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In this paper, we investigate an energy-aware flow shop scheduling problem under sequence-dependent 

setup times, group scheduling, and renewable energy constraints. We aim to minimize the total energy 

cost dependent on time-of-use electricity tariffs. To this end, we develop two mixed-integer linear pro- 

gramming models, including a time-unit index model and a time-interval index model. Besides, we de- 

velop a decomposition-based heuristic algorithm to solve efficiently medium-size instances. Using exten- 

sive computational experiments, we show that the heuristic algorithm outperforms both developed mod- 

els, and the time-interval index model indicates superior performance than the time-unit index model. 

Finally, we provide a set of sensitivity analyses and evaluation of economic performance. 
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. Introduction 

Most of the consumed energy in the world is in the form of 

lectricity in the industrial sector ( Zhang, 2016 ). Electricity is a 

orm of energy that cannot be stored efficiently and should be dis- 

ributed and consumed immediately after being produced. In other 

ords, we need to keep a balance between electricity supply and 

emand. To do so, in many countries, time-of-use (TOU) pricing 

as been considered to encourage electricity consumers, mainly 

actories with high electricity consumption, to shift their electricity 

onsumption from on-peak hours to mid-peak or off-peak hours 

 Zhang, 2016 ). The use of renewable energy is another policy to 

educe electricity demand from the grid and prevent air pollution. 

n-site renewable energy production can be a valuable resource 

or companies where energy has a significant impact on their pro- 

uction processes. It will reduce their dependence on power plants 

nd counteract surging electricity costs. In addition, the use of re- 

ewable energy can make a significant contribution to reducing 

he environmental impact of production processes. To reduce the 

ost of electricity and take advantage of all possible opportunities, 

t is necessary to develop optimal production schedules so that re- 

ewable energy can be used as much as possible, and if there is 

 need to buy electricity, the lowest cost is paid. In the contem- 

orary era, the number of factories that use renewable energy is 

ncreasing every day. It is due to the high cost of purchasing elec- 
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ricity from the grid, as well as reducing air pollution and feed-in- 

ariff schemes that governments have put in place to use renew- 

ble energy. There are several companies that use on-site renew- 

ble energy, such as LG Gumi Factory, Brabantia, SIG Combibloc, 

nd Whirlpool. 

In this paper, we design two models and an algorithm to de- 

elop schedules in the flow shop environment. We develop our 

chedules based on group scheduling and sequence-dependent 

etup times assumptions because group scheduling has significant 

pplications in various industries such as automobile, aerospace 

nd semiconductor light industries and, as far as we know, has not 

lready been addressed in the literature. 

What motivated us to carry out this research is its applications 

n semiconductor light industries in which products such as LCD, 

FT-LCD, LED and OLED are produced where each one is made of 

everal components. For instance, Fig.1 presents the components of 

FT-LCD panel. 

Each component of TFT-LCD panel is produced in a flow shop 

nvironment in which group scheduling is used. Jobs are divided 

nto groups based on their shapes, sizes and technological con- 

traints. The jobs of each group may have different processing 

imes and power consumption. For instance, in the polarizer at- 

achment, which is one of the main steps of the polarizer film pro- 

uction, the jobs of each group usually have different processing 

imes, and there are tiny setup times between jobs due to small 

hanges in machines temperature. We ignore such setup times and 

e consider only setup times between groups that are noticeable. 

t should be noted that the number of semiconductor light facto- 

ies that use on-site renewable energy is growing. For example, LG 

https://doi.org/10.1016/j.ejor.2022.09.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.09.034&domain=pdf
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Fig. 1. The components of TFT-LCD panel ( Shahvari, 2017 ). 
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umi Factory, which is a TV manufacturer in Korea uses solar pan- 

ls in the factory to provide part of its electricity needs. 

Most previous research has developed time-index models for 

imilar problems causing large CPU runtimes. It should be men- 

ioned that these models do not address group scheduling chal- 

enges. For instance, Schulz et al. (2019) used a time index model 

ased on the minute to formulate the problem and assumed each 

rocessing time has a discrete uniform distribution taken from 

1,…,10}. They showed that the average CPU runtime for a prob- 

em that includes 10 jobs is around 67 hours. Some other papers 

ave considered time units more than one minute and have pre- 

umed that each processing time is a multiplication of the con- 

idered time unit. For example, Zhang et al. (2017) considered a 

0-minute time unit and assumed that each processing time is a 

ultiplication of 20 minutes. They considered a flexible flow shop 

cheduling problem including two jobs, two stages, and two ma- 

hines in each stage and solved it in eight hours. Since scheduling 

roblems, particularly the problem at hand, are a kind of short- 

erm planning, they must be solved in a short CPU runtime. More- 

ver, processing times are not always a multiplication of a specific 

ime unit, and hence we need to develop new models to cover pre- 

ious deficiencies. To do so, we employ the concept of time in- 

erval to formulate the problem in a more efficient way. We de- 

elop two mixed-integer programming (MIP) models, one based on 

he time-unit index model and the other one based on the time- 

nterval index model, to compare their performances. The former is 

eveloped based on the ideas that have already been in the litera- 

ure whereas the latter involve new ideas. Furthermore, due to the 

act that MIP models usually fail to solve medium-size instances, 

e develop a decomposition-based heuristic algorithm (DBHA) to 

ope with this problem. 

The contributions of this research include the followings: (1) 

e develop two MIP models based on the time-unit index and the 

ime-interval index ideas; (2) we develop a DBHA that outperforms 

eveloped models, especially for medium-size instances; and (3) 

e present a set of economic analyses for on-site renewable en- 

rgy consumption. 

The rest of this paper is organized as follows. The related re- 

earch works are reviewed in Section 2 . In Section 3 , a detailed

escription of the problem is provided, and two MIP models are 

eveloped. In Section 4 , a decomposition-based heuristic algorithm 

s designed to solve the problem. In Section 5 , the developed solu- 

ions approaches are compared and evaluated. Finally, in Section 6 , 

 summary and suggestions for future research are provided. 

. Related work 

We categorize the related published research works into two 

arts. In the first part, we review the papers that investigate 
520 
nergy-aware scheduling in shop environments. In the second part, 

e review the research works that have studied group scheduling 

n the flow shop environment. In both categories, there are some 

apers that have considered sequence-dependent setup times. 

.1. Energy-aware scheduling in shop environments 

Several papers presented in this field have addressed reducing 

onsumed energy or abatement of consumed electricity cost by 

onsidering various solution approaches. For instance, some of 

hese approaches are shutting down production machines in the 

dle state, reducing the production rate at on-peak hours, changing 

he speed of machines, and changing the sequence of jobs or their 

ssignment to machines. Giret et al. (2015) , Gahm et al. (2016) , 

iel and Glock (2016) , as well as Akbar and Irohara (2018) are 

ome review articles in this field. Several articles published in this 

eld have only sought to reduce energy consumption without con- 

idering electricity costs at different hours of a day. For example, 

ecause shutting down machines in the idle state can significantly 

educe the consumed energy, Mouzon et al. (2010) investigated 

his policy for machines that were not bottleneck. Tang et al. 

2016) investigated the flexible flow shop scheduling problem by 

onsidering the possibility of changing the machines speed and 

he possibility of machines breakdown. Mansouri et al. (2016) de- 

eloped a bi-objective model for minimizing energy consumption 

nd makespan in a two-machine flow shop scheduling problem 

ased on the idea that the speed increase of a machine might 

ecrease job processing times and increase energy consumption. 

hey assumed that sequence-dependent setup times between jobs, 

nd they solved their developed model using a heuristic algorithm. 

oreover, Li et al. (2018) presented a paper on the flexible flow 

hop environment with sequence-dependent setup times. Taking 

nto account the energy consumed during processing, standby 

tate, and setup times, they proposed a multi-objective algorithm 

o minimize the makespan and energy consumption. Wu and Sun 

2018) proposed a multi-objective model and algorithm for the 

ob shop scheduling problem. They presumed that shutting down 

 machine consumes less energy than leaving the machine idle 

hen there is no job to process, and starting up and shutting 

own a machine too often will cause it to breakdown. They 

onsidered minimizing the makespan, the energy consumption, 

nd the number of starting ups and shutting downs of machines 

s the objectives of their model. 

Some researchers tried to reduce energy costs by taking into 

ccount the variable cost of electricity at different working hours. 

or example, considering electricity tariffs, Wang et al. (2017) pre- 

ented a single-objective model for the two-machine permutation 

ow shop scheduling problem. They solved the problem using two 

euristic algorithms based on Johnson’s rule and dynamic pro- 

ramming. Furthermore, Ho et al. (2020) studied a two-machine 

ow shop scheduling problem to minimize the electricity cost. 

hey developed a heuristic algorithm including two phases. In 

he first phase, a series of schedules with minimum makespan is 

btained, and in the second phase, one of the schedules obtained 

n the first phase leading to minimum electric cost is selected 

sing the shortest path algorithm. Schulz et al. (2019) modeled the 

exible flow shop scheduling problem with the three objectives of 

inimizing the makespan, energy cost, and peak power consump- 

ion and used a local search algorithm to solve the problem. More- 

ver, Cui and Lu (2021) developed a single-objective model to min- 

mize electricity cost in a flow shop environment under TOU elec- 

ricity tariff. They captured the preventive maintenance operations 

nd designed a two-layer mathheuristic to solve the problem. In 

he external layer, the sequence of jobs is determined using a ge- 

etic algorithm, and in the internal layer, the maintenance sched- 

le is constructed through a dynamic programming algorithm. 
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Some research studies have also considered renewable energy 

nd have investigated scheduling problems to reduce costs related 

o electricity consumption or pollutants. For instance, Wang et al. 

2011) developed a low-carbon production scheduling system by 

onsidering using renewable energy. They addressed a single ma- 

hine scheduling problem by taking into account that carbon is 

roduced due to the power purchased from the grid, as well as the 

roduction process, equipment maintenance, and daily activities. 

urthermore, Liu (2015) assumed that it is possible to store renew- 

ble energy in a battery. He also assumed that carbon is produced 

nly by the power purchased from the grid. He proposed two mod- 

ls for a single machine scheduling problem. Liu (2016) also pre- 

ented an article with the assumptions of the previous article in 

onjunction with the goal of minimizing carbon emissions and the 

arliness and tardiness of jobs. Zhai et al. (2017) carried out re- 

earch to reduce the cost of power purchased from the grid using 

ind-generated energy. They proposed a model to reduce the cost 

f electrical energy for a flow shop scheduling problem by assum- 

ng that the electricity generated by the wind energy could be sold 

o the grid. Next, Biel et al. (2018) developed a bi-objective model 

n order to minimize the total weighted flow time and the energy 

ost. Considering the possibility of storing solar energy, Zhang et al. 

2017) developed a MIP for a flow shop scheduling problem to re- 

uce the cost of purchasing electricity from the grid. They demon- 

trated that significant cost savings could be achieved using an op- 

imal scheduling approach. Moreover, Moon and Park (2014) , for 

he first time, examined a flexible job shop scheduling problem 

hat could use both renewable energy and the power grid. They 

ssumed that it was possible to store renewable energy. 

.2. Group scheduling in the flow shop environment 

In the group scheduling approach, first proposed by Willey 

1975) and extended by Mitrofanov (1966) and Schaller et al. 

20 0 0) , a group consists of a set of parts that have similar needs

or tools, setup, and operation sequence. In cases where the setup 

f a machine is costly or time-consuming, the idea of grouping 

arts and doing only one setup for each group can be helpful to 

ncrease productivity. In group scheduling, the jobs of one group 

hould be processed sequentially, and at the time of changing jobs 

rom one group to another, a setup time is needed. Based on 

ozorgirad and Logendran (2013) , group scheduling is usually de- 

ermined by the scheduling of jobs at two levels. On the one hand, 

he sequence of groups should be determined according to setup 

imes, and on the other hand, the sequence of jobs should be de- 

ermined in each group. 

Group scheduling in the flow shop environment has many ap- 

lications in various industries. For instance, in the automobile in- 

ustry, after painting a group of products, we need to change the 

olor used for the following products. In this case, it is neces- 

ary to spend a setup time to clean the environment and prepare 

he following color ( Salmasi et al., 2010 ). Group scheduling is also 

sed in the blade line in aircraft engine factories, where differ- 

nt types of blades used in aircraft engines are produced. In this 

roduction line, the blades that require the same type of process- 

ng are placed in a group. If the blades change from one group to 

nother, a setup should be done on the machine, but if the ma- 

hine moves from one type of blade to another in the same group, 

 minor adjustment is required whose setup time is negligible. Li 

1997) reported that this grouping was implemented many years 

go in Pratt and Whitney, a company in the aerospace industry. 

n addition to these applications, the semiconductor light industry 

s another group scheduling application in the flow shop environ- 

ent, described in Section 1 . 

Regarding the significance of group scheduling in various in- 

ustries, several papers have addressed this issue. Neufeld et al. 
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2016) developed a review article for group scheduling in shop en- 

ironments. They addressed several papers investigating the objec- 

ive functions such as minimizing the makespan, the total com- 

letion time, and the total flow time, but none of these pa- 

ers has considered the cost of energy consumption. Feng et al. 

2018) considered preventive maintenance in a flexible flow shop 

nvironment with group scheduling. They aim to minimize the 

reventive maintenance costs, repair costs, and job tardiness costs. 

urthermore, Pan et al. (2020) developed a heuristic algorithm 

o minimize the makespan in the flow shop scheduling prob- 

em with group scheduling assumption. Costa et al. (2020) cap- 

ured a blocking constraint in the flow shop sequence-dependent 

roup scheduling problem and designed a parallel self-adaptive ge- 

etic algorithm to minimize the makespan. Moreover, Cheng et al. 

2021) studied a no-wait flow shop group scheduling problem with 

equence-dependent setup times. They developed two heuristic al- 

orithms and a local search algorithm to minimize the total com- 

letion time. 

Table 1 summarizes some of the most related references and in- 

icates the characteristics of each research paper in terms of shop 

nvironment, group scheduling, setup time, objective function, and 

sing renewable energy and battery. The symbol " 
√ 

" indicates that 

he corresponding assumption has been considered whereas the 

ymbol " ×" implies that assumption has been ignored. 

. Problem description and modeling 

.1. Problem description 

In this problem, it is assumed that the parts are produced in 

he form of group scheduling in a flow shop environment. Each 

art is called a job, and the processing of each part on a machine 

s called an operation. A set of similar parts constitute a group, and 

ach machine requires a setup time that depends on the sequence 

f groups. Therefore, jobs are grouped to increase production effi- 

iency and reduce the number of setup times. 

In this study, according to Zhang et al. (2017) and Liu (2015) , 

t is assumed that solar energy can be produced as an on-site re- 

ewable energy source using photovoltaic (PV) panels. The electri- 

al energy produced can be used directly to meet electricity needs 

r stored in a battery for later use. The power consumption of the 

actory can also be supplied through the grid. It is also possible to 

tore grid power in the battery. Thus, when the cost of electricity 

s low, electricity can be bought from the grid, and when it is high, 

he power consumption can be supplied using the battery. In this 

tudy, it is assumed that if the battery is fully charged and there is 

o other demand for power, the electrical energy produced by the 

V panels will be wasted. It is also presumed that electrical energy 

rom the PV panels cannot be sold to the grid. 

According to Cheng et al. (2017) and Wang et al. (2017) , elec- 

ricity pricing is also considered at different times of the day based 

n the TOU tariffs. In a TOU tariff, the cost of electricity is deter- 

ined according to the demand in the electricity grid, in which 24 

ours of a day are usually divided into a set of time periods where 

hey are mutually exclusive and jointly exhaustive. These time pe- 

iods can be categorized as follows: the on-peak hours when the 

ost of electricity is the highest; the mid-peak hours when the cost 

f electricity is lower than that of the on-peak hours; and the off- 

eak hours when the cost of electricity is the lowest. Given the 

OU tariff, to avoid high electricity costs, schedules may change in 

uch a way that some jobs might shift from high-priced hours to 

ow-priced ones. 

The problem at hand can be denoted using the notations de- 

ned by Pinedo (2012) as F m 

| f mls, s m 

pq , T OU, re t , ca | T EC. In this no- 

ation, F m 

indicates the flow shop environment with m machines, 

f mls represents the group scheduling problem; s m 

pq indicates the 
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Table 1 

The summary of some of the most related references 

Paper Shop Environment Group scheduling Setup time energy consumption / electricity cost Renewable 

Energy 

Battery 

Mouzon et al. (2010) single machine × × energy consumption × ×
Tang et al. (2016) flexible flow shop × × energy consumption × ×
Mansouri et al. (2016) two-machine 

permutation flow shop 

× √ 

energy consumption × ×

Li et al. (2018) hybrid flow shop × √ 

energy consumption × ×
Wu and Sun (2018) flexible job shop × × energy consumption × ×
Wang et al. (2017) two-machine 

permutation flow shop 

× × electricity cost × ×

Ho et al. (2020) two-machine flow 

shop 

× × electricity cost × ×

Schulz et al. (2019) hybrid flow shop × × electricity cost × ×
Cui and Lu (2021) flow shop × × electricity cost × ×
Wang et al. (2011) single machine × × energy consumption 

√ √ 

Liu (2015) single machine × × energy consumption 
√ √ 

Liu (2016) single machine × × energy consumption 
√ √ 

Zhai et al. (2017) flow shop × × electricity cost 
√ ×

Biel et al. (2018) flow shop × × electricity cost 
√ ×

Zhang et al. (2017) hybrid flow shop × × electricity cost 
√ √ 

Moon and Park (2014) flexible job shop × × electricity cost 
√ √ 

Schaller et al. (2000) flowline 
√ √ × × ×

Salmasi et al. (2010) flow shop 
√ √ × × ×

Bozorgirad and Logendran (2013) hybrid flow shop 
√ √ × × ×

Feng et al. (2018) flexible flow shop 
√ √ × × ×

Pan et al. (2020) flow shop 
√ √ × × ×

Costa et al. (2020) flow shop 
√ √ × × ×

Cheng et al. (2021) no-wait flow shop 
√ √ × × ×
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β

equence-dependent setup time between groups p and q on ma- 

hine m ; T OU alludes to electricity tariff in the schedule; re t indi- 

ates the renewable energy; ca represents the capacity of the bat- 

ery that stores renewable energy, and finally T EC represents the 

bjective function, which implies the total energy cost ( T EC). Other 

ssumptions are as follows. 

• All machines and jobs are available at the beginning of the 

scheduling horizon. 
• All machines have two modes: busy mode and idle (shut 

down) mode, where in the latter, no energy is consumed. 
• All operations of each group should be completed before the 

end of the time horizon. 
• Preemption is not allowed during processing any job. 
• The jobs of one group should be processed one after the 

other without interruption by other groups. 
• The buffer capacities between machines are unlimited. 
• Setting up of each machine for processing a new group of 

jobs can be done before jobs of that group are available 

on the machine. Furthermore, the setup time of a job (if 

needed) and its processing time are non-interrupted. 
• Setup time is only considered for groups. This implies that 

there is no setup time between two consecutive jobs of the 

same group. 
• No power is consumed during setup times. 
• The sequence of groups and all jobs belonging to a group 

cannot be changed on different machines implying the per- 

mutation flow shop scheduling. 
• The power required by each machine can be supplied 

through two sources of energy: solar renewable energy and 

power grid. 
• The battery has a constant capacity and can be charged us- 

ing both solar panels and power at the grid. 
• The battery, as a source of energy, is empty at the beginning 

of the scheduling horizon. 

The goal of solving F m 

| f mls, s m 

pq , T OU, re t , ca | T EC is to minimize 

he cost of purchasing electricity from the grid. To optimize it, 

ecisions should be made about the sequence and scheduling of 
522 
roups and jobs in each group, as well as whether or not each ma- 

hine is idle in each time period. In the following, we develop two 

ixed-integer linear programming models and a decomposition- 

ased heuristic algorithm to solve the problem. 

.2. A time-unit index model 

In this section, we develop a time-unit index model, dubbed 

UIM, for F m 

| f mls, s m 

pq , T OU, re t , ca | T EC . Since electricity costs de- 

end on consumption time, the time-unit index (one minute) is 

sed in the TUIM to define the variables of the model. Zhang et 

l. (2014) , Wang et al. (2017) , and Schulz et al. (2019) considered

lectricity tariffs and adopted a similar approach to model the flow 

hop. The parameters and variables of the TUIM are defined in 

able 2 . 

The TUIM reads as follows. 

 UIM : Min T E C = 

∑ 

t∈ T 
r t .E G t (1) 

ubject to: 
∑ 

 ∈ G \ { p, 0 } 
Y pq = 1 , ∀ p ∈ G \ { g + 1 } ; (2) 

∑ 

p∈ G \ { q,g+1 } 
Y pq = 1 , ∀ q ∈ G \ { 0 } ; (3) 

 pq + Y qp ≤ 1 , ∀ p, q ∈ G : p < q ; (4)

1 − U pl j 

)
β + 

∑ 

t∈ T 
t Z m 

p jt −
∑ 

t∈ T 
t Z m 

plt ≥ πm 

pl , 

∀ m ∈ M; ∀ p ∈ G ; ∀ l, j ∈ J p : l < j; (5) 

U pl j + 

∑ 

t∈ T 
t Z m 

plt −
∑ 

t∈ T 
t Z m 

p jt ≥ πm 

p j , ∀ m ∈ M;

∀ p ∈ G ; ∀ l, j ∈ J p : l < j; (6) 
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Table 2 

The parameters and variables of the TUIM 

Sets Definition 

G = 

{ 0 , 1 , 2 , . . . g, g + 1 } 
The set of groups, indexed by p and q. Groups 0 and g + 1 are dummy and each contains only one dummy job with zero processing time and 

zero power consumption. 

M = { 1 , 2 , . . . , μ} The set of machines, indexed by m . 

J p = { 1 , 2 , . . . n p } The set of jobs of group p, indexed by l and j. 

T = { 1 , 2 , . . . T max } The set of time units (minutes), indexed by t and t ′ . 

Parameters Definition 

g The number of groups. 

n p The number of jobs in group p. 

μ The number of machines. 

s m pq Setup time between groups p and q on machine m . 

πm 
p j 

Processing time of job j from group p on machine m . 

pe m 
p j 

Power consumption of job j from group p when it is processed on machine m 

r t Electricity price at time unit t . 

ca Battery capacity. 

re t The electrical energy produced by the renewable energy source at time unit t . 

T max Scheduling horizon (minutes). 

β A very large number. 

Variables Definition 

X m 
p jt 

It takes the value of one if job j of group p is processed on machine m at time unit t , otherwise, it takes zero. 

Z m 
p jt 

It takes the value of one if the processing of job j from group p on machine m starts at the beginning of time unit t , otherwise, it takes zero. 

Y pq It takes the value of one if group q is processed immediately after group p, otherwise, it takes zero. 

U pl j It takes the value of one if in group p, job j is processed after job l (consecutively or disjointedly), otherwise, it takes zero. 

CG m p Completion time of processing of all jobs in group p on machine m . 

EB t The energy stored in the battery at the beginning of time unit t (assume that EB 1 = 0 ) 

EG t Electricity purchased from the grid at unit time t . 

T EC Total electricity cost purchased from the grid. 
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∑
 

∑

m

∑
 

E

E

E

X  

Y

Z  

U

C

E

E

c

t

t

f

i  

b

C

c

g

t

t

 

1 − Y pq ) β + 

∑ 

t∈ T 
( t − 1 ) Z m 

qlt − CG 

m 

p ≥ s m 

pq , ∀ m ∈ M;

∀ p ∈ G \ { g + 1 } ; ∀ q ∈ G \ { 0 , p } ; ∀ l ∈ J q ; (7) 

G 

m 

p ≥
∑ 

t∈ T 
( t − 1 ) Z m 

p jt + πm 

p j , ∀ m ∈ M; ∀ p ∈ G ; ∀ j ∈ J p ; (8)

 

t∈ T 
t Z m 

p jt −
∑ 

t∈ T 
t Z m −1 

p jt 
≥ πm −1 

p j 
, ∀ p ∈ G ; ∀ j ∈ J p ; ∀ m ∈ M\ { 1 } ; (9)

G 

μ
p ≤ T max , ∀ p ∈ G ; (10) 

 

t∈ T 
Z m 

p jt = 1 , ∀ m ∈ M; ∀ p ∈ G ; ∀ j ∈ J p ; (11)

 

p∈ G 

∑ 

j∈ J p 
X 

m 

p jt ≤ 1 , ∀ m ∈ M; ∀ t ∈ T ; (12) 

in ( t+ πm 
pj 

−1 ,T max ) ∑ 

t ′ = t 
X 

m 

p jt ′ ≥ Z m 

p jt π
m 

p j , ∀ m ∈ M; ∀ p ∈ G ; ∀ j ∈ J p ; ∀ t ∈ T ;

(13) 

 

t∈ T 
X 

m 

p jt = πm 

p j , ∀ m ∈ M; ∀ p ∈ G ; ∀ j ∈ J p ; (14)

B t ≤ ca, ∀ t ∈ T ; (15) 

 G t ≥
∑ 

m ∈ M 

∑ 

p∈ G 

∑ 

j∈ J p 
pe m 

p j X 

m 

p jt − E B t − re t , t = T max ; (16) 
523 
 B t ≤ E B t−1 + re t−1 + EG t−1 −
∑ 

m ∈ M 

∑ 

p∈ G 

∑ 

j∈ J p 
pe m 

p j X 

m 

p j ( t−1 ) , ∀ t ∈ T \ { 1 } ;

(17) 

 

m 

p jt ∈ { 0 , 1 } , ∀ m ∈ M; ∀ p ∈ G ; ∀ j ∈ J p ; ∀ t ∈ T (18)

 pq ∈ { 0 , 1 } , ∀ p, q ∈ G (19) 

 

m 

p jt ∈ { 0 , 1 } , ∀ m ∈ M; ∀ p ∈ G ; ∀ j ∈ J p ; ∀ t ∈ T (20)

 pl j ∈ { 0 , 1 } , ∀ p ∈ G ; ∀ l, j ∈ J p (21) 

G 

m 

p ≥ 0 , ∀ m ∈ M; ∀ p ∈ G (22) 

G t ≥ 0 , ∀ t ∈ T (23) 

B t ≥ 0 , ∀ t ∈ T (24) 

Objective function (1) represents minimizing the cost of pur- 

hasing electricity from the grid. Constraints (2) to (4) indicate 

he sequence of groups on each machine. These constraints state 

hat only one group can be processed immediately after and be- 

ore each group. Constraints (5) and (6) limit the start time of jobs 

n each group in such a way that the start time of each job must

e equal to or larger than the completion time of the previous job. 

onstraints (7) state that the start time of each job on each ma- 

hine is equal to or larger than the completion time of the previous 

roup plus the corresponding setup time. Constraints (8) show that 

he completion time of a group must be equal to or larger than the 

otal completion time of jobs belonging to that group. Constraints 
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∑

W

Y  

Y  
9) indicate that each job can be processed on a machine when 

ts process is finished on the previous machine. According to Con- 

traints (10), the completion time of all groups on the last machine 

ust be equal to or less than the scheduling horizon. Due to Con- 

traints (11), each job has only one start time on each machine, 

.e., each job is processed only once. Constraints (12) impose that 

n each time unit, at most, one job can be processed on each ma- 

hine. Constraints (13) state that whenever a job is started, it must 

e continued until it is completed, i.e., preemption is not allowed. 

iven that the objective function is to minimize electricity cost, 

his constraint always seems to have a lower bound, but it is not 

o. For example, in the time units when the battery capacity is full, 

nd there is a surplus of solar energy, X m 

pjt 
may tend to take a value

ore than the lower bound without affecting the cost of electricity 

urchased from the grid. Therefore, this problem is solved by con- 

idering the constraints (14). This set of constraints ensures that 

he number of time units at which a job is being performed has to 

e equal to the processing time of that job on the entire scheduling 

orizon. Constraints (15) to (17) indicate the amount of electric- 

ty purchased from the grid and stored in the battery. Constraints 

15) impose that the electrical energy stored in the battery must 

ot exceed the rated capacity of the battery. Constraints (16) indi- 

ate the minimum amount of electricity purchased from the grid in 

he last time unit. Constraints (17) calculate the electricity stored 

n the battery for each time unit, according to the electricity pur- 

hased from the grid in the previous time unit and the amount of 

olar power in the previous time unit. Due to this limitation, it is 

ossible to purchase more electricity from the grid and store the 

xcess purchased electricity in the battery and consume it when 

he cost of purchasing electricity from the grid is higher. Finally, 

onstraints (18) to (24) indicate the type of variables used in this 

odel. 

.3. A time-interval index model 

In this section, we develop a time-interval index model, dubbed 

IIM, for F m 

| f mls, s m 

pq , T OU, re t , ca | T EC . In the TUIM, the time-unit 

ndex, which is equal to one minute, is used to define the vari- 

bles, so this model is strongly dependent on the duration of the 

cheduling horizon. As the scheduling horizon increases, the num- 

er of variables and the complexity of the problem surge. To re- 

uce the dependence of the number of variables on the schedul- 

ng horizon, we develop the TIIM in which the formulation idea is 

ased on time intervals. In this new modeling, the scheduling hori- 

on is divided into a set of mutually exclusive, jointly exhaustive 

nd equal-length intervals. These intervals should be such that the 

ost of electricity purchased from the grid does not change during 

n interval. It should be noted that changes are allowed in electric- 

ty prices between intervals. 

The TIIM consists of two parts. In the first part, based on a po- 

ition assignment approach, the sequence and schedule of groups 

nd jobs are determined. We assume that there are g positions, and 

ach group is assigned to one of them. Therefore, the group in the 

rst position is processed first, and then the group in the second 

osition is processed, and so on until the last group. Furthermore, 

he sequence of jobs of each group and the start and completion 

ime of each group and each job are fixed in this part of the model.

n the second part of the model, the scheduling horizon is divided 

nto a number of time intervals. In this part, according to the start 

nd completion time of each job, obtained from the first part, a 

articular time interval is determined for processing of each job. 

The critical point is how to produce renewable energy in each 

nterval. Renewable energy is being produced continuously and is 

ccumulated over each time period. In other words, the whole re- 

ewable energy produced within an interval is not available at the 

eginning of that time interval, and we cannot consume all of it. 
524 
herefore, for simplification, we assume that the renewable energy 

roduced in each time interval cannot be used in the same period, 

nd this energy should first be stored in the battery and then used 

n the subsequent periods. It should be noted that this assumption 

nly applies to the TIIM in which the time index is longer than one 

inute. In the TUIM, because time is in minutes, it can be roughly 

ssumed that renewable energy produced in one minute is avail- 

ble from the beginning. For example, in the TIIM, if the length of 

he intervals is 60 minutes and it is possible to use renewable en- 

rgy in the same interval, the whole energy produced in these 60 

inutes may be consumed in the first few minutes of this interval, 

hereas it might not be available at those times. 

To better understand the TIIM, suppose that we want to sched- 

le two groups, each consisting of three jobs. Consider a 180- 

inute scheduling horizon, divided into three time intervals of 

0 minutes. Fig. 2 shows the schedule of the jobs for these two 

roups, which is obtained by the first part of the TIIM. Accord- 

ng to this figure, all jobs related to the group in the first position 

re processed in the second interval, and we consider the price of 

lectricity corresponding to the second interval for them. The re- 

ewable energy that we can use to process these jobs is equal to 

he amount produced before the start of the second interval and is 

vailable in the battery. As shown in Fig. 2 , the jobs for the group

n the second position are processed in both time intervals 2 and 

. Job 3 of group 2 starts at time τ = 110 with the processing time

f 10 minutes and finishes at time τ = 120 , i.e., this job was pro-

essed in the second interval. Thus, we consider the price of the 

econd interval to process this job, but jobs 1 and 2 are processed 

n the third interval. Hence, we consider the price of electricity in 

he third interval to process these jobs. In addition, job 3 of group 

 is allowed to use only the renewable energy stored in the bat- 

ery until the beginning of the second time interval, whereas jobs 1 

nd 2 of the same group are allowed to use the renewable energy 

tored in the battery until the beginning of the third time interval. 

It should be noted that the globally optimal solution of the 

IIM is obtained in the case that the length of each interval is 

ne minute. For cases where the interval length is more than one 

inute, the optimal solution obtained from the model may not be 

he global optimal, but only a locally optimal solution. In other 

ords, as the length of the intervals increases, the number of vari- 

bles and the complexity of the model decrease, but instead, its 

ccuracy decreases slightly. Moreover, we consider some dummy 

obs in some groups to have an equal number of jobs in all groups. 

his assumption decreases the number of variables in the TIIM be- 

ause we do not have to consider the group index for assigning 

obs to positions. In Table 3 , the parameters and variables are de- 

ned for the TIIM. 

The TIIM reads as follows. 

 I I M : Min T EC = 

∑ 

τ∈ T 
r τ .EG τ (25) 

Subject to: 
 

i ∈ I 
W ip = 1 , ∀ p ∈ G 

∗; (26) 

∑ 

p∈ G ∗
W ip = 1 , ∀ i ∈ I; (27) 

 00 = 1 (28) 

∑ 

p∈ G ∗

∑ 

q ∈ G ∗\ { p, 0 } 
Y ipq = 1 , ∀ i ∈ I\ { g } ; (29) 

 ipq ≤ W ip , ∀ i ∈ I\ { g } ; ∀ p ∈ G 

∗; ∀ q ∈ G 

∗\ { p, 0 } ; (30)

 ipq ≤ W i +1 q , ∀ i ∈ I\ { g } ; ∀ p ∈ G 

∗; ∀ q ∈ G 

∗\ { p, 0 } ; (31)
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Fig. 2. Illustration of the TIIM modeling approach. 

Table 3 

The parameters and variables of the TIIM 

Sets Definition 

G ∗ = { 0 , 1 , 2 , . . . g } The set of groups, indexed by p and q . Group 0 is dummy and contains only one job. 

I = { 0 , 1 , 2 , . . . g } The set of positions of groups, indexed by i (position 0 is dummy). 

N = { 1 , 2 , . . . b max } The set of jobs in each group, indexed by l and j. The number of jobs in group p is equal to n p and max ( 0 , b max − n p ) is equal to the number of 

dummy jobs in group p. 

T = { 1 , 2 , . . . , k } The set of time intervals, indexed by τ and τ ′ . 

Parameters Definition 

b max = 

max { n 1 , . . . , n p } 
Maximum number of jobs in each group 

k The number of time intervals. 

d The length of each time interval (minutes). 

Variables Definition 

F m 
i j 

Completion time of job j when its group is placed in position i on machine m . 

W ip If group p is placed in position i , it takes the value of one, otherwise zero. 

Q i jl If job l is processed after job j (immediately or disjointedly) while both belong to the same group and that group is placed in position i , it 

takes the value of one, otherwise zero. 

Y ipq If group p is placed in position i and is processed immediately before group q , it takes the value of one, otherwise zero. 

C m 
i 

Completion time of all jobs processed in position i on machine m . 

X m 
p jτ If the whole or a part of job j of group p is processed on machine m in interval τ , it takes the value of one, otherwise zero. 

V m 
p jτ The amount of time that job j of group p is processed on machine m in interval τ . 

F

F

C

F

F

C  

C

∑
 

V  

F

F

V

V

E

E

E

W

Q

Y

 

m 

i j − F m 

il ≥ − βQ i jl + 

∑ 

p∈ G ∗{ 0 } 
πm 

p j W ip , ∀ m ∈ M;

∀ i ∈ I\ { 0 } ; ∀ j, l ∈ N : j < l; (32) 

 

m 

il − F m 

i j ≥ β
(
Q i jl − 1 

)
+ 

∑ 

p∈ G ∗\ { 0 } 
πm 

pl W ip , 

∀ m ∈ M; ∀ i ∈ I\ { 0 } ; ∀ j, l ∈ N : j < l; (33) 

 

m 

0 = 0 , ∀ m ∈ M; (34) 

 

m 

i j ≥ C m 

i −1 + 

∑ 

p∈ G ∗

∑ 

q ∈ G ∗\ { 0 ,p } 
Y ( i −1 ) pq s 

m 

pq + 

∑ 

p∈ G ∗\ { 0 } 
πm 

p j W ip , 

∀ m ∈ M; ∀ i ∈ I\ { 0 } ; ∀ j ∈ N; (35) 

 

m 

i j ≥ F m −1 
i j 

+ 

∑ 

p∈ G ∗\ { 0 } 
πm 

p j W ip , ∀ m ∈ M\ { 1 } ; ∀ i ∈ I\ { 0 } ; ∀ j ∈ N;

(36) 

 

m 

i ≥ F m 

i j , ∀ m ∈ M; ∀ i ∈ I\ { 0 } ; ∀ j ∈ N; (37)

 

μ
g ≤ kd (38) 

 

τ∈ T 
V 

m 

p jτ = πm 

p j , ∀ m ∈ M; ∀ p ∈ G 

∗\ { 0 } ; ∀ j ∈ N; (39)

 

m 

p jτ ≤ πm 

p j X 

m 

p jτ , ∀ τ ∈ T ; ∀ m ∈ M; ∀ p ∈ G 

∗\ { 0 } ; ∀ j ∈ N; (40)
525 
 

m 

i j ≥ ( ( τ − 1 ) ∗ d + 1 ) − β
(
2 − X 

m 

p jτ − W ip 

)
, ∀ τ ∈ T \ { 1 } ;

∀ m ∈ M; ∀ p ∈ G 

∗\ { 0 } ; ∀ j ∈ N; ∀ i ∈ I\ { 0 } ; (41) 

 

m 

i j − πm 

p j ≤ ( τd − 1 ) + β
(
2 − X 

m 

p jτ − W ip 

)
, ∀ τ ∈ T ;

∀ m ∈ M; ∀ p ∈ G 

∗\ { 0 } ; ∀ j ∈ N; ∀ i ∈ I\ { 0 } ; (42) 

 

m 

p jτ ≤ F m 

i j − ( τ − 1 ) d + β
(
2 − X 

m 

p jτ − W ip 

)
, ∀ τ ∈ T \ { 1 } ;

∀ m ∈ M; ∀ p ∈ G 

∗\ { 0 } ; ∀ j ∈ N; ∀ i ∈ I\ { 0 } ; (43) 

 

m 

p jτ ≤ τd −
(
F m 

i j − πm 

p j 

)
+ β

(
2 − X 

m 

p jτ − W ip 

)
, ∀ τ ∈ T ;

∀ m ∈ M; ∀ p ∈ G 

∗\ { 0 } ; ∀ j ∈ N; ∀ i ∈ I\ { 0 } ; (44) 

B τ ≤ ca, ∀ τ ∈ T ; (45) 

 G τ ≥
∑ 

m ∈ M 

∑ 

p∈ G ∗\ { 0 } 

∑ 

j∈ N 
pe m 

p j V 

m 

p jτ − E B τ , ∀ τ ∈ T ; (46) 

 B τ+1 ≤ E B τ + E G τ + re τ −
∑ 

m ∈ M 

∑ 

p∈ G ∗\ { 0 } 

∑ 

j∈ N 
pe m 

p j .V 

m 

p jτ , ∀ τ ∈ T \ { k } ;

(47) 

 ip ∈ { 0 , 1 } , ∀ p ∈ G 

∗; ∀ i ∈ I; (48) 

 i jl ∈ { 0 , 1 } , ∀ i ∈ I; ∀ j, l ∈ N; (49) 

 ipq ∈ { 0 , 1 } , ∀ i ∈ I; ∀ p, q ∈ G 

∗; (50) 
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Fig. 3. Explanation of Constraints (41) and (42). 
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m 

p jτ ∈ { 0 , 1 } , ∀ m ∈ M; ∀ p ∈ G 

∗; ∀ j ∈ N; ∀ τ ∈ T ; (51)

 

m 

i j ≥ 0 , ∀ m ∈ M; ∀ i ∈ I; ∀ j ∈ N; (52) 

 

m 

i ≥ 0 , ∀ m ∈ M; ∀ i ∈ I; (53) 

 

m 

p jτ ≥ 0 , ∀ m ∈ M; ∀ p ∈ G 

∗; ∀ j ∈ N; ∀ τ ∈ T ; (54)

G τ ≥ 0 , ∀ τ ∈ T ; (55) 

B τ ≥ 0 , ∀ τ ∈ T ; (56) 

Objective function (25) represents minimizing the cost of pur- 

hasing electricity from the grid. Constraints (26) to (38) are re- 

ated to the first part of the model, and Constraints (39) to (48) 

ertain to the second part of the model. In the first part, Con- 

traints (26) and (27) show that each group can only be placed 

n one position and vice versa. According to Constraints (28), the 

ero dummy group is placed in the zero dummy position. Con- 

traints (29) to (31) determine the sequence of the groups. Con- 

traints (29) state that only one group is placed in each position 

 , and only one other group is placed immediately after that. Ac- 

ording to Constraints (30) and (31), the variable Y ipq will equal 

ne if group p is assigned to position i and group q to position 

 + 1 . Constraints (32) and (33) link the completion times of jobs 

o their sequences. According to these constraints, the completion 

ime of any job in a group belonging to a specific position must 

e equal to or larger than the completion time of jobs previously 

erformed. Constraints (34) show that the completion time of the 

ummy position is zero on all machines. Constraints (35) indicate 

hat a job of a particular group in a position is permitted to be

rocessed when the processing of the group placed in the previ- 

us position is completed, and the setup time between the job be- 

onging to the current group and the previous one has also passed. 

ccording to Constraints (36), any job can be processed on a new 

achine when it has finished the required processing on the pre- 

ious machine. Constraints (37) state that the completion time of 

ach group must be equal to or longer than the completion time of 

ll jobs belonging to that group. According to Constraints (38), the 

ompletion time of the group in the last position on the last ma- 

hine must be equal to or less than the scheduling horizon where 

d in this model corresponds to T max in the previous model. 

In the second part of the model, Constraints (39) state that 

he total time spent on processing each job in all time intervals 

ust be equal to the processing time of that job. According to 

onstraints (40), if a job is assigned to an interval, the whole or 

 part of that job can be processed in that interval. Constraints 

41) and (42) determine interval(s) in which each job is processed 

ased on the start and completion time of the job. For example, 

onsider Fig. 3 in which a job, shown as a small red box, is going

o be scheduled. Assume that the completion time of the job is at 

 = 140 , and the processing time of this job is equal to 10 min-

tes. Due to Constraints (41), this job is allowed to be processed in 
526 
nterval 3 or before, but it is not allowed to be processed in the in-

ervals after interval 3. In addition, due to the Constraints (42) and 

s the job starts at t = 130 , this job is permitted to be processed

n interval 3 and subsequent ones, but the intervals before interval 

. Therefore, considering both constraints simultaneously, this job 

an only be processed in interval 3. 

Constraints (43) and (44) determine the amount of processing 

ime of each job in each time interval. Fig. 4 shows two different 

odes of placing a job at time intervals. In case 1, according to 

onstraints (41) and (42), the desired job is processed only in in- 

erval 4. In this figure, the results of the expressions on the right 

ide of Constraints (43) and (44) are denoted by ϑ 1 and ϑ 2 , re-

pectively. According to Constraints (39), (43), and (44), the pro- 

essing time of this job in interval 4 is equal to the processing 

ime of that job. In case 2, according to Constraints (41) and (42), 

he job is permitted to be processed in two intervals 4 and 5. In 

his case, the outcome of the expression on the right side of Con- 

traints (43) is indicated by ϑ 

′ 
1 and ϑ 

′′ 
1 and the result of the ex- 

ression on the right side of Constraint (44) is denoted by ϑ 

′ 
2 

and 

 

′′ 
2 

. Consequently, on the basis of Constraints (39), (43) and (44), 

he processing time of the desired job will be ϑ 

′ 
2 in interval 4 and

 

′ 
2 

in interval 5. 

Constraints (45) to (47) show the amount of electricity pur- 

hased from the grid and the amount of solar energy stored in 

he battery. Constraints (45) limit the electrical energy stored in 

he battery to its rated capacity. Constraints (46) impose the min- 

mum amount of electricity purchased from the grid at any time. 

hey prevent using the renewable energy produced in an interval 

n the same interval. Constraints (47) calculate the amount of elec- 

ricity stored in the battery for the next interval based upon the 

mount of electricity purchased from the grid and the amount of 

olar power available in the current interval. Due to Constraints 

46), it is possible to buy more electricity from the grid, and based 

n Constraints (47), the excess electricity purchased from the grid 

s stored in the battery to be consumed later. Finally, Constraints 

48) to (56) indicate the type of variables used in this model. 

If we consider d = 1 , then the TIIM can be more simplified by

emoving the variables V m 

pjτ
and constraints (40), (43), (44), and 

54). In this scenario, Constraints (39) is replaced by Constraints 

57). 
 

τ∈ T 
X 

m 

p jτ = πm 

p j , ∀ m ∈ M; ∀ p ∈ G 

∗\ { 0 } ; ∀ j ∈ N; (57)

In addition, in this scenario, the TIIM is similar to the TUIM; 

herefore, to obtain the amount of electricity purchased from the 

rid, it can be assumed that it is possible to use renewable en- 

rgy in the same time interval when this energy is produced. Thus, 

onstraints (46) and (47) are replaced by Constraints (16) and (17), 

xcept that j ∈ N, p ∈ G 

∗\{ 0 } and τ ∈ T . 

. A decomposition-based heuristic algorithm 

Fang et al. (2016) proved that the single-machine scheduling 

roblem considering the TOU tariff and constant speed of the ma- 

hine is strongly NP-hard. Since F m 

| f mls, s k 
l pi 

, T OU, re t , ca | T EC is a 

eneralization of the mentioned problem, it has at least the same 

egree of complexity. Therefore, to reduce the CPU runtime, in this 
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Fig. 4. Explanation of Constraints (43) and (44). 

Table 4 

The parameters and variables of the DBHA 

Sets Definition 

� = ( σ0 , σ1 , . . . , σg ) A sequence of all groups (dummy group 0 is placed at the beginning of this list and contains only a dummy job). 

�(p) = ( σ0 , σ1 , . . . , σp ) The sequence of groups σ0 to σp , created based on sequence �. 

�{ p} = { σ0 , σ1 , . . . , σp } The set of groups in sequence �(p) . 

�̄(p) = ( σp+1 , . . . , σg ) The sequence of groups σp+1 to σg , created based on sequence �. 

�̄{ p} = { σp+1 , . . . , σg } The set of groups in sequence �̄(p) . 

�p = ( δp 
1 
, . . . , δp 

n p ) A sequence of jobs in group p. 

�( j) 
p = ( δp 

1 
, . . . , δp 

j 
) The sequence of jobs δp 

1 
to δp 

j 
in group p, created based on sequence �p . 

�{ j} 
p = { δp 

1 
, . . . , δp 

j 
} The set of jobs in sequence �( j) 

p . 

Parameters Definition 

λ Index of groups. 

α Index of jobs. 

σi The group that is placed in position i th based on sequence �. 

ς p The position of group p based on sequence �. 

δp 
i 

A job from group p that is placed in position i th based on sequence �p . 

ξ p 
j 

The position of job j from group p based on sequence �p . 

πm 
p The processing time of group p on machine m . 

π
′′ m 
i 

The processing time of a group or job that is placed in position i on machine m . 

p 
′ m 
p The power consumption of group p that is being processed on machine m . 

pe 
′′ m 
i 

The power consumption of the group or job placed in the position i and being processed on machine m . 

e ′ p The weighted average power consumption of group p on all machines. 

e ′′ 
j 

The weighted average power consumption of job j on all machines. 

Variables Definition 

F 
′ m 
p The completion time of group p on machine m (used in model M 1 ). 

F 
′′ m 

i 
The completion time of the job placed in position i on machine m (used in model M 2 ). 

F 
′′′ m 
p j 

The completion time of job j in group p on machine m (used in model M 3 ). 

Q ′ pq If group q is processed (immediately or disjointedly) after group p , it takes the value of one, otherwise zero (used in model M 1 ). 

Q ′′ 
ih 

If a job or group is processed in position h (immediately or disjointedly) after the job or group placed in position i , it takes the value of 

one, otherwise zero (used in model M 2 ). 

X 
′ m 
pτ If the whole or a part of group p is processed on machine m during interval τ , it takes the value of one, otherwise zero (used in model 

M 1 ). 

X 
′′ m 
iτ If the whole or a part of the job or group in the position i is processed on machine m during interval τ , it takes the value of one, 

otherwise zero (used in model M 2 ). 

V 
′ m 
pτ The amount of time that group p is processed on machine m during interval τ (used in model M 1 ). 

V 
′′ m 

iτ The amount of time that the job or group placed in position i is processed on machine m during interval τ (used in model M 2 ). 
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b
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i

4

1
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e

i
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t

t

ection, we develop a DBHA. The structure of this algorithm is 

ased on the well-known NEH method developed by Nawaz et al. 

1983) . The parameters and variables used in the DBHA are listed 

n Table 4 . 

.1. The general sketch of the DBHA 

The general sketch of the DBHA is presented in Algorithm 

 . The DBHA decomposes the main problem into three phases, 

ubbed model M , model M , and model M . In the first phase,
1 2 3 

527 
ach group is considered as a single job, and its processing time on 

ach machine equals the total processing time of all jobs included 

n the group plus the average setup time for starting that group. 

n addition, the power consumption for each group is calculated as 

he weighted average power consumption of the jobs involved in 

he group. In this phase, first, the groups are arranged in descend- 

ng order based on their power consumption, then the relative po- 

ition of the two groups with the most power consumption is de- 

ermined by model M 1 . The relative position of each new group in 

he sequence is determined by re-solving model M 1 in such a way 
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Algorithm 1 The pseudocode of the DBHA. 
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M

F  
hat the relative order of previously determined groups remains 

nchanged. This process continues until the sequence of all groups 

s determined. 

In step 1 of Algorithm 1 , each group is considered as a job

ith a specific processing time and power consumption. The pro- 

essing time of each group is calculated as the total processing 

ime of jobs involved in that group, and the power consumption 

f the group is calculated as the weighted average of the power 

onsumption of jobs belonging to the group. In this step, the se- 

uence and setup time of each group is not exactly known, so 

he setup time is considered as the average of the setup times 

or each group, and this value is added to the processing time of 

hat group. In step 2, the groups are temporarily arranged based 

n the descending order of their power consumption obtained 

rom the weighted average power consumption of each group on 

ll machines. It should be noted that this sequence is not the fi- 

al sequence of groups, and we benefit from it to choose groups 

ne by one and determine their final relative order using model 

 1 . In step 3, based on each run of model M 1 , the relative po-

ition of a group is determined among the groups whose rela- 

ive position has already been fixed. Since the relative order of 

roups that have already been determined should not be changed, 

ach time model M 1 is run, the relative position of the previ- 

usly fixed groups is given as a constant input to model M 1 . In

he last run of model M 1 , a complete sequence of all groups is ob-

ained. In step 4, the processing time and power consumption of 

ach group are calculated and updated based on the obtained final 

equence. 

In step 5, the jobs of each group are temporarily arranged based 

n the power consumption obtained from the weighted average 

ower consumption of each job on all machines. In steps 6 to 

, the groups are divided into three categories. The first category 

step 6) involves the groups whose job sequence is determined 

set �{ λ−1 } ). In this category, each group is considered as a job, 

nd their processing time and power consumption are determined 
F  

528 
n step 4. The positions of these jobs are fixed using model M 2 

nd should be scheduled before other jobs in the same way as 

etermined in sequence �( λ−1 ) . The second category (step 7) in- 

ludes the jobs belonging to the group whose sequence of jobs is 

eing determined (group σλ). The relative position of jobs �
{ α−1 } 
σλ

s fixed in model M 2 , and based on determined sequence �( α−1 ) 
σλ

, 

hey are placed after the jobs of the first category. The relative po- 

ition of job α is unknown in this sequence, determined through 

odel M 2 . The third group (step 8) are groups whose sequence 

f jobs is not determined (set �̄{ λ} ) yet. Each group of this cat- 

gory is considered as a job, and their position is determined by 

odel M 2 in such a way that it must be after the jobs in the first

nd second categories and according to sequence �̄(λ) . In step 9, 

ach time model M 2 is run, sequence � and the relative position 

f jobs from the previously defined group σλ are given as con- 

tant input to the new model M 2 . In step 8, according to the se-

uences obtained from steps 3 and 9, the best possible schedule is 

ound, and its corresponding objective function is the algorithm’s 

utput. 

.2. Group sequencing phase 

In iteration λ ( λ ≥ 2 ) of model M 1 , the relative position of 

 λ − 1 ) groups, denoted by the symbol ς p , is given as an input to

odel M 1 . The relative position of group σλ is determined by im- 

lementing model M 1 among the groups whose relative position 

as already been fixed. That is, the output of model M 1 is the se-

uence of λ groups. Model M 1 reads as follows. 

 1 : Min T EC = 

∑ 

τ∈ T 
r τ .EG τ (25) 

Subject to: Constraints (45), (55) and (56) 

 

′ m 
p − F 

′ m 
q ≥ −βQ 

′ 
pq + π

′ m 
p , ∀ m ∈ M; ∀ p, q ∈ �{ λ } : p < q ; (58)

 

′ m 
q − F 

′ m 
p ≥ β

(
Q 

′ 
pq − 1 

)
+ π

′ m 
q , ∀ m ∈ M; ∀ p, q ∈ �{ λ } : p < q ; (59)
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′ m 
p ≥ F 

′ m −1 

p + π
′ m 
p , ∀ m ∈ M\ { 1 } ; ∀ p ∈ �{ λ } ; (60) 

 

′ μ
p ≤ kd, ∀ p ∈ �{ λ} ; (61) 

 

′ m 
0 = 0 , ∀ m ∈ M; (62) 

 

′ 
pq = 1 , i f λ > 2 ; ∀ p, q ∈ �{ λ−1 } : p < q, ς p < ς q ; (63)

 

′ 
pq = 0 , i f λ > 2 ; ∀ p, q ∈ �{ λ−1 } : p < q, ς p < ς q ; (64)

 

τ∈ T 
V 

′ m 

pτ = π ′ m 

p , ∀ m ∈ M; ∀ p ∈ �{ λ} ; (65) 

 

′ m 

pτ ≤ π ′ m 

p X 

′ m 

pτ , ∀ τ ∈ T ; ∀ m ∈ M; ∀ p ∈ �{ λ} ; (66) 

 

′ m 

p ≥ ( ( τ − 1 ) d + 1 ) − β
(
1 − X 

′ m 

pτ

)
, ∀ τ ∈ T \ { 1 } ; ∀ m ∈ M;

∀ p ∈ �{ λ} (67) 

 

′ m 

p − π ′ m 

p ≤ ( τd − 1 ) + β
(
1 − X 

′ m 

pτ

)
, ∀ τ ∈ T ; ∀ m ∈ M; ∀ p ∈ �{ λ} ;

(68) 

 

′ m 

pτ ≤ F ′ m 

p − ( τ − 1 ) d + β
(
1 − X 

′ m 

pτ

)
, ∀ τ ∈ T \ { 1 } ;

∀ m ∈ M; ∀ p ∈ �{ λ} ; (69) 

 

′ m 

pτ ≤ τd −
(
F ′ m 

p − π ′ m 

p 

)
+ β

(
1 − X 

′ m 

pτ

)
, ∀ τ ∈ T ;

∀ m ∈ M; ∀ p ∈ �{ λ} ; (70) 

 G τ ≥
∑ 

m ∈ M 

∑ 

p∈ �{ λ} 
pe 

′ m 

p V 

′ m 

pτ − E B τ , ∀ τ ∈ T ; (71) 

 B τ+1 ≤ E B τ + E G τ + re τ −
∑ 

m ∈ M 

∑ 

p∈ �{ λ} 
pe 

′ m 

p .V 

′ m 

pτ , ∀ τ ∈ T \ { k } ; (72)

 ≤ X 

′ m 

pτ ≤ 1 , ∀ m ∈ M; ∀ p ∈ �{ λ} ; ∀ τ ∈ T ; (73)

 

′ 
pq ∈ { 0 , 1 } , ∀ p, q ∈ �{ λ} ; (74) 

 

′ m 

p ≥ 0 , ∀ m ∈ M; ∀ p ∈ �{ λ} ; (75) 

 

′ m 

pτ ≥ 0 , ∀ m ∈ M; ∀ p ∈ �{ λ} ; ∀ τ ∈ T ; (76) 

Model M 1 is similar to the TIIM, except that in this model, only 

he sequencing of groups is addressed. In Constraints (58) and (59), 

he sequence of groups is determined. According to these Con- 

traints, the completion time of each group must be equal to or 

arger than the completion time of all previously processed groups. 

onstraints (60) and (61) are similar to Constraints (36) and (38) 

n the TIIM, respectively. According to Constraints (62), the zero 

ummy group is placed at time zero. Constraints (63) and (64) are 

pplied to the model if the number of groups is more than two 

 λ > 2 ). In this case, the positions of ( λ − 1 ) groups that have al-

eady been scheduled are fixed, and only the position of group σλ

s investigated in this model. Constraints (65) to (70) are similar 

o Constraints (39) to (44) which have been modified by removing 
529 
ariables W ip and replacing variables F m 

i j 
, X m 

pjτ
and V m 

pjτ
by the vari- 

bles F 
′ m 

p , X 
′ m 

pτ and V 
′′ m 

pτ in the TIIM, respectively. Constraints (45) 

n the TIIM and Constraints (71) and (72) are used to calculate the 

nergy consumption and energy stored in the battery. Constraints 

55) and (56) in the TIIM and Constraints (73) to (76) determine 

he type of variable. Given that in model M 1 only the sequencing 

f groups is essential, so in Constraints (73), the variables X 
′ m 

pτ are 

elaxed to reduce the CPU runtime of the model. 

.3. Job sequencing phase 

In each iteration of model M 2 , the sequence of groups obtained 

y model M 1 is considered as an input. Furthermore, the relative 

osition ( α − 1 ) jobs, denoted by ξ
σλ
j 

, is given to model M 2 as 

n input from the previous iteration to determine the sequence of 

obs in group σλ. By implementation of model M 2 , the relative po- 

ition of job δ
σλ
α is fixed among the jobs whose relative positions 

ave already been determined. Therefore, the output of model M 2 

s the relative order of α jobs belonging to group σλ. Finally, after 

he last iteration of model M 2 , the sequences of jobs in all groups 

re determined. Model M 2 reads as follows. 

 2 : Min T EC = 

∑ 

τ∈ T 
r τ .EG τ (25) 

Subject to: Constraints (45), (55) and (56) 

 

′′ m 

i − F ′′ m 

h ≥ −βQ 

′′ 
ih + π ′′ m 

i , ∀ m ∈ M;
∀ i = 0 , . . . , α + g − 1 ; ∀ h = 1 , . . . , α + g − 1 : i < h ; (77) 

 

′′ m 

h − F ′′ m 

i ≥ β
(
Q 

′′ 
ih − 1 

)
+ π ′′ m 

h , ∀ m ∈ M;
∀ i = 0 , . . . , α + g − 1 ; ∀ h = 1 , . . . , α + g − 1 : i < h ; (78) 

 

′′ m 

i − F ′′ m 

λ−1 ≥ s m 

σλ−1 σλ
+ π ′′ m 

i , ∀ m ∈ M; ∀ i = λ, . . . , α + g − 1 ; (79)

 

′′ m 

i ≥ F ′′ m −1 
i 

+ π ′′ m 

i , ∀ m ∈ M\ { 1 } ; ∀ i = 1 , . . . , α + g − 1 ; (80)

 

′′ μ
i 

≤ kd, ∀ i = 1 , . . . , α + g − 1 ; (81) 

 

′ m 

0 = 0 , ∀ m ∈ M; (82) 

 

′′ 
ih = 1 , ∀ i = 0 , . . . , λ − 1 ; ∀ h = λ, . . . , α + g − 1 ; (83)

 

′′ 
ih = 1 , ∀ i = λ, . . . , λ + α − 1 ; ∀ h = λ + α, . . . , α + g − 1 ; (84)

 

′′ 
ih = 1 , ∀ i = 0 , . . . , λ − 1 ; ∀ h = 0 , . . . , λ − 1 : i < h ; (85)

 

′′ 
ih = 1 , ∀ i = λ + α, . . . , α + g − 1 ; h 

= λ + α, . . . , α + g − 1 : i < h ; (86) 

 

′′ 
ih = 1 , i f α > 2 ; ∀ i = λ, . . . , λ + α − 2 ; ∀ h 

= λ, . . . , λ + α − 2 : i < h ; (87) 

 

τ∈ T V 

′′ m 

iτ = π ′′ m 

i , ∀ m ∈ M; ∀ i = 1 , . . . , α + g − 1 ; (88)
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′′ m 

iτ ≤ π ′′ m 

i X 

′′ m 

iτ , ∀ τ ∈ T ; ∀ m ∈ M; ∀ i = 1 , . . . , α + g − 1 ; (89)

 

′′ m 

i ≥ ( ( τ − 1 ) d + 1 ) − β
(
1 − X 

′′ m 

iτ

)
, ∀ τ ∈ T \ { 1 } ;

∀ m ∈ M; ∀ i = 1 , . . . , α + g − 1 ; (90) 

 

′′ m 

i − π ′′ m 

i ≤ ( τd − 1 ) + β
(
1 − X 

′′ m 

iτ

)
, ∀ τ ∈ T ;

∀ m ∈ M; ∀ i = 1 , . . . , α + g − 1 ; (91) 

 

′′ m 

iτ ≤ F ′′ m 

i − ( τ − 1 ) d + β
(
1 − X 

′′ m 

iτ

)
, ∀ τ ∈ T \ { 1 } ;

∀ m ∈ M; ∀ i = 1 , . . . , α + g − 1 ; (92) 

 

′′ m 

iτ ≤ τd −
(
F ′′ m 

i − π ′′ m 

i 

)
+ β

(
1 − X 

′′ m 

iτ

)
, 

∀ τ ∈ T ; ∀ m ∈ M; ∀ i = 1 , . . . , α + g − 1 ; (93) 

 G τ ≥
∑ 

m ∈ M 

∑ α+ g−1 

i =1 
pe ′′ m 

i V 

′′ m 

iτ − E B τ , ∀ τ ∈ T ; (94) 

B τ+1 ≤ E B τ + E G τ + re τ −
∑ 

m ∈ M 

∑ α+ g−1 

i =1 
pe ′′ m 

i · V 

′′ m 

iτ , 

∀ τ ∈ T \ { k } ; (95) 

 ≤ X 

′′ m 

iτ ≤ 1 , ∀ m ∈ M; ∀ i = 0 , . . . , α + g − 1 ; ∀ τ ∈ T ; (96)

 

′′ 
ih ∈ { 0 , 1 } , ∀ i = 0 , . . . , α + g − 1 ; ∀ h = 1 , . . . , α + g − 1 ; (97)

 

′′ m 

i ≥ 0 , ∀ m ∈ M; ∀ i = 0 , . . . , α + g − 1 ; (98)

 

′′ m 

iτ ≥ 0 , ∀ m ∈ M; ∀ i = 0 , . . . , α + g − 1 ; ∀ τ ∈ T ; (99)

According to Constraints (77) and (78), the completion time of 

ach job placed in a certain position must be equal to or larger 

han the completion time of the jobs processed in the previous po- 

itions. Constraints (79) pertain to the setup time between group 

λ and its immediate precedent group. Constraints (80) and (81) 

re similar to Constraints (36) and (38) in the TIIM, respectively. 

onstraints (82) state that on each machine, the completion time 

f the job placed at the dummy position is zero. According to Con- 

traints (83), the groups in sequence � that precede group σλ

ust be processed before the jobs of group σλ, as well as be- 

ore the jobs of groups in sequence �̄( σλ) . Constraints (84) also 

enote that the jobs of group σλ must be processed before the 

roups involved in sequence �̄( σλ) . Constraints (85) and (86) de- 

ermine the sequence of groups �{ λ−1 } and �̄{ λ } according to se- 

uence �( λ−1 ) and �̄(λ) , respectively. Constraints (87) are applied 

o model M 2 if the number of jobs in group σλ is more than two

obs ( α > 2 ). In these Constraints, the relative positions of ( α − 1 )

obs, which have already been determined by model M 2 , are fixed, 

nd only the position of job δ
σλ
α is explored. Constraints (88) to 

95) perform similar to Constraints (65) to (72) in model M 1 . More- 

ver, Constraints (45) in the TIIM are also used in this model. Con- 

traints (55) and (56) in the TIIM and Constraints (96) to (99) show 

he type of variables. Since in model M 2 only sequencing of jobs 

ithin each group is significant, in Constraints (96) variables X ′′ m 

iτ
re relaxed to reduce the CPU runtime of the model. 
530 
.4. Scheduling phase 

Model M 3 is related to the scheduling phase of groups and jobs 

ithin each group, and it is implemented only once. In this model, 

he sequence of groups obtained by model M 1 and the sequence 

f jobs in each group obtained by model M 2 are the inputs of the 

odel. Model M 3 gives rise to a high-quality schedule to reduce 

he total cost of electricity purchased from the grid. Model M 3 de- 

ermines the start times of all jobs and groups along with the total 

ost of electricity. Model M 3 can be formulated as follows. 

 3 : Min T EC = 

∑ 

τ∈ T 
r τ .EG τ (25) 

Subject to: Constraints (39), (40), (45), (51), (54), (55) and (56) 

 

′′′ m 

p j − F ′′′ m 

p ( j−1 ) ≥ πm 

p j , ∀ m ∈ M; ∀ p ∈ �\ { 0 } ;
∀ j ∈ �p : i f ξ p 

j 
= ξ p 

j−1 
+ 1 ; (100) 

 

′′′ m 

p j − F 
′′′ m 

ql ≥ πm 

p j + s m 

qp , ∀ m ∈ M; ∀ q ∈ �; ∀ p ∈ �\ { 0 } : 
i fς p = ς q + 1 ; ∀ j ∈ �p : i f ξ p 

j 
= 1 ; ∀ l ∈ �q : 

i f ξ q 

l 
= n q ; (101) 

 

′′′ m 

p j − F 
′′′ m −1 
p j 

≥ πm 

p j , ∀ m ∈ M\ { 1 } ; ∀ p ∈ �\ { 0 } ; ∀ j ∈ �p ; (102)

 

′′′ μ
p j 

≤ kd, ∀ p ∈ �\ { 0 } ; ∀ j ∈ �p ; (103) 

 

′′ m 

00 = 0 , ∀ m ∈ M; (104) 

 

′′′ m 

p j ≥ ( ( τ − 1 ) d + 1 ) − β
(
1 − X 

m 

p jτ

)
, ∀ τ ∈ T \ { 1 } ;

∀ m ∈ M; p ∈ �\ { 0 } ; ∀ j ∈ �p ; (105) 

 

′′′ m 

p j − πm 

p j ≤ ( τ ∗ d − 1 ) + β
(
1 − X 

m 

p jτ

)
, ∀ τ ∈ T ;

∀ m ∈ M; ∀ p ∈ �\ { 0 } ; ∀ j ∈ �p ; (106) 

 

m 

p jτ ≤ F 
′′′ m 

p j − ( τ − 1 ) d + β
(
1 − X 

m 

p jτ

)
, ∀ τ ∈ T \ { 1 } ;

∀ m ∈ M; ∀ p ∈ �\ { 0 } ; ∀ j ∈ �p ; (107) 

 

m 

p jτ ≤ τd −
(
F 

′′′ m 

p j − πm 

p j 

)

+ β
(
1 − X 

m 

p jτ

)
, ∀ τ ∈ T ; ∀ m ∈ M; ∀ p ∈ �\ { 0 } ; ∀ j ∈ �p ;

(108) 

 

′′′ m 

p j ≥ 0 , ∀ m ∈ M; ∀ p ∈ �\ { 0 } ; ∀ j ∈ �p ; (109)

Constraints (100) determine the completion time of the jobs in 

ach group according to the sequence of jobs in that group, de- 

ermined in step 9 of the DBHA. Based on the sequence of groups 

etermined in step 3 of the DBHA, Constraints (101) determine the 

ompletion time of each group that must be after the completion 

ime of the last job of the previous group and the correspond- 

ng setup time between these two groups. Constraints (102) and 

103) are similar to Constraints (36) and (38) in the TIIM. Accord- 

ng to Constraints (104), the dummy job is placed at time zero. 

onstraints (105) to (108) function like Constraints (67) to (70) of 

odel M 1 . Constraints (39) and (40) and Constraints (45) are also 

ncluded in model M 3 , with the difference that p ∈ G 

∗ and j ∈ N

re replaced by p ∈ � and j ∈ �p , respectively. Constraints (51) and 

54) to (56) of the TIIM and Constraint (109) indicate the type of 

ariables. In addition, in these constraints, p ∈ G 

∗ is replaced by 

p ∈ �, and j ∈ N is replaced by j ∈ �p . 
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Table 5 

TOU pricing 

Season Electricity price ($/kWh) Time period Peak hours 

Summer 0.1762 off-peak load 00-9, 22-24 

0.2478 mid-peak load 9-12, 18-22 

0.5446 on-peak load 12-18 

Winter 0.1758 off-peak load 22-9 

0.1940 on-peak load 9-22 
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. Computational experiments 

In this section, we evaluate the performance of the TUIM, TIIM 

nd DBHA. We also analyze the sensitivity of various parameters 

nd evaluate the economic performance of the research. The DBHA 

nd developed MIP models were implemented in Microsoft Visual 

tudio 2015 using ILOG CPLEX 12.6 and run on a computer with 

ntel (R) Core (TM) i7-6800k 3.4GHz processor and 48 GB memory. 

.1. Data set generation 

To evaluate the performance of the models and algorithm, two 

roups of small-size and medium-size instances were developed. 

he number of groups in the small-size instances is 3, 4, or 5 and

n the medium-size instances is 6, 7, or 8. In addition, the number 

f jobs in each group is 3, 4, or 5 for small-size instances and 6, 7,

r 8 for medium-size instances. Furthermore, in each instance, the 

umber of jobs in each group was considered equal. The number 

f machines for both small-size and medium-size instances is 3, 

, 5. For each combination of different values of the number of 

roups, jobs, and machines, ten instances were generated, resulting 

n a total of 540 instances. The other parameters for both small- 

nd medium-size instances are developed randomly. 

To consider a scheduling horizon, we make use of the NEH algo- 

ithm developed by Nawaz et al. (1983) . To do so, we ignore power

onsumption of jobs and setup times between them, and we also 

onsider each group as a job in such a way that the processing 

ime of each group equals the summation of processing times of 

obs belonging to it. Next, we determine the sequence of groups in 

he way that the makespan is minimized. If we were to consider 

he resultant makespan of the NEH algorithm, shown by C NEH 
max , as 

he scheduling horizon, we would, of course, have a feasible solu- 

ion, but it might lead to a high cost of purchasing electricity from 

he grid. To alleviate this problem, we let T max ( or kd ) = ηC NEH 
max as

he length of the scheduling horizon in all developed solution ap- 

roaches. Using a fine-tuning approach, we found that η = 1 . 5 is 

n appropriate value for the problem at hand. Furthermore, we as- 

ume that the scheduling horizon starts at 8 a.m. 

According to Schaller et al. (20 0 0) , the processing time fol- 

ows a uniform distribution in the range of { 1 , . . . , 10 } and the 

etup time of each group is also a discrete uniform distribution of 

 1 , . . . , 20 } . The electricity price based on TOU for different elec- 

ricity suppliers varies in the summer (spring and summer) and 

inter (autumn and winter). According to Zhang et al. (2017) , the 

lectricity price in the summer and winter in California is shown 

n Table 5 , and we chose to generate our instances based on the 

lectricity price in the summer. The power consumed by each ma- 

hine follows a uniform distribution at intervals of {5kW,…,20kW} 

uring the processing of jobs. Battery capacity is also considered 

o be 25 kWh. 

Table 6 shows the electrical energy produced by PV panels at 

ifferent hours, assuming that the power of the PV panels installed 

n the factory is equal to 25 kWp and the energy wasted in the 

hole system is 14%. These data are based on the average energy 

roduced at different times of the day in July 2015 in California, 

xtracted from European Commission (2020) . Since the solar en- 
531 
rgy production reaches zero at night, the energy production is 

onsidered to be zero from 8 p.m. to 7 a.m., and in the other hours

s according to Table 6 . 

.2. Comparative computational results 

In this section, using the generated instances, we evaluate the 

omparative performance of the two developed models and the 

BHA. To examine more closely, we consider the TIIM and the 

BHA in four different scenarios where the length of time inter- 

als varies from one scenario to another. In the first scenario, we 

onsider d = 60 minutes, and in the second, third, and fourth sce- 

arios, we factor in d = 30 , 15 , and 1 minute(s), respectively. Fur- 

hermore, we consider the relaxed version of the TIIM model with 

 = 1 minute as a valid lower bound (LB) for all developed mod- 

ls. The average CPU runtime (seconds), the number of instances 

olved optimally, and the average deviation (AD) of objective func- 

ion values from the LBs are used to evaluate the performance of 

he developed solution approaches. 

It is worth mentioning again that we apply the term “local op- 

imal ” for the optimal solutions obtained by the TIIM with d > 1 .

e also make use of the term “global optimal ” for the optimal so- 

utions obtained by the TUIM or the TIIM with d = 1 . In addition,

 one-hour time limit is considered as the CPU runtime for all im- 

lementations. 

Table 7 shows the performance of the TUIM and the different 

cenarios of the TIIM in small-size instances based on two criteria: 

he number of instances solved locally or globally optimal in the 

iven time limit and the average CPU runtime of these instances. 

he symbol "—–" indicates that no instances could be solved op- 

imally, and hence there is no report of CPU runtime for such in- 

tances. 

According to the results of Table 7 , the TUIM finds an opti- 

al solution for only a small number of instances, whereas the 

IIM solves locally optimal all instances in three scenarios d = 60 , 

 = 30 , and d = 15 . The TIIM in scenario d = 1 also finds the global

ptimal solution in most instances, but with the increase of the 

umber of jobs, groups and machines, the number of instances 

hich can be optimally solved declines. For example, when μ = 4 , 

 = 5 , and n p = 5 , none of the instances in this scenario can be

olved optimally. By comparing the instances that are solved opti- 

ally, it can be seen that the average CPU runtime is much less in 

he TIIM than the TUIM, even in the fourth scenario of the TIIM, 

here its accuracy is equal to that of the TUIM, and the solutions 

f both are globally optimal. It should be noted that the number of 

nstances that can be solved optimally using the TIIM in the fourth 

cenario is much higher than the TUIM, and also, the average CPU 

untime is significantly less than the TUIM. This shows the superi- 

rity of the TIIM over the TUIM. 

By examining the different scenarios of the TIIM, it can be con- 

luded that in each scenario of the TIIM, with the increase of the 

umber of groups, jobs, and machines, the CPU runtime also in- 

reases. In addition, by decreasing d from 60 minutes to 1 minute, 

he average CPU runtime rises in all scenarios of the TIIM. In other 

ords, the more accuracy of the model, the more CPU runtime. 

Table 8 , shown in the Appendix, compares the performance of 

he TIIM and DBHA and indicates that for some smaller-size in- 

tances, the TIIM outperforms the DBHA but for larger-size ones, 

he DBHA shows better performance. 

Given the one-hour time limit, three different modes for solving 

he models may occur: (a) the model finds the optimal solution, 

b) the model finds a feasible solution, and (c) the model fails to 

nd any feasible solution. Table 9 shows the comparative perfor- 

ance of the TIIM and the DBHA based on the AD from the LB. It

s worth mentioning that the AD is calculated only for cases that at 

east a feasible solution has been obtained. It should be noted that 
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Table 6 

Electricity produced by PV panels 

Hours 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 

Generated electricity (kWh) 0.5 4 8.5 12.7 14.8 16.8 17.5 16.8 15 11.6 8 3.3 0.5 

Table 7 

The comparative performance of the TUIM and TIIM for small-size instances 

μ g n p 

The number of instances solved locally or globally optimal The average CPU runtime (seconds) of the instances solved locally or globally optimal 

TUIM TIIM-60min TIIM-30min TIIM-15min TIIM-1min TUIM TIIM-60min TIIM-30min TIIM-15min TIIM-1min 

3 3 3 2 10 10 10 10 2623.9 0.1 0.3 0.7 58.1 

4 0 10 10 10 10 —– 0.3 0.9 1.7 197.8 

5 1 10 10 10 10 2492.5 0.5 0.9 3.3 764.2 

4 3 0 10 10 10 10 —– 0.4 0.6 2.0 192.5 

4 0 10 10 10 10 —– 0.9 0.9 10.7 929.5 

5 0 10 10 10 9 —– 3.5 3.7 25.2 1067.0 

5 3 0 10 10 10 10 —– 0.7 2.0 9.1 732.6 

4 0 10 10 10 8 —– 3.6 6.2 38.4 1437.3 

5 0 10 10 10 1 —– 9.1 12.8 111.0 2597.4 

4 3 3 0 10 10 10 10 —– 0.3 0.4 1.1 152.6 

4 0 10 10 10 10 —– 0.6 1.1 3.6 610.7 

5 0 10 10 10 10 —– 1.3 2.7 8.4 1182.6 

4 3 0 10 10 10 10 —– 0.8 0.9 4.9 915.0 

4 0 10 10 10 6 —– 2.1 2.2 8.0 1237.4 

5 0 10 10 10 4 —– 6.2 7.5 26.5 2324.6 

5 3 0 10 10 10 6 —– 2.8 3.9 20.0 2155.7 

4 0 10 10 10 2 —– 8.9 16.8 65.4 3099.3 

5 0 10 10 10 0 —– 28.1 58.6 260.0 —–

5 3 3 0 10 10 10 10 —– 0.5 0.6 1.7 342.4 

4 0 10 10 10 6 —– 0.8 1.3 5.6 1209.2 

5 0 10 10 10 3 —– 2.8 2.8 15.7 1645.4 

4 3 0 10 10 10 9 —– 1.2 1.7 5.7 924.6 

4 0 10 10 10 2 —– 4.2 5.2 19.5 1968.0 

5 0 10 10 10 0 —– 9.1 29.8 68.7 —–

5 3 0 10 10 10 1 —– 5.6 8.4 39.6 3002.2 

4 0 10 10 10 0 —– 22.3 35.5 159.9 —–

5 0 10 10 10 0 —– 55.9 216.7 623.9 —–

Table 9 

The comparative performance of the TIIM and the DBHA based on the AD for small-size instances 

μ g n p TUIM 

TIIM DBHA 

60min 30min 15min 1min 60min 30min 15min 1min 

3 3 3 0.24 (10) 2.46 1.33 0.76 0.21 2.46 1.33 0.76 0.22 

4 0.51 (9) 2.72 1.41 0.82 0.27 2.72 1.41 0.82 0.28 

5 0.42 (8) 2.59 1.21 0.67 0.30 2.59 1.21 0.67 0.31 

4 3 0.44 (8) 2.35 1.15 0.64 0.22 2.35 1.15 0.64 0.25 

4 1.25 (3) 3.05 1.59 0.86 0.26 3.05 1.60 0.88 0.32 

5 0.91 (2) 2.90 1.39 0.79 0.44 2.90 1.39 0.79 0.45 

5 3 0.88 (3) 2.03 0.67 0.37 0.30 2.03 0.67 0.37 0.30 

4 —– 2.33 0.95 0.56 0.56 2.33 0.96 0.56 0.45 

5 —– 3.37 1.86 1.16 7.26 3.37 1.86 1.16 0.62 

4 3 3 0.27 (10) 2.62 1.33 0.75 0.21 2.62 1.33 0.75 0.22 

4 0.64 (8) 2.62 1.16 0.63 0.34 2.62 1.16 0.63 0.35 

5 0.42(2) 3.11 1.60 0.92 0.35 3.11 1.60 0.92 0.38 

4 3 0.42 (3) 3.22 1.78 1.05 0.36 3.22 1.78 1.05 0.37 

4 —– 3.27 1.76 1.00 0.58 3.27 1.76 1.01 0.39 

5 —– 3.31 1.80 1.05 2.36 3.31 1.80 1.06 0.51 

5 3 —– 3.15 1.64 0.92 1.48 3.15 1.64 0.92 0.45 

4 —– 3.48 1.96 1.20 2.68 3.48 1.96 1.20 0.62 

5 —– 3.27 1.90 1.21 9.30 3.28 1.90 1.22 0.63 

5 3 3 0.46 (6) 2.83 1.48 0.85 0.31 2.83 1.48 0.85 0.36 

4 2.29 (2) 3.32 1.82 1.08 0.47 3.32 1.82 1.08 0.43 

5 —– 3.43 1.90 1.13 7.06 3.43 1.90 1.13 0.48 

4 3 0.59 (1) 3.20 1.72 1.06 0.42 3.20 1.72 1.07 0.49 

4 —– 3.44 1.91 1.15 4.21 3.44 1.91 1.16 0.57 

5 —– 3.31 1.86 1.13 7.40 3.31 1.86 1.14 0.48 

5 3 —– 3.38 1.85 1.10 3.53 3.38 1.86 1.10 0.53 

4 —– 3.47 2.00 1.27 8.34 3.47 2.00 1.27 0.63 

5 —– 3.25 1.86 1.20 15.37 3.27 1.88 1.21 0.65 

532 
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Table 12 

The comparative performance of the TIIM and the DBHA based on the AD values of medium-size instances 

μ g n p 

TIIM DBHA 

60min 30min 15min 1min 60min 30min 15min 1min 

3 6 6 2.44(10) 1.42 (10) 0.91 (10) 12.84 (10) 2.44 1.42 0.91 0.47 

7 1.90 (10) 1.15 (10) 0.77 (10) 12.66 (10) 2.02 1.22 0.77 0.44 

8 2.47 (10) 0.96(10) 0.78 (10) 13.01)10) 1.73 1.03 0.79 0.54 

7 6 1.94 (10) 1.17 (10) 0.78 (10) 13.00 (10) 1.94 1.17 0.78 1.64 

7 2.45 (10) 1.00 (10) 0.77 (10) 12.68 (10) 1.64 1.13 0.73 2.63 

8 3.77 (10) 2.62 (10) 2.10 (10) 14.07 (6) 2.94 1.86 1.83 3.64 

8 6 1.51 (10) 1.42 (10) 1.09 (10) 10.68 (7) 1.51 1.09 0.91 2.16 

7 3.44 (10) 1.80 (10) 1.55 (10) 11.30 (4) 1.55 1.49 1.4 3.53 

8 8.44 (10) 8.78 (10) 5.33 (10) —– 3.79 3.68 3.65 4.86 

4 6 6 1.97(10) 1.22 (10) 0.87 (10) 16.05 (10) 2.05 1.31 0.84 6.85 

7 2.78 (10) 1.49 (10) 1.47 (10) 13.83 (7) 2.49 1.86 1.33 5.48 

8 4.59 (10) 3.58 (10) 3.55 (10) 18.80 (5) 3.93 3.74 3.48 9.79 

7 6 3.08 (10) 2.56 (10) 2.40 (10) 14.66 (5) 2.84 2.29 1.98 5.08 

7 7.76 (10) 6.33 (10) 5.65 (10) 18.10 (2) 3.99 3.96 3.91 6.92 

8 12.42 (10) 10.25 (10) 7.98 (10) —– 6.35 6.33 6.26 15.2 

8 6 6.08 (10) 4.86 (10) 4.10 (10) 20.74 (3) 3.67 3.66 3.41 9.97 

7 17.15 (10) 12.43 (10) 7.50 (10) —– 6.16 6.11 6.09 9.94 

8 27.50 (10) 15.69 (10) 7.91 (10) —– 6.72 6.48 6.42 18.8 

5 6 6 3.27 (10) 2.85 (10) 2.59 (10) 18.14 (10) 3.5 2.61 2.26 8.82 

7 5.47 (10) 5.23 (10) 4.38 (9) 22.95 (6) 4.68 4.64 4.16 15.52 

8 13.97 (10) 8.88 (10) 7.97 (8) —– 7.27 7.25 7.2 13.52 

7 6 10.78 (10) 7.06 (10) 4.72 (8) 23.83 (5) 5.19 4.96 4.57 9.24 

7 15.83 (10) 13.09 (9) 12.50 (7) —– 8.21 8.1 8.04 17.36 

8 22.53 (10) 15.81 (9) 15.16 (8) —– 9.51 9.4 9.34 30.47 

8 6 24.14 (10) 22.00 (10) 14.87 (8) —– 7.65 7.52 7.47 14.71 

7 30.5 (10) 15.42 (9) 15.09 (7) —– 8.5 8.36 8.26 24.68 

8 32.78 (10) 18.57 (8) 12.01 (6) —– 8.5 8.36 8.15 41.43 
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Table 13 

The statistical comparison of the DBHA and the TIIM based on small- 

size instances 

d 1 15 30 60 

stat-value 69 0 0 3 

critical-value 69 92 92 92 

Decision Accept H 0 Reject H 0 Reject H 0 Reject H 0 
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or all (some) instances that the TIIM (TUIM) fails to find their op- 

imal solutions, it has been able to find a feasible solution for each. 

oreover, the numbers inside parentheses indicate the number of 

nstances that the TUIM could find at least a feasible solution, and 

he AD values have been calculated only based on these instances. 

Table 9 indicates that in most cases, the AD values get smaller 

rom left to right for both the TIIM and the DBHA, implying smaller 

alues of d lead to more high-quality solutions. Although it is sup- 

osed that the TIIM with d = 1 always leads to more elite solu-

ions, it does not hold in all cases because the TIIM fails to solve 

ome instances optimally in the given time limit. Consequently, the 

D surges conspicuously in some cells related to the TIIM with 

 = 1 , particularly where μ = 4 , 5 and n p = 5 . This implies that

ncreasing the length of time intervals might contribute to better 

erformance of the model, mainly when we deal with larger sizes 

f instances. Considering scenarios d = 30 and 60 minutes, Table 

 indicates that the DBHA and the TIIM have almost identical per- 

ormances in terms of AD measure. The columns related to sce- 

ario d = 15 indicate a bit better performance of the TIIM. For sce- 

ario d = 1 , the TIIM often outperforms the DBHA in smaller-size 

nstances, but this superiority gets reversed if the size of instances 

ncreases. 

Tables 10 and 11 , presented in the Appendix, compare the per- 

ormance of the TIIM and the DBHA under different scenarios for 

edium-size instances. 

Table 12 compares the different TIIM and the DBHA scenarios 

or medium-size instances based on the average deviation from 

he LB. The numbers inside parentheses shows the number of 

edium-size instances for which the TIIM can find a feasible so- 

ution (optimal or non-optimal). As can be seen, in all scenarios, 

his measure declines if the size of instances increases. In Table 12 , 

he AD values are calculated only for the instances that at least a 

easible solution is found. This table reveals that the DBHA has a 

etter performance than the TIIM. Similar to Table 9 , the scenar- 

os corresponding to d = 15 leads to the best performance of the 

IIM. In contrast to Table 9 , the best performance of the DBHA for
 o

533 
edium-size instances is attained with the scenarios correspond- 

ng to d = 15 . 

.3. Statistical analyses 

In this section, we aim to compare the performance of the TIIM 

nd the DBHA from a statistical viewpoint. We exclude the TUIM 

ecause it showed a poor performance conspicuously. To compare 

he performances of the TIIM and the DBHA fairly, we need to 

efine a new measurement to capture both solution quality and 

PU runtime. To this end, we introduce ρ = AD ×Runtime and uti- 

ize the non-parametric Wilcoxon signed-rank test. Furthermore, 

e have to consider only instances that can be solved by both so- 

ution methods. For each statistical assessment, the null hypothe- 

is indicates that there is no significant difference between perfor- 

ances of the two solution approaches, whereas the one-side al- 

ernative hypothesis implies that the DBHA has a smaller average 

alue than the TIIM. Table 13 indicates the results of this compari- 

on for the small-size instances and different values of d. The stat- 

alue shows the values of the test statistic and has to be equal to 

r larger than the critical value to accept the null hypothesis. We 

etermine the critical value based on the sample size and α = 0.01, 

here α indicates the value of type-I error. As can be seen from 

able 13 , for small instances and d = 1 , we cannot reject the null

ypothesis, but for d = 15 , 30 , and 60, we can conclude the DBHA

utperforms the TIIM. 
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Table 14 

The statistical comparison of the DBHA and the TIIM 

based on medium-size instances 

d 15 30 60 

Stat-value 0 0 3 

Critical-value 3 5 5 

Decision Reject H 0 Reject H 0 Reject H 0 

Fig. 5. The impact of scheduling horizon on the daily cost of electricity. 
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Fig. 6. The impact of the change in the battery cap. 

Fig. 7. The cost savings of electricity costs in summer and winter. 

Fig. 8. The payback period on various battery capacities and panel powers. 

Fig. 9. The NPV for different battery capacity and panel power. 

p

k

f

d

c

t

c

e

t

Likewise, we can construct Table 14 in which the DBHA and the 

IIM are statistically compared based on medium-size instances. 

e exclude the case of d = 1 because the TIIM fails to solve it. Ac-

ording to Table 14 , the DBHA performs better than the TIIM. 

.4. Sensitivity analyses and evaluation of economic performance 

In this section, we analyze the impact of parameters ca and re t 
nd η on the electricity costs. To do so, we consider an instance 

ncluding 5 machines, 5 groups and 5 jobs in each group, and we 

pply the TIIM with d = 15 to find optimal solutions. The cost of

lectricity in the summer and winter is considered according to 

able 5 . Furthermore, we consider 261 working days in a year and 

ssumed the energy produced for one year is also related to 2015 

n California, extracted from European Commission (2020) . 

Fig. 5 shows the effect of the scheduling horizon on daily elec- 

ricity costs. According to this figure, the cost of electricity con- 

umption decreases with the extension of the scheduling horizon, 

ut the downward trend of costs is stopped for η > 2 . This is due

o the limited energy generated by the panels and the lack of re- 

ewable energy at night. If we choose tight scheduling horizons 

 η = 1 ), we might reach low-quality feasible solutions in terms 

f electricity cost. On the other hand, loose scheduling horizons 

 η ≥ 1 . 5) result in schedules with sparse jobs across the schedul- 

ng horizon. It is worth mentioning that for all instance examined 

n Fig. 5 , we obtained the makespans corresponding to optimal so- 

utions. In all cases, the makespan was equal to the time horizon. 

n other words, in comparison with values of C NEH 
max , makespans de- 

eriorate ( η − 1 ) × 100 percent on average under the energy-aware 

cheduling approach. 

Fig. 6 shows the changes in the annual electricity costs for dif- 

erent battery capacities and PV panel power. If we consider the 

attery capacity as a constant value, the cost of electricity con- 

umption will decrease with the increase of the power of PV pan- 

ls. In addition, if we consider the power of PV panels as a con- 

tant value, the annual cost of electricity will decrease with the 

ncrease of the battery capacity. 

To calculate electricity cost savings in various months, two 

odes have been considered: (1) no use of renewable energy and 

2) the possibility of using renewable energy. For the first case, 

he model was implemented without using renewable energy to 

educe electricity costs. In the second case, the power of the PV 
534 
anels and the battery capacity were considered 25 kWp and 25 

Wh, respectively. Fig. 7 shows cost savings resulting from the dif- 

erence in the cost of purchased electricity in these two cases over 

ifferent months of summer and winter. As shown in Fig. 7 , the 

ost savings in summer (May-October) are higher than in winter. 

Figs. 8 and 9 analyze the economic impact of ca and re t . For 

hese analyses, the electricity costs of the previous instance were 

onsidered in the annual electricity costs. In addition, to obtain 

lectricity cost savings due to the use of PV panels and the bat- 

ery, the instance was solved in two modes, i.e., with and without 
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Table 15 

PV panels installation and maintenance cost 

Technology type Installation cost($/kWp) Fixed operation & maintenance cost ($/(kWp.year)) Lifespan(year) 

< 10kWp 3897 21 33 

10-100 kWp 3463 19 33 
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onsidering the possibility of using renewable energy and battery 

torage system. Table 15 shows the costs associated with purchas- 

ng and installing PV panels, maintenance as well as the lifespan 

f the panel. This information was extracted from reference NREL 

ransforming energy (2020) . The cost of the used battery is also 

00 $/kWh. 

For simplification, we assume that we have to schedule the 

ame instance on all working days of a year. On the ground of this 

ssumption and based on the information provided in Table 15 , Fig. 

 shows the payback period (year) for different powers of the PV 

anels and battery capacity. According to this figure, the shortest 

ayback period is gained when a panel of 15 kWp and a 10 kWh 

attery are used. Furthermore, the longest payback period is ob- 

ained when a panel of 5 kWp and a 50 kWh battery are utilized. 

Fig. 9 shows the net present value (NPV) for different powers 

f PV panels and battery capacities. Based on Zhang et al. (2017) , 

he interest rate is considered 0.04 to calculate the NPV. If the NPV 

s negative, it means that the return on the investment is less than 

he total cost of installation, purchase, and maintenance of the bat- 

ery and PV panels. Furthermore, if the NPV is positive, it signifies 

he investment has financial benefits, and the return on the in- 

estment is higher than the total cost of installation, purchase, and 

aintenance of the battery and PV panels. According to Fig. 9 , all 

arious sizes of battery capacity and power of the PV panels are 

conomical and can be used. With the increase of the panel power 

nd battery capacity, the NPV rises as well so that the largest NPV 

s related to the case that the power of the PV panels is 25 kWp

nd the battery capacity is 50 kWh. Furthermore, the effect of the 

ower of the PV panels on the NPV is greater than the effect of the

attery capacity. 

. Summary, conclusions, and future outlook 

In this research, the flow shop scheduling problem was inves- 

igated by assuming group scheduling and considering electricity 

osts and the possibility of using solar energy. Two mixed-integer 

inear programming models in conjunction with a decomposition- 

ased heuristic algorithm were developed to solve the problem. In 

he structure of the first model, the variables are defined based on 

he unit of time (minutes), but in the second model, the scheduling 

orizon is divided into some time intervals of equal length, and the 

ariables are defined according to these time intervals. The com- 

utational results indicate that the second model has more flex- 

bility considering the possibility of changing the length of time 

ntervals and also consumes much fewer CPU runtimes than the 

rst one. The best performance of the second model is achieved 

hen the length of time intervals is set to 15 minutes though 

his might not lead to globally optimal solutions. Given the com- 

utational performance of the heuristic algorithm, this algorithm 

as the best performance among all three developed solution ap- 

roaches. Furthermore, the best performances of the heuristic al- 

orithm for small-size and medium-size instances are obtained 

hen the length of time intervals is set to 1 and 15 minutes, 

espectively. 

Sensitivity analysis examined the effect of PV panel power, bat- 

ery capacity, and scheduling horizon on increasing or decreas- 

ng the costs of electricity consumption. According to the results, 
535
ith the increase of the scheduling horizon, the costs of elec- 

ricity consumption decreases, but after a while, with the in- 

rease of the scheduling horizon, the decreasing trend of costs 

tops and an increase in the scheduling horizon will no longer 

ave an effect on reducing electricity costs. By examining the sav- 

ngs in electricity costs in summer and winter, it can be con- 

luded that the reduction in electricity costs in summer is greater 

han in winter. In addition, the duration of the payback period 

nd the net present value of capital were examined in different 

ower of panels and battery capacity. These results can be eco- 

omically valuable for identifying the proper panels and battery 

apacity. 

As a suggestion for future research, the problem assump- 

ions can be extended by considering non-permutation flow shop 

cheduling problems and using other production environments 

uch as the flexible flow shop or the job shop. The possibility 

f changing the speed of machines, machine breakdowns, or the 

aintenance process would appear to be interesting research top- 

cs. Furthermore, we did not consider the labor costs in our work, 

hereas it can be expensive in many countries, particularly during 

ut-of-working hours. Thus, we suggest considering this cost in the 

roblem for future research. In addition to these, developing more 

fficient exact and heuristic algorithms that can solve large-size in- 

tances is fascinating and challenging research. 

ppendix 

Tables 8 , 10 , 11 

able 8 

he average CPU runtimes (seconds) of the DBHA for small-size instances 

μ g n p DBHA-60min DBHA -30min DBHA -15min DBHA -1min 

3 3 3 0.26 0.16 0.26 3.53 

4 0.25 0.30 0.49 29.70 

5 0.32 0.43 0.83 35.31 

4 3 0.22 0.31 0.52 4.43 

4 0.32 0.51 1.00 175.50 

5 0.49 0.86 1.59 195.47 

5 3 0.34 0.50 0.99 44.35 

4 0.48 0.81 1.46 212.64 

5 0.69 1.14 1.87 681.12 

4 3 3 0.28 0.27 0.45 21.14 

4 0.30 0.47 0.90 55.26 

5 0.36 0.65 1.13 170.54 

4 3 0.25 0.44 0.65 96.60 

4 0.37 0.77 1.19 642.67 

5 0.63 1.19 1.89 1044.51 

5 3 0.36 0.72 1.02 783.66 

4 0.57 1.02 1.80 1361.53 

5 1.05 2.11 3.33 1913.92 

5 3 3 0.32 0.31 0.58 59.20 

4 0.33 0.59 0.92 775.03 

5 0.51 0.96 1.60 1630.60 

4 3 0.28 0.48 0.85 185.45 

4 0.49 0.95 1.76 1113.41 

5 0.83 1.46 2.91 2683.74 

5 3 0.50 0.82 1.60 1059.65 

4 0.86 1.27 2.65 2660.76 

5 1.43 2.19 4.40 2821.72 
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Table 10 

The performance of the TIIM for medium-size instances 

μ g n p 

The number of instances solved locally or globally optimal The average CPU runtime (seconds) of instances solved locally or globally optimal 

TIIM-60min TIIM-30min TIIM-15min TIIM-1min TIIM-60min TIIM-30min TIIM-15min TIIM-1min 

3 6 6 10 10 10 0 92.7 350.7 599.1 —–

7 10 10 10 0 407.8 969.3 860.6 —–

8 6 6 4 0 519.4 1167.4 1541.6 —–

7 6 10 10 10 0 406.1 797.2 1379.5 —–

7 8 7 6 0 1957.5 2097.4 2704.9 —–

8 3 2 2 0 3252.5 3288.0 3294.4 —–

8 6 8 8 6 0 1775.6 1917.3 3114.9 —–

7 0 0 0 0 —– —– —– —–

8 0 0 0 0 —– —– —– —–

4 6 6 9 8 6 0 345.5 972.3 1092.6 —–

7 3 2 2 0 2667.1 2681.6 2992.1 —–

8 0 0 0 0 —– —– —– —–

7 6 2 2 0 0 2600.3 3238.9 —– —–

Table 11 

The average CPU runtime (in seconds) of the DBHA for medium-size instances 

μ g n p DBHA-60min DBHA -30min DBHA -15min DBHA -1min 

3 6 6 1.75 2.54 6.73 2259.79 

7 2.02 3.54 7.86 2667.10 

8 2.74 4.58 12.86 2965.32 

7 6 2.23 3.24 7.94 3057.56 

7 2.72 4.09 11.24 3217.20 

8 3.49 5.74 12.53 3600 

8 6 2.68 4.39 12.13 3423.04 

7 3.52 6.26 13.85 3273.72 

8 3.73 6.83 10.43 3600 

4 6 6 2.31 3.86 9.42 3121.76 

7 2.61 4.95 11.79 3600 

8 3.66 6.01 16.82 3600 

7 6 2.60 5.09 10.70 3453.47 

7 3.78 6.60 17.09 3600 

8 4.20 7.42 21.12 3600 

8 6 3.48 5.80 18.49 3600 

7 3.71 7.43 19.78 3600 

8 4.67 10.20 34.08 3600 

5 6 6 2.62 5.22 15.17 3600 

7 3.63 7.44 17.20 3600 

8 4.20 7.31 20.18 3600 

7 6 3.36 5.92 19.20 3600 

7 3.64 8.30 24.81 3600 

8 4.49 9.96 25.38 3600 

8 6 3.70 7.04 26.05 3600 

7 4.51 11.13 26.58 3600 

8 10.64 14.06 27.40 3600 
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