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ABSTRACT Automatically designing neural architectures, i.e., NAS (Neural Architecture Search), is a
promising path in machine learning. However, the main challenge for NAS algorithms is to reduce the
considerable elapsed time to evaluate a proposed network. A recent strategy which attracted much attention
is to use surrogate predictive models. The predictive models attempt to forecast the performance of a neural
model ahead of training, exploiting only their architectural features. However, preparing the training data
for predictive models is laborious and resource demanding. Thus, improving the model’s sample efficiency
is of high value. For the best performance, the predictive model should be given a representative encoding
of the network architecture. Still, the potential of a proper architecture encoding in pruning and filtering out
the unwanted architectures is often overlooked in previous studies. Here, we discuss how to build a proper
representation of network architecture that preserves explicit or implicit information inside the architecture.
To perform the experiments, two standard NAS benchmarks, NASbench 101 and NASbench 201 are used.
Extensive experiments on the mentioned spaces, demonstrate the effectiveness of the proposed method as
compared with the state-of-the-art predictors.
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INDEX TERMS Neural architecture search, search space pruning, network architecture, representation
learning.

I. INTRODUCTION16

Deep neural networks have been successfully used and17

addressed various challenging tasks, including computer18

vision, speech recognition, machine translation, and medical19

diagnosis, in recent decades. This success has sprung from20

well-designed network architectures and powerful computing21

machines. The manual process of designing a new neural22

model for a specific problem is time and labor consuming.23

Besides, relying on expert experience often results in subjec-24

tive sub-optimal solutions. This has resulted in an emerging25

branch in machine learning which attempts to automatically26

find the optimal neural model for a specific task at hand,27

namely Neural Architecture Search (NAS).28

The optimal answer, there, consists of three parts: the opti-29

mal structure of the model, the optimal parameters and the30

optimal hyperparameters. Traditional optimization methods31
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address the parameter optimization problem. The challenge, 32

however, lies in simultaneous optimization of the struc- 33

ture and hyperparameters of a neural model due to inter- 34

depencency among the hyperparameters and the structure of 35

a network. Thus, separate optimization of the architecture or 36

the hyperparameters, may yield a sub-optimal solution [1]. 37

However, per deep structure, vast selection of hyperparameter 38

exist which form the pool of candidate models. A combina- 39

tion of possible structures and their corresponding hyperpa- 40

rameters, regarding a certain task, builds an enormous space 41

of options, called NAS search space. Such a space would 42

contain at least a few hundred thousand different models. 43

The challenge would be much severe in real-world tasks. 44

Conventional search methods [2], [3], [4], often fully train 45

and evaluate a large part of the space to converge; which is 46

very costly. Thus efficient methods for searching these huge 47

search spaces is highly desirable. 48

Retrospective studies in literature have proposed useful 49

strategies for addressing such a big search space including: 50
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proxy estimates, developing warm starts, early stopping via51

curve analysis, one-shot learning and using surrogate pre-52

dictive models. While leveraging proxy estimates produced53

by simplified search spaces, is fast, several studies demon-54

strates its unreliable results [5], [6], [7]. Curve extrapola-55

tion methods [8] seek to stop training for presumably week56

models using the elapsed learning curve and require heavy57

computations. One-shot methods [9], [10] train only one large58

super-graph and share the attained weights on common edges59

among the sampled sub-graphs. So they have a fast conver-60

gence but less efficient results and suffer from a largememory61

consumption.62

Lately, an efficient strategy based on predictive models63

has been adopted in which candidate architectures are eval-64

uated with no training [7], [11]. The predictor is a learner;65

trained with a few pair of fully trained networks and their66

performance values. The hypothesis behind the predictor67

approach is to build a supervised learning model that can68

catch the most influential network features from training set.69

If the selected networks are of high quality, training with70

this small set will help the predictor to reliably select a71

good model. However, training a meta-predictor is nontriv-72

ial due to following challenges. (1) Lack of training data.73

To train a predictor model, we need an annotated dataset74

in which each architecture is labeled with its actual perfor-75

mance. As such, each model in the training set should first76

be fully trained and then evaluated on the problem data. For77

instance, to build a set with 1000 samples, although this78

number is quite small as compared to the size of the search79

spaces, we need several experimental runs with considerable80

GPU time. (2) Proper representation of symbolic data.81

Proper representation of the input data is a vital require-82

ment for the success of any learning model. The network83

architecture is a symbolic data composed of both topological84

information, i.e. the structure of the network architecture,85

and numerical information, i.e. the hyper-parameters of the86

networks. To feed such data into a learning model, a proper87

representation should be constructed, i.e. the encoding of the88

architecture. A representative encoding should preserve the89

dependency of the layers in each path of the network from90

input to the output layer, which transforms and aggregates the91

data.92

The representation of the architectures for the predictor,93

has rarely been studied. Existing methods either fix or limit94

the network topology to be able to encode the hyperpa-95

rameters [12], or use global features or layer-by-layer fea-96

tures [5], [13], [14] which overlook the topology information.97

It is worth noting that graph-based encoders that recently98

achieved best results, however, can encode the network as99

a whole [11], [15]. These encoders, although, preserve the100

topology, they need lots of training data which is rarely avail-101

able in NAS. Further, they can overfit on cell-based networks102

as the complexity of the predictor exceeds the complexity of103

the network cells. These complex predictors, indeed, tend to104

memorize good architectures rather than learning appropriate105

features.106

There are certain sequences of (network) processes that 107

lead to superior performances. We try to discover decisive 108

patterns inside a network and use it as a measure to esti- 109

mate the performance. In this study, we propose a method to 110

encode and integrate the structural and non structural features 111

of the network as a whole via extracting substructures as 112

local attributes. To extract structural features, we use tree ker- 113

nels and for non structural features we propose an operation 114

coding method. The proposed method can model nested and 115

multi-connection networks in polynomial time. 116

The basic of the method is to convert a deep convolutional 117

model into tree kernels using a small set of samples and then 118

running kernel-level matching. So it relies on two concepts: 119

finding the kernels and effective sampling of the search space 120

To perform the experiments, we use two standard bench- 121

marks, NASbench 101 and NASbench 201, trained on the 122

CIFAR-10 and ImageNet datasets. For each architecture, the 123

datasets also include the respective training and evaluation 124

statistics. These information have been collected in standard 125

and reliable conditions and are now a basis for fair com- 126

parison of neural network architecture search algorithms. 127

Experiments with the proposed method show a significant 128

improvement in sample efficiency of the predictor and its 129

performance estimation. The experiments also show that the 130

knowledge of the predictor can be transferred to other similar 131

problems to find strong architectures. The main contributions 132

of this paper are as follows: 133

• The importance of structure in NAS is investigated and 134

we introduce amethod to embed the structure in network 135

encoding. 136

• For the first time in NAS we propose to use tree kernels 137

in finding structural similarities between two networks. 138

• We investigate the effect of lack of sufficient data on 139

the performance of the predictive model. At present, our 140

method has the best sample efficiency compared to a 141

wide range of methods that had the best performance in 142

2020 and 2021. 143

II. RELATED WORK 144

In different steps of the architecture search process (sampling, 145

modifying and training), a proper encoding of the neural 146

architectures is needed. Although there is not much study 147

regarding the proper encoding, a general classification for 148

network encoding methods is as follows. 149

A. DIRECT ENCODING 150

The direct encoding is the common sequential or layer-by- 151

layer network encoding for flat feed-forward networks with 152

no extra branch. The primary network can be reproduced 153

directly from the network code. Topology-related parameters 154

such as the number of hidden layers, the number of neurons, 155

the layers’ types, kernel sizes and a set of general charac- 156

teristics such as learning rates and biases can be encoded 157

this way [13], [14], [16]. Due to the presence of dependent 158

variables, a network encoding can have variable length. For 159
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example, topology depends on the number of layers and160

hyper-parameters depend on the type of operation. There are161

several issues about using direct encoding in NAS: (1): These162

features are not capable enough to display branched or hierar-163

chical architectures and many more. (2):Structural informa-164

tion such as layer dependency and sequence of operations,165

can only be implicitly modeled. (3):Vector distances can pro-166

duce different representations for an architecture, which can167

be confusing for a predictive model. The reason is that they168

are affected by the traversal order of nodes. The same issue169

exists with word-based coding methods such as TAPAS [14],170

QBlockQNN [17], E2EPP [13], SMASH [9], and a number of171

others. So, they cannot guarantee the mapping of isomorphic172

architectures to one representation [18]. Path-based encod-173

ing [19] however, has solved this using the traversal order174

of the nodes in an input to output path. (4):Direct encod-175

ing often faces immeasurable challenges; by increasing net-176

work depth and search space size, the length of the coding177

string increases. For example, the encoding schema proposed178

by [19] produces encoding vectors of length mn (minimum)179

for a network with n layers and m internal operations.180

B. INDIRECT ENCODING181

The indirect encoding methods need a decoder to reproduce182

a network from its code. Indirect encoding allows for more183

compact representation because it does not describe the net-184

work in detail. The most well-known indirect methods are185

based on LSTM and graph networks.186

The Graph-based encodings apply Graph Convolutional187

Networks (GCN) to take the directed acyclic graph of the188

network and embed them to fixed-length vector representa-189

tions [20], [21]. These encodings represent the topological190

information and graph structured data very well. There are191

two levels to do so: graph level and node-level. For graph192

level, the whole graph is considered as an individual to be193

labeled. For node-level, the inputs are considered vertices of194

a graph and their relation is reflected in the connections. The195

task is to have GCN, predict their labels using this relation196

graph [20]. Several layers of GCN can be stacked together to197

reach a stronger representation.198

Recently, the use of GCN [22] as a predictive model has led199

to superior results in NAS [20], [23], [24]. There are also con-200

siderations regarding graph convolutioanl networks as NAS201

predictors: (1):It is discussed in [12] that the architecture202

representation data is more tabular rather than continuous and203

is not well suited to the widely used neural predictors such as204

RNN, CNN and GCN. (2): Despite the high accuracy results,205

the use of graphical convolutional networks leads to unneces-206

sary calculations and the possibility of over-fitting [22], [24].207

(3): The graphs fit to and memorize good architectures rather208

than extracting design rules. They also need retraining each209

time a new dataset or space is added [18].210

Instead of memorizing the graphs, our method learns the211

decisive substructures in the form of tree kernels to preserve212

the. It exploits the structural similarity measured based on the213

common kernels to encode graphs in the latent space.214

III. PROBLEM STATEMENT 215

The task at hand is to predict the performance of a neural 216

architecture before training. This can be modelled as a regres- 217

sion problem in machine learning, where we aim at learning 218

a regressor P to take the representation of an architecture 219

Ni ∈ N as e(Ni) and return its estimated performance as 220

ŷi = P(Wp, e(Ni)), where Wp denotes the trainable func- 221

tion parameters. The function e(.) takes an architecture and 222

embeds it into a real valued vector. The function P is trained 223

to solve the following minimization problem, 224

min
Wp
‖P(Wp, e(Ni))− yi‖22, (1) 225

where yi denotes the actual performance of the network as 226

label data.The key to success of the predictor is to learn a rep- 227

resentative encoding for the network Ni so that the regressor, 228

i.e. P , can accurately estimate the network performance. 229

IV. PRELIMINARIES 230

Before diving deep into technical details, we first describe 231

basic definitions related to our work. 232

A. KERNEL-BASED STRUCTURAL LEARNING 233

A neural network can be described by a labelled directional 234

graph G = (VG,EG), where VG denotes its set of nodes and 235

EG ⊂ VG × VG shows the set of edges. To learn and find the 236

similarities in graph-structured data, kernels can be applied. 237

Although the kernels differ in the way they are calculated and 238

the types of features they extract, the idea of using kernels to 239

compare two graphs is to break them down into substructures 240

(nodes or sub-graphs) and calculate the kernel for each pair 241

of substructures. Let G be a graph space; the kernels compare 242

the G,H ∈ G by calculating the difference between their 243

components. 244

Assume F = F1 × . . . × Fk is the space of compo- 245

nents that make up G ∈ G. Also suppose F : F → 246

G is a mapping of the components to the graph, so that 247

F(g) = G if and only if g ∈ F components, build 248

the graph G. If F−1(G) = {g ∈ F : F(g) = G}, then: 249

k(G,H ) =
∑
g ∈ F−1(G)

∑
h ∈ F−1(H )

∏d
i=1 ki(gi, hi). 250

Here the function ki, is the kernel on Fi and F−1(G), is the 251

inverted mapping and the set of all components of the graph 252

G [25]. Each pattern represents a set of homogeneous, iden- 253

tical graphs. The function φ(G)σi (1 ≤ i ≤ N ) counts the 254

occurrence of sub-graphs of type σi in graphG and the kernel 255

counts the simultaneous occurrence of sub-graph patterns in 256

respective graphs. Thus, we have: 257{
ksubgraph(G,H ) =< φsubgraph(G), φsubgraph(H ) >
φsubgraph(G) = ((G)σ1 , . . . , (G) σN )

(2) 258

Each φi(G) σ rj counts the occurrence of nodes labeled σ
r
j ∈ 6 259

where 6 is the set of allowed labels. The time required to 260

calculate kernels increases exponentially as the size of the 261

sub-graphs increases. Actually for graphs of size n the time 262

required to find patterns of size k is of order O(nk ). We pro- 263

pose parsing the networks into tree sub-graphs. The order 264
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of computations to match sub-trees is O(hm) where h is the265

depth of the longest sub-tree and m is the maximum number266

of layers. The sub-trees can be compared using a special kind267

of structured kernels, called tree kernels [26]. Next we’re268

going to talk about tree kernels and how to exploit them in269

NAS problem.270

B. TREE KERNELS271

The seminal work on Convolution Kernels by [27] defines272

a broad class of kernels on discrete structures by counting273

and weighting the number of substructures they share. Let274

G = (VG,EG) be a graph. We define a sub structure of G275

as a kernel tree t , where t = (Vt ,Et ), Vt = (n1, .., n|t|)276

is a tree. A sequence of |t| nodes (v1, .., v|t|) ∈ V |t|G builds277

a tree kernel of G if and only if the following conditions278

hold:279 
∀i ∈ [1, |t|]→ label(vi) = label(ni)
∀(ni, nj) ∈ Et →(vi, vj) ∈ EG
and label(vi, vj) = label(ni, nj)

(3)280

The tree kernel t is a member of the set of all possible tree281

kernels T , of the graph G. The function φt (G), counts the282

number of times the tree kernel t rooted from node v occurs283

in G:284

φt (G) = |(α1, . . . , α|t|) ∈ {1, |VG|}|t||,285

(vα1 , . . . , vα|t| ) ∈ T and vα1 = v (4)286

The structural learning nowmodels the problem as identifica-287

tion of the common tree kernels between two distinct graphs288

as follows:289

K (G1,G2) =
∑
t∈T

w(t)φt (G1)φt (G2). (5)290

Here, T is a set of trees, φt counts and w : T → R291

weights the tree kernels. When w(t) tends to 0, only small292

linear (single nodes) subspecies are preserved and vise versa.293

V. PROPOSED FRAMEWORK294

In this section, we first introduce our proposed framework,295

namely S2i, which embed both Structural and Symbolic296

information (S2i) into a latent space, as shown in Figure 1.297

The proposed framework is comprised of three compo-298

nents: (1) Building the Latent Space; (2) Learning the Predic-299

tor, and (3) Evaluating the Search Space. The first component300

builds a training set for the predictor, i.e., the second com-301

ponent. Here, the input is a set of fully trained architectures302

tagged with their performances coming from real execution.303

These architectures would be converted into distributional304

vectors in the united latent space, where the structural infor-305

mation are extracted via tree kernels and the symbolic infor-306

mation are directly represented as latent dimensions. For each307

candidate architecture, the input to the predictor is a Rk
≥0308

feature vector. The i-th element of the vector is the network’s309

similarity score or number of tree kernel with the i-th tree310

of a proxy set. The second component take the training set311

as input and train a supervised model for estimating the per- 312

formance of any given network. Finally, the last component 313

evaluates the search space via the built predictor coming from 314

the previous component. 315

A. MODELING NETWORK STRUCTURE 316

Contrary to fully-connected networks, data is transformed via 317

different paths in multi-stream networks [28]. A representa- 318

tion should denote all the processes through which features 319

are extracted. We propose to model a network by a set of 320

operation sequences in a tree structure as shown in figure 2. 321

In this tree any path from the root node to a leaf node is a neu- 322

ral function extracting features. In the sample network (left), 323

the ‘INPUT’ layer immediately connects to a ‘MAXPOOL’ 324

layer via a skip connection and to a ‘CONV3 × 3’ layer via 325

the main stem which already can form two different paths. 326

The ‘MAXPOOL’ layer immediately connects to the ‘Output’ 327

and thus a path ends. The main stem contains several skip 328

connections. The ‘CONV3× 3’ connects to a ‘CONV1× 1’ 329

via a skip connection and to a ‘MAXPOOL’ via the main 330

stem. The ‘CONV1× 1’ reaches to ‘OUTPUT’ and the path 331

ends. The connections are checked in a semi depth-first order 332

beginning from l1. This can be stated as follows: Suppose 333

σ (l1, . . . , lL) defines the set of paths of the tree composed of 334

l1, . . . , lL and rooted from l1. If1(li) denotes the set of layers 335

for them there is a direct connection from li in the network, 336

then for all 1 ≤ i < j < k ≤ L if li ∈ 1(lk ) \ 1(lj) there 337

exists a lm (i < m < j) such that lm ∈ 1(lj). The paths 338

are identified one by one and attached to the previously built 339

tree. Each branch terminates by AL as the tree leaf. There are 340

possibly a number of repeated order of nodes but it doesn’t 341

matter. The pseudo code of an algorithm for identifying the 342

paths and their representations is presented in Algorithm 1. 343

1) COMPUTING TREE KERNELS 344

Instead of entering the feature space directly, tree kernels cal- 345

culate the degree of similarity between two trees in terms of 346

the amount of common fragments or sub-trees between them. 347

The similarity score is affected by the length of adjustment or 348

probable gaps along the matched sub-trees. 349

Let |F | =
{
f1, f2, . . . , f|F |

}
be the space of fragments. The 350

indicator function Ii(n) is equal to 1, if fi is rooted at node n, 351

otherwise it is 0. 352

Ii(n) =

{
1 if fi is rooted at node n
0 otherwise.

(6) 353

The kernel function is defined as follows: 354

K (T1,T2) =
∑

n1∈NT1

∑
n2∈NT2

1(n1, n2) (7) 355

Here NT1 and NT2 are the set of nodes of two trees 356

T1 and T2, respectively, and the delta function 1(n1, n2) = 357∑|F |
i=1 Ii(n1)Ii(n2) computes the number of pieces that are 358

common to T1 and T2 and have their roots in n1 and n2. 359

The delta function can be rewritten as the sum of delta of 360
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FIGURE 1. The schematic framework for the proposed S2i method. The framework consists of three
phases: constructing feature space, training the predictor and search space evaluation. The blue arrows
depict the training process and the green arrows depict the evaluation process.

Algorithm 1 Building The Network Tree Representation
Data: Deg(Ai): Number of Ai’s non-zero elements
Result: The tree of the network

-21 Stack ← [];
-22 tree1← l1;
-23 Num_nodes← 1 ;
-24 Push_to_Stack(tree1);
-25 while Stack_isNot_Empty do
-26 parent = Pop_from_Stack();
-27 i = parent.index;
-28 for j← i+ 1 to L do
-29 if A[i, j] == 1 then
-210 Num_nodes← Num_nodes+ 1;
-211 treeNum_nodes.parent ← parent;
-212 treeNum_nodes.index ← j;
-213 Add treeNum_nodes to parent.Children;
-214 if j 6= L then
-215 Push_to_Stack(treeNum_nodes);
-216

-217 end if
-218

-219 end if
-220

-221 end for
-222

-223 end while

sequences of children of different lengths so that the calcu-361

lations can be distributed among them [26]:362

1(n1, n2) = µ

λ2 + lm∑
p=1

1p(cn1, cn2)

 (8)363

The 1p function calculates the number of common364

sub-trees in exactly p children (from both n1 and n2). The365

two parameters µ and λ are decay factors or can be functions366

of height and length of the child sequences. Entities like the367

’OUTPUT’ do not affect the score. If aS1 and bS2 are two368

Algorithm 2 Evaluation of the Search Space for Best
Architecture
Data: A: Architecture search space, P: The predictor
Result: Best predicted architecture

-21 randomly select k + m0 architectures from A to build
proxy set K and training set D;

-22 foreach candidate m in D do
-23 fully train m to acquire its performance.;
-24 convert the model m to tree using algorithm 1;
-25 compute kernels with K and embed m;
-26

-27 end
-28 initialize the predictor using D;
-29 repeat
-210 sample candidate pool C from A \ D;
-211 foreach candidate m in C do
-212 embed m using kernels with K ;
-213 evaluate m using the trained predictor;
-214

-215 end
-216 D← candidates with the top− k scores;
-217 update P with the enlarged D;
-218 until convergence;

child sequences (a and b are the first children), then: 369

1p(aS1, bS1) = 1(a, b)+
|S1|∑
i=1

|S2|∑
j=1

λ|S1|−i+|S2|−j 370

×1p−1 (S1 [1 : i] , S2 [1 : j]) (9) 371

where sk [1 : j] is the subordinate of the children from 1 to j 372

in the k-th string. We assume each node of a tree as an entity 373

and assign the operations to the nodes. Our goal is to discover 374

the existence of a one-way connection between the two nodes 375

E1 and E2 and therefore to find the dual < E1,E2 > in the 376

sequences. Matching the two sequences s1 and s2 is of order 377

O(p|s1||s2|). In the worst case, the computational complexity 378

of calculating the kernels is O(pρ2|s1||s2|), where ρ is the 379
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FIGURE 2. An exemplar neural cell (a) and its converted tree
representation (b).

maximum branching factor of the two trees which is almost380

very small. We also may assign the operations to the edges381

and discover whether or not there is a relation R between the382

two entities i.e. to discover if the < E1,R,E2 > exists.383

B. MODELING LAYER ATTRIBUTES384

So far, we solely modelled the structure of a neural model.385

To encode the non-structural information, we represent each386

operation by a four-part numeric vector, as shown in Figure 3.387

The first part, specifies the operation type and the rest388

three parts, determine the operation’s hyperparameters. See389

Table 1 for the full list of operations. We might note that390

the ‘SkipConnection’ is not a convolutional operation but391

it models skip connections in residual architectures. The392

‘No-op’ also is not an operation but it is useful in fully con-393

nected architectures and means no transaction between the394

respective layers. The operation set can be extended based 395

on the task at hand. Repetitive patterns of operations can be 396

grouped and form a combined operation. For instance, the 397

operation set in NASbench 101 [29] includes ‘CONVn × n’ 398

which is a n× n convolution followed by a BatchNorm and a 399

ReLU operation. 400

FIGURE 3. Vector representation of neural operations. Each operation can
be fully represented by a vector of four values.

C. BUILDING THE PROXY SET 401

A key step in modeling network structures is to form a rep- 402

resentative set of tree kernels. However, tree kernels are built 403

based on a proxy set, i.e., a set of initial trees that hold most 404

structures existing in the problem. The proxy set is a set of k 405

architectures sampled from the search space. As discussed in 406

Section V, tree kernels are computed from proxy set and form 407

the dimensions of the latent space. Retrospective studies uti- 408

lized various strategies for building the proxy set [30]. In the 409

experiments, we used three major strategies for building the 410

proxy set including random subset, top-k subset and diverse 411

subset. 412

D. PREDICTIVE MODEL 413

Our objective is to build a predictorP to well estimate the per- 414

formance of an architecture before training. Our model takes 415

a network architecture a and an epoch index t , and produces 416

a scalar value P(a, t) as the prediction of the performance 417

after exactly t epochs. The hypothesis behind this is that the 418

validation accuracy generally changes as training proceeds so 419

we have to be specific about time point of the prediction. This 420

helps us to better model the possible correlations between 421

training samples. We used a three step predictor to select 422

promising models as follows: 423

Construction. To obtain a small training dataset, we train 424

a small sample of randomly selected architectures S and con- 425

struct training multivariates in (ai, pij, j) where ai ∈ S and pij 426

are in turn the i-th architecture and its validation accuracy 427

at a certain training epoch, plus the epoch number j. Next 428

we train a regression model P with this dataset to predict 429

the accuracy of other architectures. To capture the complex 430

relations in data we use a Gradient boosting decision trees, 431

(GBDT) as the model P . A GBDT boosts the prediction by 432

leveraging multiple additive trees and thus different views on 433
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TABLE 1. The proposed integer coding for network operations; consisting of 4 parts: operation type (one-hot code), kernel width, kernel height and
output to input ratio.

data: ŷGBDT (x) =
∑R

r=1 ŷDTr (x) Where R denote the number434

of additive trees, and ŷDTr denotes the predictive model for435

the r-th tree. Together GBDT extracts R rules to predict the436

target value for a given feature vector.When a rule is not good437

enough to differentiate the architectures, its weight is set to a438

near zero value and thus it is pruned off the tree.439

Ranking. The trained predictor P estimates the accuracy440

of a large number of architectures sampled fromA\S. These441

architectures are then ranked based on their predicted accu-442

racy and top n architectures are passed to the next step for443

final evaluation.444

Evaluation. Here top n architectures, i.e., the promising445

ones, are trained and evaluated on real data to calculate their446

actual validation accuracy.447

VI. EXPERIMENTS448

We evaluated our approach on two commonly used datasets449

for NAS, i.e., NASBench 101 and NASBench 201, which450

show efficiency of our proposed approach compared to the451

state-of-the art baseline methods in NAS. Although the archi-452

tectures in NASBench datasets are limited in structure and453

type; the proposed representation paradigm can potentially454

encode various type of cells.455

A. NASbench 101456

NASbench 101 search space is a dataset of about 425’000457

pre-built and tested architectures on CIFAR-10. The search458

space is built upon NASNet principles [5]. The main stem459

of the architecture is composed of three times repetition460

of a cell followed by a downsampling layer to manage the461

input dimensions. The architecture ends with a global average462

pooling layer and a dense softmax layer. Each cell is com-463

posed of up to 7 layers (two of them are reserved for input464

and output) and 5 valid operations. The operations include465

‘CONV1 × 1’, ‘CONV3 × 3’, ‘MAXPOOL1 × 1’, plus466

‘INPUT’ and ‘OUTPUT’ which refer to convolution with467

1 × 1 kernel, 3 × 3 kernel, max pooling with 1 × 1 kernel,468

simple input and output resp. The convolution operations469

actually apply a series of [Convolution-BatchNorm-ReLU]470

operations. The cells are described with adjacency matrix471

and the list of applied operations. Each structure have been472

trained, validated and tested three times and the results have473

been averaged and reported. The dataset however, contains474

some inconsistencies because the models with best validation475

errors do not necessarily report best test errors. Also, due to 476

unstable models (like a model with only pooling operations), 477

high variance is expected.1 To better compare the results 478

with [12], [19], [20], the current state of the art predictors, 479

we use their training setup. 480

B. NASbench 201 481

The NASbench 201 [31]set consists of approximately 482

16,000 cell-based architectures. These architectures are 483

trained, validated, and tested on CIFAR-10, CIFAR-100, and 484

ImageNet-16-120. Each architecture is composed of of three 485

segments, each containing N times repetitions of a fully 486

connected cell. Each cell is made up of input and output 487

nodes and 2 internal nodes. A total of 5 permissible opera- 488

tions are defined for internal nodes including ‘CONV3× 3’, 489

‘CONV1× 1’, ‘AVG3×3’, ‘ZEROIZE’, ‘SKIP-C’. The low- 490

est errors reported on this set so far (after 500 trials), are 491

53.22% for testing and 53.15% for validation reported from 492

two different architectures. 493

C. BENCHMARK METHODS 494

To evaluate the proposed method, we compared several state- 495

of-the-art baselines with our proposed method as stated 496

below: 497

• Random Search: The simple and fast cell-based 498

search method that combines random search with 499

weight-sharing and is proposed in [32] 500

• NAO: Encodes the architectures into continuous space 501

and uses gradient descent there to optimize the encoded 502

architectures [33]. 503

• RE: A primary method based on evolution which com- 504

petes against RL in large spaces [2]. 505

• Neural Predictor: It uses Graph Convolutional Net- 506

works to extract features and is proposed in [20]. 507

• GBDT-NAS: Proposes a discrete encoding method and 508

uses GBDT as the predictor [12]. 509

• BANANAS: Uses path-based encoding and is based on 510

Bayesian optimization [19]. 511

• WeakNASPredictor: Focuses on progressive sampling 512

to improve predictive accuracy. Thismethod is presented 513

in [34] 514

1The highest test accuracy which is reported by Regularized evolution [2]
through extensive search is 94.32% but its mean test accuracy and validation
accuracy are in turn 94.1% and 95.13%.
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• GATES: Proposes a new graphical encoding method515

that models the data converted under a sequence of oper-516

ations instead of modeling the operations [23].517

• NASGEM: Is based on graph encoding and clusters the518

graphs using Weisfeiler-Lehman kernels [24].519

• BONAS: a sample-based NAS framework which is520

accelerated using weight-sharing to evaluate multiple521

related architectures simultaneously. It also applies a522

GCN predictor as the surrogate model for Bayesian523

Optimization to select candidate models in each itera-524

tion [35].525

• BRP-NAS: a hardware-aware NAS method with a526

GCN-based performance predictor. It improves the sam-527

ple efficiency by considering binary relations of the528

models and an iterative data selection strategy [36].529

• S2i: The proposed method based on searching in latent530

space via a predictor.531

D. EXPERIMENTAL SETTING532

We first describe preparing the NASbench 101 and533

NASbench 201 sets and the proprietary model settings.534

We used an Apple M1 processor for all the experiments535

and we did not exploit GPU. For conventional test and val-536

idation experiments our proxy set contains 15 trees and we537

used 100 randomly sampled architectures as the training set.538

Weuse 300 random samples to validate the results and the rest539

as the testing set. We leverage a Gradient Boosting Decision540

Tree (GBDT) model with 100 trees and 31 leaves per tree541

as a predictor. The whole experiment is run for 50 times and542

the average result is reported. This setup is chosen so that the543

results are comparable with the other state of the art methods544

introduced above.545

E. RESULTS ON NASbench 101546

The first round is the basic test and validation experiment.547

For the methods we examine, a total of 2000 (1000+1000)548

samples are taken randomly to make the training and valida-549

tion set. As we mentioned in previous section, for our method550

we used 100 training and 300 validation random samples.551

For GBDT-NAS [12], Weak Predictors [34], BANANAS [19]552

and BONAS [35], we used the official codes published by553

the authors. We also had the researchers’ verified code for554

Regularized Evolution [2], Random Search [32] and Neu-555

ral Predictor [20]. We run each of the mentioned codes for556

50 times and averaged the results. For NAO [33], the values557

reported in [20] and [12] and for BRP-NAS [36] we used both558

the code and the values reported in [34]. The reported results559

for the GATES [23] and NASGEM [24] are both from the560

context of the respective articles. The average validation and561

testing results are given in Table 2.562

As shown in the Table 2, the proposed method has the563

highest accuracy in validation data. Of course, the WeakPre-564

dictor method has the same validation accuracy. Other basic565

methods have the best accuracy with significant differences566

in validation data. The Table 3 shows the number of train-567

ing samples used by the methods with highest test accuracy.568

TABLE 2. Validation and test results on NASbench 101. The entries with ‘-’
corresponds to those that the validation accuracy was not reported in the
original paper.

As it can clearly be seen in the results, the lowest number of 569

training samples belong to our method. 570

1) EVALUATION WITH SPARSE DATA 571

A major challenge of using the predictive method is pes- 572

simistic estimation in some areas of the search space. Thus 573

ranking architectures relative to each other, is more impor- 574

tant than estimating their exact performance (numerical 575

accuracy). To do so, we compare the performance of our pre- 576

dictivemodel with GCN, LSTM,MLP andGATES predictive 577

models through calculating Kendall-Tau correlation coeffi- 578

cients. The values for these methods are derived from [23] 579

and reported in Table 4. To evaluate the resistance of the 580

proposed method to the amount of available data, all predic- 581

tors are trained with different ratios of the training data and 582

the Kendall-Tau coefficient on the accuracy obtained from 583

testing the architectures is represented. We train our predictor 584

primarily with 100 architectures out of 381262 mentioned 585

set. What remains from the training budget of each round, 586

is divided into 10 parts to update the predictor. 587

As Table 4 shows, the generalization is especially evident 588

when training samples are scarce. For example, when only 589

190 architectures (0.05%of architectures) are observed by the 590

predictive model, the ranking in our method clearly results in 591

a higher correlation than the other encoders. 592

2) SAMPLE EFFICIENCY 593

To observe how the encoding can improve the sample effi- 594

ciency, we conduct a series of experiments and sample the 595

proxy architectures with different limitations. In each round, 596

we evaluate the resulting model on 10,000 architectures, but 597

our experiments show that these results are also valid on 598

the whole data-set. First we sample only those architectures 599

which their validation accuracy is above a certain threshold. 600

The results of this experiment are reported in Table 5. For 601

each specific threshold, the test is run 3 times and the results 602

are averaged. 603

The results approve that the quality of proxy trees is effec- 604

tive in solving the final problem. Generally as the accuracy 605
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TABLE 3. Sample efficiency on NASbench 101.The second row indicates the minimum number of architecture-accuracy pairs queried from the dataset to
train the predictor.

TABLE 4. The Kendall-Tau ratio using different encoders on NASbench 101. 90% of the architectures (381262 samples) were used as total training data
and the remaining 42362 samples were used for test.

TABLE 5. Test result on NASbench 101 with limited sampling. The proxy
sets are built with architectures better than a minimum specified
accuracy.

threshold of the proxy architectures increase, the average test606

accuracy of the predictor and its sample efficiency increase.607

It is clearly seen that this sampling is much efficient than608

random selection. What is negative about the results is the609

slight non-monotonic behavior of the results which makes it610

difficult to decide on the size of proxy set, which may show611

the model overfits to a specific regions. So next we use our612

proposed kernel-based measure to remove similar architec-613

tures from the high-accuracy proxy set. Therefore, we might614

select architectures with slightly lower performances instead.615

We run this test for 10‘000 samples, totally 5 times and aver-616

age the results.617

We can infer from the Table 6 that second test has a more618

monotone behavior. So, the better approach to sample proxy619

architectures is to keep diversity among them even if we cast620

out some highly accurate networks. To train the predictor,621

m + k architectures are randomly sampled from the space622

and are fully trained on the task. Then they are sorted accord-623

ing to their performance. The proxy networks are selected624

iteratively from the top of the list. The architectures with625

less diversity compared to their subsequent candidate, are626

ignored until k architectures are selected. The remaining m627

architectures are used as the training set.628

3) VISUALIZATION OF THE ENCODED SPACE629

In Figure 4 about 16000 architectures randomly sampled630

from the space are visualized using t-sne. The color denotes631

FIGURE 4. The two dimensional visualization of the encoded NASbench
101 architectures. The dots become darker when the accuracy increases.

the architectures‘ rank according to their true performance. 632

Darker points resemble more accurate architectures. The 633

visualization is not exact as the real encoding space is 634

multi-dimensional while it is mapped to two dimensional 635

space. Anyhow it can be seen that architectures with simi- 636

lar performance are mapped to close areas and form small 637

groups. We also move gradually from strong regions to weak 638

regions and vise-versa. 639

F. RESULTS ON NASbench 201 640

To test the proposed predictor on a more challenging dataset, 641

we used NASbench 201 and the set of architectures trained 642

on ImageNet-16-120. 643

1) TEST ON SPARSE DATA 644

The Kendall-Tau coefficient was also measured on the 645

NASbench 201, the results of which are shown in Table 7. 646

2) VISUALIZATION OF THE ENCODED SPACE 647

In Figure 5 the encoded architectures are viusalized 648

using t-sne. The interesting observation is that poorly 649
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TABLE 6. Test result on NASbench 101. The proxy database is built with diverse, accurate architectures.

TABLE 7. The Kendall-Tau factor using different encoders on the
NASbench 201. 5% of the architectures (7813 samples) were used as
training data and the remaining 7812 samples were used for test.

FIGURE 5. The two dimensional visualization of the encoded NASbench
201 architectures. The dots become darker when the accuracy increases.

FIGURE 6. The search trajectory after three runs with a trained predictor.
The best predicted architecture and the global best is highlighted.

ranked architectures form a colony around the rest of650

the architectures which are mapped at the center of the651

space.652

3) VISUALIZATION OF THE SEARCH TRAJECTORY653

The primary trained predictor, evaluates the search space step654

by step. Here in each step it samples 1000 new architectures655

and trains the best 100 ones. The previously evaluated archi-656

tectures are not selected twice. The search dynamics for three657

runs is depicted in Figure 6. As it can be seen the predictor658

soon finds the whereabouts of the best architecture andmoves659

towards it.660

FIGURE 7. The Kendall-Tau ratio related to evaluating ImageNet-16-120
using NASBench-201. The predictors are trained with different ratios of
4000 samples of NASBench-201-CIFAR10 set and tested on
NASBench-201-ImageNet.

G. CROSS META-LEARNING DATASET 661

We further demonstrate the usefulness of our predictor trained 662

on CIFAR-10 by applying it to ImageNet classification. It is 663

revealed that CIFAR accuracy and ImageNet accuracy are 664

strongly correlated [7]. We transfer the best architectures 665

found on CIFAR-10 as proxy trees to the ImageNet problem. 666

We exploit the Kendall-Tau coefficient to assess the quality 667

of the predictor‘s ranking. To compare the findings to the 668

results in other papers, we conduct experiments under the 669

following settings: On each round, the predictor is primarily 670

trained with 100 samples and updated with the rest of the 671

training budget of the specific round (batch size is 100). The 672

results are summarized in Figure 7. Our predictor achieves 673

slightly better performance BRP-NAS and significantly sur- 674

passes NPENAS and Bananas. 675

VII. CONCLUSION 676

Surrogate predictive models have shown its effectiveness in 677

addressing the Neural Architecture Search problem where a 678

model attempts to forecast the performance of a neural model 679

ahead of training. 680

In this paper, we proposed to leverage both structural fea- 681

tures of a deep network and per-layer information to learn 682

an encoding for surrogate predictor. We proposed to repre- 683

sent each neural network via a tree structure and then extract 684

features from the given tree. In particular, we adopt tree 685
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kernel for extracting structural feature and distributional fea-686

ture learning for non-structural features. Extensive results687

on two state-of-the-art datasets of NAS task demonstrate688

the effectiveness of the proposed model especially regard-689

ing convergence speed, sample efficiency and performance690

estimation.691

There is also interesting insights focusing on the keyword,692

ontology. Here domain Knowledge can be expressed in the693

form of an ontology graph that can model the relationship694

between different types of the same category of operations.695

Like the relationship and the effect of using different filters,696

or between Max Pooling and Average Pooling. Therefore,697

ontology can inject general knowledge into our system. For698

now, we focused on limited databases. By using the ontology699

and the knowledge it conveys, the features obtained from700

other problems or databases can be shared among them.701

In other words, by gathering this knowledge, it is possible702

to decide what characteristics the general architecture should703

have.704

Many extension of this work can be exploited. For exam-705

ple, we plan to extend the proxy set sampling method and706

acquire more effective samples. Further, adapting zero-shot707

and one-shot learning for effective training of surrogate mod-708

els can be a promising direction.709
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APPENDIXES714

COMPUTING TREE KERNELS715

As mentioned in section computing kernels, for the two trees716

T1 and T2 and their set of nodes, NT1 and NT2 , the kernel717

function is defined as follows:718

K (T1,T2) =
∑

n1∈NT1

∑
n2∈NT2

mu

λ2 + lm∑
p=1

1p(cn1, cn2)

719

(10)720

The1p function calculates the number of common sub-trees721

in exactly p children (from both n1 and n2). If aS1 and bS2 are722

two child sequences (a and b are the first children), then:723

1p(aS1, bS2) = 1(a, b)+ Dp[|S1|, |S2|] (11)724

Initialize the matrix Dp(p + 1 × p + 1) with 0 and use the725

following recursive relation to calculate the components of726

the matrix:727

Dp[k, l] = 1p−1(s1[1 : i], s2[1 : r])+ λDp[k, l − 1]728

+λDp[k − 1, l]− λ2Dp[k − 1, l − 1] (12)729

To avoid the useless calculation of delta function for dis-730

similar sub-tree roots, the node lists can be sorted to match731

only the sub-tree roots with similar labels. The delta function732

checks the equality of two entities. Our entities/nodes consist733

of the type of assigned operation and its hyperparameters. 734

We define a Delta function as below to consider both: 735

Delta(E1,E2) =
(
E11 = E21

) (
0.75+ 0.25×

(
E12 = E22

))
736

(13) 737

The Ei1 is the operation type which is decisive in matching 738

and Ei2 is its most important hyperparameter (like the kernel 739

size). So similar operations with different hyperparameters 740

get a proportional matching score. 741
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