research ethics committee of the Ferdowsi University of Mashhad (IR. 
UM.REC.1400.317). 

CT simulation 

Patients were positioned using Orfit AIO breast and lung board (Orfit 
Industries NV, Wijnegem, Belgium) with their arms raised over the head 
and positioned on arm support. They underwent supine CT in free 
breathing (FB) and DIBH using 3 mm slice thickness. To train the pa-
tients to breathe deep in a reproducible way, a coaching session was set 
for each patient before CT simulation session. Selected patients were 
given video instruction and information regarding the limitations and 
benefits of the DIBH technique. Patients had audio-visual feedback 
(video goggles) in coaching and scanning procedures. 

Treatment planning 

The breast clinical target volume (CTV) was delineated according to 
the Radiation Therapy Oncology Group (RTOG) guidelines [40]. For 
node positive patients, ipsilateral axillary lymph nodes level II-III and 
lymph nodes in the supra- and infraclavicular fossa were also included in 
the CTV. For high-risk patients, IMN was also delineated and added to 
the CTV. Breast CTV in DIBH was contoured slightly larger than breast 
CTV in FB with more posterior or inferior extension for some patients. A 
revision was made to keep the CTVs comparable for both imaging data 
sets. Planning target volume (PTV) was then defined as a 5 mm margin 
to the whole CTV and CTV and PTV were retracted 3 mm from the skin 
surface. Bilateral lungs, contralateral breast, heart, LAD, and spinal 
canal were outlined as OARs. The heart was delineated from the apex to 
the inferior border of the left pulmonary artery and included all great 
vessels except the inferior vena cava [41]. The LAD arteries were 
delineated using a 6-mm brush considering the motion uncertainties 

Table 1 
Patient characteristics.   

Breast/ chest 
wall only 

Regional nodes 
without IMN 

Regional 
nodes 
with IMN 

Total number of 
patients 

20 1 7 12 

Breast conserving 
surgery 

10 1 5 4 

Mastectomy 10 – 2 8  
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from the left side of the ascending aorta as far as it could be visualized, 
often to the middle of the heart. To restrict high doses to the PTVs, a ring 
help structure with 30 mm expansion were created. The spinal cord was 
also expanded by 3 mm for the spinal cord planning risk volume. 

The FB planning CTs were used for HT_FB treatment planning, and 
DIBH CT was used for 3DCRT_DIBH plans. All patients were treated with 
3DCRT_DIBH plans and HT_FB plans were created retrospectively for the 
purpose of this study. The 3DCRT DIBH plans consisted of two parallel- 
opposed tangent beams for the breast and chest wall, anterior-posterior 
fields for regional lymph nodes irradiation and one or two additional 
segments for each tangent beam to improve the dose homogeneity. The 
Prowess Panther version 5.5 (Prowess inc., Concord, CA) treatment 
planning system was used for organ delineation and 3DCRT planning 
(Collapsed Cone Convolution Superposition with a dose grid resolution 
of 3 mm × 3 mm × 3 mm). The linac (Siemens Artiste) was equipped 
with 160 MLC leaves (5 mm thickness at isocenter) and the dose rate was 
300MU/min for 6MV photon beam and 500 MU/min for 15MV photon 
beam. 

For Helical Tomotherapy dose delivery (HT_FB), Accuray Precision 
Radiotherapy Treatment Planning software version V 2.0 (Accuray, 
Sunnyvale, CA) was used and the image sets and outlined structures 
were imported from Prowess Panther TPS to the Precision TPS. The 
delivery machine modeled in TPS is Radixact X9 with a 6MV FFF beam 
and1000cGy/min dose rate. The pneumatically driven binary MLC with 
0.625 cm leaf width projection at isocenter is capable of a minimum leaf 
opening time of 18 ms. The field width, pitch, and modulation factor 
parameters were assigned to 5 cm, 0.3/0.43 cm, and 4, respectively and 
the dynamic jaw mode was selected for all plans. In Precision TPS, all the 
inverse planning constraints for organs at risk are soft constraints and 
can be violated, relaxed and tightened during optimization. It also em-
ploys a least squares minimization-optimization algorithm and the full 
dose calculation algorithm is CCCS with pre-computed, Monte Carlo- 
generated scatter kernels. High resolution gride size of 0.98 mm × 3 
mm × 0.98 mm was used for dose calculation. Different “Importance” 
was set in optimization for each OAR and target as a relative weight to 
update leaf intensity values with each iteration. The heart was set to 
have the highest importance among the OARs with almost near to the 
target’s importance and left lung and ring were set to have a lower 
importance than heart and higher than contralateral breast and lung and 
spinal canal. When heart and ipsilateral lung dose constraints were met 
during the optimization, a fine tuning was done to minimize contralat-
eral organs dose reduction as much as possible while maintaining the 
target dose coverage. After final dose calculation, when all the clinical 
objectives and constraints are met, the modulation factor was manually 
reduced by 0.2 at a time for treatment time reduction until the plan 
quality starts to degrade or the estimated gantry period reaches 11.8 s. 
As studies showed that the margin accounting for intrafraction motion in 
breast radiotherapy is highly dependent on treatment time [42–46], the 
beam-on-time reduction was also of attention for HT treatment using 
optimal combinations of pitch, modulation factor, and field width. 
However, no target volume margin was considered for baseline shifts or 
respiratory motions for HT_FB plans. Although directional blocking in 
helical tomotherapy planning is considered to be effective to reduce the 
radiation received by contralateral organs [30], no directional blocking 
was used in the current study as it will compromise the treatment time 
and introduce more uncertainty to the dose delivery. 

To be considered clinically acceptable, all plans needed to cover at 
least 95% of the total CTV with 95% of the prescribed dose of 50 Gy in 25 
fractions. In addition, a qualitative assessment was made by evaluating 
the dose distributions slice-by-slice to assure of adequate target coverage 
and OAR sparing for each patient for all plans. The location and 
magnitude of “hot” and “cold” spots within the target volume were also 
assessed for each plan. The homogeneity index (HI) for CTV was 
calculated using D2/Dp Formula; where D2 is the dose received by 2% of 
the target volume and Dp is the prescribed dose to the target volume. 
V5Gy, V20Gy, V40Gy and Dmean to the ipsilateral lung; V5Gy and Dmean 

to the contralateral lung, V25Gy, V5Gy, and Dmean to the heart, Dmean 
and D2% to the LAD, and mean dose to the contralateral breast were 
used for the plan comparisons. Table 2. shows the planning objectives 
which were employed in treatment planning. 

Planning and delivery time 

The treatment planning time was considered as the time from 
starting a plan until final optimization (for HT inverse planning) and 
dose calculation are completed. The estimated treatment delivery time 
for 3DCRT_DIBH was defined as the time from first beam on until the last 
beam is turned off. The estimated treatment delivery times for HT_FB 
were calculated and reported by the planning system. 

Statistics 

Independent-samples Mann-Whitney U test with a significance level 
of p < 0.05 was used to test for differences between two techniques. All 
statistical tests were performed in SPSS software (v. 27.0, IBM Corpo-
ration, Armonk, NY, USA). 

Results 

All HT_FB plans provided acceptable target coverage. For 
3DCRT_DIBH technique, the medial part of the supraclavicular fossa 
target had not fully covered by 95% of the prescribed dose for almost all 
the patients. A reason could be that the anterior beam was angled for 
spinal cord sparing and the medial of the CTV was placed at beam 
penumbra region. The heart mean dose was statistically similar in 
3DCRT_DIBH and HT_FB with an average of 5.11 ± 1.55 Gy (mean ±
standard deviation) and 4.63 ± 0.79 Gy respectively. According to the 
Mann-Whitney U test, the two techniques showed statistically signifi-
cant (p < 0.05) differences for all other dose volume histogram pa-
rameters as shown in Table 3. 

A patient-per-patient comparison, showing large inter-patient vari-
ation in heart and lung dose is presented in the supplementary data 
(Figs. S1 and S2). HT_FB offered a dose reduction to most patients, but 
increased the dose in a few patients in the cohort (points above the 
identity line). The results show that patients planned with HT_FB tech-
nique generally would receive lower mean doses and lower high dose 
volumes to the heart, LAD, and ipsilateral lung compared to the 
3DCRT_DIBH dose plans. However, the 3DCRT_DIBH plans result in 
lower low dose volumes to the heart and both lungs, as well as lower 
mean dose to the contralateral lung and breast, compared to the HT_FB 
dose plans. 

The dose homogeneity in the breast and lymph nodes were improved 
for HT_FB inverse planning when compared to forward planning in 
3DCRT_DIBH plans with homogeneity index of 1.04 ± 0.0 and 1.08 ±

Table 2 
Dose constraints/Planning objectives employed in treatment 
planning.  

Organ at risk Dose constraint 

Heart Mean < 5 Gy  
V25 < 10%  
V5 < 40% 

LAD* Max < 20 Gy 
Ipsilateral lung V20 < 30%  

Mean < 15 Gy 
Contralateral lung Mean < 5 Gy 
Contralateral Breast Mean < 5 Gy 
Spinal Cord Max < 45 Gy 
Ipsilateral Humerus Max < Prescribed Dose 

* LAD max dose constraint was recommended by the Danish Breast 
Cancer Cooperative Group (DBCG) to be considered to meet when 
possible [47]. 
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0.01 respectively. Maximum dose of the CTV was also reported in 
Table 3. as another surrogate for homogeneity. One major advantage of 
HT_FB could be the avoidance of breast and lymph nodes fields junction 
and dose gaps compared to the 3DCRT technique. As a result of the skin- 
sparing behavior of mega-voltage beams, conventional forward plans 
are normally cold in superficial regions, while HT_FB with multiple 
beam angles can increase the dose to the superficial regions by 
increasing the weight of parts of the beams that are more oblique to the 
skin (Fig. 1). However, there is a trade-off for increasing the low dose 
received by the contralateral breast and lung due to the multiple beam 
angle passing through these organs. Average mean contralateral breast 
and lung doses were higher for HT_FB (5.01 ± 0.79 Gy and 3.08 ± 0.74 
Gy respectively) than with 3D CRT (0.60 ± 0.20 Gy and 0.47 ± 0.07 
Gy). The dose received by 2% of the volume of these organs in the 
medial part was managed to be less than 20 Gy. 

Regarding the protocol deviation evaluation for target coverage, 
there is a concern that 3DCRT planning with almost margin free nodal 
irradiation at medial part may lead to inadequate coverage of supra-
clavicular fossa CTV to spare the spinal canal. The heart dose criteria 
were met for all patients in 3DCRT_DIBH plans. The dose objective of 
(V20 < 30%) for the ipsilateral lung was met for fifteen out of twenty 
patients, and V20 was between 30 and 33% for five patients, which 
shows a maximum violation of about 3% from the protocol. No protocol 
deviation was observed for target dose coverage or healthy organ 
sparing in the HT_FB plans. 

Regarding the time cost comparison, the planning time for 3DCRT 
plans was about 2 h for each patient compared to the HT planning of 3 to 
4 h as it takes more effort to provide superior target conformality and 
organ sparing with minimum trade-off via inverse planning. The dose 
delivery time was almost comparable for 3DCRT_DIBH and HT_FB with 
an average of about 5 min for each patient. In addition to planning and 
delivery time, we need to consider about 30 min (in the case of one 
coaching session) for DIBH training for patients receiving 3DCRT_DIBH. 
For some patients who need more practice for stability and reproduc-
ibility, the workflow consists of several coaching sessions with self- 
practice at home according to video instruction. Regarding HT_FB, all 
intensity-modulated plans should be measured before the first treatment 
fraction according to the National Quality Control program, which adds 
about 15 min per HT plan. Also, the Quality check (” paper” work) takes 
longer for an HT plan than for a 3DCRT plan. 

Discussion 

Both techniques (HT_FB and 3DCRT_DIBH) kept heart and lung dose 

below clinical objectives for most left sided breast cancer patients 
enrolled in this study. Doses to the LAD remained high in selected pa-
tients: Mean D2% for the investigated patient group was about 20 Gy in 
HT_FB, seven patients (with IMN target, challenging anatomy, or tumor 
bed just in front of the heart) presented high mean D2% (up to 33 Gy) in 
HT_FB. This is while this value increases up to 49 Gy at 3DCRT_DIBH. 
Similar results of high values for D2% were published by Poitevin- 
Chacón et al. and Vennarini et al [48,49]. Other studies showed lower 
heart and LAD mean doses compared with our study, but this may reflect 
our challenging population, where the majority of the patients are in 
advanced stages with supraclavicular, axillary, and internal mammary 
lymph nodes included in radiation fields [13,50]. While HT_FB inverse 
planning showed a significant (p < 0.05) reduction in the dose to the 
heart (except mean dose), LAD and ipsilateral lung compared to 
3DCRT_DIBH, this came at the cost of an increased dose to contralateral 
organs. Therefore, though DIBH is often considered the standard of care 
in left-sided breast cancer, the selection of the best treatment for each 
individual patient may be debated amongst clinicians. For example, 
some oncologists might favor the great conformality and junction-free 
delivery process of HT_FB for an elderly patient with pre-existing car-
diovascular conditions and where sparing the heart may be judged more 
important than minimizing the risk of second primary cancers. A rela-
tively large dose to the contralateral breast might also make re- 
treatment more challenging in case of a contralateral recurrence. This 
is worth considering depending on the patient’s age and risk factors. 

As reported by literature, the risk of contralateral breast cancer after 
radiotherapy for breast cancer appears to be highest in women who are 
younger than age 40–45 years at receipt of radiotherapy [51–54]. 
Therefore, 40 years may be considered as an age border for patient se-
lection criteria for intensity modulated techniques. Studies also showed 
that risks for lung cancer after breast radiotherapy is higher after post-
mastectomy radiotherapy than other clinical situations [51,53,55,56]. It 
may provide another patient selection criteria that the complex anatomy 
of mastectomy patients or bilateral breast cancer including regional 
lymph node irradiation may get more benefits in lung dose reduction via 
highly modulated advanced techniques. There is another anatomical 
feature in patients with funnel-like chests with convex lungs causing 
larger lung volume in the radiation fields that may lead the clinical 
decision toward more advanced radiotherapy techniques [57]. Also, in 
patients not being able to comply with DIBH or not being prioritized due 
to limited availability in our center, HT_FB might be an acceptable op-
tion to minimize heart dose. In this study, a small proportion of patients 
was not able to comply with DIBH. The current study might be too small 
to conclude on the percentage of compliant patients in our breast cancer 
population. However, this study confirms that the limiting factor in 
expanding DIBH treatments is likely to be the limited availability of 
DIBH, rather than compliance. 

When comparing dose plan parameters between static field treat-
ment under DIBH to modulated treatment under free breathing its worth 
mentioning that respiration is one of the dominating motions affecting 
the radiotherapy treatment. During DIBH the residual motion of the 
target is within few mm, however, during free breathing the motion 
extent can be much larger. This might cause deviations between the 
planned and delivered dose distributions in the form of dose blurring 
and interplay effects [58]. Interplay effects occur only for dynamic 
treatment techniques such as VMAT or HT, where there is a simulta-
neous movement of machine parts (multileaf collimators (MLC), gantry 
and couch) and the target volume, resulting in hotspots and cold spots in 
the dose distribution. The phenomenon has been confirmed by Moeckly 
et al. for HT breast treatment with the assumption of reproducible reg-
ular and rigid body mechanics in respiratory motion [59]. We have 
however not addressed any interplay effects in this dose planning study. 

Another limitation of the current study is the small number of pa-
tients enrolled in this study, which did not allow us to make the com-
parison in subgroups of early-stage/locally advanced patients or targets 
with or without IMN. Further analysis with enough statistics and less 

Table 3 
Treatment planning dosimetric results for the 3DCRT_DIBH and HT_FB plans.   

3DCRT_DIBH (mean ± SD) HT_FB (mean ± SD) 

CTV   
D2% (Gy) 108.11 ± 1.43 104.88 ± 0.78 
Dmax (Gy) 112.75 ± 2.52 106.81 ± 0.91 
Heart   
Mean (Gy) 5.11 ± 1.55 4.63 ± 0.79 
V25 (%) 7.90 ± 3.33 0.88 ± 0.66 
V5 (%) 11.55 ± 1.79 22.15 ± 3.87 
LAD   
Mean (Gy) 30.83 ± 9.2 9.70 ± 3.1 
D2% (Gy) 49.15 ± 0.91 20.28 ± 7.38 
Ipsilateral Lung   
Mean (Gy) 17.03 ± 2.53 12.48 ± 1.64 
V20 (%) 28.40 ± 5.38 18.64 ± 5.96 
V40 (%) 17.10 ± 4.61 2.86 ± 2.13 
V5 (%) 43.25 ± 3.64 55.57 ± 3.61 
Contralateral Lung   
Mean (Gy) 0.47 ± 0.07 3.08 ± 0.74 
V5 (%) 0.22 ± 0.23 12.33 ± 1.47 
Contralateral Breast   
Mean (Gy) 0.60 ± 0.20 5.01 ± 0.79  
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heterogeneous patient characteristics may be of interest for future 
studies. The next limitation is the risk of contour differences between the 
two scans (DIBH and FB). To reduce the contour variation, all contours 
were reviewed by one radiation oncologist expert in breast cancer. As 
the calculation algorithms and dose calculation grid size are different 
between the two plans it may also has impact on the accuracy of the dose 
distribution calculated especially for narrow organs like the LAD. As 
reported by AAPM Task Group 101, 2 mm grids are required for IMRT 
procedures, especially in high-dose gradient areas. They also reported 
that a 2.5 mm isotropic grid produces an accuracy of about 1% in the 
high-dose region of an IMRT plan consisting of multiple fields [60]. 
Therefore, grid size of<1 mm in HT can be considered well accurate and 
we do not expect that a resolution of 3 mm in 3DCRT plans show a 
clinically significant grid size effect on our comparison. The resolution 
in cranial-caudal direction is 5 mm for both plans due the CT slice 
thickness. 

Due to limited availability, our institution currently prioritizes 

younger patients with higher heart doses (mean dose and V25) for DIBH 
treatment. The results of this study have motivated us to implement 
breast IMRT (helical tomotherapy) in free breathing as a possible 
alternative for cardiac and lung sparing in patients who cannot be 
prioritized for DIBH treatments, especially for plans when the target 
volumes consist of breast and IMNs. 

Conclusion 

Although DIBH is considered to be the most effective technique in 
mean heart and ipsilateral lung dose reductions for left sided breast 
cancer radiotherapy using 3DCRT, we have showed that helical tomo-
therapy in free breathing might also be an appropriate alternative 
treatment technique. Especially for heart, LAD and lung sparing in 
challenging cases, such as patients with advanced disease or patients 
who cannot comply with, or cannot be prioritized for, DIBH. 

Fig. 1. Typical color-wash dose distributions of different treatment plans in axial, coronal, and sagittal planes. HT in FB reduced the ipsilateral lung mean dose, 
ipsilateral lung V20, heart V25, and LAD mean dose compared with 3DCRT in DIBH. FB: free-breathing; DIBH: deep-inspiration breath-hold; HT: helical tomotherapy; 
3DCRT: Three-dimensional conventional radiotherapy. 
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