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ABSTRACT Automatically designing neural architectures, i.e., NAS (Neural Architecture Search), is a
promising path in machine learning. However, the main challenge for NAS algorithms is to reduce the
considerable elapsed time to evaluate a proposed network. A recent strategy which attracted much attention
is to use surrogate predictive models. The predictive models attempt to forecast the performance of a neural
model ahead of training, exploiting only their architectural features. However, preparing the training data
for predictive models is laborious and resource demanding. Thus, improving the model’s sample efficiency
is of high value. For the best performance, the predictive model should be given a representative encoding
of the network architecture. Still, the potential of a proper architecture encoding in pruning and filtering out
the unwanted architectures is often overlooked in previous studies. Here, we discuss how to build a proper
representation of network architecture that preserves explicit or implicit information inside the architecture.
To perform the experiments, two standard NAS benchmarks, NASbench 101 and NASbench 201 are used.
Extensive experiments on the mentioned spaces, demonstrate the effectiveness of the proposed method as
compared with the state-of-the-art predictors.

INDEX TERMS Neural architecture search, search space pruning, network architecture, representation

learning.

I. INTRODUCTION
Deep neural networks have been successfully used and
addressed various challenging tasks, including computer
vision, speech recognition, machine translation, and medical
diagnosis, in recent decades. This success has sprung from
well-designed network architectures and powerful computing
machines. The manual process of designing a new neural
model for a specific problem is time and labor consuming.
Besides, relying on expert experience often results in subjec-
tive sub-optimal solutions. This has resulted in an emerging
branch in machine learning which attempts to automatically
find the optimal neural model for a specific task at hand,
namely Neural Architecture Search (NAS).

The optimal answer, there, consists of three parts: the opti-
mal structure of the model, the optimal parameters and the
optimal hyperparameters. Traditional optimization methods
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address the parameter optimization problem. The challenge,
however, lies in simultaneous optimization of the struc-
ture and hyperparameters of a neural model due to inter-
depencency among the hyperparameters and the structure of
a network. Thus, separate optimization of the architecture or
the hyperparameters, may yield a sub-optimal solution [1].
However, per deep structure, vast selection of hyperparameter
exist which form the pool of candidate models. A combina-
tion of possible structures and their corresponding hyperpa-
rameters, regarding a certain task, builds an enormous space
of options, called NAS search space. Such a space would
contain at least a few hundred thousand different models.
The challenge would be much severe in real-world tasks.
Conventional search methods [2], [3], [4], often fully train
and evaluate a large part of the space to converge; which is
very costly. Thus efficient methods for searching these huge
search spaces is highly desirable.

Retrospective studies in literature have proposed useful
strategies for addressing such a big search space including:
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proxy estimates, developing warm starts, early stopping via
curve analysis, one-shot learning and using surrogate pre-
dictive models. While leveraging proxy estimates produced
by simplified search spaces, is fast, several studies demon-
strates its unreliable results [5], [6], [7]. Curve extrapola-
tion methods [8] seek to stop training for presumably week
models using the elapsed learning curve and require heavy
computations. One-shot methods [9], [10] train only one large
super-graph and share the attained weights on common edges
among the sampled sub-graphs. So they have a fast conver-
gence but less efficient results and suffer from a large memory
consumption.

Lately, an efficient strategy based on predictive models
has been adopted in which candidate architectures are eval-
uated with no training [7], [11]. The predictor is a learner;
trained with a few pair of fully trained networks and their
performance values. The hypothesis behind the predictor
approach is to build a supervised learning model that can
catch the most influential network features from training set.
If the selected networks are of high quality, training with
this small set will help the predictor to reliably select a
good model. However, training a meta-predictor is nontriv-
ial due to following challenges. (1) Lack of training data.
To train a predictor model, we need an annotated dataset
in which each architecture is labeled with its actual perfor-
mance. As such, each model in the training set should first
be fully trained and then evaluated on the problem data. For
instance, to build a set with 1000 samples, although this
number is quite small as compared to the size of the search
spaces, we need several experimental runs with considerable
GPU time. (2) Proper representation of symbolic data.
Proper representation of the input data is a vital require-
ment for the success of any learning model. The network
architecture is a symbolic data composed of both topological
information, i.e. the structure of the network architecture,
and numerical information, i.e. the hyper-parameters of the
networks. To feed such data into a learning model, a proper
representation should be constructed, i.e. the encoding of the
architecture. A representative encoding should preserve the
dependency of the layers in each path of the network from
input to the output layer, which transforms and aggregates the
data.

The representation of the architectures for the predictor,
has rarely been studied. Existing methods either fix or limit
the network topology to be able to encode the hyperpa-
rameters [12], or use global features or layer-by-layer fea-
tures [5], [13], [14] which overlook the topology information.
It is worth noting that graph-based encoders that recently
achieved best results, however, can encode the network as
a whole [11], [15]. These encoders, although, preserve the
topology, they need lots of training data which is rarely avail-
able in NAS. Further, they can overfit on cell-based networks
as the complexity of the predictor exceeds the complexity of
the network cells. These complex predictors, indeed, tend to
memorize good architectures rather than learning appropriate
features.
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There are certain sequences of (network) processes that
lead to superior performances. We try to discover decisive
patterns inside a network and use it as a measure to esti-
mate the performance. In this study, we propose a method to
encode and integrate the structural and non structural features
of the network as a whole via extracting substructures as
local attributes. To extract structural features, we use tree ker-
nels and for non structural features we propose an operation
coding method. The proposed method can model nested and
multi-connection networks in polynomial time.

The basic of the method is to convert a deep convolutional
model into tree kernels using a small set of samples and then
running kernel-level matching. So it relies on two concepts:
finding the kernels and effective sampling of the search space

To perform the experiments, we use two standard bench-
marks, NASbench 101 and NASbench 201, trained on the
CIFAR-10 and ImageNet datasets. For each architecture, the
datasets also include the respective training and evaluation
statistics. These information have been collected in standard
and reliable conditions and are now a basis for fair com-
parison of neural network architecture search algorithms.
Experiments with the proposed method show a significant
improvement in sample efficiency of the predictor and its
performance estimation. The experiments also show that the
knowledge of the predictor can be transferred to other similar
problems to find strong architectures. The main contributions
of this paper are as follows:

o The importance of structure in NAS is investigated and
we introduce a method to embed the structure in network
encoding.

« For the first time in NAS we propose to use tree kernels
in finding structural similarities between two networks.

« We investigate the effect of lack of sufficient data on
the performance of the predictive model. At present, our
method has the best sample efficiency compared to a
wide range of methods that had the best performance in
2020 and 2021.

Il. RELATED WORK

In different steps of the architecture search process (sampling,
modifying and training), a proper encoding of the neural
architectures is needed. Although there is not much study
regarding the proper encoding, a general classification for
network encoding methods is as follows.

A. DIRECT ENCODING

The direct encoding is the common sequential or layer-by-
layer network encoding for flat feed-forward networks with
no extra branch. The primary network can be reproduced
directly from the network code. Topology-related parameters
such as the number of hidden layers, the number of neurons,
the layers’ types, kernel sizes and a set of general charac-
teristics such as learning rates and biases can be encoded
this way [13], [14], [16]. Due to the presence of dependent
variables, a network encoding can have variable length. For
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example, topology depends on the number of layers and
hyper-parameters depend on the type of operation. There are
several issues about using direct encoding in NAS: (1): These
features are not capable enough to display branched or hierar-
chical architectures and many more. (2):Structural informa-
tion such as layer dependency and sequence of operations,
can only be implicitly modeled. (3): Vector distances can pro-
duce different representations for an architecture, which can
be confusing for a predictive model. The reason is that they
are affected by the traversal order of nodes. The same issue
exists with word-based coding methods such as TAPAS [14],
QBlockQNN [17], E2EPP [13], SMASH [9], and a number of
others. So, they cannot guarantee the mapping of isomorphic
architectures to one representation [18]. Path-based encod-
ing [19] however, has solved this using the traversal order
of the nodes in an input to output path. (4):Direct encod-
ing often faces immeasurable challenges; by increasing net-
work depth and search space size, the length of the coding
string increases. For example, the encoding schema proposed
by [19] produces encoding vectors of length m" (minimum)
for a network with n layers and m internal operations.

B. INDIRECT ENCODING

The indirect encoding methods need a decoder to reproduce
a network from its code. Indirect encoding allows for more
compact representation because it does not describe the net-
work in detail. The most well-known indirect methods are
based on LSTM and graph networks.

The Graph-based encodings apply Graph Convolutional
Networks (GCN) to take the directed acyclic graph of the
network and embed them to fixed-length vector representa-
tions [20], [21]. These encodings represent the topological
information and graph structured data very well. There are
two levels to do so: graph level and node-level. For graph
level, the whole graph is considered as an individual to be
labeled. For node-level, the inputs are considered vertices of
a graph and their relation is reflected in the connections. The
task is to have GCN, predict their labels using this relation
graph [20]. Several layers of GCN can be stacked together to
reach a stronger representation.

Recently, the use of GCN [22] as a predictive model has led
to superior results in NAS [20], [23], [24]. There are also con-
siderations regarding graph convolutioanl networks as NAS
predictors: (1):It is discussed in [12] that the architecture
representation data is more tabular rather than continuous and
is not well suited to the widely used neural predictors such as
RNN, CNN and GCN. (2): Despite the high accuracy results,
the use of graphical convolutional networks leads to unneces-
sary calculations and the possibility of over-fitting [22], [24].
(3): The graphs fit to and memorize good architectures rather
than extracting design rules. They also need retraining each
time a new dataset or space is added [18].

Instead of memorizing the graphs, our method learns the
decisive substructures in the form of tree kernels to preserve
the. It exploits the structural similarity measured based on the
common kernels to encode graphs in the latent space.
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IIl. PROBLEM STATEMENT

The task at hand is to predict the performance of a neural
architecture before training. This can be modelled as a regres-
sion problem in machine learning, where we aim at learning
a regressor P to take the representation of an architecture
N; € N as e(N;) and return its estimated performance as
yi = P(W,, e(N;)), where W, denotes the trainable func-
tion parameters. The function e(.) takes an architecture and
embeds it into a real valued vector. The function P is trained
to solve the following minimization problem,

min | P(W,, e(N;) — yill3, (1
WP

where y; denotes the actual performance of the network as
label data.The key to success of the predictor is to learn a rep-
resentative encoding for the network N; so that the regressor,
i.e. P, can accurately estimate the network performance.

IV. PRELIMINARIES
Before diving deep into technical details, we first describe
basic definitions related to our work.

A. KERNEL-BASED STRUCTURAL LEARNING

A neural network can be described by a labelled directional
graph G = (Vg, Eg), where Vi denotes its set of nodes and
Eg C Vi x Vi shows the set of edges. To learn and find the
similarities in graph-structured data, kernels can be applied.
Although the kernels differ in the way they are calculated and
the types of features they extract, the idea of using kernels to
compare two graphs is to break them down into substructures
(nodes or sub-graphs) and calculate the kernel for each pair
of substructures. Let G be a graph space; the kernels compare
the G,H € G by calculating the difference between their
components.

Assume F = F| X ... x Fy is the space of compo-
nents that make up G € §. Also suppose F F -
G is a mapping of the components to the graph, so that
F(g) = G if and only if g € JF components, build
the graph G. If FY(G) = ({geF:F(g)=G), then:
KG.H) = YgeF (G heF ML, kigi ho).
Here the function k;, is the kernel on F; and F~1(G), is the
inverted mapping and the set of all components of the graph
G [25]. Each pattern represents a set of homogeneous, iden-
tical graphs. The function ¢(G),,(1 < i < N) counts the
occurrence of sub-graphs of type o; in graph G and the kernel
counts the simultaneous occurrence of sub-graph patterns in
respective graphs. Thus, we have:

ksubgrapn(G, H) =< @subgraph(G), Psubgrapn(H) >
Gsubgraph(G) = ((G)oy s - - -, (G) o)

Each ¢;(G) ,r counts the occurrence of nodes labeled aj’ ex
where X is the set of allowed labels. The time required to
calculate kernels increases exponentially as the size of the
sub-graphs increases. Actually for graphs of size n the time
required to find patterns of size k is of order O(n*). We pro-
pose parsing the networks into tree sub-graphs. The order

@

102947



IEEE Access

S. Eslami et al.: Learning a Unified Latent Space for NAS: Toward Leveraging Structural and Symbolic Information

of computations to match sub-trees is O(hm) where & is the
depth of the longest sub-tree and m is the maximum number
of layers. The sub-trees can be compared using a special kind
of structured kernels, called tree kernels [26]. Next we’re
going to talk about tree kernels and how to exploit them in
NAS problem.

B. TREE KERNELS

The seminal work on Convolution Kernels by [27] defines
a broad class of kernels on discrete structures by counting
and weighting the number of substructures they share. Let
G = (Vg, Eg) be a graph. We define a sub structure of G
as a kernel tree ¢, where t = (Vi, E), Vi = (n1, .., ny)
is a tree. A sequence of [f| nodes (vi, .., V) € Vth‘ builds
a tree kernel of G if and only if the following conditions
hold:

Vi € [1, |t|]] = label(v;) = label(n;)
V(ni, nj) € £y —(vi, vj) € Eg 3
and label(v;, vj) = label(n;, n;)

The tree kernel ¢ is a member of the set of all possible tree
kernels 7T, of the graph G. The function ¢,(G), counts the
number of times the tree kernel ¢ rooted from node v occurs
in G:

(G = |(ar.....ap) € {1, [Vel}"],

Vay» s Vay) €T and vy, =v (4

The structural learning now models the problem as identifica-
tion of the common tree kernels between two distinct graphs
as follows:

K(G1,Go) =) w(t)pi(G)i(G). (5)
teT

Here, T is a set of trees, ¢; counts and w : 7 — R
weights the tree kernels. When w(¢) tends to 0, only small
linear (single nodes) subspecies are preserved and vise versa.

V. PROPOSED FRAMEWORK
In this section, we first introduce our proposed framework,
namely $2i, which embed both Structural and Symbolic
information (S%i) into a latent space, as shown in Figure 1.
The proposed framework is comprised of three compo-
nents: (1) Building the Latent Space; (2) Learning the Predic-
tor, and (3) Evaluating the Search Space. The first component
builds a training set for the predictor, i.e., the second com-
ponent. Here, the input is a set of fully trained architectures
tagged with their performances coming from real execution.
These architectures would be converted into distributional
vectors in the united latent space, where the structural infor-
mation are extracted via tree kernels and the symbolic infor-
mation are directly represented as latent dimensions. For each
candidate architecture, the input to the predictor is a R’;O
feature vector. The i-th element of the vector is the network’s
similarity score or number of tree kernel with the i-th tree
of a proxy set. The second component take the training set
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as input and train a supervised model for estimating the per-
formance of any given network. Finally, the last component
evaluates the search space via the built predictor coming from
the previous component.

A. MODELING NETWORK STRUCTURE

Contrary to fully-connected networks, data is transformed via
different paths in multi-stream networks [28]. A representa-
tion should denote all the processes through which features
are extracted. We propose to model a network by a set of
operation sequences in a tree structure as shown in figure 2.
In this tree any path from the root node to a leaf node is a neu-
ral function extracting features. In the sample network (left),
the ‘INPUT’ layer immediately connects to a ‘MAXPOOL’
layer via a skip connection and to a ‘CONV3 x 3’ layer via
the main stem which already can form two different paths.
The ‘MAXPOOL’ layer immediately connects to the ‘Output’
and thus a path ends. The main stem contains several skip
connections. The ‘CONV3 x 3’ connects to a ‘CONV1 x 1’
via a skip connection and to a ‘MAXPOOL’ via the main
stem. The ‘CONV1 x 1’ reaches to ‘OUTPUT’ and the path
ends. The connections are checked in a semi depth-first order
beginning from /;. This can be stated as follows: Suppose
o(ly, ..., 1) defines the set of paths of the tree composed of
l1, ..., Iy and rooted from l1. If A(l;) denotes the set of layers
for them there is a direct connection from l; in the network,
thenforall1 < i <j <k < Lifl; € A(lx) \ A(l)) there
exists a Iy, (i < m < j) such that l,, € A(l;). The paths
are identified one by one and attached to the previously built
tree. Each branch terminates by Ay, as the tree leaf. There are
possibly a number of repeated order of nodes but it doesn’t
matter. The pseudo code of an algorithm for identifying the
paths and their representations is presented in Algorithm 1.

1) COMPUTING TREE KERNELS
Instead of entering the feature space directly, tree kernels cal-
culate the degree of similarity between two trees in terms of
the amount of common fragments or sub-trees between them.
The similarity score is affected by the length of adjustment or
probable gaps along the matched sub-trees.

Let |[F| = {fi.f2. ....fir|} be the space of fragments. The
indicator function /;(n) is equal to 1, if f; is rooted at node n,
otherwise it is 0.

1 if f; is rooted at node n
Ii(n) = U (6)
0 otherwise.

The kernel function is defined as follows:

KT, Ty= Y Y Alm,nm) )

ny ENT1 ny GNT2

Here Nr, and N, are the set of nodes of two trees
T, and T, respectively, and the delta function A(ny, ny) =
Zy;ll I;(n1)I;(n2) computes the number of pieces that are
common to 77 and 7, and have their roots in n; and nj.
The delta function can be rewritten as the sum of delta of
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FIGURE 1. The schematic framework for the proposed $2i method. The framework consists of three
phases: constructing feature space, training the predictor and search space evaluation. The blue arrows
depict the training process and the green arrows depict the evaluation process.

Algorithm 1 Building The Network Tree Representation

Data: Deg(A;): Number of A;’s non-zero elements
Result: The tree of the network

21 Stack < [];

22 tree; < Iy;

23 Num_nodes < 1 ;

24 Push_to_Stack(treey);

-25 while Stack_isNot_Empty do

226 parent = Pop_from_Stack();

27 i = parent.index;

-28 forj < i+ 1toL do

-29 if A[i, j] == 1 then

210 Num_nodes <— Num_nodes + 1;
2211 treeNum_nodes-parent <— parent,
212 1reeNum_nodes-index <— j;

213 Add treenum_nodes to parent.Children;
214 if j # L then

215 Push_to_Stack(treenym_nodes);
216

217 end if

218

219 end if

220

221 end for

222

223 end while

sequences of children of different lengths so that the calcu-
lations can be distributed among them [26]:

lm
A(nim) = p | 22+ Aplent. cn) ®)
p=1

The A, function calculates the number of common
sub-trees in exactly p children (from both n; and ny). The
two parameters p and A are decay factors or can be functions
of height and length of the child sequences. Entities like the
’OUTPUT’ do not affect the score. If aS; and bS; are two
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Algorithm 2 Evaluation of the Search Space for Best
Architecture
Data: A: Architecture search space, P: The predictor
Result: Best predicted architecture
21 randomly select k + my architectures from A to build
proxy set K and training set D;
22 foreach candidate m in D do

23 fully train m to acquire its performance.;

24 convert the model m to tree using algorithm 1;
25 compute kernels with K and embed m;

-26

27 end

-28 initialize the predictor using D;

-29 repeat

210 sample candidate pool C from A \ D;
211 foreach candidate m in C do

212 embed m using kernels with K;

213 evaluate m using the trained predictor;
214

215 end

-216 D <« candidates with the rop — k scores;

217 update P with the enlarged D;
218 until convergence;

child sequences (a and b are the first children), then:

S1l 15|
Ap(@S1,bS1) = Ala, by + Y > A=l
i=1 j=1
XAp1 (S1[1:i], S2[1:) ()

where si[1 : j] is the subordinate of the children from 1 to j
in the k-th string. We assume each node of a tree as an entity
and assign the operations to the nodes. Our goal is to discover
the existence of a one-way connection between the two nodes
E;| and E, and therefore to find the dual < E{, E; > in the
sequences. Matching the two sequences s; and s is of order
O(p|s1]]s2]). In the worst case, the computational complexity
of calculating the kernels is O(pp?|si||s2|), where p is the
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FIGURE 2. An exemplar neural cell (a) and its converted tree
representation (b).

maximum branching factor of the two trees which is almost
very small. We also may assign the operations to the edges
and discover whether or not there is a relation R between the
two entities i.e. to discover if the < E1, R, E» > exists.

B. MODELING LAYER ATTRIBUTES

So far, we solely modelled the structure of a neural model.
To encode the non-structural information, we represent each
operation by a four-part numeric vector, as shown in Figure 3.
The first part, specifies the operation type and the rest
three parts, determine the operation’s hyperparameters. See
Table 1 for the full list of operations. We might note that
the ‘SkipConnection’ is not a convolutional operation but
it models skip connections in residual architectures. The
‘No-op’ also is not an operation but it is useful in fully con-
nected architectures and means no transaction between the
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respective layers. The operation set can be extended based
on the task at hand. Repetitive patterns of operations can be
grouped and form a combined operation. For instance, the
operation set in NASbench 101 [29] includes ‘CONVn x n’
which is a n x n convolution followed by a BatchNorm and a
ReLU operation.

Width of the kernel Height of the kernel

+ +
E____J

T T
1 1
+ +
One-hot encoding of the Input/output ratio

network operations

FIGURE 3. Vector representation of neural operations. Each operation can
be fully represented by a vector of four values.

C. BUILDING THE PROXY SET

A key step in modeling network structures is to form a rep-
resentative set of tree kernels. However, tree kernels are built
based on a proxy set, i.e., a set of initial trees that hold most
structures existing in the problem. The proxy set is a set of k
architectures sampled from the search space. As discussed in
Section V, tree kernels are computed from proxy set and form
the dimensions of the latent space. Retrospective studies uti-
lized various strategies for building the proxy set [30]. In the
experiments, we used three major strategies for building the
proxy set including random subset, top-k subset and diverse
subset.

D. PREDICTIVE MODEL
Our objective is to build a predictor P to well estimate the per-
formance of an architecture before training. Our model takes
a network architecture a and an epoch index ¢, and produces
a scalar value P(a, t) as the prediction of the performance
after exactly ¢ epochs. The hypothesis behind this is that the
validation accuracy generally changes as training proceeds so
we have to be specific about time point of the prediction. This
helps us to better model the possible correlations between
training samples. We used a three step predictor to select
promising models as follows:

Construction. To obtain a small training dataset, we train
a small sample of randomly selected architectures S and con-
struct training multivariates in (a;, pjj, j) where a; € S and p;;
are in turn the i-th architecture and its validation accuracy
at a certain training epoch, plus the epoch number j. Next
we train a regression model P with this dataset to predict
the accuracy of other architectures. To capture the complex
relations in data we use a Gradient boosting decision trees,
(GBDT) as the model P. A GBDT boosts the prediction by
leveraging multiple additive trees and thus different views on
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TABLE 1. The proposed integer coding for network operations; consisting of 4 parts: operation type (one-hot code), kernel width, kernel height and

output to input ratio.

Operation

Name Operation type | Kernel width | Kernel height | O/I channel ratio
Convolution 1 3,5 3,5 0.25,3
Max-Pooling 2 3,5 3,5 1

Avg-Pooling 3 3,5 3,5 1

ReLU 4 1 1 1

BatchNorm 5 1 1 1
SkipConnection | 6 0 0 0

No-Op 7 0 0 0

data: ygppr(x) = Zf=1 Ypr,(x) Where R denote the number
of additive trees, and ypr, denotes the predictive model for
the r-th tree. Together GBDT extracts R rules to predict the
target value for a given feature vector. When a rule is not good
enough to differentiate the architectures, its weight is set to a
near zero value and thus it is pruned off the tree.

Ranking. The trained predictor P estimates the accuracy
of a large number of architectures sampled from A4 \ S. These
architectures are then ranked based on their predicted accu-
racy and top n architectures are passed to the next step for
final evaluation.

Evaluation. Here top n architectures, i.e., the promising
ones, are trained and evaluated on real data to calculate their
actual validation accuracy.

VI. EXPERIMENTS

We evaluated our approach on two commonly used datasets
for NAS, i.e., NASBench 101 and NASBench 201, which
show efficiency of our proposed approach compared to the
state-of-the art baseline methods in NAS. Although the archi-
tectures in NASBench datasets are limited in structure and
type; the proposed representation paradigm can potentially
encode various type of cells.

A. NASbench 101

NASbench 101 search space is a dataset of about 425’000
pre-built and tested architectures on CIFAR-10. The search
space is built upon NASNet principles [5]. The main stem
of the architecture is composed of three times repetition
of a cell followed by a downsampling layer to manage the
input dimensions. The architecture ends with a global average
pooling layer and a dense softmax layer. Each cell is com-
posed of up to 7 layers (two of them are reserved for input
and output) and 5 valid operations. The operations include
‘CONVI x 1’, ‘CONV3 x 3, ‘MAXPOOLI x 1°, plus
‘INPUT” and ‘OUTPUT’ which refer to convolution with
1 x 1 kernel, 3 x 3 kernel, max pooling with 1 x 1 kernel,
simple input and output resp. The convolution operations
actually apply a series of [Convolution-BatchNorm-ReL U]
operations. The cells are described with adjacency matrix
and the list of applied operations. Each structure have been
trained, validated and tested three times and the results have
been averaged and reported. The dataset however, contains
some inconsistencies because the models with best validation
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errors do not necessarily report best test errors. Also, due to
unstable models (like a model with only pooling operations),
high variance is expected.! To better compare the results
with [12], [19], [20], the current state of the art predictors,
we use their training setup.

B. NASbench 201

The NASbench 201 [31]set consists of approximately
16,000 cell-based architectures. These architectures are
trained, validated, and tested on CIFAR-10, CIFAR-100, and
ImageNet-16-120. Each architecture is composed of of three
segments, each containing N times repetitions of a fully
connected cell. Each cell is made up of input and output
nodes and 2 internal nodes. A total of 5 permissible opera-
tions are defined for internal nodes including ‘CONV3 x 3’,
‘CONVI1 x 1’, ‘AVG3 x 3°, “ZEROIZE’, ‘SKIP-C’. The low-
est errors reported on this set so far (after 500 trials), are
53.22% for testing and 53.15% for validation reported from
two different architectures.

C. BENCHMARK METHODS

To evaluate the proposed method, we compared several state-
of-the-art baselines with our proposed method as stated
below:

« Random Search: The simple and fast cell-based
search method that combines random search with
weight-sharing and is proposed in [32]

o NAO: Encodes the architectures into continuous space
and uses gradient descent there to optimize the encoded
architectures [33].

« RE: A primary method based on evolution which com-
petes against RL in large spaces [2].

o Neural Predictor: It uses Graph Convolutional Net-
works to extract features and is proposed in [20].

« GBDT-NAS: Proposes a discrete encoding method and
uses GBDT as the predictor [12].

« BANANAS: Uses path-based encoding and is based on
Bayesian optimization [19].

o Weak NAS Predictor: Focuses on progressive sampling
to improve predictive accuracy. This method is presented
in [34]

IThe highest test accuracy which is reported by Regularized evolution [2]
through extensive search is 94.32% but its mean test accuracy and validation
accuracy are in turn 94.1% and 95.13%.
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o GATES: Proposes a new graphical encoding method
that models the data converted under a sequence of oper-
ations instead of modeling the operations [23].

o NASGEM: Is based on graph encoding and clusters the
graphs using Weisfeiler-Lehman kernels [24].

« BONAS: a sample-based NAS framework which is
accelerated using weight-sharing to evaluate multiple
related architectures simultaneously. It also applies a
GCN predictor as the surrogate model for Bayesian
Optimization to select candidate models in each itera-
tion [35].

o BRP-NAS: a hardware-aware NAS method with a
GCN-based performance predictor. It improves the sam-
ple efficiency by considering binary relations of the
models and an iterative data selection strategy [36].

o S%i: The proposed method based on searching in latent
space via a predictor.

D. EXPERIMENTAL SETTING

We first describe preparing the NASbench 101 and
NASbench 201 sets and the proprietary model settings.
We used an Apple M1 processor for all the experiments
and we did not exploit GPU. For conventional test and val-
idation experiments our proxy set contains 15 trees and we
used 100 randomly sampled architectures as the training set.
We use 300 random samples to validate the results and the rest
as the testing set. We leverage a Gradient Boosting Decision
Tree (GBDT) model with 100 trees and 31 leaves per tree
as a predictor. The whole experiment is run for 50 times and
the average result is reported. This setup is chosen so that the
results are comparable with the other state of the art methods
introduced above.

E. RESULTS ON NASbench 101

The first round is the basic test and validation experiment.
For the methods we examine, a total of 2000 (1000+1000)
samples are taken randomly to make the training and valida-
tion set. As we mentioned in previous section, for our method
we used 100 training and 300 validation random samples.
For GBDT-NAS [12], Weak Predictors [34], BANANAS [19]
and BONAS [35], we used the official codes published by
the authors. We also had the researchers’ verified code for
Regularized Evolution [2], Random Search [32] and Neu-
ral Predictor [20]. We run each of the mentioned codes for
50 times and averaged the results. For NAO [33], the values
reported in [20] and [12] and for BRP-NAS [36] we used both
the code and the values reported in [34]. The reported results
for the GATES [23] and NASGEM [24] are both from the
context of the respective articles. The average validation and
testing results are given in Table 2.

As shown in the Table 2, the proposed method has the
highest accuracy in validation data. Of course, the WeakPre-
dictor method has the same validation accuracy. Other basic
methods have the best accuracy with significant differences
in validation data. The Table 3 shows the number of train-
ing samples used by the methods with highest test accuracy.
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TABLE 2. Validation and test results on NASbench 101. The entries with -’
corresponds to those that the validation accuracy was not reported in the
original paper.

[ Method [[ Test Acc(%) [ Val Acc(%) [ Test Regret |
Random Search [32] || 93.7 94.5 0.62
NAO [33] 93.90 94.1 0.42
RE [2] 93.96 94.7 0.36
Neural Predictor [15] || 94.04 95.1 0.28
NAS-GBDT [12] 94.14 94.5 0.18
BANANAS [19] 93.9 94.5 0.42
NASGEM [24] 94.1 — 0.22
GATES [23] 94.0 — 0.32
NPENAS [37] 94.14 94.25 0.18
Weak Predictors [34] || 94.23 94.9 0.09
BRP-NAS [36] 94.22 — 0.10
BONAS [35] 94.22 — 0.10
S2i 94.21 94.9 0.11

As it can clearly be seen in the results, the lowest number of
training samples belong to our method.

1) EVALUATION WITH SPARSE DATA

A major challenge of using the predictive method is pes-
simistic estimation in some areas of the search space. Thus
ranking architectures relative to each other, is more impor-
tant than estimating their exact performance (numerical
accuracy). To do so, we compare the performance of our pre-
dictive model with GCN, LSTM, MLP and GATES predictive
models through calculating Kendall-Tau correlation coeftfi-
cients. The values for these methods are derived from [23]
and reported in Table 4. To evaluate the resistance of the
proposed method to the amount of available data, all predic-
tors are trained with different ratios of the training data and
the Kendall-Tau coefficient on the accuracy obtained from
testing the architectures is represented. We train our predictor
primarily with 100 architectures out of 381262 mentioned
set. What remains from the training budget of each round,
is divided into 10 parts to update the predictor.

As Table 4 shows, the generalization is especially evident
when training samples are scarce. For example, when only
190 architectures (0.05% of architectures) are observed by the
predictive model, the ranking in our method clearly results in
a higher correlation than the other encoders.

2) SAMPLE EFFICIENCY
To observe how the encoding can improve the sample effi-
ciency, we conduct a series of experiments and sample the
proxy architectures with different limitations. In each round,
we evaluate the resulting model on 10,000 architectures, but
our experiments show that these results are also valid on
the whole data-set. First we sample only those architectures
which their validation accuracy is above a certain threshold.
The results of this experiment are reported in Table 5. For
each specific threshold, the test is run 3 times and the results
are averaged.

The results approve that the quality of proxy trees is effec-
tive in solving the final problem. Generally as the accuracy
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TABLE 3. Sample efficiency on NASbench 101.The second row indicates the minimum number of architecture-accuracy pairs queried from the dataset to

train the predictor.

BONAS | Weak predictor | NPENAS | BRP-NAS
Method [35] [34] [37] [36] S2j (Ours)
Predictor Type (%) GCN MLP/GBDT MLP GCN GBDT
Trained Models 1000 1000 150 150 100
Avg. Test Accuracy (%) || 94.22 94.23 94.14 94.22 94.21

TABLE 4. The Kendall-Tau ratio using different encoders on NASbench 101. 90% of the architectures (381262 samples) were used as total training data

and the remaining 42362 samples were used for test.

Encoder Proportions of 381262 training instances (%)
0.05% [ 01% [ 05% [ 1% | 5% [ 10% [ 50% [ 100%
MLP 0.39 052 | 064 | 073 | 085 | 0.87 | 0.8 0.89
LSTM 0.55 059 | 0.71 0.77 | 0.84 | 0.85 | 0.88 | 0.89
GCN 0.55 0.57 0.79 0.82 | 0.86 | 0.87 | 0.89 | 0.89
Neural Predictor(GCN) || 0.61 062 | 0.68 | 0.69 | 0.68 | 0.76 | 0.77 | 0.76
GATES 0.76 0.77 | 0.84 | 0.85 | 0.88 | 0.89 | 0.90 | 0.90
S2i 0.82 082 | 0.83 | 0.84 | 0.88 | 0.88 | 0.91 | 0.93
TABLE 5. Test result on NASbench 101 with limited sampling. The proxy True Ranking Visualization
sets are built with architectures better than a minimum specified 100 s
accuracy. e~ 6000
37 g % e 9000
— - - B % & e P e 12000
Minimum Accuracy(%) || Size of the proxy set 50 - & .%"‘ & & .":::, & | o, 15000
10 [20 [40 [60 [80 [1I00 ® ot5 2o =
Random 93.1 [93.5 [93.4 [933 [|93.5 [93.7 251 "ﬁg g‘gﬁ%n".“’ s
>94 94.23 193.68 | 93.74 | 94.23 | 93.65 | 93.58 it X e o N
>93 93.97 193.95|94.23|94.18 | 93.94 | 94.15 £ 1 .
>90 94.15|93.68 | 93.98 | 94.07 | 93.85 | 94.23 25 |
>80 93.7 ]93.82|93.83|94.21|93.6 |94.02
504
threshold of the proxy architectures increase, the average test ”
—100 A

accuracy of the predictor and its sample efficiency increase.
It is clearly seen that this sampling is much efficient than
random selection. What is negative about the results is the
slight non-monotonic behavior of the results which makes it
difficult to decide on the size of proxy set, which may show
the model overfits to a specific regions. So next we use our
proposed kernel-based measure to remove similar architec-
tures from the high-accuracy proxy set. Therefore, we might
select architectures with slightly lower performances instead.
We run this test for 10°000 samples, totally 5 times and aver-
age the results.

We can infer from the Table 6 that second test has a more
monotone behavior. So, the better approach to sample proxy
architectures is to keep diversity among them even if we cast
out some highly accurate networks. To train the predictor,
m + k architectures are randomly sampled from the space
and are fully trained on the task. Then they are sorted accord-
ing to their performance. The proxy networks are selected
iteratively from the top of the list. The architectures with
less diversity compared to their subsequent candidate, are
ignored until k architectures are selected. The remaining m
architectures are used as the training set.

3) VISUALIZATION OF THE ENCODED SPACE
In Figure 4 about 16000 architectures randomly sampled
from the space are visualized using t-sne. The color denotes
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FIGURE 4. The two dimensional visualization of the encoded NASbench
101 architectures. The dots become darker when the accuracy increases.

the architectures® rank according to their true performance.
Darker points resemble more accurate architectures. The
visualization is not exact as the real encoding space is
multi-dimensional while it is mapped to two dimensional
space. Anyhow it can be seen that architectures with simi-
lar performance are mapped to close areas and form small
groups. We also move gradually from strong regions to weak
regions and vise-versa.

F. RESULTS ON NASbench 201

To test the proposed predictor on a more challenging dataset,
we used NASbench 201 and the set of architectures trained
on ImageNet-16-120.

1) TEST ON SPARSE DATA
The Kendall-Tau coefficient was also measured on the
NASbench 201, the results of which are shown in Table 7.

2) VISUALIZATION OF THE ENCODED SPACE
In Figure 5 the encoded architectures are viusalized
using t-sne. The interesting observation is that poorly
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TABLE 6. Test result on NASbench 101. The proxy database is built with diverse, accurate architectures.

Sampling method Size of the proxy set

10 [ 15 [ 20 [ 30 [ 40 [ 60 [ 80 [ 100
Best Unvaried
(accuracy >93.8%) || 93.66 | 94.23 | 93.69 | 94.23 | 93.94 | 93.69 | 93.94 | 94.01
Best Varied 93.95 | 94.01 | 94.01 | 94.07 | 94.15 | 94.21 | 94.17 | 94.19

TABLE 7. The Kendall-Tau factor using different encoders on the
NASbench 201. 5% of the architectures (7813 samples) were used as
training data and the remaining 7812 samples were used for test.

Encoder || Proportions of 7813 training instances (%)

0.05% ] 0.1% ] 0.5% [ 1% | 5% | 10% ] 50% | 100%
MLP [[0.09 [0.39 |0.53 |0.82]0.87]0.87 [0.8 |0.89
LSTM | 0.55 |0.64 |0.72 |0.87{0.90|0.85 | 0.88 |0.89
GATES | 0.74 | 0.86 |0.88 | 0.91]0.92|0.87 | 0.89 | 0.89
S%i__ [[0.91 [091 [0.92 [0.92]0.94]0.89 [0.90 | 0.90

True Ranking Visualization

100 4

50 1

comp-2
(=]
I

—504

—100

-100 —50 o] 50 100

FIGURE 5. The two dimensional visualization of the encoded NASbench
201 architectures. The dots become darker when the accuracy increases.

Epoch 1 Epoch 2 Epoch 3

5288y

e
L4

FIGURE 6. The search trajectory after three runs with a trained predictor.
The best predicted architecture and the global best is highlighted.

ranked architectures form a colony around the rest of
the architectures which are mapped at the center of the
space.

3) VISUALIZATION OF THE SEARCH TRAJECTORY

The primary trained predictor, evaluates the search space step
by step. Here in each step it samples 1000 new architectures
and trains the best 100 ones. The previously evaluated archi-
tectures are not selected twice. The search dynamics for three
runs is depicted in Figure 6. As it can be seen the predictor
soon finds the whereabouts of the best architecture and moves
towards it.
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FIGURE 7. The Kendall-Tau ratio related to evaluating ImageNet-16-120
using NASBench-201. The predictors are trained with different ratios of
4000 samples of NASBench-201-CIFAR10 set and tested on
NASBench-201-ImageNet.

G. CROSS META-LEARNING DATASET

We further demonstrate the usefulness of our predictor trained
on CIFAR-10 by applying it to ImageNet classification. It is
revealed that CIFAR accuracy and ImageNet accuracy are
strongly correlated [7]. We transfer the best architectures
found on CIFAR-10 as proxy trees to the ImageNet problem.
We exploit the Kendall-Tau coefficient to assess the quality
of the predictor‘s ranking. To compare the findings to the
results in other papers, we conduct experiments under the
following settings: On each round, the predictor is primarily
trained with 100 samples and updated with the rest of the
training budget of the specific round (batch size is 100). The
results are summarized in Figure 7. Our predictor achieves
slightly better performance BRP-NAS and significantly sur-
passes NPENAS and Bananas.

VIl. CONCLUSION

Surrogate predictive models have shown its effectiveness in
addressing the Neural Architecture Search problem where a
model attempts to forecast the performance of a neural model
ahead of training.

In this paper, we proposed to leverage both structural fea-
tures of a deep network and per-layer information to learn
an encoding for surrogate predictor. We proposed to repre-
sent each neural network via a tree structure and then extract
features from the given tree. In particular, we adopt tree
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kernel for extracting structural feature and distributional fea-
ture learning for non-structural features. Extensive results
on two state-of-the-art datasets of NAS task demonstrate
the effectiveness of the proposed model especially regard-
ing convergence speed, sample efficiency and performance
estimation.

There is also interesting insights focusing on the keyword,
ontology. Here domain Knowledge can be expressed in the
form of an ontology graph that can model the relationship
between different types of the same category of operations.
Like the relationship and the effect of using different filters,
or between Max Pooling and Average Pooling. Therefore,
ontology can inject general knowledge into our system. For
now, we focused on limited databases. By using the ontology
and the knowledge it conveys, the features obtained from
other problems or databases can be shared among them.
In other words, by gathering this knowledge, it is possible
to decide what characteristics the general architecture should
have.

Many extension of this work can be exploited. For exam-
ple, we plan to extend the proxy set sampling method and
acquire more effective samples. Further, adapting zero-shot
and one-shot learning for effective training of surrogate mod-
els can be a promising direction.
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APPENDIXES

COMPUTING TREE KERNELS

As mentioned in section computing kernels, for the two trees
T1 and T, and their set of nodes, Ny, and N7,, the kernel
function is defined as follows:

I
KT Ty= Y Y mu|2®+> Aplcar cn)
p=1

ny ENT1 anNT2

(10)

The A, function calculates the number of common sub-trees
in exactly p children (from both n1 and ny). If aS; and bS; are
two child sequences (a and b are the first children), then:

Ap(ast, bSz) = Ala, b) + DplIS11, 15211 Y

Initialize the matrix Dp(p + 1 x p + 1) with O and use the
following recursive relation to calculate the components of
the matrix:

Dplk, 11 = Ap—1(s1[1 2 i], s2[1 : r]) + ADplk, I — 1]
FADyk — 1,11 — 3Dyl — 1,1 — 11 (12)
To avoid the useless calculation of delta function for dis-
similar sub-tree roots, the node lists can be sorted to match

only the sub-tree roots with similar labels. The delta function
checks the equality of two entities. Our entities/nodes consist
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of the type of assigned operation and its hyperparameters.
We define a Delta function as below to consider both:

Delta(Ey, Ey) = (E1, = E3,) (0.75 4 0.25 x (E1, = Ey,))
(13)

The E;, is the operation type which is decisive in matching
and E;, is its most important hyperparameter (like the kernel
size). So similar operations with different hyperparameters
get a proportional matching score.
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