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1. Introduction

Most of the consumed energy in the world is in the form of
electricity in the industrial sector (Zhang, 2016). Electricity is a
form of energy that cannot be stored efficiently and should be dis-
tributed and consumed immediately after being produced. In other
words, we need to keep a balance between electricity supply and
demand. To do so, in many countries, time-of-use (TOU) pricing
has been considered to encourage electricity consumers, mainly
factories with high electricity consumption, to shift their electricity
consumption from on-peak hours to mid-peak or off-peak hours
(Zhang, 2016). The use of renewable energy is another policy to
reduce electricity demand from the grid and prevent air pollution.
On-site renewable energy production can be a valuable resource
for companies where energy has a significant impact on their pro-
duction processes. It will reduce their dependence on power plants
and counteract surging electricity costs. In addition, the use of re-
newable energy can make a significant contribution to reducing
the environmental impact of production processes. To reduce the
cost of electricity and take advantage of all possible opportunities,
it is necessary to develop optimal production schedules so that re-
newable energy can be used as much as possible, and if there is
a need to buy electricity, the lowest cost is paid. In the contem-
porary era, the number of factories that use renewable energy is
increasing every day. It is due to the high cost of purchasing elec-
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tricity from the grid, as well as reducing air pollution and feed-in-
tariff schemes that governments have put in place to use renew-
able energy. There are several companies that use on-site renew-
able energy, such as LG Gumi Factory, Brabantia, SIG Combibloc,
and Whirlpool.

In this paper, we design two models and an algorithm to de-
velop schedules in the flow shop environment. We develop our
schedules based on group scheduling and sequence-dependent
setup times assumptions because group scheduling has significant
applications in various industries such as automobile, aerospace
and semiconductor light industries and, as far as we know, has not
already been addressed in the literature.

What motivated us to carry out this research is its applications
in semiconductor light industries in which products such as LCD,
TFT-LCD, LED and OLED are produced where each one is made of
several components. For instance, Fig.1 presents the components of
TFT-LCD panel.

Each component of TFT-LCD panel is produced in a flow shop
environment in which group scheduling is used. Jobs are divided
into groups based on their shapes, sizes and technological con-
straints. The jobs of each group may have different processing
times and power consumption. For instance, in the polarizer at-
tachment, which is one of the main steps of the polarizer film pro-
duction, the jobs of each group usually have different processing
times, and there are tiny setup times between jobs due to small
changes in machines temperature. We ignore such setup times and
we consider only setup times between groups that are noticeable.
It should be noted that the number of semiconductor light facto-
ries that use on-site renewable energy is growing. For example, LG


https://doi.org/10.1016/j.ejor.2022.09.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.09.034&domain=pdf
mailto:m_ranjbar@um.ac.ir
https://doi.org/10.1016/j.ejor.2022.09.034

M. Ghorbanzadeh and M. Ranjbar

. AUO TFT-LCD
N ..

« Polarizer Film
- « Color Filter
\ « Liquid Crystal
- SN TFT Amay Glass
 Polarizer Film

Driver IC & PCBA...etc.
-« Diffuser Film

« Diffuser Plate
« Plastic Frame
« Light Source
= Bezel Back

- Control Board

=« Inverter

« TFT Array Glass « Color Filter

Fig. 1. The components of TFT-LCD panel (Shahvari, 2017).

Gumi Factory, which is a TV manufacturer in Korea uses solar pan-
els in the factory to provide part of its electricity needs.

Most previous research has developed time-index models for
similar problems causing large CPU runtimes. It should be men-
tioned that these models do not address group scheduling chal-
lenges. For instance, Schulz et al. (2019) used a time index model
based on the minute to formulate the problem and assumed each
processing time has a discrete uniform distribution taken from
{1,...,10}. They showed that the average CPU runtime for a prob-
lem that includes 10 jobs is around 67 hours. Some other papers
have considered time units more than one minute and have pre-
sumed that each processing time is a multiplication of the con-
sidered time unit. For example, Zhang et al. (2017) considered a
20-minute time unit and assumed that each processing time is a
multiplication of 20 minutes. They considered a flexible flow shop
scheduling problem including two jobs, two stages, and two ma-
chines in each stage and solved it in eight hours. Since scheduling
problems, particularly the problem at hand, are a kind of short-
term planning, they must be solved in a short CPU runtime. More-
over, processing times are not always a multiplication of a specific
time unit, and hence we need to develop new models to cover pre-
vious deficiencies. To do so, we employ the concept of time in-
terval to formulate the problem in a more efficient way. We de-
velop two mixed-integer programming (MIP) models, one based on
the time-unit index model and the other one based on the time-
interval index model, to compare their performances. The former is
developed based on the ideas that have already been in the litera-
ture whereas the latter involve new ideas. Furthermore, due to the
fact that MIP models usually fail to solve medium-size instances,
we develop a decomposition-based heuristic algorithm (DBHA) to
cope with this problem.

The contributions of this research include the followings: (1)
we develop two MIP models based on the time-unit index and the
time-interval index ideas; (2) we develop a DBHA that outperforms
developed models, especially for medium-size instances; and (3)
we present a set of economic analyses for on-site renewable en-
ergy consumption.

The rest of this paper is organized as follows. The related re-
search works are reviewed in Section 2. In Section 3, a detailed
description of the problem is provided, and two MIP models are
developed. In Section 4, a decomposition-based heuristic algorithm
is designed to solve the problem. In Section 5, the developed solu-
tions approaches are compared and evaluated. Finally, in Section 6,
a summary and suggestions for future research are provided.

2. Related work

We categorize the related published research works into two
parts. In the first part, we review the papers that investigate
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energy-aware scheduling in shop environments. In the second part,
we review the research works that have studied group scheduling
in the flow shop environment. In both categories, there are some
papers that have considered sequence-dependent setup times.

2.1. Energy-aware scheduling in shop environments

Several papers presented in this field have addressed reducing
consumed energy or abatement of consumed electricity cost by
considering various solution approaches. For instance, some of
these approaches are shutting down production machines in the
idle state, reducing the production rate at on-peak hours, changing
the speed of machines, and changing the sequence of jobs or their
assignment to machines. Giret et al. (2015), Gahm et al. (2016),
Biel and Glock (2016), as well as Akbar and Irohara (2018) are
some review articles in this field. Several articles published in this
field have only sought to reduce energy consumption without con-
sidering electricity costs at different hours of a day. For example,
because shutting down machines in the idle state can significantly
reduce the consumed energy, Mouzon et al. (2010) investigated
this policy for machines that were not bottleneck. Tang et al.
(2016) investigated the flexible flow shop scheduling problem by
considering the possibility of changing the machines speed and
the possibility of machines breakdown. Mansouri et al. (2016) de-
veloped a bi-objective model for minimizing energy consumption
and makespan in a two-machine flow shop scheduling problem
based on the idea that the speed increase of a machine might
decrease job processing times and increase energy consumption.
They assumed that sequence-dependent setup times between jobs,
and they solved their developed model using a heuristic algorithm.
Moreover, Li et al. (2018) presented a paper on the flexible flow
shop environment with sequence-dependent setup times. Taking
into account the energy consumed during processing, standby
state, and setup times, they proposed a multi-objective algorithm
to minimize the makespan and energy consumption. Wu and Sun
(2018) proposed a multi-objective model and algorithm for the
job shop scheduling problem. They presumed that shutting down
a machine consumes less energy than leaving the machine idle
when there is no job to process, and starting up and shutting
down a machine too often will cause it to breakdown. They
considered minimizing the makespan, the energy consumption,
and the number of starting ups and shutting downs of machines
as the objectives of their model.

Some researchers tried to reduce energy costs by taking into
account the variable cost of electricity at different working hours.
For example, considering electricity tariffs, Wang et al. (2017) pre-
sented a single-objective model for the two-machine permutation
flow shop scheduling problem. They solved the problem using two
heuristic algorithms based on Johnson’s rule and dynamic pro-
gramming. Furthermore, Ho et al. (2020) studied a two-machine
flow shop scheduling problem to minimize the electricity cost.
They developed a heuristic algorithm including two phases. In
the first phase, a series of schedules with minimum makespan is
obtained, and in the second phase, one of the schedules obtained
in the first phase leading to minimum electric cost is selected
using the shortest path algorithm. Schulz et al. (2019) modeled the
flexible flow shop scheduling problem with the three objectives of
minimizing the makespan, energy cost, and peak power consump-
tion and used a local search algorithm to solve the problem. More-
over, Cui and Lu (2021) developed a single-objective model to min-
imize electricity cost in a flow shop environment under TOU elec-
tricity tariff. They captured the preventive maintenance operations
and designed a two-layer mathheuristic to solve the problem. In
the external layer, the sequence of jobs is determined using a ge-
netic algorithm, and in the internal layer, the maintenance sched-
ule is constructed through a dynamic programming algorithm.
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Some research studies have also considered renewable energy
and have investigated scheduling problems to reduce costs related
to electricity consumption or pollutants. For instance, Wang et al.
(2011) developed a low-carbon production scheduling system by
considering using renewable energy. They addressed a single ma-
chine scheduling problem by taking into account that carbon is
produced due to the power purchased from the grid, as well as the
production process, equipment maintenance, and daily activities.
Furthermore, Liu (2015) assumed that it is possible to store renew-
able energy in a battery. He also assumed that carbon is produced
only by the power purchased from the grid. He proposed two mod-
els for a single machine scheduling problem. Liu (2016) also pre-
sented an article with the assumptions of the previous article in
conjunction with the goal of minimizing carbon emissions and the
earliness and tardiness of jobs. Zhai et al. (2017) carried out re-
search to reduce the cost of power purchased from the grid using
wind-generated energy. They proposed a model to reduce the cost
of electrical energy for a flow shop scheduling problem by assum-
ing that the electricity generated by the wind energy could be sold
to the grid. Next, Biel et al. (2018) developed a bi-objective model
in order to minimize the total weighted flow time and the energy
cost. Considering the possibility of storing solar energy, Zhang et al.
(2017) developed a MIP for a flow shop scheduling problem to re-
duce the cost of purchasing electricity from the grid. They demon-
strated that significant cost savings could be achieved using an op-
timal scheduling approach. Moreover, Moon and Park (2014), for
the first time, examined a flexible job shop scheduling problem
that could use both renewable energy and the power grid. They
assumed that it was possible to store renewable energy.

2.2. Group scheduling in the flow shop environment

In the group scheduling approach, first proposed by Willey
(1975) and extended by Mitrofanov (1966) and Schaller et al.
(2000), a group consists of a set of parts that have similar needs
for tools, setup, and operation sequence. In cases where the setup
of a machine is costly or time-consuming, the idea of grouping
parts and doing only one setup for each group can be helpful to
increase productivity. In group scheduling, the jobs of one group
should be processed sequentially, and at the time of changing jobs
from one group to another, a setup time is needed. Based on
Bozorgirad and Logendran (2013), group scheduling is usually de-
termined by the scheduling of jobs at two levels. On the one hand,
the sequence of groups should be determined according to setup
times, and on the other hand, the sequence of jobs should be de-
termined in each group.

Group scheduling in the flow shop environment has many ap-
plications in various industries. For instance, in the automobile in-
dustry, after painting a group of products, we need to change the
color used for the following products. In this case, it is neces-
sary to spend a setup time to clean the environment and prepare
the following color (Salmasi et al., 2010). Group scheduling is also
used in the blade line in aircraft engine factories, where differ-
ent types of blades used in aircraft engines are produced. In this
production line, the blades that require the same type of process-
ing are placed in a group. If the blades change from one group to
another, a setup should be done on the machine, but if the ma-
chine moves from one type of blade to another in the same group,
a minor adjustment is required whose setup time is negligible. Li
(1997) reported that this grouping was implemented many years
ago in Pratt and Whitney, a company in the aerospace industry.
In addition to these applications, the semiconductor light industry
is another group scheduling application in the flow shop environ-
ment, described in Section 1.

Regarding the significance of group scheduling in various in-
dustries, several papers have addressed this issue. Neufeld et al.
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(2016) developed a review article for group scheduling in shop en-
vironments. They addressed several papers investigating the objec-
tive functions such as minimizing the makespan, the total com-
pletion time, and the total flow time, but none of these pa-
pers has considered the cost of energy consumption. Feng et al.
(2018) considered preventive maintenance in a flexible flow shop
environment with group scheduling. They aim to minimize the
preventive maintenance costs, repair costs, and job tardiness costs.
Furthermore, Pan et al. (2020) developed a heuristic algorithm
to minimize the makespan in the flow shop scheduling prob-
lem with group scheduling assumption. Costa et al. (2020) cap-
tured a blocking constraint in the flow shop sequence-dependent
group scheduling problem and designed a parallel self-adaptive ge-
netic algorithm to minimize the makespan. Moreover, Cheng et al.
(2021) studied a no-wait flow shop group scheduling problem with
sequence-dependent setup times. They developed two heuristic al-
gorithms and a local search algorithm to minimize the total com-
pletion time.

Table 1 summarizes some of the most related references and in-
dicates the characteristics of each research paper in terms of shop
environment, group scheduling, setup time, objective function, and
using renewable energy and battery. The symbol ",/" indicates that
the corresponding assumption has been considered whereas the
symbol "x" implies that assumption has been ignored.
3. Problem description and modeling
3.1. Problem description

In this problem, it is assumed that the parts are produced in
the form of group scheduling in a flow shop environment. Each
part is called a job, and the processing of each part on a machine
is called an operation. A set of similar parts constitute a group, and
each machine requires a setup time that depends on the sequence
of groups. Therefore, jobs are grouped to increase production effi-
ciency and reduce the number of setup times.

In this study, according to Zhang et al. (2017) and Liu (2015),
it is assumed that solar energy can be produced as an on-site re-
newable energy source using photovoltaic (PV) panels. The electri-
cal energy produced can be used directly to meet electricity needs
or stored in a battery for later use. The power consumption of the
factory can also be supplied through the grid. It is also possible to
store grid power in the battery. Thus, when the cost of electricity
is low, electricity can be bought from the grid, and when it is high,
the power consumption can be supplied using the battery. In this
study, it is assumed that if the battery is fully charged and there is
no other demand for power, the electrical energy produced by the
PV panels will be wasted. It is also presumed that electrical energy
from the PV panels cannot be sold to the grid.

According to Cheng et al. (2017) and Wang et al. (2017), elec-
tricity pricing is also considered at different times of the day based
on the TOU tariffs. In a TOU tariff, the cost of electricity is deter-
mined according to the demand in the electricity grid, in which 24
hours of a day are usually divided into a set of time periods where
they are mutually exclusive and jointly exhaustive. These time pe-
riods can be categorized as follows: the on-peak hours when the
cost of electricity is the highest; the mid-peak hours when the cost
of electricity is lower than that of the on-peak hours; and the off-
peak hours when the cost of electricity is the lowest. Given the
TOU tariff, to avoid high electricity costs, schedules may change in
such a way that some jobs might shift from high-priced hours to
low-priced ones.

The problem at hand can be denoted using the notations de-
fined by Pinedo (2012) as En|fmls, sj,, TOU, ret, ca|TEC. In this no-
tation, F; indicates the flow shop environment with m machines,
fmls represents the group scheduling problem; s7, indicates the
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Table 1
The summary of some of the most related references
Paper Shop Environment Group scheduling  Setup time  energy consumption / electricity cost ~ Renewable Battery
Energy
Mouzon et al. (2010) single machine X X energy consumption X X
Tang et al. (2016) flexible flow shop x x energy consumption x x
Mansouri et al. (2016) two-machine x N energy consumption x x
permutation flow shop
Li et al. (2018) hybrid flow shop x v energy consumption x x
Wu and Sun (2018) flexible job shop x x energy consumption x x
Wang et al. (2017) two-machine X X electricity cost X X
permutation flow shop
Ho et al. (2020) two-machine flow X x electricity cost X X
shop
Schulz et al. (2019) hybrid flow shop X X electricity cost X X
Cui and Lu (2021) flow shop x x electricity cost x x
Wang et al. (2011) single machine x x energy consumption v v
Liu (2015) single machine X X energy consumption VA VA
Liu (2016) single machine x X energy consumption v v
Zhai et al. (2017) flow shop x x electricity cost Vv x
Biel et al. (2018) flow shop x x electricity cost N x
Zhang et al. (2017) hybrid flow shop x X electricity cost i Vv
Moon and Park (2014) flexible job shop x x electricity cost v v
Schaller et al. (2000) flowline J N X x x
Salmasi et al. (2010) flow shop v Vv x x x
Bozorgirad and Logendran (2013)  hybrid flow shop J v x x x
Feng et al. (2018) flexible flow shop J N X x x
Pan et al. (2020) flow shop J N X X X
Costa et al. (2020) flow shop N v X X X
Cheng et al. (2021) no-wait flow shop J v x x x

sequence-dependent setup time between groups p and g on ma-
chine m; TOU alludes to electricity tariff in the schedule; re; indi-
cates the renewable energy; ca represents the capacity of the bat-
tery that stores renewable energy, and finally TEC represents the
objective function, which implies the total energy cost (TEC). Other
assumptions are as follows.

All machines and jobs are available at the beginning of the
scheduling horizon.

All machines have two modes: busy mode and idle (shut
down) mode, where in the latter, no energy is consumed.
All operations of each group should be completed before the
end of the time horizon.

Preemption is not allowed during processing any job.

The jobs of one group should be processed one after the
other without interruption by other groups.

The buffer capacities between machines are unlimited.
Setting up of each machine for processing a new group of
jobs can be done before jobs of that group are available
on the machine. Furthermore, the setup time of a job (if
needed) and its processing time are non-interrupted.

Setup time is only considered for groups. This implies that
there is no setup time between two consecutive jobs of the
same group.

No power is consumed during setup times.

The sequence of groups and all jobs belonging to a group
cannot be changed on different machines implying the per-
mutation flow shop scheduling.

e The power required by each machine can be supplied
through two sources of energy: solar renewable energy and
power grid.

The battery has a constant capacity and can be charged us-
ing both solar panels and power at the grid.

The battery, as a source of energy, is empty at the beginning
of the scheduling horizon.

The goal of solving Fn|fmls, sjy, TOU, re¢, ca| TEC is to minimize
the cost of purchasing electricity from the grid. To optimize it,

decisions should be made about the sequence and scheduling of
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groups and jobs in each group, as well as whether or not each ma-
chine is idle in each time period. In the following, we develop two
mixed-integer linear programming models and a decomposition-
based heuristic algorithm to solve the problem.

3.2. A time-unit index model

In this section, we develop a time-unit index model, dubbed
TUIM, for Fn|fmls, si. TOU, re, ca| TEC . Since electricity costs de-
pend on consumption time, the time-unit index (one minute) is
used in the TUIM to define the variables of the model. Zhang et
al. (2014), Wang et al. (2017), and Schulz et al. (2019) considered
electricity tariffs and adopted a similar approach to model the flow
shop. The parameters and variables of the TUIM are defined in
Table 2.

The TUIM reads as follows.

TUIM : Min TEC =) "1.EG, (1)
teT
Subject to:
> Yu=1, VpeG\{g+1} (2)
qeG\{p.0}
Y Yy =1.YgeG\{0}: (3)
peG\{g.g+1}
You+Yp <1, VpqgeG:p<g; (4)
(1 =Upj)B + Dt Zpy =Dt Zy = ).
teT teT
VmeM;Vpe GVl jel,: 1 <] (5)
BUpj + Dt Zj = 3t Zyj = 7y, Vme M
teT teT
VpeGVljel,:l<j; (6)
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Table 2
The parameters and variables of the TUIM
Sets Definition
= The set of groups, indexed by p and q. Groups 0 and g+1 are dummy and each contains only one dummy job with zero processing time and
{0,1,2,...g,g+1} zero power consumption.
M={1, 2 AAAAA u} The set of machines, indexed by m.
b =1{1,2,...np} The set of jobs of group p, indexed by I and j.
T={1,2,...Tnau} The set of time units (minutes), indexed by t and t’.
Parameters Definition
g The number of groups.
np The number of jobs in group p.
" The number of machines.
she Setup time between groups p and q on machine m.
71[','} Processing time of job j from group p on machine m.
pe’" Power consumption of job j from group p when it is processed on machine m
Tt Electricity price at time unit ¢t.
ca Battery capacity.
re The electrical energy produced by the renewable energy source at time unit t.
Tinax Scheduling horizon (minutes).
B A very large number.
Variables Definition
X";}t It takes the value of one if job j of group p is processed on machine m at time unit t, otherwise, it takes zero.
Z;',”][ It takes the value of one if the processing of job j from group p on machine m starts at the beginning of time unit ¢, otherwise, it takes zero.
Ypq It takes the value of one if group q is processed immediately after group p, otherwise, it takes zero.
Upij It takes the value of one if in group p, job j is processed after job I (consecutively or disjointedly), otherwise, it takes zero.
CGy Completion time of processing of all jobs in group p on machine m.
EB; The energy stored in the battery at the beginning of time unit t (assume that EB; = 0)
EG: Electricity purchased from the grid at unit time t.
TEC Total electricity cost purchased from the grid.

(1=Yp)B + Y (t = 1)Z]}, — CG} = sj,, Vm e M;

teT

Vpe G\{g+1};Vq € G\{0, p}: VI € J: (7)

CGI =" (t-1) 20 + 7", VmeM;Vpe G VjeJp: (8)
teT

Soezm -3 ezmt > aml Vpe GiVje; Yme M\{1}): (9)
teT teT
CGI; < Tax, VPG G; (10)
> 7y =1,VmeM;Vpe G Vje ]y (11)
teT
DY XN <1,VmeM;VteT; (12)

peG jejp

min (t+ﬂE*1miax)

> X0 = 20w Nme M;Vp e G Vje Ve eT;
t'=t
(13)
Y Xy =m), VmeM;Vpe G Vjely (14)
teT
EB: <ca, VteT; (15)
EG > Y > pey X —EB; —re;, t =T max; (16)

meM peG jef,
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EB; <EBi_j+re, 1 +EG 1 — Y Y > peyi X, 4.Vt e T\{1};
meM peG jef,

(17)

XI’;’]’»[e{O,l},VmeM;VpeG;Vje]p;VteT (18)
Ype €{0,1}, Vp.qeG (19)
Zy, €{0,1}, Vme M;Vpe G Vje ]Vt eT (20)
Upj€{0,1}, Vpe GVl je], (21)
CGy =0, Vme M;VpeG (22)
EG >0, VteT (23)
EB; >0, VteT (24)

Objective function (1) represents minimizing the cost of pur-
chasing electricity from the grid. Constraints (2) to (4) indicate
the sequence of groups on each machine. These constraints state
that only one group can be processed immediately after and be-
fore each group. Constraints (5) and (6) limit the start time of jobs
in each group in such a way that the start time of each job must
be equal to or larger than the completion time of the previous job.
Constraints (7) state that the start time of each job on each ma-
chine is equal to or larger than the completion time of the previous
group plus the corresponding setup time. Constraints (8) show that
the completion time of a group must be equal to or larger than the
total completion time of jobs belonging to that group. Constraints
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(9) indicate that each job can be processed on a machine when
its process is finished on the previous machine. According to Con-
straints (10), the completion time of all groups on the last machine
must be equal to or less than the scheduling horizon. Due to Con-
straints (11), each job has only one start time on each machine,
i.e., each job is processed only once. Constraints (12) impose that
in each time unit, at most, one job can be processed on each ma-
chine. Constraints (13) state that whenever a job is started, it must
be continued until it is completed, i.e., preemption is not allowed.
Given that the objective function is to minimize electricity cost,
this constraint always seems to have a lower bound, but it is not
so. For example, in the time units when the battery capacity is full,
and there is a surplus of solar energy, Xg}t may tend to take a value
more than the lower bound without affecting the cost of electricity
purchased from the grid. Therefore, this problem is solved by con-
sidering the constraints (14). This set of constraints ensures that
the number of time units at which a job is being performed has to
be equal to the processing time of that job on the entire scheduling
horizon. Constraints (15) to (17) indicate the amount of electric-
ity purchased from the grid and stored in the battery. Constraints
(15) impose that the electrical energy stored in the battery must
not exceed the rated capacity of the battery. Constraints (16) indi-
cate the minimum amount of electricity purchased from the grid in
the last time unit. Constraints (17) calculate the electricity stored
in the battery for each time unit, according to the electricity pur-
chased from the grid in the previous time unit and the amount of
solar power in the previous time unit. Due to this limitation, it is
possible to purchase more electricity from the grid and store the
excess purchased electricity in the battery and consume it when
the cost of purchasing electricity from the grid is higher. Finally,
Constraints (18) to (24) indicate the type of variables used in this
model.

3.3. A time-interval index model

In this section, we develop a time-interval index model, dubbed
TIM, for Fy|fmls, spy> TOU, rer, ca|TEC . In the TUIM, the time-unit
index, which is equal to one minute, is used to define the vari-
ables, so this model is strongly dependent on the duration of the
scheduling horizon. As the scheduling horizon increases, the num-
ber of variables and the complexity of the problem surge. To re-
duce the dependence of the number of variables on the schedul-
ing horizon, we develop the TIIM in which the formulation idea is
based on time intervals. In this new modeling, the scheduling hori-
zon is divided into a set of mutually exclusive, jointly exhaustive
and equal-length intervals. These intervals should be such that the
cost of electricity purchased from the grid does not change during
an interval. It should be noted that changes are allowed in electric-
ity prices between intervals.

The TIIM consists of two parts. In the first part, based on a po-
sition assignment approach, the sequence and schedule of groups
and jobs are determined. We assume that there are g positions, and
each group is assigned to one of them. Therefore, the group in the
first position is processed first, and then the group in the second
position is processed, and so on until the last group. Furthermore,
the sequence of jobs of each group and the start and completion
time of each group and each job are fixed in this part of the model.
In the second part of the model, the scheduling horizon is divided
into a number of time intervals. In this part, according to the start
and completion time of each job, obtained from the first part, a
particular time interval is determined for processing of each job.

The critical point is how to produce renewable energy in each
interval. Renewable energy is being produced continuously and is
accumulated over each time period. In other words, the whole re-
newable energy produced within an interval is not available at the
beginning of that time interval, and we cannot consume all of it.
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Therefore, for simplification, we assume that the renewable energy
produced in each time interval cannot be used in the same period,
and this energy should first be stored in the battery and then used
in the subsequent periods. It should be noted that this assumption
only applies to the TIIM in which the time index is longer than one
minute. In the TUIM, because time is in minutes, it can be roughly
assumed that renewable energy produced in one minute is avail-
able from the beginning. For example, in the TIIM, if the length of
the intervals is 60 minutes and it is possible to use renewable en-
ergy in the same interval, the whole energy produced in these 60
minutes may be consumed in the first few minutes of this interval,
whereas it might not be available at those times.

To better understand the TIIM, suppose that we want to sched-
ule two groups, each consisting of three jobs. Consider a 180-
minute scheduling horizon, divided into three time intervals of
60 minutes. Fig. 2 shows the schedule of the jobs for these two
groups, which is obtained by the first part of the TIIM. Accord-
ing to this figure, all jobs related to the group in the first position
are processed in the second interval, and we consider the price of
electricity corresponding to the second interval for them. The re-
newable energy that we can use to process these jobs is equal to
the amount produced before the start of the second interval and is
available in the battery. As shown in Fig. 2, the jobs for the group
in the second position are processed in both time intervals 2 and
3. Job 3 of group 2 starts at time T = 110 with the processing time
of 10 minutes and finishes at time t = 120, i.e., this job was pro-
cessed in the second interval. Thus, we consider the price of the
second interval to process this job, but jobs 1 and 2 are processed
in the third interval. Hence, we consider the price of electricity in
the third interval to process these jobs. In addition, job 3 of group
2 is allowed to use only the renewable energy stored in the bat-
tery until the beginning of the second time interval, whereas jobs 1
and 2 of the same group are allowed to use the renewable energy
stored in the battery until the beginning of the third time interval.

It should be noted that the globally optimal solution of the
TIIM is obtained in the case that the length of each interval is
one minute. For cases where the interval length is more than one
minute, the optimal solution obtained from the model may not be
the global optimal, but only a locally optimal solution. In other
words, as the length of the intervals increases, the number of vari-
ables and the complexity of the model decrease, but instead, its
accuracy decreases slightly. Moreover, we consider some dummy
jobs in some groups to have an equal number of jobs in all groups.
This assumption decreases the number of variables in the TIIM be-
cause we do not have to consider the group index for assigning
jobs to positions. In Table 3, the parameters and variables are de-
fined for the TIIM.

The TIIM reads as follows.

TIM : Min TEC =) "1, EG, (25)
7eT
Subject to:

> Wp=1, VpeGH (26)
iel

Y Wy=1, Viel (27)
peG*

Wy =1 (28)
DY i =1, Viel\{gh (29)
peG* qeG+\{p,0}

Yipg < Wip, Viel\{g};Vp e G*;Vq e G*\{p,0}; (30)
Yipg < Wiy1 4. Vie\{g};Vp e G*;Vq e G*\{p, 0}; (31)
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Fig. 2. Illustration of the TIIM modeling approach.

Table 3
The parameters and variables of the TIIM
Sets Definition
={0,1,2,...g}  The set of groups, indexed by p and gq. Group 0 is dummy and contains only one job.
1={0,1,2,...g The set of positions of groups, indexed by i (position 0 is dummy).

N={1,2,...bnax}

The set of jobs in each group, indexed by I and j. The number of jobs in group p is equal to n, and max(0, bye — np) is equal to the number of
dummy jobs in group p.

={1,2,..., k} The set of time intervals, indexed by t and t’.
Parameters Definition
bmax = Maximum number of jobs in each group
max{ni, ..., np}
k The number of time intervals.
d The length of each time interval (minutes).
Variables Definition
FU’” Completion time of job j when its group is placed in position i on machine m.
Wip If group p is placed in position i, it takes the value of one, otherwise zero.
Qiji If job [ is processed after job j (immediately or disjointedly) while both belong to the same group and that group is placed in position i, it
takes the value of one, otherwise zero.
Ying If group p is placed in position i and is processed immediately before group g, it takes the value of one, otherwise zero.
ar Completion time of all jobs processed in position i on machine m.
X}J}f If the whole or a part of job j of group p is processed on machine m in interval 7, it takes the value of one, otherwise zero.
;‘}T The amount of time that job j of group p is processed on machine m in interval t.
P —FP' = — fQu+ Y 7l Wy, VmeM; P = (t =1 xd+1) = B2 X —Wyp). VT eT\{1k
peG{0} Vm e M; Vp € G*\{0}; Vj € N; Vi e I\{0}; (41)
Vie\[0}; VjleN:j<L (32)
m m m X
El -l < (td=1)+ B2 -X]1, — W), VT eT;
m m . .
EM—FE'>BQu-1)+ Y #nW,, Ym e M; ¥p e G*\{0}; Vj e N; Vi e I\{0}: (42)
peG\{0}
Vme M;Vie \{0};V j,leN:j<I (33) . g n
Vi < Ef —(z = 1)d+ (2 - X, — W), VT e T\{1};
CI' = 0,¥m e M: (34) Vm e M; Vp € G*\{0}; Vj € N; Vi e I\{0}; (43)
m _(Fm _ g .
Fr=cli+ ) Z Y( 1S + Z W Vije = vd = (Ff' = 735) + B(2 = X} = Wyp) VT €T
ij = i-1)pg°pq P : ; ; ;
ey =y Vm e M;Vp e G'\{0}: Vj e N, Vi e I\{0}; (44)
Vm e M; Vlel\{O};V] eN; (35)
EB; <ca, VT e T; (45)
El=FEM'4 3" m Wiy, Yme M\{1};Vie \{0};VjeN; EG: > Y > pel Vi —EB;, VT eT; (46)

peG+\{0} meM peG+\{0} jeN
(36)
EBri1 <EBr +EGr +r1e; — Y > > pelVii ¥t eT\{k};
G" > F]', Vme M;Viel\{0}:VjeN; (37) meM peG\{0} jeN
(47)
C <kd 38
g = (38) W, €{0,1}, YpeG:Viel; (48)
2; pie =Tpj. YmeM:Vp e G\{0}:Vj e N: (39 qe(0.1). VieLVjleN; (49)
Te
VIZ'T < g}Xgr, VT eT;Yme M;Vp e G*\{0}; Vj e N; (40) Yipq € {0,1}, Vie;Vp,q e G, (50)
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discarding by constraint (41)
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Fig. 3. Explanation of Constraints (41) and (42).

Xpir €{0. 1}, Vme M;Vpe G Vje N;VT e T; (51)
ﬁTzO, VmeM;Yiel,VjeN; (52)
("=0, VmeM;Viel, (53)
VI’]}T >0, Vme M;Vpe G;VjeN; VT €T, (54)
EG; >0, VT eT,; (55)
EB. >0, VT eT; (56)

Objective function (25) represents minimizing the cost of pur-
chasing electricity from the grid. Constraints (26) to (38) are re-
lated to the first part of the model, and Constraints (39) to (48)
pertain to the second part of the model. In the first part, Con-
straints (26) and (27) show that each group can only be placed
in one position and vice versa. According to Constraints (28), the
zero dummy group is placed in the zero dummy position. Con-
straints (29) to (31) determine the sequence of the groups. Con-
straints (29) state that only one group is placed in each position
i, and only one other group is placed immediately after that. Ac-
cording to Constraints (30) and (31), the variable Y;,; will equal
one if group p is assigned to position i and group g to position
i+ 1. Constraints (32) and (33) link the completion times of jobs
to their sequences. According to these constraints, the completion
time of any job in a group belonging to a specific position must
be equal to or larger than the completion time of jobs previously
performed. Constraints (34) show that the completion time of the
dummy position is zero on all machines. Constraints (35) indicate
that a job of a particular group in a position is permitted to be
processed when the processing of the group placed in the previ-
ous position is completed, and the setup time between the job be-
longing to the current group and the previous one has also passed.
According to Constraints (36), any job can be processed on a new
machine when it has finished the required processing on the pre-
vious machine. Constraints (37) state that the completion time of
each group must be equal to or longer than the completion time of
all jobs belonging to that group. According to Constraints (38), the
completion time of the group in the last position on the last ma-
chine must be equal to or less than the scheduling horizon where
kd in this model corresponds to Tygxin the previous model.

In the second part of the model, Constraints (39) state that
the total time spent on processing each job in all time intervals
must be equal to the processing time of that job. According to
Constraints (40), if a job is assigned to an interval, the whole or
a part of that job can be processed in that interval. Constraints
(41) and (42) determine interval(s) in which each job is processed
based on the start and completion time of the job. For example,
consider Fig. 3 in which a job, shown as a small red box, is going
to be scheduled. Assume that the completion time of the job is at
t =140, and the processing time of this job is equal to 10 min-
utes. Due to Constraints (41), this job is allowed to be processed in
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interval 3 or before, but it is not allowed to be processed in the in-
tervals after interval 3. In addition, due to the Constraints (42) and
as the job starts at t = 130, this job is permitted to be processed
in interval 3 and subsequent ones, but the intervals before interval
3. Therefore, considering both constraints simultaneously, this job
can only be processed in interval 3.

Constraints (43) and (44) determine the amount of processing
time of each job in each time interval. Fig. 4 shows two different
modes of placing a job at time intervals. In case 1, according to
Constraints (41) and (42), the desired job is processed only in in-
terval 4. In this figure, the results of the expressions on the right
side of Constraints (43) and (44) are denoted by ¥ and ¥, re-
spectively. According to Constraints (39), (43), and (44), the pro-
cessing time of this job in interval 4 is equal to the processing
time of that job. In case 2, according to Constraints (41) and (42),
the job is permitted to be processed in two intervals 4 and 5. In
this case, the outcome of the expression on the right side of Con-
straints (43) is indicated by ] and #{ and the result of the ex-
pression on the right side of Constraint (44) is denoted by ¥, and
). Consequently, on the basis of Constraints (39), (43) and (44),
the processing time of the desired job will be ¥} in interval 4 and
¥ in interval 5.

Constraints (45) to (47) show the amount of electricity pur-
chased from the grid and the amount of solar energy stored in
the battery. Constraints (45) limit the electrical energy stored in
the battery to its rated capacity. Constraints (46) impose the min-
imum amount of electricity purchased from the grid at any time.
They prevent using the renewable energy produced in an interval
in the same interval. Constraints (47) calculate the amount of elec-
tricity stored in the battery for the next interval based upon the
amount of electricity purchased from the grid and the amount of
solar power available in the current interval. Due to Constraints
(46), it is possible to buy more electricity from the grid, and based
on Constraints (47), the excess electricity purchased from the grid
is stored in the battery to be consumed later. Finally, Constraints
(48) to (56) indicate the type of variables used in this model.

If we consider d = 1, then the TIIM can be more simplified by
removing the variables Vg} . and constraints (40), (43), (44), and
(54). In this scenario, Constraints (39) is replaced by Constraints
(57).

m __ m
prjr_”pj’

TeT

Vm e M; Vp € G*\{0}; Vj € N; (57)

In addition, in this scenario, the TIIM is similar to the TUIM,;
therefore, to obtain the amount of electricity purchased from the
grid, it can be assumed that it is possible to use renewable en-
ergy in the same time interval when this energy is produced. Thus,
Constraints (46) and (47) are replaced by Constraints (16) and (17),
except that je N, pe G*\{0} and T € T.

4. A decomposition-based heuristic algorithm

Fang et al. (2016) proved that the single-machine scheduling
problem considering the TOU tariff and constant speed of the ma-
chine is strongly NP-hard. Since Fy|fmls, sg‘pi, TOU, re¢, ca|TEC is a
generalization of the mentioned problem, it has at least the same
degree of complexity. Therefore, to reduce the CPU runtime, in this
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Fig. 4. Explanation of Constraints (43) and (44).

Table 4
The parameters and variables of the DBHA
Sets Definition
® = (09,01,...,0g) A sequence of all groups (dummy group 0 is placed at the beginning of this list and contains only a dummy job).
dP = (0y,07...., op)  The sequence of groups oy to o}, created based on sequence ®.
) = {0g,01,..., op}  The set of groups in sequence ®®.
O = (Ops1s--es 0g) The sequence of groups 0,1 to og, created based on sequence ®.
O = {opy1, ..., og} The set of groups in sequence ®(P),
Cp=(87,....88) A sequence of jobs in group p.
l"f,” =(87...., 8]‘.’ The sequence of jobs 87 to 5}1 in group p, created based on sequence T').
i —qsr,..., ) The set of jobs in sequence '\
Parameters Definition
A Index of groups.
o Index of jobs.
o; The group that is placed in position i, based on sequence ®.
Sp The position of group p based on sequence ®.
8P A job from group p that is placed in position i*" based on sequence T').
’;‘jp The position of job j from group p based on sequence I'j.
s The processing time of group p on machine m.
T[i”m The processing time of a group or job that is placed in position i on machine m.
p'p"' The power consumption of group p that is being processed on machine m.
pe;'"' The power consumption of the group or job placed in the position i and being processed on machine m.

b The weighted average power consumption of group p on all machines.
The weighted average power consumption of job j on all machines.

Variables Definition

F‘;'” The completion time of group p on machine m (used in model M;).

F,.""l The completion time of the job placed in position i on machine m (used in model M,).

Fp"l’."' The completion time of job j in group p on machine m (used in model Mj3).

Qpq If group q is processed (immediately or disjointedly) after group p, it takes the value of one, otherwise zero (used in model M;).

i If a job or group is processed in position h (immediately or disjointedly) after the job or group placed in position i, it takes the value of

one, otherwise zero (used in model M,).

XI’,’;' If the whole or a part of group p is processed on machine m during interval 7, it takes the value of one, otherwise zero (used in model
My).

XIT"1 If the whole or a part of the job or group in the position i is processed on machine m during interval 7, it takes the value of one,
otherwise zero (used in model M,).

V;;'r" The amount of time that group p is processed on machine m during interval T (used in model M;).

Vi;’" The amount of time that the job or group placed in position i is processed on machine m during interval t (used in model M,).

section, we develop a DBHA. The structure of this algorithm is
based on the well-known NEH method developed by Nawaz et al.
(1983). The parameters and variables used in the DBHA are listed
in Table 4.

4.1. The general sketch of the DBHA

The general sketch of the DBHA is presented in Algorithm
1. The DBHA decomposes the main problem into three phases,
dubbed model M;, model M,, and model Ms. In the first phase,
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each group is considered as a single job, and its processing time on
each machine equals the total processing time of all jobs included
in the group plus the average setup time for starting that group.
In addition, the power consumption for each group is calculated as
the weighted average power consumption of the jobs involved in
the group. In this phase, first, the groups are arranged in descend-
ing order based on their power consumption, then the relative po-
sition of the two groups with the most power consumption is de-
termined by model M;. The relative position of each new group in
the sequence is determined by re-solving model M; in such a way
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Algorithm 1 The pseudocode of the DBHA.

1. For Vp € G*\{0},m e M, let
pey = Zjelp PEjimy; [Tigt.

LAY | —
' = Yjes, Tp

n 2qe6 \(p} S0+ L qe6"\(0.0} P4

m
J 2+g-1

and

2. For Vp € G*\{0}, let é, = X em Dey 1y / Xmem T Arrange the groups based on descending order

of é, as & = (01,02, ...,O'g). Next, put g, in sequence ® = (00,01,...,Jg) where 775* = 0 and

pedt = 0.
For A =2to g do
3.
b = (00,01,02, ...,ag).
End
4.

m K [ — m_ . .m
S(p-1yp and Py’ = X, pepimy;

For A =1to g do
5.

~m
/Ty

descending order of éj asT,, = (65’1, o, 802

For a = 2 to ng, do

Sk )-

Apply model M; to the set of groups of ®} and based on sequence ®“*~D to update sequence
For Vp € ®9N\{0},m € M, if Sp-1 = 6p — 1, update values of 7z, and pey* as 11, = ZjE]p Ty +

For Vj € J,,, let é]- = Ymem PCqy Mgy | Lmem Tayj- Arrange the jobs of group o; based on

m € M, determine position i in such a way that i =41 —1+ 5;"1 is held and let

6. Forvp € ®*1)m e M, let ﬁg’; =7t and p7e§2 = pej.
7. For Vj €TY,
= g, and pel = pegs ;-

8. For Vp € ®M,m € M, determine position i in such a way that i = ¢p+a—1is held and let

n" = 1t and pe[" = pe,.
9.

End
End

10. Apply model M3 to obtain the final schedule.

Apply model M, and update sequence I;, = (6;’1

)

that the relative order of previously determined groups remains
unchanged. This process continues until the sequence of all groups
is determined.

In step 1 of Algorithm 1, each group is considered as a job
with a specific processing time and power consumption. The pro-
cessing time of each group is calculated as the total processing
time of jobs involved in that group, and the power consumption
of the group is calculated as the weighted average of the power
consumption of jobs belonging to the group. In this step, the se-
quence and setup time of each group is not exactly known, so
the setup time is considered as the average of the setup times
for each group, and this value is added to the processing time of
that group. In step 2, the groups are temporarily arranged based
on the descending order of their power consumption obtained
from the weighted average power consumption of each group on
all machines. It should be noted that this sequence is not the fi-
nal sequence of groups, and we benefit from it to choose groups
one by one and determine their final relative order using model
M. In step 3, based on each run of model M;, the relative po-
sition of a group is determined among the groups whose rela-
tive position has already been fixed. Since the relative order of
groups that have already been determined should not be changed,
each time model M; is run, the relative position of the previ-
ously fixed groups is given as a constant input to model M;. In
the last run of model My, a complete sequence of all groups is ob-
tained. In step 4, the processing time and power consumption of
each group are calculated and updated based on the obtained final
sequence.

In step 5, the jobs of each group are temporarily arranged based
on the power consumption obtained from the weighted average
power consumption of each job on all machines. In steps 6 to
8, the groups are divided into three categories. The first category
(step 6) involves the groups whose job sequence is determined
(set ®*-11}). In this category, each group is considered as a job,
and their processing time and power consumption are determined
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in step 4. The positions of these jobs are fixed using model M,
and should be scheduled before other jobs in the same way as
determined in sequence ®*-1), The second category (step 7) in-
cludes the jobs belonging to the group whose sequence of jobs is
being determined (group oy ). The relative position of jobs F({,‘i_l}

is fixed in model M,, and based on determined sequence F((,‘;"”.
they are placed after the jobs of the first category. The relative po-
sition of job « is unknown in this sequence, determined through
model M,. The third group (step 8) are groups whose sequence
of jobs is not determined (set ®{*}) yet. Each group of this cat-
egory is considered as a job, and their position is determined by
model M, in such a way that it must be after the jobs in the first
and second categories and according to sequence ®®). In step 9,
each time model M, is run, sequence ® and the relative position
of jobs from the previously defined group o, are given as con-
stant input to the new model M. In step 8, according to the se-
quences obtained from steps 3 and 9, the best possible schedule is
found, and its corresponding objective function is the algorithm’s
output.

4.2. Group sequencing phase

In iteration A (A > 2) of model M;, the relative position of
(A —1) groups, denoted by the symbol ¢p, is given as an input to
model M;. The relative position of group o, is determined by im-
plementing model M; among the groups whose relative position
has already been fixed. That is, the output of model M; is the se-
quence of A groups. Model M; reads as follows.

My : Min TEC =) "r..EG, (25)
TeT
Subject to: Constraints (45), (55) and (56)
F'—E = —pQ+7,. YmeM:V pged¥ ) :p<q.  (58)
E"—F">B(Qyq—1)+m, . VmeM;¥p,qe ®*}:p<q: (59)
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/m /m—1

F'>F" +m, . VmeM\{1};Vpe o }; (60)
F' <kd, Vpe ®™; (61)
E'=0,VmeM; (62)
Qe=1if A>2¥Vpqe®*V: p<q g <gy (63)
=0.if A>2V pged*V: p<g gy <gy (64)
ZVI;T =m,", VYmeM;Vpe oM (65)
TeT
Vi <X VT e T;Vm e M: Vp e P (66)
B> ((t-1d+1) - B(1-X;7). VT e T\{1}; Vm e M;
Vpe oM (67)

Em -t < (td = 1)+ B(1-X7). VT e T:Vm e M; Vp e

(68)

Vit < BM— (t = Dd+ B(1-X7). VT e T\{1};

Vme M; Vp e &P, (69)
Vit < zd— (B =" + B(1-X7). VT eT;

Vme M;Vp e &}, (70)
EG: > " pet V' —EB, VT eT: (71)

meM pedt)
EBry <EB; +EGr +re. — > Y pelV,m VT e T\{k}: (72)

meM ped(*)

0<X"<1 VmeM:Vpe ®M:VreT (73)
Q) €{0.1}, Vp.qe ®M; (74)
E™ >0, VmeM;Vp e ®; (75)
Vim>0, VmeM:;Vpe ®M: VT eT; (76)

Model M; is similar to the TIIM, except that in this model, only
the sequencing of groups is addressed. In Constraints (58) and (59),
the sequence of groups is determined. According to these Con-
straints, the completion time of each group must be equal to or
larger than the completion time of all previously processed groups.
Constraints (60) and (61) are similar to Constraints (36) and (38)
in the TIIM, respectively. According to Constraints (62), the zero
dummy group is placed at time zero. Constraints (63) and (64) are
applied to the model if the number of groups is more than two
(A > 2). In this case, the positions of (A —1) groups that have al-
ready been scheduled are fixed, and only the position of group o,
is investigated in this model. Constraints (65) to (70) are similar
to Constraints (39) to (44) which have been modified by removing
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Xg}t and V}')’}r
ables F,™, X, and V,/" in the TIIM, respectively. Constraints (45)
in the TIIM and Constraints (71) and (72) are used to calculate the
energy consumption and energy stored in the battery. Constraints
(55) and (56) in the TIIM and Constraints (73) to (76) determine
the type of variable. Given that in model M; only the sequencing
of groups is essential, so in Constraints (73), the variables X;f? are
relaxed to reduce the CPU runtime of the model.

variables W;, and replacing variables FIT by the vari-

4.3. Job sequencing phase

In each iteration of model M,, the sequence of groups obtained
by model M; is considered as an input. Furthermore, the relative
position (o — 1) jobs, denoted by S;‘, is given to model M, as
an input from the previous iteration to determine the sequence of
jobs in group ;. By implementation of model M, the relative po-
sition of job §5* is fixed among the jobs whose relative positions
have already been determined. Therefore, the output of model M,
is the relative order of « jobs belonging to group o;. Finally, after
the last iteration of model M,, the sequences of jobs in all groups
are determined. Model M, reads as follows.

M, : Min TEC =) "r..EG, (25)
TeT
Subject to: Constraints (45), (55) and (56)
F'™ — '™ > —BQ} + /™, Yme M;
Vi=0,....,.0+g-1;Yh=1,...,0+g-1:i<h; (77)
E™ — F'™ > B(Q) — 1) + ;™. Vm € M;
Vi=0,....,.0+g-1;YVh=1,...,0+g—-1:i<h; (78)
F™—E™m zs?_ﬂim+ni”m,VmeM;Vi:k,...,a+g—l; (79)
Fl.”mZFI,”’"‘l+ni”m,VmeM\{1};‘v’i=1,...,a+g—1; (80)
F'" <kd, Vi=1,.. a+g-1; (81)
FE™=0,Ym e M; (82)
l=1,Vi=0,....,A-1L;Vh=A,...,a+g-1; (83)
=1 Vi=A. .. Ata-LVh=i+a,...a+g-1 (84)
b=1,Vi=0...,A-1;Vh=0,...,A-1 ti<h; (85)
p=1Vi=A+a,...,a+g-1;h
=Ata,...,a+g-1 :i<h (86)
p=1lifa>2Vi=A ..., A+a—2;Vh
=A .. A+ta-2 i<h (87)
ngTVi/t/m:”i”m’ VmeM;Vi=1,...,a+g—1; (88)
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V/m < lmxm VT e T;VmeM;Yi=1,...,a+g—1;  (89)
E'™m > ((t - 1d+1) - B(1-X"). VT e T\{1};
VmeM:;Vi=1,...,0+g-1; (90)
Fi//m _ ni”m < (‘L’d* 1)+’3(1 7Xl;m)’ V1 GT;
VmeM:Vi=1,...,a+g-1: (91)
Vim < B — (= 1yd + B(1-X™). VT e T\{1};
VmeM;Vi=1,...,a+g-1; (92)
Vim < od — (F'™ — /™) + B(1 - X/™),
VieT:VmeM:Vi=1,....a+g—1; (93)
a+g-1
EGr=) > . pe"V["—EB VTeT; (94)
1
EBri1 < EBy +EGr +1e, =Y. S~ peym.ym
V 1 e T\{k}: (95)
0<X/m<1, VmeM:Vi=0,....a+g-1:VTeT; (96)
»€{0,1}, Vi=0,...,a+g-1;Vh=1,...,0+g-1; (97)
F'M>0, VmeM;Vi=0,....a+g-1; (98)
V/Mm>0, VmeM¥Vi=0,... . a+g-1:VTeT; (99)

According to Constraints (77) and (78), the completion time of
each job placed in a certain position must be equal to or larger
than the completion time of the jobs processed in the previous po-
sitions. Constraints (79) pertain to the setup time between group
0, and its immediate precedent group. Constraints (80) and (81)
are similar to Constraints (36) and (38) in the TIIM, respectively.
Constraints (82) state that on each machine, the completion time
of the job placed at the dummy position is zero. According to Con-
straints (83), the groups in sequence & that precede group o,
must be processed before the jobs of group o;, as well as be-
fore the jobs of groups in sequence (%), Constraints (84) also
denote that the jobs of group o; must be processed before the
groups involved in sequence ®(°+), Constraints (85) and (86) de-
termine the sequence of groups ®{*~1} and ®{* } according to se-
quence ®*-1 and ®®), respectively. Constraints (87) are applied
to model M, if the number of jobs in group o; is more than two
jobs (& > 2). In these Constraints, the relative positions of (o — 1)
jobs, which have already been determined by model M,, are fixed,
and only the position of job 85" is explored. Constraints (88) to
(95) perform similar to Constraints (65) to (72) in model M;. More-
over, Constraints (45) in the TIIM are also used in this model. Con-
straints (55) and (56) in the TIIM and Constraints (96) to (99) show
the type of variables. Since in model M, only sequencing of jobs
within each group is significant, in Constraints (96) variables Xi’;’"
are relaxed to reduce the CPU runtime of the model.
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4.4. Scheduling phase

Model M3 is related to the scheduling phase of groups and jobs
within each group, and it is implemented only once. In this model,
the sequence of groups obtained by model M; and the sequence
of jobs in each group obtained by model M, are the inputs of the
model. Model M3 gives rise to a high-quality schedule to reduce
the total cost of electricity purchased from the grid. Model M3 de-
termines the start times of all jobs and groups along with the total
cost of electricity. Model M3 can be formulated as follows.

Ms : Min TEC =) 17 EG, (25)
TeT
Subject to: Constraints (39), (40), (45), (51), (54), (55) and (56)
Fm — F/my >, Vm e M; Vp e ®\{0);
Vjelp: if éj": j_1+l; (100)
Fm = Fy™ >+ s, Vme M; Vg e @;Vp e @\{0} :
ifc, = q+l,V]er:if$}’=l;Vlqu:
if &' =ny; (101)
F"—F = Vme M\{1};Vp e @\{0};Vje Ty (102)
F”’M <kd, Vpe ®\{0};Vje Ty (103)
FJ'=0,Vm e M; (104)
"= ((r-1Dd+1) - B(1-X"), VT e T\{1};
VmeM; pe ®\{0};Vjely (105)
Fim—al<(txd-1)+B(1-X"). VT eT;
Vm e M;Vp e ®\{0}; Vje 'y (106)
Vi< EM—(t-1d+B(1-X7 ), VT e T\{1};
Vme M;Vp e ®\{0};VjeTly; (107)
Vije = 7d— (B = 73))
+B(1-X1 ).Vt eT; Vm e M; Vp e ®\{0}; Vj e Ty
(108)
F)/">0,YmeM;Vp e ®\{0}; Vj e ['y; (109)

Constramts (100) determine the completion time of the jobs in
each group according to the sequence of jobs in that group, de-
termined in step 9 of the DBHA. Based on the sequence of groups
determined in step 3 of the DBHA, Constraints (101) determine the
completion time of each group that must be after the completion
time of the last job of the previous group and the correspond-
ing setup time between these two groups. Constraints (102) and
(103) are similar to Constraints (36) and (38) in the TIIM. Accord-
ing to Constraints (104), the dummy job is placed at time zero.
Constraints (105) to (108) function like Constraints (67) to (70) of
model M;. Constraints (39) and (40) and Constraints (45) are also
included in model M3, with the difference that pe G* and je N
are replaced by p € ® and j € I, respectively. Constraints (51) and
(54) to (56) of the TIIM and Constraint (109) indicate the type of
variables. In addition, in these constraints, p € G* is replaced by
pe @, and je N is replaced by j e I'p.
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Table 5
TOU pricing
Season Electricity price ($/kWh) Time period Peak hours
Summer 0.1762 off-peak load 00-9, 22-24
0.2478 mid-peak load 9-12, 18-22
0.5446 on-peak load 12-18
Winter 0.1758 off-peak load 22-9
0.1940 on-peak load 9-22

5. Computational experiments

In this section, we evaluate the performance of the TUIM, TIIM
and DBHA. We also analyze the sensitivity of various parameters
and evaluate the economic performance of the research. The DBHA
and developed MIP models were implemented in Microsoft Visual
Studio 2015 using ILOG CPLEX 12.6 and run on a computer with
Intel (R) Core (TM) i7-6800k 3.4GHz processor and 48 GB memory.

5.1. Data set generation

To evaluate the performance of the models and algorithm, two
groups of small-size and medium-size instances were developed.
The number of groups in the small-size instances is 3, 4, or 5 and
in the medium-size instances is 6, 7, or 8. In addition, the number
of jobs in each group is 3, 4, or 5 for small-size instances and 6, 7,
or 8 for medium-size instances. Furthermore, in each instance, the
number of jobs in each group was considered equal. The number
of machines for both small-size and medium-size instances is 3,
4, 5. For each combination of different values of the number of
groups, jobs, and machines, ten instances were generated, resulting
in a total of 540 instances. The other parameters for both small-
and medium-size instances are developed randomly.

To consider a scheduling horizon, we make use of the NEH algo-
rithm developed by Nawaz et al. (1983). To do so, we ignore power
consumption of jobs and setup times between them, and we also
consider each group as a job in such a way that the processing
time of each group equals the summation of processing times of
jobs belonging to it. Next, we determine the sequence of groups in
the way that the makespan is minimized. If we were to consider
the resultant makespan of the NEH algorithm, shown by CNEH, as
the scheduling horizon, we would, of course, have a feasible solu-
tion, but it might lead to a high cost of purchasing electricity from
the grid. To alleviate this problem, we let Tnax(or kd) = nCNEH as
the length of the scheduling horizon in all developed solution ap-
proaches. Using a fine-tuning approach, we found that n =1.5 is
an appropriate value for the problem at hand. Furthermore, we as-
sume that the scheduling horizon starts at 8 a.m.

According to Schaller et al. (2000), the processing time fol-
lows a uniform distribution in the range of {1,...,10} and the
setup time of each group is also a discrete uniform distribution of
{1,...,20}. The electricity price based on TOU for different elec-
tricity suppliers varies in the summer (spring and summer) and
winter (autumn and winter). According to Zhang et al. (2017), the
electricity price in the summer and winter in California is shown
in Table 5, and we chose to generate our instances based on the
electricity price in the summer. The power consumed by each ma-
chine follows a uniform distribution at intervals of {5kW,...,20kW}
during the processing of jobs. Battery capacity is also considered
to be 25 kWh.

Table 6 shows the electrical energy produced by PV panels at
different hours, assuming that the power of the PV panels installed
in the factory is equal to 25 kWp and the energy wasted in the
whole system is 14%. These data are based on the average energy
produced at different times of the day in July 2015 in California,
extracted from European Commission (2020). Since the solar en-
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ergy production reaches zero at night, the energy production is
considered to be zero from 8 p.m. to 7 a.m., and in the other hours
is according to Table 6.

5.2. Comparative computational results

In this section, using the generated instances, we evaluate the
comparative performance of the two developed models and the
DBHA. To examine more closely, we consider the TIIM and the
DBHA in four different scenarios where the length of time inter-
vals varies from one scenario to another. In the first scenario, we
consider d = 60 minutes, and in the second, third, and fourth sce-
narios, we factor in d = 30, 15, and 1 minute(s), respectively. Fur-
thermore, we consider the relaxed version of the TIIM model with
d = 1 minute as a valid lower bound (LB) for all developed mod-
els. The average CPU runtime (seconds), the number of instances
solved optimally, and the average deviation (AD) of objective func-
tion values from the LBs are used to evaluate the performance of
the developed solution approaches.

It is worth mentioning again that we apply the term “local op-
timal” for the optimal solutions obtained by the TIIM with d > 1.
We also make use of the term “global optimal” for the optimal so-
lutions obtained by the TUIM or the TIIM with d = 1. In addition,
a one-hour time limit is considered as the CPU runtime for all im-
plementations.

Table 7 shows the performance of the TUIM and the different
scenarios of the TIIM in small-size instances based on two criteria:
the number of instances solved locally or globally optimal in the
given time limit and the average CPU runtime of these instances.
The symbol "—-" indicates that no instances could be solved op-
timally, and hence there is no report of CPU runtime for such in-
stances.

According to the results of Table 7, the TUIM finds an opti-
mal solution for only a small number of instances, whereas the
TIIM solves locally optimal all instances in three scenarios d = 60,
d = 30, and d = 15. The TIIM in scenario d = 1 also finds the global
optimal solution in most instances, but with the increase of the
number of jobs, groups and machines, the number of instances
which can be optimally solved declines. For example, when u = 4,
g=>5, and np =5, none of the instances in this scenario can be
solved optimally. By comparing the instances that are solved opti-
mally, it can be seen that the average CPU runtime is much less in
the TIIM than the TUIM, even in the fourth scenario of the TIIM,
where its accuracy is equal to that of the TUIM, and the solutions
of both are globally optimal. It should be noted that the number of
instances that can be solved optimally using the TIIM in the fourth
scenario is much higher than the TUIM, and also, the average CPU
runtime is significantly less than the TUIM. This shows the superi-
ority of the TIIM over the TUIM.

By examining the different scenarios of the TIIM, it can be con-
cluded that in each scenario of the TIIM, with the increase of the
number of groups, jobs, and machines, the CPU runtime also in-
creases. In addition, by decreasing d from 60 minutes to 1 minute,
the average CPU runtime rises in all scenarios of the TIIM. In other
words, the more accuracy of the model, the more CPU runtime.

Table 8, shown in the Appendix, compares the performance of
the TIIM and DBHA and indicates that for some smaller-size in-
stances, the TIIM outperforms the DBHA but for larger-size ones,
the DBHA shows better performance.

Given the one-hour time limit, three different modes for solving
the models may occur: (a) the model finds the optimal solution,
(b) the model finds a feasible solution, and (c) the model fails to
find any feasible solution. Table 9 shows the comparative perfor-
mance of the TIIM and the DBHA based on the AD from the LB. It
is worth mentioning that the AD is calculated only for cases that at
least a feasible solution has been obtained. It should be noted that
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Table 6

Electricity produced by PV panels
Hours 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20
Generated electricity (kWh) 05 4 8.5 12.7 14.8 16.8 17.5 16.8 15 11.6 8 33 0.5

Table 7
The comparative performance of the TUIM and TIIM for small-size instances
The number of instances solved locally or globally optimal The average CPU runtime (seconds) of the instances solved locally or globally optimal
kg M TUIM  TIM-60min  TIM-30min  TIM-15min  TIM-1min  TUIM TIIM-60min ~ TIIM-30min  TIM-15min  TIM-1min
3 3 3 2 10 10 10 10 26239 0.1 0.3 0.7 58.1
4 0 10 10 10 10 — 0.3 0.9 1.7 197.8
5 1 10 10 10 10 24925 0.5 0.9 33 764.2
4 3 0 10 10 10 10 — 0.4 0.6 2.0 192.5
4 0 10 10 10 10 — 0.9 0.9 10.7 929.5
5 0 10 10 10 9 — 35 3.7 25.2 1067.0
5 3 0 10 10 10 10 — 0.7 2.0 9.1 732.6
4 0 10 10 10 8 — 3.6 6.2 38.4 1437.3
5 0 10 10 10 1 —_ 9.1 12.8 111.0 2597.4
4 3 3 0 10 10 10 10 —= 0.3 0.4 1.1 152.6
4 0 10 10 10 10 — 0.6 1.1 3.6 610.7
5 0 10 10 10 10 — 13 2.7 8.4 1182.6
4 3 0 10 10 10 10 — 0.8 0.9 49 915.0
4 0 10 10 10 6 — 2.1 2.2 8.0 1237.4
5 0 10 10 10 4 — 6.2 7.5 26.5 2324.6
5 3 0 10 10 10 6 — 2.8 39 20.0 2155.7
4 0 10 10 10 2 — 8.9 16.8 65.4 3099.3
5 0 10 10 10 0 — 28.1 58.6 260.0 —
53 3 0 10 10 10 10 — 0.5 0.6 1.7 3424
4 0 10 10 10 6 —= 0.8 1.3 5.6 1209.2
5 0 10 10 10 3 — 2.8 2.8 15.7 1645.4
4 3 0 10 10 10 9 — 1.2 1.7 5.7 924.6
4 0 10 10 10 2 — 4.2 5.2 19.5 1968.0
5 0 10 10 10 0 — 9.1 29.8 68.7 —
5 3 0 10 10 10 1 — 5.6 8.4 39.6 3002.2
4 0 10 10 10 0 — 22.3 35.5 159.9 —
5 0 10 10 10 0 — 55.9 216.7 623.9 —
Table 9

The comparative performance of the TIIM and the DBHA based on the AD for small-size instances

TIIM DBHA

p g np, TUIM - - - - - - - -
60min 30min 15min Tmin 60min 30min 15min 1min

3 3 3 024(10) 246 1.33 0.76 0.21 2.46 1.33 0.76 0.22
4 051(9) 2.72 1.41 0.82 0.27 2.72 1.41 0.82 0.28

5 042(8) 2.59 1.21 0.67 0.30 2.59 1.21 0.67 0.31

4 3 044 (8) 2.35 1.15 0.64 0.22 235 1.15 0.64 0.25

4 125(3) 3.05 1.59 0.86 0.26 3.05 1.60 0.88 0.32

5 091(2) 2.90 1.39 0.79 0.44 2.90 1.39 0.79 0.45

5 3 0.88(3) 2.03 0.67 0.37 0.30 2.03 0.67 0.37 0.30

4 — 2.33 0.95 0.56 0.56 233 0.96 0.56 0.45

5 — 3.37 1.86 1.16 7.26 3.37 1.86 1.16 0.62

4 3 3 027(10) 262 1.33 0.75 0.21 2.62 1.33 0.75 0.22
4 064 (8) 2.62 1.16 0.63 0.34 2.62 1.16 0.63 0.35

5 0.42(2) 3.11 1.60 0.92 0.35 3.11 1.60 0.92 0.38

4 3 042(3) 3.22 1.78 1.05 0.36 3.22 1.78 1.05 0.37

4 — 3.27 1.76 1.00 0.58 3.27 1.76 1.01 0.39

5 - 3.31 1.80 1.05 2.36 3.31 1.80 1.06 0.51

5 3 — 3.15 1.64 0.92 1.48 3.15 1.64 0.92 0.45

4 — 3.48 1.96 1.20 2.68 3.48 1.96 1.20 0.62

5 - 3.27 1.90 1.21 9.30 3.28 1.90 1.22 0.63

5 3 3 046(6) 2.83 1.48 0.85 0.31 2.83 1.48 0.85 0.36
4 229(2) 3.32 1.82 1.08 0.47 3.32 1.82 1.08 0.43

5 - 3.43 1.90 1.13 7.06 343 1.90 1.13 0.48

4 3 059(1) 3.20 1.72 1.06 0.42 3.20 1.72 1.07 0.49

4 — 3.44 1.91 1.15 4.21 3.44 1.91 1.16 0.57

5 - 3.31 1.86 1.13 7.40 3.31 1.86 1.14 0.48

5 3 - 3.38 1.85 1.10 3.53 3.38 1.86 1.10 0.53

4 — 3.47 2.00 1.27 8.34 3.47 2.00 1.27 0.63

5 - 3.25 1.86 1.20 1537  3.27 1.88 1.21 0.65
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Table 12
The comparative performance of the TIIM and the DBHA based on the AD values of medium-size instances
TIM DBHA
n g n, 60min 30min 15min 1min 60min  30min  15min  1min
3 6 6 244(10) 1.42 (10) 091 (10) 12.84 (10) 2.44 1.42 0.91 0.47
7 190 (10) 1.15 (10) 0.77 (10)  12.66 (10)  2.02 1.22 0.77 0.44
8 247 (10) 0.96(10) 0.78 (10)  13.01)10) 1.73 1.03 0.79 0.54
7 6 194 (10) 1.17 (10) 0.78 (10)  13.00 (10)  1.94 1.17 0.78 1.64
7 245 (10) 1.00 (10) 0.77 (10)  12.68 (10) 1.64 1.13 0.73 2.63
8 377 (10) 2.62 (10) 2.10 (10)  14.07 (6) 2.94 1.86 1.83 3.64
8 6 1.51(10) 1.42 (10) 1.09 (10)  10.68 (7) 1.51 1.09 0.91 2.16
7  3.44(10) 1.80 (10) 1.55(10) 11.30 (4) 1.55 1.49 14 3.53
8 8.44(10) 8.78 (10) 533 (10) —- 3.79 3.68 3.65 4.86
4 6 6 197(10) 1.22 (10) 0.87 (10)  16.05 (10)  2.05 1.31 0.84 6.85
7 2.78(10) 1.49 (10) 1.47 (10)  13.83 (7) 2.49 1.86 1.33 5.48
8 459 (10) 3.58 (10) 3.55(10) 18.80 (5) 3.93 3.74 3.48 9.79
7 6 3.08(10) 2.56 (10) 2.40 (10)  14.66 (5) 2.84 2.29 1.98 5.08
7  7.76 (10) 6.33 (10) 5.65(10)  18.10 (2) 3.99 3.96 3.91 6.92
8 1242 (10) 10.25(10) 7.98 (10) —- 6.35 6.33 6.26 15.2
8 6 6.08(10) 4.86 (10) 4.10 (10)  20.74 (3) 3.67 3.66 3.41 9.97
7 17.15(10) 1243 (10) 7.50 (10) —- 6.16 6.11 6.09 9.94
8 2750 (10) 15.69 (10) 7.91(10) —- 6.72 6.48 6.42 18.8
5 6 6 327(10) 2.85(10) 2,59 (10) 18.14(10) 3.5 2.61 2.26 8.82
7 547 (10) 5.23 (10) 4.38 (9) 22.95 (6) 4.68 4.64 4.16 15.52
8 1397 (10) 8.88(10) 7.97 (8) — 7.27 7.25 7.2 13.52
7 6 10.78 (10)  7.06 (10) 4.72 (8) 23.83 (5) 5.19 4.96 4.57 9.24
7 1583 (10) 13.09 (9) 1250 (7) —- 8.21 8.1 8.04 17.36
8 2253(10) 15.81(9) 15.16 (8) —- 9.51 9.4 9.34 30.47
8 6 2414 (10) 22.00(10) 14.87(8) — 7.65 7.52 7.47 14.71
7 305 (10) 15.42 (9) 15.09 (7) —- 8.5 8.36 8.26 24.68
8 3278 (10) 18.57 (8) 12.01 (6) —- 8.5 8.36 8.15 41.43
Table 13

for all (some) instances that the TIIM (TUIM) fails to find their op-
timal solutions, it has been able to find a feasible solution for each.
Moreover, the numbers inside parentheses indicate the number of
instances that the TUIM could find at least a feasible solution, and
the AD values have been calculated only based on these instances.

Table 9 indicates that in most cases, the AD values get smaller
from left to right for both the TIIM and the DBHA, implying smaller
values of d lead to more high-quality solutions. Although it is sup-
posed that the TIIM with d =1 always leads to more elite solu-
tions, it does not hold in all cases because the TIIM fails to solve
some instances optimally in the given time limit. Consequently, the
AD surges conspicuously in some cells related to the TIIM with
d =1, particularly where u =4, 5 and np = 5. This implies that
increasing the length of time intervals might contribute to better
performance of the model, mainly when we deal with larger sizes
of instances. Considering scenarios d =30 and 60 minutes, Table
9 indicates that the DBHA and the TIIM have almost identical per-
formances in terms of AD measure. The columns related to sce-
nario d = 15 indicate a bit better performance of the TIIM. For sce-
nario d = 1, the TIIM often outperforms the DBHA in smaller-size
instances, but this superiority gets reversed if the size of instances
increases.

Tables 10 and 11, presented in the Appendix, compare the per-
formance of the TIIM and the DBHA under different scenarios for
medium-size instances.

Table 12 compares the different TIIM and the DBHA scenarios
for medium-size instances based on the average deviation from
the LB. The numbers inside parentheses shows the number of
medium-size instances for which the TIIM can find a feasible so-
lution (optimal or non-optimal). As can be seen, in all scenarios,
this measure declines if the size of instances increases. In Table 12,
the AD values are calculated only for the instances that at least a
feasible solution is found. This table reveals that the DBHA has a
better performance than the TIIM. Similar to Table 9, the scenar-
ios corresponding to d = 15 leads to the best performance of the
TIIM. In contrast to Table 9, the best performance of the DBHA for
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The statistical comparison of the DBHA and the TIIM based on small-
size instances

d 1 15 30 60
stat-value 69 0 0 3
critical-value 69 92 92 92
Decision Accept Hy Reject Hy Reject Hy Reject Hy

medium-size instances is attained with the scenarios correspond-
ing to d = 15.

5.3. Statistical analyses

In this section, we aim to compare the performance of the TIIM
and the DBHA from a statistical viewpoint. We exclude the TUIM
because it showed a poor performance conspicuously. To compare
the performances of the TIIM and the DBHA fairly, we need to
define a new measurement to capture both solution quality and
CPU runtime. To this end, we introduce p = ADxRuntime and uti-
lize the non-parametric Wilcoxon signed-rank test. Furthermore,
we have to consider only instances that can be solved by both so-
lution methods. For each statistical assessment, the null hypothe-
sis indicates that there is no significant difference between perfor-
mances of the two solution approaches, whereas the one-side al-
ternative hypothesis implies that the DBHA has a smaller average
value than the TIIM. Table 13 indicates the results of this compari-
son for the small-size instances and different values of d. The stat-
value shows the values of the test statistic and has to be equal to
or larger than the critical value to accept the null hypothesis. We
determine the critical value based on the sample size and o =0.01,
where « indicates the value of type-I error. As can be seen from
Table 13, for small instances and d = 1, we cannot reject the null
hypothesis, but for d = 15, 30, and 60, we can conclude the DBHA
outperforms the TIIM.
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Table 14
The statistical comparison of the DBHA and the TIIM
based on medium-size instances

d 15 30 60
Stat-value 0 0 3
Critical-value 3 5 5
Decision Reject Hy  Reject Hy  Reject Hy
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Fig. 5. The impact of scheduling horizon on the daily cost of electricity.

Likewise, we can construct Table 14 in which the DBHA and the
TIIM are statistically compared based on medium-size instances.
We exclude the case of d=1 because the TIIM fails to solve it. Ac-
cording to Table 14, the DBHA performs better than the TIIM.

5.4. Sensitivity analyses and evaluation of economic performance

In this section, we analyze the impact of parameters ca and re;
and n on the electricity costs. To do so, we consider an instance
including 5 machines, 5 groups and 5 jobs in each group, and we
apply the TIIM with d =15 to find optimal solutions. The cost of
electricity in the summer and winter is considered according to
Table 5. Furthermore, we consider 261 working days in a year and
assumed the energy produced for one year is also related to 2015
in California, extracted from European Commission (2020).

Fig. 5 shows the effect of the scheduling horizon on daily elec-
tricity costs. According to this figure, the cost of electricity con-
sumption decreases with the extension of the scheduling horizon,
but the downward trend of costs is stopped for n > 2. This is due
to the limited energy generated by the panels and the lack of re-
newable energy at night. If we choose tight scheduling horizons
(n =1), we might reach low-quality feasible solutions in terms
of electricity cost. On the other hand, loose scheduling horizons
(n > 1.5) result in schedules with sparse jobs across the schedul-
ing horizon. It is worth mentioning that for all instance examined
in Fig. 5, we obtained the makespans corresponding to optimal so-
lutions. In all cases, the makespan was equal to the time horizon.
In other words, in comparison with values of CNEF makespans de-
teriorate (7 — 1) x 100 percent on average under the energy-aware
scheduling approach.

Fig. 6 shows the changes in the annual electricity costs for dif-
ferent battery capacities and PV panel power. If we consider the
battery capacity as a constant value, the cost of electricity con-
sumption will decrease with the increase of the power of PV pan-
els. In addition, if we consider the power of PV panels as a con-
stant value, the annual cost of electricity will decrease with the
increase of the battery capacity.

To calculate electricity cost savings in various months, two
modes have been considered: (1) no use of renewable energy and
(2) the possibility of using renewable energy. For the first case,
the model was implemented without using renewable energy to
reduce electricity costs. In the second case, the power of the PV
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panels and the battery capacity were considered 25 kWp and 25
kWh, respectively. Fig. 7 shows cost savings resulting from the dif-
ference in the cost of purchased electricity in these two cases over
different months of summer and winter. As shown in Fig. 7, the
cost savings in summer (May-October) are higher than in winter.
Figs. 8 and 9 analyze the economic impact of ca and re;. For
these analyses, the electricity costs of the previous instance were
considered in the annual electricity costs. In addition, to obtain
electricity cost savings due to the use of PV panels and the bat-
tery, the instance was solved in two modes, i.e., with and without
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Table 15

PV panels installation and maintenance cost
Technology type  Installation cost($/kWp)  Fixed operation & maintenance cost ($/(kWp.year))  Lifespan(year)
<10kWp 3897 21 33
10-100 kWp 3463 19 33

considering the possibility of using renewable energy and battery
storage system. Table 15 shows the costs associated with purchas-
ing and installing PV panels, maintenance as well as the lifespan
of the panel. This information was extracted from reference NREL
transforming energy (2020). The cost of the used battery is also
300 $/kWh.

For simplification, we assume that we have to schedule the
same instance on all working days of a year. On the ground of this
assumption and based on the information provided in Table 15, Fig.
8 shows the payback period (year) for different powers of the PV
panels and battery capacity. According to this figure, the shortest
payback period is gained when a panel of 15 kWp and a 10 kWh
battery are used. Furthermore, the longest payback period is ob-
tained when a panel of 5 kWp and a 50 kWh battery are utilized.

Fig. 9 shows the net present value (NPV) for different powers
of PV panels and battery capacities. Based on Zhang et al. (2017),
the interest rate is considered 0.04 to calculate the NPV. If the NPV
is negative, it means that the return on the investment is less than
the total cost of installation, purchase, and maintenance of the bat-
tery and PV panels. Furthermore, if the NPV is positive, it signifies
the investment has financial benefits, and the return on the in-
vestment is higher than the total cost of installation, purchase, and
maintenance of the battery and PV panels. According to Fig. 9, all
various sizes of battery capacity and power of the PV panels are
economical and can be used. With the increase of the panel power
and battery capacity, the NPV rises as well so that the largest NPV
is related to the case that the power of the PV panels is 25 kWp
and the battery capacity is 50 kWh. Furthermore, the effect of the
power of the PV panels on the NPV is greater than the effect of the
battery capacity.

6. Summary, conclusions, and future outlook

In this research, the flow shop scheduling problem was inves-
tigated by assuming group scheduling and considering electricity
costs and the possibility of using solar energy. Two mixed-integer
linear programming models in conjunction with a decomposition-
based heuristic algorithm were developed to solve the problem. In
the structure of the first model, the variables are defined based on
the unit of time (minutes), but in the second model, the scheduling
horizon is divided into some time intervals of equal length, and the
variables are defined according to these time intervals. The com-
putational results indicate that the second model has more flex-
ibility considering the possibility of changing the length of time
intervals and also consumes much fewer CPU runtimes than the
first one. The best performance of the second model is achieved
when the length of time intervals is set to 15 minutes though
this might not lead to globally optimal solutions. Given the com-
putational performance of the heuristic algorithm, this algorithm
has the best performance among all three developed solution ap-
proaches. Furthermore, the best performances of the heuristic al-
gorithm for small-size and medium-size instances are obtained
when the length of time intervals is set to 1 and 15 minutes,
respectively.

Sensitivity analysis examined the effect of PV panel power, bat-
tery capacity, and scheduling horizon on increasing or decreas-
ing the costs of electricity consumption. According to the results,
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with the increase of the scheduling horizon, the costs of elec-
tricity consumption decreases, but after a while, with the in-
crease of the scheduling horizon, the decreasing trend of costs
stops and an increase in the scheduling horizon will no longer
have an effect on reducing electricity costs. By examining the sav-
ings in electricity costs in summer and winter, it can be con-
cluded that the reduction in electricity costs in summer is greater
than in winter. In addition, the duration of the payback period
and the net present value of capital were examined in different
power of panels and battery capacity. These results can be eco-
nomically valuable for identifying the proper panels and battery
capacity.

As a suggestion for future research, the problem assump-
tions can be extended by considering non-permutation flow shop
scheduling problems and using other production environments
such as the flexible flow shop or the job shop. The possibility
of changing the speed of machines, machine breakdowns, or the
maintenance process would appear to be interesting research top-
ics. Furthermore, we did not consider the labor costs in our work,
whereas it can be expensive in many countries, particularly during
out-of-working hours. Thus, we suggest considering this cost in the
problem for future research. In addition to these, developing more
efficient exact and heuristic algorithms that can solve large-size in-
stances is fascinating and challenging research.

Appendix

Tables 8, 10, 11

Table 8
The average CPU runtimes (seconds) of the DBHA for small-size instances
p g mnp, DBHA-60min DBHA -30min  DBHA -15min  DBHA -1min
3 3 3 0.26 0.16 0.26 3.53
4 0.25 0.30 0.49 29.70
5 0.32 0.43 0.83 35.31
4 3 0.22 0.31 0.52 443
4 0.32 0.51 1.00 175.50
5 0.49 0.86 1.59 195.47
5 3 0.34 0.50 0.99 44.35
4 0.48 0.81 1.46 212.64
5 0.69 1.14 1.87 681.12
4 3 3 0.28 0.27 0.45 21.14
4 0.30 0.47 0.90 55.26
5 0.36 0.65 1.13 170.54
4 3 0.25 0.44 0.65 96.60
4 0.37 0.77 1.19 642.67
5 0.63 1.19 1.89 1044.51
5 3 0.36 0.72 1.02 783.66
4 0.57 1.02 1.80 1361.53
5 1.05 2.11 3.33 1913.92
5 3 3 0.32 0.31 0.58 59.20
4 0.33 0.59 0.92 775.03
5 0.51 0.96 1.60 1630.60
4 3 0.28 0.48 0.85 185.45
4 0.49 0.95 1.76 1113.41
5 0.83 1.46 291 2683.74
5 3 0.50 0.82 1.60 1059.65
4 0.86 1.27 2.65 2660.76
5 143 2.19 4.40 2821.72
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The performance of the TIIM for medium-size instances
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The number of instances solved locally or globally optimal

The average CPU runtime (seconds) of instances solved locally or globally optimal

B &8 ™ IiMGomin  TUM-30min  TUM-15min  TUM-Tmin  TIM-60min  TUM-30min  TUM-15min  THM-Tmin
3 6 6 10 10 10 0 92.7 350.7 599.1 —_
7 10 10 10 0 407.8 969.3 860.6 —
8 6 6 4 0 519.4 1167.4 1541.6 —
7 6 10 10 10 0 406.1 797.2 1379.5 —
7 8 7 6 0 1957.5 2097.4 2704.9 —
8 3 2 2 0 3252.5 3288.0 32944 —
8 6 8 8 6 0 1775.6 1917.3 31149 —
7 0 0 0 0 — — — —
8 0 0 0 0 — — — —
4 6 6 9 8 6 0 345.5 972.3 1092.6 —
7 3 2 2 0 2667.1 2681.6 2992.1 —_
8 0 0 0 0 — — — —
7 6 2 2 0 0 2600.3 32389 — —
Table 11
The average CPU runtime (in seconds) of the DBHA for medium-size instances
n g np DBHA-60min  DBHA -30min  DBHA -15min  DBHA -1min
3 6 6 1.75 2.54 6.73 2259.79
7 2.02 3.54 7.86 2667.10
8 2.74 4.58 12.86 2965.32
7 6 2.23 3.24 7.94 3057.56
7 2.72 4.09 11.24 3217.20
8 3.49 5.74 12.53 3600
8 6 2.68 4.39 12.13 3423.04
7 3.52 6.26 13.85 3273.72
8 3.73 6.83 10.43 3600
4 6 6 231 3.86 9.42 3121.76
7 2.61 4.95 11.79 3600
8 3.66 6.01 16.82 3600
7 6 2.60 5.09 10.70 3453.47
7 3.78 6.60 17.09 3600
8 4.20 7.42 21.12 3600
8 6 3.48 5.80 18.49 3600
7 3.71 7.43 19.78 3600
8 4.67 10.20 34.08 3600
5 6 6 2.62 5.22 15.17 3600
7 3.63 7.44 17.20 3600
8 4.20 7.31 20.18 3600
7 6 3.36 5.92 19.20 3600
7 3.64 8.30 24.81 3600
8 4.49 9.96 25.38 3600
8 6 3.70 7.04 26.05 3600
7 451 11.13 26.58 3600
8 10.64 14.06 27.40 3600
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